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a b s t r a c t

The field of Deep Visual Analytics (DVA) has recently arisen from the idea of developing Visual
Interactive Systems supported by deep learning, in order to provide them with large-scale data
processing capabilities and to unify their implementation across different data and domains. In this
paper we present DeepVATS, an open-source tool that brings the field of DVA into time series data.
DeepVATS trains, in a self-supervised way, a masked time series autoencoder that reconstructs patches
of a time series, and projects the knowledge contained in the embeddings of that model in an
interactive plot, from which time series patterns and anomalies emerge and can be easily spotted.
The tool includes a back-end for data processing pipeline and model training, as well as a front-
end with an interactive user interface. We report on results that validate the utility of DeepVATS,
running experiments on both synthetic and real datasets. The code is publicly available on https:
//github.com/vrodriguezf/deepvats.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Deep learning is the field of Artificial Intelligence that studies
he creation of learning systems through the use of artificial
eural networks. In the last few years, this field has experienced
reater growth than any other in computer science, becoming the
uintessential tool for solving any type of task related to the areas
f computer vision and natural language processing.
While the research and development of deep learning systems

or image and text data is already very consolidated, there are
ther important data modalities for which these methods are
et to take off. Among these modalities, time series stand out,
ue to their ubiquitous presence in industrial, medical, financial
rocesses, etc., and due to their availability on an unprecendented
cale, which is caused by the sensorisation of the world in which
e live (the so-called Internet of Things, or IoT) and the increase

n storage capacity and massive data processing [1].
Nowadays, there is a demand for solutions that help data

nalysts to understand time series data, especially when these
re of long duration, due to the information overload that they
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entail (see Fig. 1). Both the purely exploratory tasks, such as
finding cyclical patterns, anomalies, and clusters, as well as the
predictive ones (e.g., classification and forecasting) are, in most
cases, carried out by visual analytics systems built ad-hoc, whose
computational basis is based on statistics and Key Performance
Indicators (KPIs) that are not transferable between domains, and
that are not scalable to long time series [2]. To solve these com-
plex issues, Deep Visual Analytics (DVA) is starting to grow as an
alternative way of designing and implementing Visual Interactive
Systems (VISs) powered by neural networks [3]. The reason why
DVA systems, or more generally, learning-based analytics, are es-
pecially useful for long time series is that the model empowering
the system does not have to be trained on the whole series, but
just on a representative slice of it. Once the model is trained, it
can be applied to the whole series, or even to future data coming
from the series in a fast way, as long as there are not remarkable
distribution shifts in the data.

In this work, we present DeepVATS (Deep Visual Analytics for
Time Series), an open-source tool1 that combines cutting-edge
research in neural networks and visual analytics. It is inspired
by projects such as TimeCluster [2], PSEUDo [4], the TensorFlow’s
embedding projector [5], the OpenAI microscope [6] or plat-
form.ai [7], in which tools are created to interpret the latent space

1 Link to Github repository: https://github.com/vrodriguezf/deepvats.
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Fig. 1. General outline of DeepVATS.
f trained neural networks. These tools have proven how the
nternal representations (a.k.a embeddings) of a neural network
eveal high-level abstraction patterns present in the data, such
s semantic similarity between words in the case of networks
rained with natural language. Therefore, given a time series
ataset, DeepVATS will carry out three main tasks:

1. Train neural networks to obtain data representations that
contain, in a compressed way, meaningful patterns.

2. Project the content of the latent space of the trained neural
network in a way that allows the detection of clusters and
anomalies.

3. Provide interactive visualisations to explore different per-
spectives of the projected latent space.

In order to allow an analysis and exploration of the time
eries data without the need of external expert labels, neural net-
ork training will be carried out through self-supervised learning
echniques [8]. In this sense, DeepVATS innovates upon the re-
ated work by implementing a Masked Time Series AutoEncoder
MTSAE), with the simple but powerful approach of randomly
asking steps of the input series and try to reconstruct them
uring training. Unlike classic autoencoders such as the one used
n TimeCluster, we show that MTSAEs are more sample efficient,
nd provide more flexibility in the creation of latent spaces that
re useful for visual analytics, due to the different possibili-
ies in the design of the masking strategy. To the best of our
nowledge, this is the first work in which latent spaces provided
y MTSAEs are employed for visual analytics purposes. Further-
ore, it is aligned with the recent trend in computer vision and
elf-supervised learning, which places Masked AutoEncoders as
calable and state-of-the-art vision learners [9].
The rest of the paper is structured as follows: Section 2 pro-

ides the background knowledge in each of the fields required
o understand how our tool works, as well as related works that
ave inspired and influenced this work. In Section 3, we describe
ur system for deep visual analytics of time series, DeepVATS,
etailing both the back-end, which includes the data processing
ipeline and model training, and the front-end, which includes
he user interface and an in-depth explanation of how to actually
se the tool. Then, in Section 4, we report on experiment results
hat validate the utility of our solutions, running experiments
n both synthetic and real datasets, and comparing the results
ith other tools for deep visual analytics of time series. Finally,

n Section 5 the conclusions and outline future directions and
esearch questions are given.

. Backgrounds and related work

Visual Analytics (VA) can be defined as the study, methods
nd techniques that can be used to turning raw information into
isual representations of data and knowledge. It refers to the
se of interactive visual interfaces and statistical visualisations in
he context of recognising emerging patterns and trends within
he data, that show underlying relationships and support its
2

understanding. It is an essential component of Decision Support
Systems and large-scale decision making, especially in a business
or commercial environment [10]. Examples of complex prob-
lem areas solved by data visual analytics include cybersecurity,
healthcare, chemistry, social science, astronomy, and physics,
among others [11].

One of the main challenges of VA is the scalability, which
involves both human and machine limitations [11]. VA techniques
need to be able to scale with both the size and the dimension of
the data. Another challenge is the unification and standardisation
of VA approaches, since nowadays, different areas and different
data modalities present VA solutions completely independent
to each other, which hinders the knowledge transfer between
systems, and, ultimately, decelerates the progress in the field.

The two challenges of VA introduced above are exactly two of
the key qualities that can be found in the field of deep learning.
Deep learning is a sub-field of Machine learning that uses multi-
layer neural networks to extract patterns from data. Each of
these layers, consisting of a set of artificial neurons, takes knowl-
edge extracted from the previous layers and gradually refines it
by applying both linear (matrix multiplication) and non-linear
operations (activation functions such as ReLU) between them.
Layers are laid out following a specific architecture, and are
trained by gradient descent-based optimisation algorithms to
minimise the values of a loss function. As long as large datasets
are available, deep learning models have proven to be superior
to classic machine learning algorithms in both accuracy and scal-
ability [12]. Furthermore, the knowledge and expertise in deep
learning can be transferred between domains and data modal-
ities, which makes it a ‘‘Swiss army knife’’ to implement any
learning system.

Leveraging the scalability and standardisation of deep learning
approaches can be helpful for VA. In this sense, the intersection
between the two fields have evolved into Deep Visual Analyt-
ics (DVA) [3]. Normally, DVA systems apply deep learning to
get predictive insights on the data, on top of other classic data
visualisations. However, the whole exploration part of a VA so-
lution can be addressed with deep learning too, by analysing
the so-called ‘‘latent space’’ of the neural network. This is an
intermediate layer of the network that has learnt to encode its
input data in an abstract and meaningful way for the training task
at hand. These representations are often known as embeddings,
i.e., mappings from one vector space (the input layer) to another
vector space (the latent intermediate layer), normally with lower
dimensionality.

Autoencoders are a particular type of deep learning architec-
tures that are specially useful for exploring latent spaces. They are
neural networks that have been designed to reproduce their input
as output, without any explicit labels or supervision [13]. Despite
the fact that autoencoders can be used for reconstruction tasks,
the main purpose of these architectures is to learn a meaningful
latent representation of the input data. This representation is
usually learned in the bottleneck layer, which is the most com-
pressed layer of the architecture. To reconstruct the input, the
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autoencoder needs to decode the latent representation back to
the original input space. Therefore, by analysing the activations
of the bottleneck layer, it is possible to gain insights about the
input data.

The analysis of neural latent spaces is a common practice in
he field of eXplainable AI (XAI) [10]. This field aims at improv-
ng the interpretability of complex predictive models such as
eep neural networks, which are often criticised as being merely
lack boxes with good performance and success on predictive
asks, but poor adoption in applications where interpretability
s essential [14]. A popular technique for explaining neural net-
orks is Layer-Wise Relevance Propagation (LRP), which oper-
tes by propagating the model prediction backward in the neu-
al network. LRP has been successfully applied in interpretable
omputer vision applications, speech recognition, and predictive
aintenance, among other areas [15]. This idea of exploring how
eural networks work by analysing them at the level of layer
ctivations was taken to the level of a usable application by
he company OpenAI, with The OpenAI Microscope [6]. This is a
ollection of visualisations of every significant layer and neuron
f 13 important vision models trained on huge datasets.
The XAI techniques mentioned above use the dataset (input

ata and output labels/predictions) to explain a model, normally
rained in a supervised way. However, in the case of DVA, we
ant a model to explain the dataset. An analyst may want to
xplore a raw dataset without giving any additional informa-
ion that is used to train a supervised model, or without even
nowing that there is a deep learning model behind. In this
ense, self-supervised learning is an exciting research direction
hat aims at learning data representations using labels that are
mbedded in the data itself, without explicit and potentially even
anual supervision. Many of these methods are developed in spe-
ific communities such as natural language processing, computer
ision or graph learning [8]. One of the major benefits of self-
upervised learning is the ability to scale to large amounts of
nlabelled data in a lifelong learning manner.
Although there are many techniques for pre-training models

n a self-supervised way, in this work we draw inspiration from
he Masked Language Model (MLM) methods used originally in
atural Language Processing (NLP). Here, the input sentences
rom a text dataset are randomly masked, and the aim of the
odel is to recover the masked word. This technique gave rise to
ERT [16], a breakthrough language model that was pre-trained
sing an enormous dataset, and that could be applied to a variety
f different downstream tasks such as sentiment analysis. More
ecently, He et al. in [9] showed that this same concept can
e applied in computer visions, and popularised the concept of
asked Autoencoders (MAEs), as scalable self-supervised learners
f large visual representations, outperforming other approaches.
n time series, Zerveas et al. presented in [17] a presented a novel
ramework for BERT-like self-supervised representation learning
f multivariate time series using the transformer architecture,
hich will be used as the basis for the Masked Time Series
utoEncoder (MTSAE) employed in this work.
There are many examples of DVA systems supported by a

eural network trained in a self-supervised way. In computer
ision, platform.ai [7] stands out as a human-in-the-loop develop-
ent environment to train computer vision models without the
eed of knowledge of deep learning or code skills. A backbone
elf-supervised AI model is used to help domain experts identify
atterns in the data by displaying visual groupings or clusters that
an easily be labelled. Expert labels are then used to fine-tune
he backbone model, which improves the clusters presented to
he user. This process is repeated iteratively creating an active
earning framework that includes both human and machine in the

earning process.

3

In natural language processing, Google’s embedding projec-
or [5] is a clear example of what a DVA tool can do with
he embeddings of a self-supervised language model, such as
ERT, and it is a direct inspiration for the tool described in
his manuscript. They propose and implement a toolkit for in-
eractively viewing and analysing textual embeddings and other
nstructured data, projecting them in a 2D or 3D space via dimen-
ionality reduction algorithms, such as t-SNE [18] or UMAP [19].
ith such a system, one can clearly see how words with semantic

imilarity appear together in the embedding space.
Finally, in the case of time series data, the reception of deep

earning as the de facto technique to implement learning sys-
ems has not been as fast and significant as in language and
ision, due to the accuracy improvements for common tasks
uch as time series classification has not been that drastic [20].
till, in recent years, we are seeing how the latest advances in
eep learning, such as self-supervised strategies and transformer-
ased architectures, are being transferred to time series data
oo [21].

In the field VA, there are several AI-supported solutions, and
n fact, recent surveys have been published that explore the
ntersection between AI and data visualisation [22,23]. For time
eries data, we start by enumerating some VA systems that do not
se deep learning as a backbone, such as: 1. PSEUDo [4], which
ffers a novel adaptive feature learning technique for exploring
isual patterns in multivariate time series. 2. MTV [24], a visual
nalytics system aimed at supporting human-AI collaboration
n the detection, investigation, and annotation of time series
nomalies 3. [25], which presents a linked-view visual analytics
pplication for analysing high-dimensional measurement data
ith varying sampling rates in intensive care units. 4. Sintel [26],
machine learning framework for end-to-end time series tasks
uch as anomaly detection. 5. MultiDR [27], a dimensionality
eduction framework that enables processing of multivariate time
eries as a whole to provide a comprehensive overview of the
ata. 6. Plotly Resampler [28], an open source Python toolkit to
ffectively visualise large volumes of high frequency time series
ata. 7. TimeSeer [29], a method and application for organising
nd exploring multivariate time series data using the so called
cagnostics technique, which characterises the 2D distributions of
rthogonal pairwise projections on a set of points in multidimen-
ional Euclidean space. 8. TimeCurves [30], a general approach for
isualising patterns of evolution in temporal data, which can be
pplied to any dataset where a similarity metric between tem-
oral snapshots can be defined. Visually, the curves look similar
o the ones of this work, though the process to create them
s based on Multi-Dimensional Scaling (MDS) [31] 9. Van den
lzen et al. [32] presents a new approach for exploring dynamic
etworks, which enables the identification of stable and recurring
tates in the network. Although it is focused on dynamic networks
nd not time series in general, the resulting visualisations and the
rocedure presents analogies with the methodology of DeepVATS.
With regard to the specific field in which this work operates,

.e., DVA for time series, we can highlight the following related
orks:

1. TimeCluster, by Ali. et al. [2], which is arguably the closest
related work to this one. TimeCluster proposes an inter-
active visual analytics system for exploring clusters (seg-
ments) in long time series in a single image displayed as a
connected scatter plot. The input series is first processed
with a sliding window approach, creating a dataset of
smaller subsequent time windows that is then used to train
a Deep Convolutional AutoEncoder that reconstructs the
full windows. Then, the latent space of the model will be

extracted and projected into the scattered plot.
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Fig. 2. DeepVATS software architecture by modules.
2. Peax, by Lekschas et al. [33], which uses a convolutional
autoencoder for interactive visual pattern search in se-
quential data, adapting to user perception and improving
pattern retrieval. Although it features a visible latent space
to interact with, the main power of Peax lies on the idea
of active learning to polish the results based on the user
feedback.

3. The work by Guo et al. [34] introduces a method for calcu-
lating similarity between medical records using event and
sequence embeddings derived from an autoencoder, along
with a visual analytics system to support comparative stud-
ies of patient records.

4. V-Awake [35], a visual analytics approach for correcting
faulty predictions in sleep staging coming from a deep
learning model. Although a deep learning model is used to
get the predictions, the system does not include a visuali-
sation of the latent space of that model.
In [36], the authors propose a prototype of a sketch-based
querying visual system for time series data that allows
users to explore that data interactively without the need
to set any parameter, just drawing a sketch. They used a
pair of LSTM networks with shared parameters to encode
the sketch and the time series data.

The system proposed in this work, DeepVATS, is built on top
of the ideas of some of the above-mentioned works, and inherits
some of their data processing pipelines and graphical interface
components. However, DeepVATS expands the ideas of these
works in multiple points:

• The backbone deep learning model of DeepVATS is a Masked
Time Series AutoEncoder, in contrast to the classic autoen-
coders built in the other works such as TimeCluster or Peax,
that reconstructs a full time window. This allows DeepVATS
to be used in other tasks than segmentation, such as outlier
detection, which is hard to accomplish by a normal autoen-
coder, given that they naturally tend to denoise the input
signal and omit outliers when these are peaks.

• The DeepVATS backbone model is trained with a multi-
window size strategy, so that the embeddings of the trained
model is less sensitive to the choice of window size, which
is usually a critical value in the analysis of long time series.

• DeepVATS is available open-source to be used by any stake-
holder in any appropriate dataset. Furthermore, it has been
developed in a modular way with a general purpose, such
that it is easy to replace any of the components (e.g., the
backbone model).

3. DeepVATS system description

This section describes the DeepVATS tool in detail, from the
pipeline established to train the ‘‘backbone’’ neural network
4

model, to which we will refer to as the DL module, to the
usage of the trained model in an exploratory way through a
Graphical User Interface (GUI), namely the Visual Analytics (VA)
module. An overview of the DeepVATS software architecture can
be seen in Fig. 2. The DL module has been implemented as a
Python library developed with nbdev [37], a tool to create Python
modules with Jupyter Notebooks. To train the models we have
used the library tsai [38], a state-of-the art deep learning library
for time series in Pytorch. On the other hand, the VA module has
been implemented using Shiny [39], a popular library to build
interactive web-apps in R.

A third module, namely the storage module, is placed between
the two modules introduced above. It provides an API that al-
lows to save the datasets and encoder models produced by the
DL module, and load them into the VA module to be used for
inference. For the implementation of this module we have relied
on Weights & Biases [40], a tool for doing experiment tracking
in machine learning projects. More specifically, Weights & Biases
provides a so-called Artifacts API to save and version datasets
and machine learning models as artifacts, acting as a high-level
domain specific database for machine learning.

DeepVATS has been created with the purpose of expanding the
community of DVA for time series. For that reason, the tool is
publicly available in a Github repository 1, with Docker integra-
tion to make its deployment easier. Software-wise, some stages
of the pipeline have been designed in a decoupled plug-and-play
way, so that future researchers and data scientists can extend it
to their needs.

3.1. Deep Learning (DL) module

In the Deep Learning (DL) module, an input time series dataset
is loaded, processed and used to train a deep neural network
encoder whose latent space will be analysed and used as the
basis of the VA module. Two stages comprise the pipeline of this
module, namely the dataset logging and the encoder training.

3.1.1. Dataset logging
Datasets have to be ‘‘logged’’ as an artifact in the storage

module before they can be used in any other part of the system.
In order to define a time series dataset to be used in DeepVATS,
some considerations have to be taken:

• Only one time series at a time can be analysed. Therefore,
the tool is suitable for long time series that present cyclical
patterns and anomalies, and not in cases when the time
series is not cyclical or when one wants to detect similarities
differences between different samples (e.g., clinical records
of different patients). In the future, we are planning to
extend the tool so that it is applicable to datasets made of
multiple time series too.
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Fig. 3. Online vs. offline mode in DeepVATS.
• The tool works in the same way regardless of the number
of variables present in the time series, i.e., whether the
time series is univariate or multivariate. Additionally, nat-
ural timestamps (i.e., datetimes) are not needed, since the
time information is not used as input in the neural network
encoder.

• The series is assumed to be regular, i.e., time steps must be
evenly spaced.

• Missing values in the series, if any, are imputed through
linear interpolation.

• In case the time series is too long, the user can choose an
option to resample it into a lower frequency. The data will
then be aggregated using the mean.

By default, the time series will be logged in the storage module
s a single artifact. This is appropriate for enabling offline data
nalysis, where the range of data that is analysed is the same that
as been used to train the backbone encoder. However, DeepVATS
lso provides the option of splitting the time series manually and
ogging multiple artifacts out of it, namely the training and test
rtifacts. This is especially relevant to examine the capabilities of
eepVATS for online analysis, i.e., for situations where an expert
eeds to analyse new data from a process often, and therefore,
etraining the backbone encoder every time new data is available
s infeasible. In these cases, one has to test the trained model
n future time windows (See Fig. 3), to check if it produces
atisfactory results out of the training interval. Note that this
pens the possibility of doing zero-shot DVA, i.e., of having an
nstant DL-based analysis of a dataset without having to retrain
r fine-tune the backbone model. Additionally, the online mode is
lso suitable for very long time series, where the cost of training
he backbone model on the whole series is unnecessarily high,
nd just using a slice of data is enough to create a model that
ill then be used to process (in inference time) the whole series

n a fast way. It is noteworthy that, although we have called this
ode as online, it is not related to the concept of online learning,

n which, the parameters of a learning system are updated based
n incoming data. Here, the online mode can only perform online
nference.

.1.2. Encoder training
The encoder is the central piece of the DL module, and ar-

uably of the whole DeepVATS framework. We also refer to it
n this work as the backbone model, or simply the model. An
ncoder, in deep learning, is an artificial neural network used
5

to turn raw input variables from a high-dimensional space into
efficient and compressed vector representations of a lower di-
mensionality, often known as embeddings, hidden states, or just
the model’s latent space. These representations are typically used
as an intermediate step in machine learning tasks.

Training the encoder properly needs a dataset with a big
number of time series samples. However, as seen in the previous
section, the input artifact logged in the storage module is a single
long time series. Therefore, before passing it to the encoder,
the input series is divided into separate, contiguous and fixed-
size windows of data, or patches, in a process often known as
sliding window. The window size in this process, to which we
will refer as w, is then a crucial hyperparameter that can affect
the dataset that is passed to the model, and thus, it can affect the
representations obtained by the encoder and the visualisations
that we get out of it. By default, the stride of the sliding window,
i.e., the number of data points that the window is moved ahead
along the series is set to 1. Therefore, given a time series of length
T , a window size w and a stride of s, the dataset after the sliding
window will have a total of N = ⌊

T−w
s ⌋ + 1 time windows.

Despite using such a low stride causes contiguous time windows
to almost completely overlap with each other, this prevents the
training process from having a bias from the choice of this value.

In order to watch for overfitting, the dataset created with
the sliding window process is split into training and validation
subsets. We do this differently depending on whether there are
one or two time series artifacts logged for the dataset in the
storage module. If there are two, namely the training and test
artifacts, we create the validation set by holding out the last 20%
of the training set, to be temporally coherent with respect to
the fact that the model will be tested on future data. Otherwise,
the validation set is created by randomly holding out 20% of the
time windows. With regard to normalisation, it can be applied
either batch-wise, sample-wise, or dataset-wise, depending on
the needs of the use case.

The use of encoders in deep learning is commonly associated
with a so-called encoder–decoder architecture, where there is a
decoder network fed with the outputs of the encoder, which turns
them into an actual prediction. One special case of the encoder–
decoder architecture, which will be employed in this work, is the
AutoEncoder (AE), in which the input and output spaces are the
same, i.e., the task of the model is to reconstruct the input data, by
learning first a compressed representation of it. Note that this is a
self-supervised task, since the target needed to train the model is
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Fig. 4. Time series masking. (a) Graphical representation of the time series vectorisation process, including the application of masks. (b) Different masking strategies
available in DeepVATS.
inherent in the data itself. Note also that, despite DeepVATS uses
by default an autoencoder architecture, its modular design allows
it to plug in any other encoder.

We refer to the autoencoder used in DeepVATS as the Masked
Time Series AutoEncoder (MTSAE). The term ‘‘mask’’ refers to the
idea of hiding (or zeroing) sections of the time series, and training
the model to reconstruct them [17]. One of the advantages of
having a masked learning framework is the flexibility in the de-
sign of the masking strategy, as it can be seen in Fig. 4(b). Masks
are applied stochastically over the time series, controlled by the
probability of masking, r . An uniform distribution is followed by
efault, but a ‘‘stateful’’ mode can be selected too, in which a
eometric distribution is applied so that average mask length
eets the value of another parameter called lm. This is required

n order to force the model beyond trivial prediction methods
uch as padding, replication or linear interpolation, which might
ffer a sufficiently good approximation for very short masked
equences. Additionally, one can elect to use the same mask
ynchronised over all variables for a given object (synchronised
ode), or instead, generate a new mask for each in order to en-
ourage the model to learn both relationships between different
alues along individual sequences, as well as inter-dependencies
etween variables in order to improve the modelling. If masks are
pplied at the end of the time series, the MTSAE acts effectively
s a forecasting model, which makes forecasting a special case of
masked autoencoder. In any of these cases, a binary sequence

s generated based on each variable in the series, and the model
s tasked with predicting the values of the time series over which
he mask is set to 0.

With regard to the architecture used to build the MTSAE, we
learly differentiate the encoder and decoder sections. For the
ncoder, we employ the InceptionTime architecture [41]. This is,
o the best of our knowledge, the best deep neural architecture
or time series tasks among the family of 1-dimensional Convo-
utional Neural Networks (CNNs). In this work, we use a network
ade up of six sequential inception modules which maintain

esidual connections, a common strategy to build deeper CNNs.
n the other hand, the decoder is made up of just one output
6

layer, in which the shape of the original input data is recon-
structed by using a convolutional layer with a number of filters
equal to the number of channels in the input data, and a filter size
of 1 (See Fig. 5). Note that this decoder layer can be created in the
same way regardless of the encoder architecture. Therefore, new
encoder architectures can be plugged into the framework without
making any change in the training process.

One advantage of using a CNN such as InceptionTime in the
encoder is that the neural architecture does not change depend-
ing on the sequence length of the input, unlike for vanilla RNNs
or Transformers. This fact can be used to implement variable
window sizes during training (See Fig. 6), which allows the model
to be trained with different window sizes in each training it-
eration, obtaining a model less sensitive to the choice of this
hyperparameter. To do this, we set an interval [wmin, wmax], and
for each training iteration, the batch will be randomly truncated
at a given value within that range. This has a regularisation effect
too, which prevents overfitting in cases where the dataset is
small. Note that, under this setup, wmax has to be lower or equals
to the value of the window size w used in the sliding window
process. However, setting wmax < w causes that the data points
between wmax and w in each batch are lost, since they will never
be passed to the model. Therefore, by default DeepVATS sets
w = wmax.

We train the model using an adaptation of the Mean Squared
Error (MSE) metric, such that it only considers the predictions
over masked values. For a given object with i channels and t time
steps, this loss is defined as,

L =

∑∑
(t,i)∈M

(x̂(t, i) − x(t, i))2, (1)

where x are the true values of the time series and x̂ those pre-
dicted by the model over the set M ≡ {(t, i) : mt,i = 0}, where
mt,i are the elements of the mask M .

Once the model has been trained and validated properly, it
is logged as an ‘‘encoder artifact’’ in the storage module so that
it can be used for inference in the VA module. This artifact will
contain not only the weights of the neural network, but also
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Fig. 5. The Masked Time Series Autoencoder is based on the InceptionTime architecture, a popular 1D Convolutional Neural Network.
Fig. 6. Training with variable window sizes trims the sequence length of each batch dynamically, in order to increase regularisation and robustness of the trained
model.
metadata associated to the training process such as the win-
dow size employed to slice the dataset, the masking type and
probability, etc.

3.2. Visual Analytics (VA) module

In the VA module, the embeddings of a time series dataset are
omputed using one encoder trained following the pipeline de-
cribed in the previous section. Those embeddings are projected
sing dimensionality reduction techniques, and visualised as an
nteractive connected scatter plot in tandem with an interactive
ime series plot, whose interactions affect the view of each other.
n overview of the GUI displayed by this module is shown in
ig. 7. This has been divided into 3 sections, namely the control
anel (Mark 1 in the figure), the embeddings projection (Mark 2),
hich contains the central connected scatter plot, and the time
eries plot (Mark 3).
7

3.2.1. Control panel
In this part of the GUI, the user can configure a variety of

controls that will affect how the rest of the plots of the GUI look
like. These controls are:

• Dataset selector: It allows the user to select the dataset that
wants to be analysed, among the list of time series artifacts
that have been logged before in the storage module by the
DL module (See Section 3.1.1).

• Encoder selector: It allows the user to select the encoder that
wants to be used to encode the selected dataset, among the
list of encoders that have been trained in the DL module for
the selected dataset and logged in the storage module (See
Section 3.1.2).

• Window size selector: The value selected here will be used to
slice the selected time series dataset following a sliding win-
dow process. If the selected encoder has been trained with
variable window sizes, this selector will allow to choose
values in the interval [wmin, wmax], i.e., the same one used
for training the encoder. Otherwise, in case a fixed window
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Fig. 7. Graphical user interface of DeepVATS. Note that there is a section of the embedding projections selected, which is in turn highlighted in the time series plot,
showing the two-way communication between the plots.
d
w

size approach has been employed, the range of selectable
values is [w − w/2, w + w/2], where w is the value of the
window size used in training. In any case, by default the
selector is set to the value w.

• Stride selector: Unlike in training, where the stride of the
sliding window process is always set to 1 to maximise the
amount of data windows created, increasing this stride in
inference can help create clearer projections of the em-
beddings which reveal better information. Additionally, it
reduces the amount of data windows, reducing the inference
time too, which is crucial for a fluid exploration of the data.
The values to select for the stride range between 1 and the
value of the window size chosen in the above selector.

• Projection method selector: Three possible dimensionality re-
duction algorithms can be applied to the encoded data win-
dows, namely Uniform Manifold Approximation and Projec-
tion (UMAP) [19], t-Distributed Stochastic Neighbour Em-
bedding (t-SNE) [18], and Principal Component Analysis
(PCA) [42]. All of them are run directly on GPU using the
RAPIDS library [43], in order to maximise their performance.

.2.2. Embedding projections
With the configuration set in the control panel, the selected

ataset is sliced into data windows through a sliding window
rocess using the selected window size and the selected stride.
hen, the whole set of windows produced is passed to the se-
ected encoder. During this inference, we are not interested in
he output of the model, but in its latent space, i.e., in its ac-
ivations within one of its internal layers, which contain the
ncoded version (the embeddings) of each of the data windows.
y default, if the proposed MTSAE is used as architecture for the
ncoder (See Section 3.1.2), the embeddings will be taken from
he last layer of the encoder block, i.e., from the output of the
ast inception module from the InceptionTime architecture (See
ig. 8(a)). Otherwise, in case a custom encoder is used, the layer
8

from which to get the embeddings must be set. Normally, it will
be the last layer before the head of the network, due to latter
layers in a neural network having higher abstractions than earlier
ones [44].

Given a time series with v variables, sliced into N data win-
ows of size w, the input tensor that will be passed to the model
ill have a shape of N × v × w. In the proposed InceptionTime-

based MTSAE, the dimensionality of the embedding space at the
last layer of the last inception module is 128 (that is, the number
of filters of that layer is 128). There are no pooling layers in those
modules that shrink the sequence length of the internal feature
maps across the network. Therefore, at the end of the encoder
section of the MTSAE the shape of the embeddings is N×128×w

(See Fig. 8(a)). We average that tensor on the sequence dimension
reducing it to N × 128. At that moment, each data window is
represented by a single embedding of 128 features. Finally, the
selected dimensionality reduction algorithm is applied, projecting
the embeddings into a N ×2 table, ready to be visualised on a 2D
canvas.

The central plot to visualise projected embeddings is a con-
nected scatter plot, as it was in the TimeCluster framework [2].
In this plot, data points represent the projection of the embedding
of each data window, and straight lines are used to connect
subsequent data windows to each other, in order to keep an idea
of time within the plot. The size and colour of all the points is the
same. The user can interact with this plot by zooming, cropping,
select points and select areas of the 2D space.

3.2.3. Time series plot
Under the embedding projections canvas, we plot the time

series dataset, and provide two-way interactions in both plots to
explore and understand where the different parts of the embed-
ding space are found on the original input space. When a point
or area of the embeddings plot is highlighted, the time windows
represented by those points are highlighted in the time series plot
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Fig. 8. Inference process. (a) For each time window, the activation map of the last convolutional layer of the InceptionTime architecture is extracted and averaged
according to the size of the sequence. (b) Taking as input all time windows, embeddings are extracted and projected, using UMAP, t-SNE or PCA.
too, which allows the user to explain the patterns and anomalies
of the embedding space based on the data (See the green area
highlighted in Fig. 7).

Other possible interactions available in the time series plot
nclude zooming, cropping, and, in case of having multivariate
ime series, selecting a subset of the variables to be visualised,
n order to reduce information overload in the plot.

. Experimental results

In this section, we show the experimental results with the
eveloped tool, with the aim of presenting the different appli-
ations of DeepVATS and the different scenarios to which it can
e subjected. We start with the different datasets used in the
xperiments, and then we detail different experiments carried
ut to analyse the capabilities and limitations of DeepVATS.

.1. Datasets

To put the tool into practice, we need time series datasets with
ifferent properties and from different domains. For this purpose,
e used first synthetic time series, generated specifically for the
irect purposes of the tool, to then move on to their real time
eries from different domains.

.1.1. Synthetic data
We constructed the synthetic time series as a linear com-

ination of sinusoidal functions with different amplitudes and
easonalities. To this end, we assumed a discrete generation,
aking minutes as the regular time step. We considered sinusoidal
omponents for the hourly, daily, weekly seasonalities and differ-
nt components for groups of n hours, with n taking the values of

2, 3, 4, 6, 8 and 12 h. Based on these considerations, the generic
function used to generate the synthetic time series is:

f
(
t | (λk)k∈M, (ϕk)k∈M, γ , σ

)
=

[∑
k∈M

λk · sin
(

2π
60 · k

t + ϕk

)]
+ γ + ϵt (2)

where M = {1, 2, 3, 4, 6, 8, 12, 24} are the seasonalities (in
hours) of the components, λk the amplitudes of each component,
ϕk the initial delay of each component, γ the offset or initial
displacement in the y axis, and ϵt ∼ N (0, σ 2) a stochastic white
noise process. Fig. 9 shows an example of generating a univariate
synthetic time series, together with the decomposition of the
sinusoidal functions that compose it.

With this generation technique, it is possible to synthesise
both univariate and multivariate time series by generating the
9

different variables independently. Additionally, we can concate-
nate time series generated with different parameters, thus
giving rise to series with different stages. Following these pro-
cedures, we generated four synthetic time series datasets, whose
equations and plots can be found in Appendix A:

• S1: a univariate time series spanning 24 days of data, made
up of four segments of respective size 7.5, 6.5, 10, and 4
days, with different patterns constructed by varying the am-
plitudes of the different seasonal components. More specif-
ically, two of them, the first and the third, maintain the
same components with seasonality less than a day, and only
the components with a daily and weekly seasonality vary,
maintaining a very similar daily pattern in both segments.

• S2: a univariate time series with 20 days of data, built from
a synthetic series used as a base, perturbing two segments
of one hour each, at the beginning of the fifth day and at the
end of the fourteenth, thus causing two anomalies in these
segments of the time series.

• S3: a univariate time series spanning 20 days of data, built
with a single configuration of generation parameters, but
with a new term in its definition to include a
time-dependent increasing trend.

• S4: a univariate time series spanning 20 days of data, con-
structed, like the series S2, from a base synthetic series, but
this time perturbing a single segment of one hour in the part
end of the series, on the nineteenth day.

In order to test the capabilities of the tool to detect multidi-
mensional time series motifs, we use a synthetic dataset called
M-Toy, gathered from the stumpy library for time series data
mining [45]. It has three parallel variables, but only the first two
are correlated and conform a multidimensional pattern. The third
one is actually a ‘‘random walk’’ that was purposely included as
a red herring, not related to the other ones. This is meant to
test whether the algorithm is robust to irrelevant dimensions and
spurious data.

4.1.2. Real-world data
We validated the capabilities of DeepVATS on real datasets

for which we have access to expert information of what should
be found on them. It should be noted that we selected them
according to their purpose in the experimentation and not based
on other factors such as their size, even though DeepVATS is
especially useful for long time series. Below are brief descriptions
of the three datasets employed, whose plots can be found in
Appendix B:

• Arterial Blood Pressure (ABP): Firstly presented in [46], it
contains data from a healthy volunteer resting on a medical
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Fig. 9. Example of a synthetic time series as a sum of sinusoidal components with different seasonalities and amplitudes. In this case, the generation parameters
have been λ2 = 1, λ6 = 3, λ8 = 2.5, λ12 = 4, λ24 = 0.3, λ168 = 5.5, γ = 5 and σ = 10, without initial delay in the components and a resampled frequency of
20 min.
tilt table. At time 2400, the table was tilted upright, invoking
a response from the homeostatic reflex mechanism, and
producing two clear segments of data.

• Parking: Presented in [47], it contains the hourly parking
occupancy rate in 6 streets of Caserta and Naples, Italy. From
them, we take the data of one of the streets, namely Piazza
Vanvitelli. The parking occupancy rate is defined as the ratio
between the number of occupied parking slots and the total
number of parking slots present in a specific area. Hourly
and daily seasonalities are present in the data.

• Kohl’s: The data contains a decade-long Google Trend query
volume (collected weekly from 2004–2014) for the key-
word Kohl’s, an American retail chain. The time series has
a growing trend, and features a significant but unsurprising
‘‘end-of-year holiday bump’’. We can see that the bump is
generally increasing over time. This dataset was presented
in [48], and used in the time series data mining library
stumpy [45] for the analysis of time series chains, i.e., motifs
that evolve or drift in some direction over time.

4.2. Testing the capabilities for various time series data mining tasks

In this section, we analyse the capabilities of DeepVATS to
address three of most important time series data mining tasks:
segmentation, recognition of repetitive patterns (or motifs) and
anomalies, and trend detection. The details of the hyperparame-
ters used in the models trained for the experiments of this section
are listed in Table 1.

4.2.1. Segmentation
Time series semantic segmentation, or just time series seg-

mentation, is the task of dividing the series into homogeneous
regions [46]. The timestamps when the time series changes from
10
one segment to another are called change points, and there are
specific methods to detect them [49]. Here, we will show how
DeepVATS allows extracting both the compact segments of the
series and the change points.

Based on the first synthetic dataset (S1), we trained a model
in the deep learning module following a masking strategy with
state (stateful) and masking probability r = 0.4, with variable
window in the range [36, 72]. Once trained, we loaded the model
in the visual analytics module to explore its content. By exploring
with the tool, we found that a window size w of 54 timestamps, a
stride s of 2 positions and UMAP as projection algorithm produced
valuable insights. As it can be seen in Fig. 10, the projection graph
shows three clearly differentiated areas, with circular shapes,
connected by grey segments. The circular shape of these clusters
of points is no accident, and the reason for this is detailed in the
next section. Each of these areas corresponds to a segment of the
time series that have certain common characteristics. In the first
three representations of the figure it can be seen that DeepVATS
detected the three homogeneous segments that had been defined
in the construction of the synthetic series, having considered the
first and third fragments of the series as a single homogeneous
segment, since both have common characteristics related to the
seasonality of their components.

Since each point of the projection plot corresponds to a time
window, and the points of contiguous windows are joined by a
grey line, it is possible to detect windows with change points, by
looking at the points at the beginning and end of the line that
join the different segments. The smaller the window size used
in inference, the narrower the area of change between segments
will be. In Appendix C, we complement this experiment with one
analogous made on a real use case, namely the ABP dataset.

4.2.2. Repetitive patterns and outliers
In this section we aim at spotting repetitive patterns and

anomalies with DeepVATS. On the one hand, anomaly (or outlier)



V. Rodriguez-Fernandez, D. Montalvo-Garcia, F. Piccialli et al. Knowledge-Based Systems 277 (2023) 110793

a
t
t
a

d
t
r
o
r
n
o
u

d
(
t
e
v

Table 1
Training hyperparameters for the models trained to test the data mining capabilities of DeepVATS. In every case, the dimensionality
algorithm employed was UMAP, with its default hyperparameters given in the official implementation.
Task Dataset Masking Window Batchsize Epochs

r Stateful Future w wmin wmax

Segmentation S1 0.4 Yes No 72 36 72 16 200
ABP 0.5 Yes No 220 200 220 32 50

Patterns andanomalies S2 0.5 No No 48 24 48 32 200
Parking 0.5 No No 24 8 24 32 200

Trends S3 0.4 No Yes 96 32 96 32 200
Kohl’s 0.4 No Yes 12 6 12 16 200

Multivariate M-toy 0.7 Yes No 30 – – 32 50
Fig. 10. Segmentation and detection of change points of the synthetic series S1 with DeepVATS, using, in inference, a window size w = 54, stride s = 2 and UMAP
s algorithm to project the embeddings. On the left, the screenshots of the connected scatter plot with the projections of the embeddings, in which the areas of points
hat have been selected to analyse their correspondence in the time series are marked in blue. On the right, the original time series with the areas corresponding
o the points selected in the projections plot are marked in green. The first three representations show the detected segments, and the last three the change points
mong them, emphasised with yellow arrows.
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etection refers to the task of finding points or subsequences in
he time series that differ from the common behaviour of the
est of the data. On the other hand, the recognition of repetitive
r cyclical patterns involves finding subsequences that appear
ecurrently throughout the time series, due to either the seasonal
ature of the series or to the presence of a motif, .i.e, a previ-
usly unknown pattern that carry precise information about the
nderlying source of the series [50].
To account for this analysis, we trained MTSAEs on two

atasets, namely S2, built specifically for this purpose, and Parking
See Section 4.1.2). Here we show the results on Parking, leaving
he results on the synthetic data in Appendix D. We trained the
ncoder following a stateless masking strategy with r = 0.5 and a
ariable window size of [8, 24], given that the series have a time
11
tep of 1 h and presents daily seasonalities. Then, we explored the
odel in the VA module and found the results shown in Fig. 11.
he first aspect to highlight in the projections plot is that points
re distributed following an elliptical shape, which indicates that
he model has been able to detect the cycles present in the data
this is in accordance with the results found in [2]). However, we
an see several grey segments that do not follow the elliptical
ath and cross the middle of the figure. Examining the windows
orresponding to the extreme points of these segments, we see
hat they correspond to time windows that contain the days
ecember 25 and January 1 respectively. On those days, the
arking occupancy followed a different pattern, and in fact, if we
bserve the series those days in an extended way (see the right
raphic representation with the highlighted windows in green on
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Fig. 11. Anomaly detection (first screenshot) and repetitive patterns (last three screenshots) on the dataset of parking occupancy with DeepVATS, using, in the VA
module, a window size w = 19, stride s = 4 and UMAP as dimensionality reduction technique. Model training parameters are summarised in Table 1.
the time series) we can confirm that its behaviour differs from
the surrounding days. Outliers, therefore, appear in DeepVATS as
points that do not follow the path common to the rest of the time
windows.

Considering the groups of points formed along the cyclic tra-
jectories, the second screenshot of Fig. 11 shows how all the
points located in the lower right part of the trajectory correspond
to the pattern of occupation of the daytime hours, leaving outside
the night hours. The following screenshot of this same figure
highlights certain points in the projection space that represent
occupancy patterns on weekdays, while the last one shows the
points that correspond to the repetitive pattern of weekends and
some holidays. Therefore, we can conclude that clusters within
the elliptical path correspond to windows that follow the same
recurrent pattern, beyond the seasonality periods of the series.

The masking strategy that has provided the best results for
detecting anomalies and repetitive patterns is the default state-
less masking strategy. In these cases, the probability of masking
follows a uniform distribution, increasing the probability that iso-
lated timestamps are masked. This helps the encoder to identify
point-based anomalies in and not ignore them when it comes to
reconstructing the masked parts in the decoder, as it happens with
classic autoencoders.

4.2.3. Trend detection
Trend detection in a time series tries to find significant and

prolonged changes over time. Some classical approaches accom-
plish this task using statistical tests [51]. In DeepVATS, we will
12
try to detect these changes from the shapes that follow the
trajectories of points in the projection space. Among the different
masking options available to train models in DeepVATS, we found
that the future masking strategy (See Fig. 4(b)) is the one that best
suits this task. A possible explanation for this is that having to re-
construct the latest values of the time windows based on previous
knowledge makes the model learn to interpret the trends in the
data in order to make the reconstruction of the future values take
those trends into account.

As a first approximation analysing the ability of DeepVATS to
detect trends in the data, we trained a model with the synthetic
dataset S3. We employed a future masking strategy and a variable
window size in the range [32, 96]. The results after exploring the
model in the VA module are shown in Fig. 12. Although the series
is cyclical, the trajectories in the projection space do not seem to
have an elliptical or circular shape (as happened with the models
of the previous section), being the points distributed in a sort of
parabolic trajectory. However, if we carefully examine the groups
of points within this trajectory and the segments that join them,
we appreciate how they retain a certain circular shape, with the
centre of the circle of each cycle shifting as the series progresses
(see carefully screenshots 3, 4 and 6 in Fig. 12). The projections
contain the cycles, but display them in displacement as a result of
the trend of this series. Therefore, although a certain idea of trend
is captured in the two-dimensional space, it is not reflected as
clearly as it has occurred with anomalies, patterns and segments.

We corroborated this hypothesis after applying the tool to
the Kohl dataset (See Section 4.1.2). We trained the MTSAE on
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Fig. 12. Trend detection on synthetic dataset S3 with DeepVATS, using, in the VA module, a window size w = 50, stride s = 9 and UMAP as dimensionality reduction
echnique.
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his dataset employing a future masking strategy, analogous to
hat applied in the synthetic use case above, and a variable
indow size of [6, 12] timestamps. The results after exploring the
odel embeddings in the VA module are shown in Fig. 13. Unlike
3, Kohl is a time series whose amplitude on each cycle is not
onstant. In addition to having a growing global trend, it grows
n amplitude each year. This fact is translated into a projection
pace in DeepVATS that provides little valuable knowledge about
he series. As it can be seen in Fig. 13, the projected points seem
o follow a linear trajectory, but if we look at the time windows
orresponding to some of the groups of points that are close in the
rajectory, we do not see a clear mapping between them and con-
inuous segments of the original series. Furthermore, the points
ssociated to time windows containing peaks are not clustered
ogether in a region of the projection space. In conclusion, we
annot extract valuable insights about trends using DeepVATS, as
t is developed so far.

.2.4. Multidimensional patterns
Finally, we test the capabilities of DeepVATS to analyse multi-

ariate time series. Note that we do not have to change anything
rom the pipeline used for the univariate analysis above, since
oth the neural architecture and the masking strategy used to
reate the backbone MTSAE work for multivariate time series out
f the box. By default, DeepVATS creates unsynchronised masks
o train the MTSAE, which means that the same time step can
e part of the mask or not depending on the variable we are
ocusing on. This naturally makes the training robust to spurious
imensions and allows the network to find patterns between a
ubset of dimensions. However, this can be changed as part of the
onfiguration, making the mask synchronised across all variables,
 D

13
hich is only recommended in case one knows in advance that all
imensions of the series are involved in the patterns of interest.
We trained a MTSAE on the M-toy dataset (see Section 4.1.1),

sing a fixed window size of w = 30, as it is done in the
tumpy library from which the dataset was gathered. The results
fter exploring the model embeddings in the VA module are
hown in the figure in Appendix D, along with a screenshot
rom the stumpy documentation2 with the results of running a
-dimensional matrix profile based motif discovery algorithm on
he dataset. This algorithm resulted in a real multidimensional
otif found between the first two channels of the series (T1 and
2), and a spurious motif in channel T3, which we would like to
void because, as it was said in Section 4.1.1, that channel was
rtificially introduced as noise. As it can be seen in the projections
f Fig. 14, there are two long segments in the connected scattered
lot with no point in between, which represent ‘‘irregularities’’
n the embedding space. In fact, by analysing the points at the
nds of each segment, we can see that they correspond to the
wo appearances of the motif that we were looking for (the one
etween T1 and T2). Since there are no other irregularities in the
mbedding space, we can conclude that DeepVATS has helped
o easily spot this motif, and it has avoided the effects of noisy
ariables such as T3.

.3. Influence of using variable window size during training

The window size is a critical hyperparameter in the construc-
ion of models that work with long time series, regardless of the

2 https://stumpy.readthedocs.io/en/latest/Tutorial_Multidimensional_Motif_
iscovery.html.

https://stumpy.readthedocs.io/en/latest/Tutorial_Multidimensional_Motif_Discovery.html
https://stumpy.readthedocs.io/en/latest/Tutorial_Multidimensional_Motif_Discovery.html
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t

Fig. 13. Trend detection on the Kohl series with DeepVATS, using, in the VA module, a window size w = 12, stride s = 2 and UMAP as dimensionality reduction
echnique.
Fig. 14. Multivariate analysis on the M-toy series with DeepVATS, using, in the VA module, a window size w = 30, stride s = 5 and UMAP as dimensionality
reduction technique. The plot of the first row has been gathered from the stumpy documentation to see the multidimensional pattern that we are looking for (the
one in T1 and T2). The colour map in the time series plots of the second and third rows are: (T1: green, T2: purple, T3: blue).
task they perform. The ideal window size depends on the dataset
itself, and it is common to have it set manually by an expert [46].
In this work, the use of a neural architecture in which the number
of trainable parameters does not depend on the window size
14
(see Section 3.1.2) makes it possible to train the models with
different window sizes. This approach, in theory, should reduce
the impact of choosing the optimal window size in order to obtain
the expected results.
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Fig. 15. Influence of the window size selected in the VA model for a model trained with a variable window size of [36, 72]. To obtain the plots, we fixed a stride s
f 2 positions and UMAP as reduction technique. The segmentation applied to the case of size w = 36 is shown at the bottom.
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To demonstrate this hypothesis, we compared the results, for
segmentation task, between two MTSAE models trained on the
ame data set (S1), one trained with a variable window size in
he range [36, 72] (the same model as in Section 4.2.1) and the
ther with a fixed window size. Fig. 15 shows the results of
xploring the model trained using variable window size. We took
creenshots of the projection plot obtained for every value of w

n the range [36, 72] selected in the VA module, simulating the
ehaviour of a user that wants to analyse a dataset without a
rior knowledge of the ideal window size. As it can be observed,
n all the plots the three blocks of points corresponding to each
ne of the homogeneous segments of the series can be clearly
ppreciated.
 p

15
Regarding the fixed window size case, we trained three models
ith w = 32, w = 54 and w = 72. We used the same training
onfiguration in all of them as the previous segmentation model
xcept for the window size. From these three models, the one
hat provided the most valuable insights in the VA module to
egment the series was the one trained with a window size of 72.
n Fig. 16 we can see the scatter plots obtained with this model in
he VA module, varying the selected window size from w = 64 to

= 72. As it can be seen, the clusters of points associated to the
eries segments are generally less obvious than in the previous
ase with the variable window size, and in fact, with w = 64 the
lot is confusing. In addition, these models do not show the cyclic
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s

a
w

Fig. 16. Influence of the window size selected in the VA module with a trained model with a fixed window of 72 timestamps. To obtain the plots, we fixed a stride
of 4 and UMAP as projection algorithm. At the top is the segmentation applied to the case w = 72.
Fig. 17. Anomaly detection in the online analysis mode. The upper screenshot shows the projected embeddings of the training time series. The lower one shows the
nalogous plot of the series reserved for testing, marking the area of points corresponding to the anomaly. In both screenshots, we configured the VA module with
VA

= 33, s = 3 and UMAP as dimensionality reduction algorithm.
behaviour of the series in the form of elliptical or circular paths,
as it happens with the model trained with a variable window size.

4.4. Generalisation capabilities in the online mode

In this section, we analyse whether the models trained in
DeepVATS can maintain their performance when the MTSAE is
not trained on the whole series but only in a subset of it, to which
we referred to as ‘‘online analysis’’ in the DL module, given its
applicability to online analysis where new data from the same
process arrives continuously, or when the input series is too long
to be used entirely to train the model. To do this, we used the
synthetic dataset S4, which has a disturbance in the final part
of the series. We split it into two sets, one training set with the
initial 80% of the series and one test set with the remaining 20%,
that contains the disturbance. We logged both datasets in the
storage module and trained the encoder model in the DL module
using just the training set, and following the ‘‘online analysis’’
mode shown in Fig. 3. We employed a stateless masking strategy,
which was found to be helpful to spot outliers in the previous
section, and a variable window size of [30, 60]. Fig. 17 shows
the projected embeddings for both the training and test datasets
using the same model. In the test embeddings, we observe how a
 t

16
group of points deviates from the main trajectory, and analysing
where in the time series those points come from, we see that
their corresponding time windows contain the disturbance. This
demonstrates that the knowledge contained in the trained model
is generalisable to new streams of data, allowing a fast analysis
of new series without the need of retraining the model.

4.5. Comparison to related work

Finally, we conclude the experimentation with a comparison
of the latent spaces produced by DeepVATS with respect the
following methods (already introduced in the related work):

• TimeCluster [2], which shares the same goal of DeepVATS,
but is internally built on top of a different neural network
architecture. More specifically, TimeCluster’s latent space is
based on a Deep Convolutional AutoEncoder (DCAE), trained
without any masking strategy.

• Multi-Dimensional Scaling (MDS) [31], on top of which Bach
et al. developed their TimeCurves [30].3 MDS is a statistical

3 We do not apply the full TimeCurves method due to it is meant for irregular
ime series, whereas DeepVATS is meant for regular ones.
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Fig. 18. Latent spaces of both DCAE and MDS on the M-toy dataset, using a window size of w = 30 and a stride of s = 5, to compare the results with the ones
hown in Fig. 14. On the right of each latent space, the M-toy dataset is plotted, along with a green rectangle showing the highlighted section of the latent space.
technique used to visualise the similarity or dissimilarity be-
tween objects in a multi-dimensional space by representing
them in a lower-dimensional space (usually 2D or 3D) while
preserving their pairwise distances as much as possible.

The dataset used for the comparison is M-toy, which is ar-
uably the most challenging dataset used in this experimentation,
ue to it is multivariate and contains spurious variables that chal-
enge the robustness of the algorithms. In Fig. 14, we showed that
eepVATS’ latent space could successfully spot the two appear-
nces of the motif formed by variables T1 and T2 of the dataset,
gnoring the spurious variable T3. That figure can be compared
ide by side with Fig. 18, in which the analogous latent spaces
or the dataset under the same pre-processing conditions (that is,

= 30, s = 5 and UMAP for dimensionality reduction in the case
f TimeCluster) are displayed for both the TimeCluster and MDS
ethods. For TimeCluster, the neural network autoencoder has
een trained using the exact same architecture used in the paper,
ith the same number and configuration of layers (See Table 1

n [2]). Note that, given the modularity of DeepVATS, we have
een able to add this architecture to the tool and explore its latent
pace interactively without changing anything in the pipeline,
nd in that way we could add and try any other autoencoder.
n the case of MDS, due to it is not a deep learning algorithm,
e have run it in a separate pipeline (included in the repository
s well) using scikit-learn’s implementation. A multivariate Eu-
lidean distance has been used to create the dissimilarity matrix
hat is fed into the algorithm.

As it can be seen, none of the latent spaces shown in Fig. 18
how clearly any appearance of the motif formed by the variables
1 and T2 (See the motif in Fig. 14). In the case of TimeCluster,
he latent space has one clear irregularity (See the blue rectangle
n Fig. 18(a)), but when analysing it in the VA module, we see
hat it maps to a different part of the time series, far from the
otif of interest. On the other hand, in the latent space of MDS

here is not even a clear irregularity found among the points of
he embedding space. There is, however, a small concentration
f points (See the blue rectangle in Fig. 18(b)) that stands out
f the rest of the curve, but again, when mapping it to the time
eries we can see that it does not correspond at all to the motif
f interest. We can then conclude that, for this challenging use
ase, DeepVATS’ MTSAE is the only method whose embeddings
re rich enough to spot the motif hidden in the dataset. We argue
hat the reason behind this is the inclusion of masking strategies
n the neural network training, as well as the flexibility provided
y using with variable window sizes during training. We leave
he development of more comparison studies as future work, for
hich the tool in our online repository would be helpful.
17
5. Conclusions and future work

In this paper, we present the tool DeepVATS, which trains, in a
self-supervised way, a Masked Time Series AutoEncoder (MTSAE)
that reconstruct time windows of a long time series, and projects
the knowledge contained in the model’s latent space (i.e., the
embeddings) into an interactive graphical user interface, which
allows to extract, in a fast way, high level information about the
structure of the series, such as homogeneous segments, repetitive
patterns, and outliers. The tool is publicly available 1 and has been
built with a modular design that encourages its extension.

In view of the experiments carried out, we conclude that
DeepVATS has great potential to provide valuable insights in
long cyclical time series for tasks such as semantic segmenta-
tion, detection of seasonalities, recognition of repetitive patterns
and anomalies (See Fig. 19). Using a single connected scatter to
display the projected embeddings of the model as a two dimen-
sional trajectory, segments can be visually spotted as clusters
of independent points, seasonalities come from the shape of
those clusters, repetitive patterns as compact groups within the
trajectory, and anomalies as points that do not follow the nominal
trajectory. For other tasks, such as trend detection, we did not
found enough evidence of a visual pattern within the tool.

With regard to masking strategies, we showed that having
flexibility in the masking configuration allows DeepVATS to per-
form well on a greater range of tasks. Compared to the TimeClus-
ter [2] tool, the use of a stateless masking strategy that forces
the model to reconstruct isolated timestamps instead of complete
time windows, allows to address the task of anomaly detection
with a higher degree of accuracy. On the other hand, the state-
ful masking strategy helped the models to detect homogeneous
segments within the series, while the strategy based on masking
future values helped to extract some indications of trend in the
non-stationary series.

On the other hand, based on the results obtained in Sec-
tion 4.3, we showed that the approach for variable window size
training presented in this project provides the tool with a lower
dependency on the choice of the optimal window size. While in
other approaches, such as [46], this value must be provided by
domain experts for the results to be acceptable, DeepVATS can
train a robust and effective model can be trained just setting a
range of potential window sizes, without the need to know the
exact optimal value.

Another remarkable aspect of DeepVATS lies in its modular
implementation, which allows future developers to modify some
of the parts of the tool in a simple and intuitive way, without
knowing in depth the configuration of the rest of the components.

In this sense, the flexibility to modify the architecture of the
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Fig. 19. Summary of DeepVATS capabilities for time series tasks, along with the visual pattern associated to them in the VA module, and the most suitable masking
strategy to be used in the DL module.
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encoder, the decoder or both, without the need to intervene in
the rest of the tool’s pipeline stands out. Although in this proposal
the base model of the InceptionTime architecture has been used as
the encoder, it can be replaced by other time series deep neural
architectures.

With regard to possible lines of future work, we can consider:

• Improving the capabilities of the tool for multivariate time
series, in order to extract valuable insights from just a subset
of the variables and not necessarily use all of them.

• Expanding the input of the model with encoded information
of the timestamps, such as the time of day, day of year, etc.

• Adding a new analysis mode that is fed with more than
one time series at a time, and allows for a side-by-side
comparison of the embeddings of each time series.

• Extending the Visual Analytics module to support 3D pro-
jection plots, as seen in analogous tools for language such
as the TensorFlow embedding projector [5].

• Making more experiments with different neural and non-
neural based methods and compare them with the results
of DeepVATS in more datasets.

• Exploring the possibility of adding an online learning
paradigm (extending the already implemented online infer-
ence mode) in which an already trained MTSAE is updated to
quickly improve its performance against distribution shifts.
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Appendix A. Synthetic datasets

See Fig. A.20 and Table A.2.

Appendix B. Real-world datasets

See Fig. B.21.

Appendix C. Segmentation of Arterial Blood Pressure (ABP)
dataset

After testing the behaviour of the tool in the segmentation of
the S1 dataset, we proceed to analyse its use with ABP Arterial
Blood Pressure dataset. Fig. C.22 shows the result, as displayed in
the VA module, of using the model trained on this series with a
masking strategy analogous to that of the synthetic example (See
Table 1) and a variable window size of [200, 220] time steps. In
the VA module, we used a window size w = 110, a stride s = 22
nd UMAP as dimensionality reduction technique. As it can be
een, the projections plot is made up of two clearly differentiated
omponents, joined by a grey segment. The limits of this segment
re time windows containing change points.

ppendix D. Repetitive patterns and outliers on the dataset S2

As seen in Section 4.1.1, the dataset S2 has been constructed
s the sum of components with different seasonalities, and an
typical distribution has been applied in two short intermediate
eriods of time. On this data, we trained the encoder model
MTSAE) with a stateless masking strategy, a masking probability
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Fig. A.20. Synthetic time series datasets created to evaluate the capabilities of DeepVATS.

19
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Fig. B.21. Plots of time series datasets.

Fig. C.22. Segmentation and change point detection of the dataset ABP with DeepVATS, using in the VA module, a window size of w = 210, stride of s = 22 and
UMAP as algorithm to project the embeddings. The first two representations show the detected segments, and the last one shows the change point between segments.
The yellow arrow in the last scatter plot highlights the position of the point corresponding to the time window that contains the change point.

20
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Table A.2
Equations of the synthetic time series created to analyse the capabilities of DeepVATS. Equation gi(t)
corresponds to the synthetic dataset i.

g1(t) =

⎧⎪⎨⎪⎩
f (t | λ2 = 0.6, λ4 = 1.5, λ12 = 2.3, λ24 = 2.3, λ168 = 2.5, γ = 1, σ = 2) if t ≤ 10 800
f (t | λ2 = 1.5, λ4 = 1.5, λ12 = 2.3, λ24 = 2.3, λ168 = 1.5, γ = 1, σ = 4) if 10 800 < t ≤ 20 160
f (t | λ2 = 0.6, λ4 = 1.5, λ12 = 2.3, λ24 = 3, λ168 = 5, γ = 1, σ = 2) if 20 160 < t ≤ 34 560
f (t | λ2 = 0.6, λ4 = 0.5, λ12 = 4.3, λ24 = 1, λ168 = 2, γ = 1, σ = 3) if 34 560 < t ≤ 40 320

g2(t) =

{
f ( t | λ2 = 7, λ6 = 2, λ24 = 3, λ168 = 0.5, σ = 2) if t ∈ [5760, 5880] ∪ [20 040, 20 160]
f ( t | λ3 = 0.5, λ6 = 2, λ24 = 3, λ168 = 0.5, σ = 2) otherwise

g3(t) = 0.002 · t + f ( t | λ6 = 2.5, λ8 = 2, λ12 = 6, λ24 = 3, λ168 = 1, γ = −20, σ = 6)

g4(t) =

{
f ( t | λ4 = 5, λ8 = 2, λ24 = 3, λ168 = 0.5, σ = 2) if 26 280 < t ≤ 26 340
f ( t | λ4 = 0.5, λ8 = 2, λ24 = 3, λ168 = 0.5, σ = 2) otherwise
Fig. D.23. Anomalies (first view) and repetitive patterns (last three representations) of the synthetic dataset S2 with DeepVATS, using, in inference, a window size
w = 28, stride s = 2 and UMAP as dimensionality reduction technique.
of r = 0.5 and a variable window in the range [24, 48]. In
Fig. D.23 we can see the result obtained in the VA module with
a window size w of 28 samples, a stride s of 2 timestamps, and
UMAP as dimensionality reduction algorithm.
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