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Abstract: Measuring the void fraction of different multiphase flows in various fields such as gas, oil,
chemical, and petrochemical industries is very important. Various methods exist for this purpose.
Among these methods, the capacitive sensor has been widely used. The thing that affects the perfor-
mance of capacitance sensors is fluid properties. For instance, density, pressure, and temperature can
cause vast errors in the measurement of the void fraction. A routine calibration, which is very gruel-
ing, is one approach to tackling this issue. In the present investigation, an artificial neural network
(ANN) was modeled to measure the gas percentage of a two-phase flow regardless of the liquid phase
type and changes, without having to recalibrate. For this goal, a new combined capacitance-based
sensor was designed. This combined sensor was simulated with COMSOL Multiphysics software.
Five different liquids were simulated: oil, gasoil, gasoline, crude oil, and water. To estimate the gas
percentage of a homogeneous two-phase fluid with a distinct type of liquid, data obtained from
COMSOL Multiphysics were used as input to train a multilayer perceptron network (MLP). The
proposed neural network was modeled in MATLAB software. Using the new and accurate metering
system, the proposed MLP model could predict the void fraction with a mean absolute error (MAE)
of 4.919.

Keywords: capacitance sensor; concave sensor; ring sensor; two-phase flow; homogenous regime;
artificial neural network (ANN); void fraction measuring

1. Introduction

There are many different types of two-phase fluids in industries, for instance, oil–
gas, oil–water, and water–air. These fluids can be found in a wide variety of industries
such as chemical, petrochemical, oil, and gas [1]. Nowadays, one of the most remarkable
issues in the mentioned fields is precisely predicting the void fraction through multi-phase
fluids [2]. Some other things that flow metering of fluids is important to are also worth
mentioning such as procedure control, financial metering, and repository management.
Due to the inherent complexity of two-phase fluids, flow metering of this kind of fluid is
an arduous task [3]. In order to measure the flow of each phase in pipelines through the
common method, firstly, two mixed phases separate and then each one of them will be
calculated. This method can cause a lot of problems, for example, it is time-consuming and,

Processes 2023, 11, 940. https://doi.org/10.3390/pr11030940 https://www.mdpi.com/journal/processes

https://doi.org/10.3390/pr11030940
https://doi.org/10.3390/pr11030940
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/processes
https://www.mdpi.com
https://orcid.org/0000-0002-2942-7839
https://orcid.org/0000-0003-0951-174X
https://orcid.org/0000-0002-9221-4385
https://orcid.org/0000-0002-1632-5374
https://orcid.org/0000-0003-1480-1450
https://doi.org/10.3390/pr11030940
https://www.mdpi.com/journal/processes
https://www.mdpi.com/article/10.3390/pr11030940?type=check_update&version=2


Processes 2023, 11, 940 2 of 14

of course, expensive [4]. Therefore, designing and manufacturing flow meters can come
with a multitude of benefits such as detecting the type of flow and measuring the void
fraction, all of which can be done without any interruption to the process [5,6]. The void
fraction in a two-phase air (or gas)–liquid fluid can be determined by dividing the portion
of the pipe containing air by the entire cross-section of the pipe. Various non-destructive
methods are available to calculate the void fraction [5–11]. Capacitive sensors are a suitable
method for measuring the void fraction because they do not require interruption of the
process or separation of phases. Electrodes are a crucial component of capacitive sensors
and their configuration is remarkable for precise measurement. The type of liquid inside
the pipe is directly related to the electrode configuration and concave, ring and helix are
the most popular configurations. Choosing the electrode configuration for more accurate
measurement depends on the type of liquid inside the pipe. Previous studies have focused
on the three distinct flow regimes of stratified, annular, and homogeneous within a two-
phase fluid in a pipe. For example, the concave electrode was recommended for a two-
phase liquid–liquid conductive fluid [12–17]. Li et al. [18] studied the measurement error of
capacitive sensors. They found that homogeneous sensitivity can reduce this error. Further
research has been conducted to ameliorate a configuration that ensures homogeneous
sensitivity and the helical electrode was found to have the highest level of homogeneous
sensitivity [19–21]. Tollefsen and his colleagues [21] investigated a two-phase oil–water
blend and found that capacitive sensors, utilizing direct plate surfaces, had a limitation
in their reliance on regime and distribution and precise results could only be obtained
if the components were thoroughly blended. If the size of the bubbles was smaller than
the volume of the substance, the resulting mixture was roughly homogeneous. Jaworek
et al. [22] analyzed two-phase water–air flow using five different structures (e.g., helix,
concave, and double ring) and found that the concave configuration had the highest
sensitivity. Furthermore, previous studies have examined the sensitivity of capacitance
sensors in various two-phase flows. In [23], it was observed that the concave configuration
had the highest sensitivity in a two-phase flow, while the double-ring structure had the
lowest sensitivity. Kendoush and Sarkis [24] investigated air–solid two-phase flow. They
tested various electrodes and found that the concave electrode has the highest sensitivity.
Sami and Abouelwafa [25] conducted experiments on non-conductive liquid–gas two-
phase flow using six different capacitors and found that the helical electrode was the
most sensitive in oil–gas two-phase flow. They also discovered that the concave electrode
offered the most accuracy for the annular pattern. In a study conducted by Ahmed [26],
a capacitive sensor was utilized to detect the void fraction and identify the flow regime
in a two-phase air–oil fluid through a horizontal pipe. The sensitivity of the capacitive
sensor was evaluated using both concave and ring electrodes, with the latter indicating
greater sensitivity. This study also highlighted the impact of the configuration type on the
measured response as a limitation to accurately determining the void fraction. Roshani
et al. [27] compared the performance of two well-known sensors in the multi-phase flow
metering industry: gamma-ray attenuation-based and capacitance-based sensors. The
sensors were tested in an annular air–oil two-phase flow. The momentary sensitivity of
the sensors was obtained in different void fractions, in which the concave capacitance-
based sensor had better performance in void fractions of 0.8–1. Wang et al. [28] used
three different sensors in their investigation: concave, double ring, and array sensors.
They researched the performance of the gas percentage of a two-phase fluid and using
the obtained data, the type of regime was predicted. Krupa and his coworkers [29] used a
type of capacitance-based sensor (such as concave) to measure the gas percentage in small
channels with diameters of less than 10 mm. The frequency deviation of a high-frequency
oscillator was implemented to calculate the gas percentage in two-phase flow after the
capacitance sensor was coupled to a resonant circuit with an inductance in parallel. In [30],
He and Chen used a multi-wire capacitance probe to measure the void fraction in stratified
gas–liquid flow. This device was based on the single-wire capacitance probe and was able
to measure the average and the local gas percentage by measuring the water level at various
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positions of the pipe. Artificial intelligence (AI) is one of the most common methods in the
industrial sector [31]. ANN is a capable tool that has been widely utilized in various fields,
such as electrical engineering and control engineering [32–45]. The things that affects the
performance of capacitance sensors are fluid properties. For instance, density, pressure,
and temperature can cause large errors in the measurement of the void fraction. One of the
solutions to this issue is a periodic recalibration of the instrument, which can be grueling.
With the help of the previous studies in this field, in this study, an attempt was made to
present an accurate metering system to predict the amount of void fraction regardless of
the type of liquid. For this purpose, a two-phase-flow homogenous regime in different
void fractions was simulated using COMSOL Multiphysics software. By considering both
capacitance-based sensors, concave and ring, on the two-phase flow and applying their
outputs to an MLP neural network, it we tried to predict void percentages with high
precision. In fact, improving the detecting system’s precision and the combination of two
different capacitance-based sensors are the main contributions of the present research. The
main aim of this paper was to present a technique based on ANN for intelligent estimating
of the gas percentage in the two-phase flow regardless of the liquid phase changes. To
train the ANN, a data set was created using COMSOL Multiphysics software. A combined
capacitance-based sensor was modeled. This sensor was made from two widely used
sensors, concave and ring, which were connected together in series. Simulations were done
for a homogenous pattern of two-phase flow with five various liquid phases (crude oil, oil,
gasoil, gasoline, and water) and the void fraction ranged from 0 to 1 with a step of 0.05. To
predict the gas percentage of a homogeneous two-phase fluid with a distinct type of liquid,
data obtained from the COMSOL Multiphysics were given as input to train a multilayer
perceptron network (MLP) which was modeled in MATLAB software. Using the new and
accurate metering system, the proposed MLP model could predict the void fraction with a
low mean absolute error.

2. Validation and Simulations

Three distinct flow regimes are commonly observed in oil, chemical and petrochemical
industries: annular, stratified, and homogeneous. These are illustrated in Figure 1. In this
paper, a homogeneous regime for a two-phase air–liquid fluid was investigated. This type
of regime happens when air and liquid inside the pipe are entirely blended. To benchmark
the COMSOL Multiphysics software, based on the validated simulated data in the authors’
previous work [46], in which two widely used capacitance-based sensors, concave and
ring, were designed and simulated, the results obtained from this software are valid.
COMSOL Multiphysics is one of the most widely used software programs. This software
utilizes the finite-element method (FEM) to provide a specific environment to simulate
and analyze different branches such as chemical, electrical, and mechanical industries.
During simulation, an air area is created because there are powerful electric fields that
exist around the plates of the simulated capacitor. Since the electrical field depends on
the inverse of distance cubically, the more the distance between electrodes increases, the
more the electrical field decreases. This way, the surrounding electrical field which could
grow indefinitely will be negligible, as variables that affect the electrical field are constant
over time the stationary study is used. As mentioned previously, COMSOL Multiphysics
software uses a finite-element method for simulating and producing the most precise
results. There are several types of meshing and the mesh size was set to finer. COMSOL
Multiphysics software utilizes a network of elements to simulate and solve the designed
structure with the finite-element method. The finer mesh size results in decreasing the size
of each element, so in this way, the software produces a more accurate result. The size of
the different parts of the finer mesh size are given in Table 1. The maximum element size
limits how big each mesh element can be, the minimum element size limits how small each
mesh element can be, the maximum element growth rate limits the size difference of two
contiguous mesh elements, and the curvature factor and the resolution of narrow areas
limits how big a mesh element can be along a curved boundary and controls the number of
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layers of mesh elements in narrow regions. The computer that was used had an i7 4510U
CPU and 6GB of RAM.
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Figure 1. Distinct types of fluids. (a) Stratified, (b) annular, and (c) homogeneous.

Table 1. Characteristics of the finer mesh size.

Characteristics Amount

The maximum element size 0.7 cm

The minimum element size 0.03 cm

The maximum element growth rate 1.35

The curvature factor 0.3

The resolution of narrow areas 0.85

2.1. Designing and Simulation of a Concave Sensor in COMSOL Multiphysics

In this section, the concave sensor was simulated in the benchmarked software. Simu-
lations were performed for a two-phase air–liquid homogeneous fluid and every simulation
was repeated 21 times (void fraction 0 to 1 with a step of 0.05) for five different liquids
such as crude oil, oil, gasoil, gasoline, and water. The parameter by which the electric field
between the charges is reduced in comparison to the vacuum is called relative permittivity
(εr). To model the homogeneous pattern in the software, the material inside the pipe was
assigned different values of εr. To achieve this, a specific εr was supposed for the interior
material for each void fraction, obtained using an averaging method. The values of εr for
air, crude oil, oil, gasoil, gasoline, and water at room temperature were 1, 2, 2.2, 2.4, 2.7,
and 81, respectively. For example, for oil, the εr of the homogenous flow inside the pipe
was incrementally changed from 1 to 2.2 for every 5% decrease in void fraction. In all of
the simulations, air content was defined due to the obvious fringing fields that could be
recognized around the capacitor plates. These fields might rise to infinite, even though they
decrease inversely proportional to the cube of the distance. To account for this, a 3D model
of electrostatic physics was made, with variables related to the field set to remain constant
over time in the stationary regime. In addition, as was mentioned, the mesh settings for
simulation were set on “finer mode”. The simulated concave sensor with its dimensions
is shown in Figure 2. A three-dimensional vision of the electrode schema, the meshed
model of the capacitance-based sensor and the electrical potential (voltage) on the surf of
the electrodes are illustrated in Figure 3. Moreover, fluid components were decomposed
into 16429 3D fundamentals using FEM.
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2.2. Designing and Simulation of a Ring Sensor in COMSOL Multiphysics

In this part, the ring sensor was simulated in the COMSOL Multiphysics software. All
the mentioned things for the concave sensor were considered for this sensor as well. The
simulated ring sensor is shown in Figure 4. In addition, as presented for the concave sensor,
for the ring sensor, the three-dimensional vision of the electrode schema, the meshed model
of the capacitance-based sensor and the electrical potential (voltage) on the surf of the
electrodes are illustrated in Figure 5. Fluid components were decomposed into 16429 3D
fundamentals using FEM. All of the results obtained from both sensors are presented in
Table 2.
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Figure 5. The simulated ring sensor. (a) Three-dimensional vision of the electrode schema, (b) meshed
model, and (c) electrical potential (voltage) on the surf of the electrodes.

Table 2. The results obtained from simulating both sensors.

Liquid Phase Name Void Fraction εr
The Simulated Results of
the Concave Sensor (pF)

The Simulated Results of
the Ring Sensor (pF)

Crude oil 0.00 1.000 9.337 5.979

Crude oil 0.05 1.050 9.421 6.006

Crude oil 0.10 1.100 9.504 6.033

Crude oil 0.15 1.150 9.587 6.060

Crude oil 0.20 1.200 9.669 6.086

Crude oil 0.25 1.250 9.750 6.113

Crude oil 0.30 1.300 9.830 6.139

Crude oil 0.35 1.350 9.910 6.165

Crude oil 0.40 1.400 9.989 6.191

Crude oil 0.45 1.450 10.068 6.217
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Table 2. Cont.

Liquid Phase Name Void Fraction εr
The Simulated Results of
the Concave Sensor (pF)

The Simulated Results of
the Ring Sensor (pF)

Crude oil 0.50 1.500 10.145 6.243

Crude oil 0.55 1.550 10.222 6.269

Crude oil 0.60 1.600 10.299 6.294

Crude oil 0.65 1.650 10.374 6.320

Crude oil 0.70 1.700 10.450 6.345

Crude oil 0.75 1.750 10.524 6.370

Crude oil 0.80 1.800 10.598 6.395

Crude oil 0.85 1.850 10.671 6.420

Crude oil 0.90 1.900 10.744 6.445

Crude oil 0.95 1.950 10.816 6.469

Crude oil 1.00 2.000 10.888 6.494

Oil 0.00 1.000 9.337 5.979

Oil 0.05 1.060 9.438 6.011

Oil 0.10 1.120 9.538 6.044

Oil 0.15 1.180 9.636 6.076

Oil 0.20 1.240 9.764 6.108

Oil 0.25 1.300 9.830 6.139

Oil 0.30 1.360 9.926 6.171

Oil 0.35 1.420 10.021 6.202

Oil 0.40 1.480 10.114 6.233

Oil 0.45 1.540 10.207 6.264

Oil 0.50 1.600 10.299 6.267

Oil 0.55 1.660 10.390 6.325

Oil 0.60 1.720 10.479 6.355

Oil 0.65 1.780 10.569 6.385

Oil 0.70 1.840 10.657 6.415

Oil 0.75 1.900 10.744 6.445

Oil 0.80 1.960 10.831 6.474

Oil 0.85 2.020 10.916 6.503

Oil 0.90 2.080 11.001 6.533

Oil 0.95 2.140 11.086 6.562

Oil 1.00 2.200 11.169 6.590

Gasoil 0.00 1.000 9.337 5.979

Gasoil 0.05 1.070 9.455 6.017

Gasoil 0.10 1.140 9.570 6.054

Gasoil 0.15 1.210 9.685 6.092

Gasoil 0.20 1.280 9.798 6.129

Gasoil 0.25 1.350 9.910 6.165

Gasoil 0.30 1.420 10.021 6.202

Gasoil 0.35 1.490 10.130 6.238
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Table 2. Cont.

Liquid Phase Name Void Fraction εr
The Simulated Results of
the Concave Sensor (pF)

The Simulated Results of
the Ring Sensor (pF)

Gasoil 0.40 1.560 10.238 6.274

Gasoil 0.45 1.630 10.344 6.310

Gasoil 0.50 1.700 10.450 6.345

Gasoil 0.55 1.770 10.554 6.380

Gasoil 0.60 1.840 10.657 6.415

Gasoil 0.65 1.910 10.759 6.450

Gasoil 0.70 1.980 10.859 6.484

Gasoil 0.75 2.050 10.959 6.518

Gasoil 0.80 2.120 11.058 6.552

Gasoil 0.85 2.190 11.155 6.586

Gasoil 0.90 2.260 11.252 6.619

Gasoil 0.95 2.360 11.347 6.652

Gasoil 1.00 2.400 11.441 6.685

Gasoline 0.00 1.000 9.337 5.979

Gasoline 0.05 1.085 9.480 6.025

Gasoline 0.10 1.170 9.620 6.070

Gasoline 0.15 1.255 9.758 6.115

Gasoline 0.20 1.340 9.894 6.160

Gasoline 0.25 1.425 10.029 6.204

Gasoline 0.30 1.510 10.161 6.248

Gasoline 0.35 1.595 10.291 6.292

Gasoline 0.40 1.680 10.420 6.335

Gasoline 0.45 1.765 10.546 6.378

Gasoline 0.50 1.850 10.671 6.420

Gasoline 0.55 1.935 10.795 6.462

Gasoline 0.60 2.020 10.916 6.503

Gasoline 0.65 2.105 11.037 6.545

Gasoline 0.70 2.190 11.155 6.586

Gasoline 0.75 2.275 11.272 6.626

Gasoline 0.80 2.360 11.388 6.666

Gasoline 0.85 2.445 11.502 6.706

Gasoline 0.90 2.530 11.614 6.746

Gasoline 0.95 2.615 11.726 6.785

Gasoline 1.00 2.700 11.835 6.824

Water 0.00 1.000 9.337 5.979

Water 0.05 5.000 14.381 7.786

Water 0.10 9.000 17.492 9.162

Water 0.15 13.000 19.643 10.308

Water 0.20 17.000 21.226 11.300

Water 0.25 21.000 22.444 12.181
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Table 2. Cont.

Liquid Phase Name Void Fraction εr
The Simulated Results of
the Concave Sensor (pF)

The Simulated Results of
the Ring Sensor (pF)

Water 0.30 25.000 23.411 12.973

Water 0.35 29.000 24.197 13.694

Water 0.40 33.000 24.849 14.355

Water 0.45 37.000 25.399 14.964

Water 0.50 41.000 25.869 15.529

Water 0.55 45.000 26.276 16.054

Water 0.60 49.000 26.631 16.544

Water 0.65 53.000 26.943 17.002

Water 0.70 57.000 27.221 17.433

Water 0.75 61.000 27.469 17.837

Water 0.80 65.000 27.692 18.219

Water 0.85 69.000 27.893 18.580

Water 0.90 73.000 28.077 18.921

Water 0.95 77.000 28.244 19.244

Water 1.00 81.000 28.397 19.551

As is clear from Table 2, there are 21 rows per liquid to consider the void fraction from
0 to 1 with a step of 0.05. In addition, for every specific liquid for the specific void fraction,
the capacitance amount of both sensors was measured and considered.

3. Artificial Neural Network

Artificial intelligence (AI) has many applications across various industries such as
healthcare, finance, retail, transportation, and education. AI can be used to analyze medical
images, diagnose diseases, and personalize treatment plans. For example, AI-powered
systems can help radiologists detect abnormalities in medical images and provide more ac-
curate diagnoses as well as predict disease progression and develop personalized treatment
plans for patients. It can also be utilized to detect fraud, optimize investment portfolios,
and automate trading. This tool can analyze large amounts of financial data to identify
patterns and anomalies that indicate fraudulent activity and optimize investment portfolios
by identifying the most promising stocks and making trades automatically based on market
conditions. It can also be used to personalize shopping experiences, recommend products,
and optimize supply chain operations. AI can assist customers with their purchases and
provide personalized product recommendations based on their preferences and past be-
havior. This tool is useful in optimizing supply chain operations by predicting demand,
managing inventory levels, and optimizing shipping routes. Moreover, it can be used to
improve safety, optimize traffic flow, and automated driving. For example, AI-powered
systems can analyze traffic data to identify areas with high accident rates and develop
solutions to reduce the risk of accidents. It can be utilized to personalize learning experi-
ences, identify areas where students need help, and develop personalized learning plans.
For example, AI-powered systems can analyze student performance data to identify areas
where students are struggling and provide personalized learning materials to help them
improve [47–51]. One of the most accurate methods in mathematics is ANN which consists
of neurons. The ANN is a reliable soft computing approach that can address convoluted
issues [52]. Neurons are simple computing elements and can be produced as one or more
layers [53]. Classification and prediction are two important parts of ANN and because
of this, many types of ANNs exist and each with its own characteristics. One of the best
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ANNs with various applications is the multilayer perceptron (MLP). This makes it a good
choice for researchers who need accurate results quickly [54]. This model has two sets of
data, the training set and the testing set. A training set uses a finite amount of accurate
data in order to train the network. A testing set consists of data that the network has
never faced before and is defined with the aim of evaluating the network’s correctness [55].
To find the appropriate network with the lowest mean absolute error, several networks
with different characteristics such as the number of neurons, number of epochs, number
of hidden layers, and even different types of activation functions have been investigated
and the best one was chosen. In fact, after investigating different parts of networks and
changing them over and over, the proposed network was selected. The modeled MLP
network which can be seen in Figure 6 had a single output and two inputs. The capacitance
obtained from the concave sensor and ring sensor was used as the first and second inputs,
respectively. Table 1 displays the data obtained from the combined sensors for various
liquids, including crude oil (εr = 2), oil (εr = 2.2), gasoil (εr = 2.4), gasoline (εr = 2.7), and
water (εr = 81). Using COMSOL Multiphysics software, 105 simulations were conducted
for the mentioned liquids by altering the void fractions from 0 to 1 with a step of 0.05. Out
of these simulations, 73 (70%) were used as the train data and 32 (30%) were reserved for
the test data. After evaluating multiple networks with various numbers of neurons and
layers, the optimum structure was acquired. The characteristics of the modeled network
are presented in Table 3.
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Table 3. Configuration of the proposed ANN model.

Neural Network MLP

Neurons in the input layer 2

Neurons in the hidden layer 6

Neurons in the output layer 1

Number of epochs 400

Activation function of neurons in hidden layers Tansig

Activation function of neurons in input and output layers Purelin

Method of training Levenberg–Marquardt [56,57]

4. Results and Discussion

The diagram of predicting the void fraction using the proposed ANN is given in
Figure 6. As mentioned previously, 105 sets of data were available from simulations and
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70% and 30% of the data was used to train and to test, respectively. The data were divided
randomly between the training and the testing sets. To opt for the best architecture many
networks were investigated and the best one was chosen. There are two important factors in
the results obtained from the presented ANN, real data and predicted data. Real data were
produced by simulation and predicted data were provided by the proposed neural network;
both are given in Figure 7. This figure shows that real and predicted data were close. By
using Equation (1) the mean absolute error (MAE) of the proposed MLP model could be
calculated. In this equation, N is the number of observations and X (Sim) and X (Pred)
belong to simulated (COMSOL Multiphysics) and estimated (MLP) values, respectively.
The regression diagrams of the training and testing data sets are shown in Figure 7a,b,
respectively. Regression is a statistical technique that is used to evaluate the fortification of
a relationship between two variables. MAE for the training and testing data sets were 4.621
and 4.919, respectively.

MAE =
1
N

z

∑
i=1
|xi(Sim)− xi(Pred)| (1)
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Utilizing the accurate predicting system, the proposed MLP model can meter the
void fraction with a low mean absolute error. This important point was achieved using
an ANN and combined capacitive sensors. It is to be noted that the low MAE of the
training and the testing sets show that the proposed ANN can give correct and accurate
results. As can also be seen in Figure 7, underfitting or overfitting was not observed,
which demonstrates the trustworthiness of the presented model. As mentioned previously,
two different sorts of data are available for the ANN, training data and testing data. The
network uses training data for training and creating the model and it contains information
that is seen by the network. After training the modeled network is tested. At the end of
calculating, the predicted values of training and testing data are compared with the real
values of training and testing data. As can be seen, there is no over-fitting or under-fitting
in the presented network.

5. Conclusions

The primary goal of this investigation was to predict the gas percentage of a two-phase
fluid regardless of liquid phase changes. To achieve this aim, an MLP ANN was utilized.
To supply data for the proposed ANN a new combined capacitance-based sensor was
used. This sensor included a concave sensor and a ring sensor. Both of these sensors
were designed and simulated in COMSOL Multiphysics software. Five different types of
liquid were investigated: crude oil, oil, gasoil, gasoline, and water. Simulations were done
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21 times (different void fractions ranging from 0 to 1 by a step of 0.05) for each liquid and
this way 105 data sets were collected to train and test the modeled network. The presented
ANN had two inputs (results obtained from the concave and ring sensors by simulating
in COMSOL Multiphysics). This network also had one output which was the predicted
void fraction. Applying the presented novel metering system, the gas percentage of any
homogeneous two-phase flow with various liquid phases can be predicted accurately. In
this regard, the functionality of an MLP ANN was investigated. The main aim was to
predict the amount of void fraction precisely regardless of the type of liquid inside the pipe.
To achieve this goal an MLP ANN and a combined capacitance-based sensor were used.
Utilizing another type of ANN such as GMDH or RBF can be considered for future work.
A combination of other shapes of sensors can also be considered.
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