
Vol.:(0123456789)1 3

Analytical and Bioanalytical Chemistry (2023) 415:7281–7295 
https://doi.org/10.1007/s00216-023-04997-w

RESEARCH PAPER

Combined analytical approach empowers precise spectroscopic 
interpretation of subcellular components of pancreatic cancer cells

Krzysztof Szymoński1,2  · Katarzyna Skirlińska‑Nosek3,4 · Ewelina Lipiec3 · Kamila Sofińska3 · Michał Czaja3,4 · 
Natalia Wilkosz3,5 · Matylda Krupa1 · Filip Wanat1 · Magdalena Ulatowska‑Białas1,2 · Dariusz Adamek1

Received: 4 September 2023 / Revised: 27 September 2023 / Accepted: 9 October 2023 / Published online: 31 October 2023 
© The Author(s) 2023

Abstract
The lack of specific and sensitive early diagnostic options for pancreatic cancer (PC) results in patients being largely diag-
nosed with late-stage disease, thus inoperable and burdened with high mortality. Molecular spectroscopic methodologies, 
such as Raman or infrared spectroscopies, show promise in becoming a leader in screening for early-stage cancer diseases, 
including PC. However, should such technology be introduced, the identification of differentiating spectral features between 
various cancer types is required. This would not be possible without the precise extraction of spectra without the contami-
nation by necrosis, inflammation, desmoplasia, or extracellular fluids such as mucous that surround tumor cells. Moreover, 
an efficient methodology for their interpretation has not been well defined. In this study, we compared different methods of 
spectral analysis to find the best for investigating the biomolecular composition of PC cells cytoplasm and nuclei separately. 
Sixteen PC tissue samples of main PC subtypes (ductal adenocarcinoma, intraductal papillary mucinous carcinoma, and 
ampulla of Vater carcinoma) were collected with Raman hyperspectral mapping, resulting in 191,355 Raman spectra and 
analyzed with comparative methodologies, specifically, hierarchical cluster analysis, non-negative matrix factorization, 
T-distributed stochastic neighbor embedding, principal components analysis (PCA), and convolutional neural networks 
(CNN). As a result, we propose an innovative approach to spectra classification by CNN, combined with PCA for molecular 
characterization. The CNN-based spectra classification achieved over 98% successful validation rate. Subsequent analyses 
of spectral features revealed differences among PC subtypes and between the cytoplasm and nuclei of their cells. Our study 
establishes an optimal methodology for cancer tissue spectral data classification and interpretation that allows precise and 
cognitive studies of cancer cells and their subcellular components, without mixing the results with cancer-surrounding tissue. 
As a proof of concept, we describe findings that add to the spectroscopic understanding of PC.

Keywords Pancreatic cancer · Ampullary cancer · Molecular spectroscopy · Convolutional neural networks · Raman 
imaging · Spectral analysis

Abbreviations
PC  Pancreatic cancer
RHM  Raman hyperspectral mapping
VS  Vibrational spectroscopy
RS  Raman spectroscopy
NMF  Non-negative matrix factorization
tSNE  T-distributed stochastic neighbor 

embedding
PCA  Principal component analysis
HCA  Hierarchical cluster analysis
CNN  Convolutional neural network
NN  Neural network
IPMN  Intraductal papillary mucinous 

neoplasm
PanIN  Pancreatic intraepithelial neoplasia
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cPDAC  Conventional pancreatic ductal 
adenocarcinoma

AVAC  Adenocarcinoma of the ampulla of 
Vater

IPMC  Carcinoma derived from IPMN
FTIR  Fourier transform infrared 

spectroscopy
ATR-FTIR  Attenuated total reflection Fourier 

transform infrared spectroscopy
SERS  Surface-enhanced Raman 

spectroscopy
Trp  Tryptophan
Tyr  Tyrosine
Phe  Phenylalanine
PC-1, PC-2, PC-3  Principal components 1, 2, 3
RASSF1A  Ras association domain family 1A
PI3K  Phosphoinositide 3-kinase
FAK  Focal adhesion kinase
HDR  Homology-directed repair pathway
DSB  Double-strand breaks
BRCA1  Breast cancer type 1 susceptibility 

protein
NF-κB  Nuclear factor kappa-light chain 

enhancer of activated B cells
IGFBP2  Insulin-like growth factor-binding 

protein 2

Introduction

The rising understanding of pathomechanisms of pan-
creatic cancer (PC) initiation and evolution that we have 
witnessed in recent decades [1] has not improved the very 
low PC 5-year survival rates, which remain below 10% 
[2]. Due to the lack of specific and sensitive early diag-
nostic options, patients are largely diagnosed with late-
stage disease [1]. The PC tumors’ molecular and morpho-
logical heterogeneity is also responsible for the PC being 
chemoresistant to available treatment options [1]. These 
are the main reasons for the drastically poor prognosis of 
PC patients [1]. New methods of studying the molecular 
composition of PC are required to develop efficient early 
detection technologies, as well as to extend the knowledge 
of the mechanisms of chemoresistance [3] and counteract 
them. Despite the urgent need for efficient and universal 
malignancy screening technologies, currently, none would 
fulfill the criteria of good specificity and sensitivity for 
PC. However, multiple serum-based biomarkers have been 
proposed without satisfactory results [4–6]. Some authors 
reported better usefulness in assessing interleukin-6 (IL-6) 
serum levels in differentiating PC patients from chronic 
or acute pancreatitis [7–9], or recently, leukemia inhibi-
tory factor (LIF) was reported to be a promising serum 

biomarker of pancreatic malignancy [10]. Nevertheless, 
all these are only singular protein markers, which entails 
unsatisfactory diagnostic specificity and sensitivity [11]. 
Moreover, the single-biomarker methods cannot generalize 
to multiple varieties of cancer.

Serum liquid biopsy samples are considered ideal for can-
cer screening [6, 11]. Nevertheless, conventional liquid biopsy 
biomarkers (LBMs) comprising of circulating tumor nucleic 
acids (i.e., ctDNA, ctRNA), circulating tumor cells (CTCs), 
or extracellular vesicles (EVs) have not been introduced into 
medical practice because of limitations of the molecular/
genetic testing techniques, such as described in [6].

A promising twist in the liquid biopsy analysis might 
be brought by the implementation of methods of vibra-
tional spectroscopy (VS) such as surface-enhanced Raman 
spectroscopy (SERS) or attenuated total reflection Fourier-
transformed infrared spectroscopy (ATR-FTIR) [3, 12]. VS 
was confirmed to be an excellent tool for the characteriza-
tion of malignant tissue’s chemical structure and composition 
[13–16]. Due to the fingerprint-like character of resulting data 
acquired from VS, all information about the studied sample 
is ready for interpretation, making VS a universal technique 
of molecular characterization. Nevertheless, only a few stud-
ies utilized VS for the differentiation of multiple malignan-
cies [17, 18], with most papers comparing only malignant vs. 
benign control [19]. Further exploration is needed to reveal 
the full potential of molecular spectroscopy in cancer screen-
ing. The only way for promising VS to be introduced as a 
diagnostic technology is by detailed characterization of the 
spectral results obtained for various cancer types.

Following this, in our study, we aimed to deepen the 
knowledge of VS landscapes of PC tumors by using an inno-
vative and comprehensive methodology, including combined 
Raman hyperspectral mapping (RHM), conventional multi-
variate data analysis, and deep networking techniques. This 
approach allowed for the cognitive recognition of spectral 
markers of PC. We separately measured and analyzed cel-
lular nuclei, the cytoplasm, and the tumors’ stroma compart-
ment of main groups of PC, specifically the conventional 
pancreatic ductal adenocarcinoma (cPDAC), intraductal 
papillary mucinous carcinoma (IPMC), and ampulla of Vater 
adenocarcinoma (AVAC). Often these tumors are indistin-
guishable using standard histopathological evaluation tech-
niques (i.e., the tumor’s epicenter location, morphology, and 
immunohistochemistry) [1, 20, 21]. Although current clini-
cal management protocols recommend treating these tumors 
similarly, significant differences in cancer differentiation 
level, the occurrence of perineural and venous invasion, and 
lymph node involvement were reported [22]. A large study 
on cPDAC vs AVAC (476 vs 232 cases) resulted in show-
ing significant differences in patients’ survival, specifically 
15.6 vs 41 months, for cPDAC and AVAC, respectively [23]. 
Notably, in this study by Reid et al., the authors describe 
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no impact of tumor size and lymph node metastasis on the 
patients’ survival [23].

Methods of VS complement each other and are usually 
used in different ways considering the type of samples that 
are to be studied. For example, as stated by some authors 
[3, 24, 25], tissues are best measured by the RHM tech-
nique, whereas blood serum probing involves highly sensi-
tive SERS [26–30] and ATR-FTIR [31–34], which do not 
provide spatial resolution; however, they are effective in the 
investigation into bulk samples such as blood serum, thus 
ideal for early diagnostic of malignancies, such as PC. We 
believe that for the successful implementation of VS serum-
based diagnostic technologies, firstly, an understanding of 
the spectroscopic characteristics of the tumors is required. 
Techniques of hyperspectral imaging (such as RHM) allow 
precise selection of cancer areas to further analyze them. 
The learned knowledge might be subsequently trans-
lated into serum-based liquid biopsy ATR-FTIR or SERS 
measurements.

Because of the nature of the Raman effect, VS is very 
sensitive to distortion factors. Fluorescence, thermal noise, 
and the measuring equipment quality might have a major 
impact on the results; thus, typically spectra preprocessing 
is required. Usually, it involves cosmic ray removal, baseline 
correction, and smoothing. During these operations, some 
seemingly irrelevant data might be lost if an improper pre-
processing model was applied [35]. Conversely, CNNs are 
surprisingly efficient in classifying raw, unpreprocessed data 
[36], although they generalize better if unmeaningful infor-
mation is removed. The successful use of neural networks, 
such as CNNs in spectroscopic data evaluation and classifi-
cation, was shown in multiple studies [24, 36, 37]. Briefly, 
the CNN is trained by allowing it to analyze spectra from the 
so-called training dataset, from which CNN identifies char-
acteristic features. The main advantage of CNN among other 
neural network types is its ability to self-extract discriminat-
ing features (automatic features extractor) [38]. Although 
manual feature extraction with proper setup may be as good 
as automatic in some classification scenarios [39], in cancer 
diagnostics, automation and high throughput of the process 
are crucially important [3].

RHM enables high-resolution imaging of tissue samples 
without the need for special labeling and with comparable 
costs to other standard techniques, such as magnetic reso-
nance [40]. RHM is a molecular spectroscopy technique that 
utilizes multiple RS measurements of adjacent parts of the 
studied sample, followed by plotting the combined results 
as a tissue map image. The use of Raman spectroscopy (RS) 
to investigate cancer tissue samples is not new [14, 15]; 
however, only a few studies utilized RHM for the cogni-
tive selection of areas of analysis [24, 25]. Contrary to RS 
random blind spot measurements [41] or rare grid mapping 
[42], this approach prevents mixing the results with areas 

of necrosis, inflammation, fibrosis, or colloid [3]. Without 
this precision, the interpretation of the molecular contents 
of PC cells is impossible, let alone the cellular cytoplasm 
and nuclei separately.

Here, as a first part of the study, we conducted compara-
tive studies between spectral data analysis methodologies 
to reveal the fittest for defining spectroscopic landscapes 
of cytoplasm and nuclei of PC subgroups separately. Spe-
cifically, we compared hierarchical cluster analysis (HCA), 
non-negative matrix factorization (NMF), T-distributed 
stochastic neighbor embedding (tSNE), principal compo-
nents analysis (PCA), and convolutional neural networks 
(CNN). Each has advantages and limitations, which we 
describe briefly in the Supplementary section – Methods of 
multivariate data analysis used in the study. In conclusion, 
we propose using a combined approach (CNN + PCA) that 
allows for automatic and high-throughput spectra classifica-
tion and subsequent comprehensive characterization of the 
smallest spectral differences among them allowing molecu-
lar interpretation.

Methods

Tissue slide preparation

Raman imaging of 16 PC tissue slides from 15 patients was 
conducted. Specifically, 6 AVAC, 5 cPDAC, and 5 IPMC 
were included. The tissue samples were collected from 
patients with a diagnosis of PC who underwent pancreatodu-
odenectomy (Whipple or Traverso) or distal pancreatectomy, 
with the exclusion of benign pancreatic neoplasm or neu-
roendocrine neoplasm cases. The details of patients included 
in the study are summarized in Supplementary Table S1. 
In this study, we used methods of tissue slide preparation 
already described by others [24]. Briefly, tissue samples 
were selected from the Cracow University Hospital’s Patho-
morphology Department’s archive, normally stored as con-
ventional formalin-fixed paraffin-embedded (FFPE) blocks 
after the diagnostic process. The initial sample selection 
was performed by two independent experienced pancreatic 
pathologists, by assessing the standard hematoxylin–eosin-
stained glass slides (H&E). A routine light microscope 
(Olympus BX53 Microscope, RRID:SCR_022568) was 
used for this stage. During the selection process, a detailed 
reevaluation of the tumor type was conducted, and initial 
diagnoses were confirmed. Subsequently, before Raman 
measurements, for each selected case, a single 2.5-μm-thick 
tissue section was sliced with a Microm® HM355S Auto-
matic Microtome and mounted onto a  CaF2 window (Raman 
Grade Calcium Fluoride substrates – CRYSTRAN LTD, 
England). Then, on unstained  CaF2 slides, areas of cancer 
were marked by pathologists. A complete paraffin removal 
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procedure was conducted involving a 12-h xylene bath and 
graded ethanol rehydration.

Raman measurements

After PC tissue slide preparation, Raman measurements 
were executed using the already described procedure [24, 
25]. Briefly, RS was conducted with a Horiba LabRam 
spectrometer equipped with a green (532 nm) laser and 
electron-multiplying charge-coupled device (EM-CCD) 
camera cooled to − 70 °C. During the measurements, a × 60 
water immersion objective lens (Nikon) was used to allow 
measurements of tissue sections immersed in a physiologi-
cal saline solution. Spectra were acquired in the fingerprint 
spectral region (1900–600  cm−1) with a spectral resolution 
of 2  cm−1. The RHM maps included 6724 to 13,284 spectra 
for a single slide in this study. The exposure time for each 
pixel was 6 s. The pixel size (step size) was 1 µm or smaller 
depending on the size of the preselected area of cancer (see 
“Tissue slide preparation”), which varied from 80 × 80 µm 
to 140 × 140 µm.

CNN dataset annotation and data augmentation

Spectral data for the training of the CNN were selected 
from obtained RHM maps, by direct comparison with the 
unstained optical microscopy tissue slide images, normally 
collected before RS measurements. It was performed by 
the same pathologists, who preselected the areas of cancer 
(see “Tissue slide preparation”). Additional comparisons 
with H&E-stained slides were also performed, which clari-
fied cellular components (such as the cancer cells’ nuclei) 
better. However, direct transmission of areas of nuclei and 
cytoplasm from H&E images was not possible, because the 
H&E slides were sliced from FFPE blocks before the tis-
sues for RHM measurements, thus differing slightly from the 
investigated tissues. The LassoSelector widget from the Mat-
PlotLib library (MatPlotLib, RRID:SCR_008624) of Python 
(IPython, RRID:SCR_001658) was used to annotate the data 
into 7 separate classes, including nuclear and cytoplasmic 
areas of each of the PC types (AVAC, IPMC, and cPDAC). 
Additionally, the stroma/empty class was annotated. Only 
a small part of all spectra in the RHM map was annotated 
for the training dataset (42,098 spectra from 191,355 — 
approximately 22%), leaving the rest for the CNN model 
validation with new data, testing its ability to generalize. The 
process of training dataset annotation is depicted in Sup-
plementary Figure S1. Before feeding the data into CNN, it 
was preprocessed, which involved sequentially applying a 
baseline correction (3rd polynomial order), smoothing with 
the Savitzky–Golay algorithm (third-order, 15 smoothing 
points), and trimming in the spectral range characteristic 
for biological molecules (1800–650  cm−1). Subsequently, 

to prevent overfitting with the smoothed spectra, we applied 
data augmentation, by adding random noise to each spec-
trum. After the augmentation, the CNN training dataset 
included 126,294 spectra.

Additionally, to prevent the impact of different Raman 
shifts on the prediction results, spectral intensity values were 
packed with the Raman shift values into a single integer 
(int64) value.

After achieving 92% validation accuracy in the CNN 
training, to increase the model performance, we used another 
neural network dense classifier. This model required another 
training on different data. For each spectrum in the training 
dataset of the initial CNN model, we counted spectral ratios 
of (i) DNA methylation, (ii) β-sheet proteins, and (iii) ran-
dom coil proteins. Some of these ratios were described to be 
specific for PC subtypes in VS spectra [24]. Specifically, for 
each spectrum, the relation between Raman bands character-
istic of DNA methylation (δ(CH2,  CH3), 1420–1360  cm−1 to 
νs(PO2

−), 1150–1050  cm−1), the β-sheet secondary structure 
of proteins (the β-sheet amide III, 1228–1218  cm−1 to total 
amide I, 1750–1514  cm−1), and proteins’ random coil sec-
ondary structure (the random coil amide I, 1640–1664  cm−1 
to total amide I, 1750–1514  cm−1) were established. The 
counted ratios were combined with the spectral prediction 
result (performed by the initial CNN model) and fed into the 
shallow dense classifier.

CNN architectures, training, and validation

In this study, we used two neural network models. First, for 
the spectra classification, a CNN was used, while for the 
final, combined spectral + ratio classification we utilized a 
shallow dense classifier. Below are the details of each of 
them.

The CNN was trained in predicting seven classes, repre-
senting separately the nucleus and the cytoplasm of AVAC, 
IPMC, and cPDAC, and additionally the stroma/empty space 
class. We used a custom-designed CNN architecture with 
13 1D convolutional layers for feature identification and 3 
fully connected layers for classification. A “sequential” base 
model was used. For each layer, a “glorot uniform” initializ-
ing mode was used. The “Adam” optimizer and “categorical 
crossentropy” loss function was applied. The CNN training 
involved 40 epochs with a batch size equal to 105.

The second dense classifier involved 3 fully connected lay-
ers. The batch size equaled 9 and the training took 17 epochs.

The total number of spectra used for CNN training was 
126,294 with the 2D NumPy (NumPy, RRID:SCR_008633) 
array shape presented as (126,294, 320) and included spec-
tra for each of 7 classes. Then, class arrays were “one-hot 
encoded,” and the training and testing dataset split was 
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conducted with a 70/30 ratio. The initial CNN training time 
was 40 min.

Each 2D NumPy array of training dataset for the final 
classifier included values for (i) summed intensities of DNA 
bands, (ii) summed intensities of methylated DNA bands, 
(iii) DNA methylation ratio value, (iv) summed intensities 
of total proteins bands, (v) summed intensities of beta-sheet 
proteins bands, (vi) beta-sheet protein ratio, (vii) summed 
intensities of random coil protein bands, (viii) random coil 
protein ratio, and (ix) CNN prediction class for the spectrum. 
The shape of this NumPy array was (126,294, 9).

The programming of the CNN and dense classi-
fier was performed in Python version 3.10.5 (IPython, 
RRID:SCR_001658) with TensorFlow (RRID:SCR_016345) 
and Keras application programming interfaces (API). The 
proposed CNN and dense classifier architecture details are 
summarized in Supplementary Figure S2.

After the CNN and final classifier were trained with sat-
isfying performance, additional RHM spectral data was 
obtained from new PC patient tissues. This RHM map 
included 13,924 spectra not “seen” by the CNN during the 
training phase. The performance of the prediction on this 
tissue sample was recognized.

Visualizing the CNN classification results

An efficient way of visualizing the spectral data prediction 
is to present the CNN classification results by plotting it 
as a tissue map image (prediction map) [24]. Every spec-
trum obtained with RHM for each tissue sample was fed 
into the CNN, followed by the final “ratios” classifier, and 
marked as one of the 7 classes. The predicted class values 
(classes 0–6 standing for stroma/empty, AVAC nucleus, 
AVAC cytoplasm, cPDAC nucleus, cPDAC cytoplasm, 
IPMC nucleus, and IPMC cytoplasm) created an array, 
which combined with the x and y coordinates of the original 
RHM map enabled the plotting of the prediction map. Each 
image pixel expressed a CNN-predicted class with a differ-
ent color. The plotting was performed in Python (IPython, 
RRID:SCR_001658) with the MatPlotLib library (MatPlot-
Lib, RRID:SCR_008624). The total number of spectra used 
for generating the prediction maps was 191,355, of which 
149,257 were new spectral data not trained on by the CNN 
(approximately 78%).

Multivariate data analysis methodology

Data analysis was conducted in the MATLAB 
(RRID:SCR_001622) environment from MathWorks 
(Natick, USA) (HCA, NMF) and in Python (IPython, 
RRID:SCR_001658) with Sklearn library (Sklearn, 
RRID:SCR_019053) (PCA, tSNE). Before the analyses, 
spectral data were preprocessed similarly to the spectra used 

for training the CNN (see “CNN dataset annotation and data 
augmentation”). The spectral range used for data analyses 
was trimmed to 1800–650  cm−1, which is desirable for bio-
logical structure examinations of samples obtained from 
FFPE tissue blocks. Certainly, in the higher spectral ranges 
(3,100–2,800  cm−1), one could expect the C-H stretching 
motions from methyl and methylene functional groups 
mainly from lipids; however, due to the required process of 
deparaffinization, the lipids in the samples were washed out 
(see “Tissue slide preparation”).

Results

CNN classifies Raman spectra of PC types with high 
accuracy and generalizes well on new data

To retrieve the subcellular components of AVAC, cPDAC, 
and IPMC, we trained a custom CNN model (see “Methods” 
for a detailed description of the methodology). All spectra 
from RHM maps obtained from PC tissue sections were fed 
into pre-trained CNN in prediction mode. CNN classified 
the spectra into 7 classes (see “Visualizing the CNN clas-
sification results”). The validation accuracy of the predic-
tion process reached slightly above 97%. The exemplary 
results of this part of our study are depicted in Fig. 1 as 
CNN prediction maps plotted for each type of PC tumor 
(AVAC, cPDAC, and IPMC). In that figure, the comparison 
of obtained map images to unstained light microscope tis-
sue images, taken in the corresponding spot to the Raman 
measurements, proper cellular and subcellular tissue ele-
ments (the nuclei or cytoplasm) can be distinguished (clas-
sified adequately by the CNN). To the left of each figure 1st 
row panel, the H&E-stained tissue image is presented; 
however, these sections were sliced from the FFPE tissue 
blocks before the sections used for Raman measurements 
(see “Tissue slide preparation”); thus, they might be slightly 
different regarding the placement of tissue and cellular com-
ponents. Nevertheless, the H&E image highlights the cells, 
nuclei, and cytoplasm of cells, showing a clear resemblance 
between unstained sections and CNN-predicted map images.

After achieving good CNN model validation performance 
on spectra obtained from the same PC tissues as these used 
for the training dataset (note that only approximately 22% 
of spectra were annotated, followed by training–validating 
dataset split in 70:30 ratio — see “CNN architectures, train-
ing, and validation”), to show the eligibility of our CNN 
model to generalize, we validated it on a new PC sample. 
To accomplish this, we sliced another tissue slide from the 
FFPE block obtained from a new PC case and conducted 
RHM measurements. None of the spectra from that tis-
sue sample was used for CNN training, making the whole 
RHM map a validation field. The results of CNN prediction 
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plotting are presented in Fig. 1D and show the proper clas-
sification of a very complex tissue section of cPDAC.

Comparison studies of different spectral analysis 
methodologies

In Supplementary Figure S3, we present exemplary results 
of different analytical approaches to spectral data. The CNN 
(Supplementary Figure S3A) identifies spectra of interest 
(originating from such components as cellular nuclei and 
cytoplasm) with great accuracy (over 97%). Conversely, 
with HCA (Supplementary Figure S3B), the distinction 
of nuclear areas is less exposed. On the other hand, NMF 
reveals the distribution of separate molecular components, 
such as nucleic acids, proteins, or water (Supplementary 
Figures S3C, S3D, and S3E).

The results of PCA and tSNE were similar in our data-
sets (Supplementary Figure S4); however, tSNE would 
not provide insight into the spectral characteristics (such 
as the loadings plots for PCA) of PC subtypes’ cellular 
nuclei and cytoplasm, which was the main goal of our 
study — to recognize and describe the spectral land-
scapes of AVAC, cPDAC, and IPMC. As a result, we 
propose a combined approach, utilizing CNN for spec-
tral classification of subcellular components and then 
PCA on the extracted spectra to identify the molecular 
details of each CNN-predicted class. This allows for an 
automatic, high-throughput, yet detailed characterization 
of PC tissue samples, on a subcellular scale. Moreover, 
this methodology might be adjusted in the analysis of any 
cancerous tissues.

After the successful CNN-based classification, spectra 
were analyzed by PCA concerning the distinction between 

Fig. 1  Tissue map images of 
PC tumors generated by the 
CNN. The samples of IPMC 
(A), cPDAC (B), and AVAC 
(C) tissues were classified by 
the CNN into 7 classes. Some 
of the spectra (about 22%) were 
initially annotated for the CNN 
training dataset. An additional 
RHM map was obtained from 
the cPDAC tissue section and 
fed into the pre-trained CNN 
(without retraining it with the 
new data) to check the gener-
alization efficacy of the CNN 
model (D). Note that the H&E 
slides were sliced from the 
FFPE blocks before the slides 
used for the Raman measure-
ments; thus, differences in 
tissue details might be observed 
(H&E, hematoxylin–eosin stain, 
original magnification 40×)
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those used for the CNN training dataset and the ones that 
the CNN model was validated on. In Supplementary Fig-
ure S3, the exemplary results considering spectra from the 
cytoplasm of AVAC cells are presented. As expected, such 
explorations revealed no significant spectral differences 
(Supplementary Figure  S5A); however, the generaliza-
tion ability of our CNN model is well illustrated with the 

extended plotting of the prediction spectra in the PCA scores 
(Supplementary Figure S5B).

Fig. 2  Molecular characteristics of the nuclei of PC tumors. Raman 
spectra from nuclei of all cells obtained from AVAC, cPDAC, and 
IPMC samples are presented as A linearly plotted mean spectra, B 

PCA 2D scores plots, C the PCA scores count plot showing the sepa-
ration of their centroids, and D corresponding loadings plots with sig-
nificant peaks marked
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Variations in global DNA methylation and contents 
of β‑sheet‑rich intranuclear proteins among AVAC, 
cPDAC, and IPMC revealed with the PCA of Raman 
spectra CNN classified as PC nuclei

The results of PCA analysis performed on spectra extracted 
from nuclear areas of all studied PC types’ RHM maps are 
depicted in Fig. 2, as 2D score plots of spectra clustering 
(Fig. 2B) and the corresponding loading plots showing peaks 
responsible for spectra separation (Fig. 2D). For the sake of 
clarity, to show the centroid positions of PCA scores and 
their shifts along the principal components, the counts of 
the scores were plotted (Fig. 2C).

In Fig. 2, the loading plot, which explains separation 
along the principal component 1 (PC-1), is dominated by the 
protein bands such as the phenylalanine (Phe) ring breath-
ing mode at 1004  cm−1; the amide I and amide III in the 
spectral ranges of 1700–1600  cm−1 and 1340–1230  cm−1, 
respectively; and the methyl and methylene bending motions 
at 1454  cm−1. All PC groups are clearly separated along 
PC-1, showing variable content of β-sheet secondary struc-
ture in nuclear proteins, the highest in cPDAC and the lowest 
in AVAC (amide I peak at 1628  cm−1). Spectra of cPDAC 
and IPMC nuclei are located on the negative side of PC-1, 
whereas almost all spectra acquired from AVAC nuclei are 
located peripherally at the positive side of PC-1. The cor-
responding maxima of PC-1 loadings are related to protein 
bands including the  CH2 and  CH3 bending, the amide bands, 
and the Phe ring breathing indicating a relatively high con-
tent of overall proteins in AVAC nuclei; however, combined 
with the above negative side of PC-1 interpretation, these 
proteins are less rich in β-sheet secondary structure than 
proteins in AVAV and cPDAC.

The principal component 2 (PC-2) explains 44% of the 
total variance within the considered dataset. The spectra 
acquired from IPMC nuclei are located at the negative 
side of PC-2, in contrast to those from cPDAC and AVAC 
nuclei, which are shifted towards the positive values of 
PC-2. The PC-2 loadings are negatively correlated with the 
already mentioned protein bands from the Phe, the amide 
III, and the  CH2 and  CH3 bending, indicating similarly to 
PC-1, the relatively high protein content in IPMC nuclei 
in comparison to cPDAC and AVAC. Moreover, a strong 
minimum of PC-2 is observed in the amide I spectral range 
at 1650  cm−1, showing the relatively high content of turns 
and unstructured coils secondary structures in nuclear pro-
teins of IPMC.

The principal component 3 (PC-3), which explains 
11% of the PCA total variance within the dataset, exhib-
its maxima related to the DNA backbone. These include 
879  cm−1, 1070  cm−1, and 1128  cm−1, as well as from the 
methyl and methylene motions at 1489  cm−1, 1280  cm−1, 
and 1391  cm−1, indicating high methylation of DNA and/or 

histones. These bands are characteristic of spectra shifted 
towards positive values of PC-3, precisely a part of the spec-
tra acquired from AVACs’ nuclei, revealing the local char-
acter of high methylation.

To summarize, PCA performed on spectra from the 
nuclei of PC cells differentiated AVAC, IPMC, and cPDAC. 
Although all PC types were rich in nuclear proteins, we 
found variable content of protein secondary structures 
among them. Specifically, β-sheet-rich proteins prevail in 
cPDAC, whereas turns and unstructured coils proteins are 
characteristic of IPMC nuclei. The high protein content in 
nuclei volume is considered a hallmark of the ongoing pro-
cess of DNA repair [44]. Moreover, locally, in AVAC, a high 
DNA and/or histone methylation level was found; however, 
it was variable among PC types.

The variable proteins’ secondary structure 
composition differentiates the cytoplasmic region 
of PC types determined by PCA of CNN‑classified 
Raman spectra

Spectra acquired from the cytoplasm of IPMC, AVAC, and 
cPDAC exhibit grouping in the 3D space of PCA (Fig. 3B); 
however, a more discrete level of separation is observed, 
compared to the PCA of nuclear spectra. The separation 
along PC-1 (42% of the PCA total variance) is driven 
mainly by the minima related to protein bands including 
 CH2,  CH3 bending, the amide III, and the Phe ring breath-
ing (Fig. 3D). Figure 3 B and C highlight these bands to be 
characteristic of IPMC, in contrast to cPDAC spectra, and 
thus, indicate a high content of cytoplasmatic proteins and 
peptides in cancerous cells of this type of PC tumors. Spec-
tra of IPMC cells’ cytoplasm are shifted towards negative 
values of PC-1, and the characteristic minimum of PC-1 
loading at 1662  cm−1 indicates a high contribution of turns 
and unstructured coils secondary structure in the proteins of 
IPMC cytoplasm.

There is only a slight separation of spectra acquired from 
the three investigated types of cancer along PC-2; however, 
the scores of IPMC are split into two groups, from which one 
is significantly shifted towards positive values of PC-2. The 
corresponding loading plot is dominated by maxima from 
proteins, including amide II at 1540  cm−1, the C–C, C-N, 
and C-O stretching modes in the spectral range from 1160 to 
1050  cm−1, and C-H bending in tyrosine (Tyr) at 1170  cm−1 
[45–48], suggesting local high content of Tyr-rich proteins 
in the cytoplasm of IPMC tumors.

PC-3 explains 8% of the PCA total variance and sepa-
rates cytoplasm spectra of cPDAC (shifted towards lower 
PC-3 values) from AVAC and IPMC (PC-3 right-shifted). 
The PC-3 loadings are positively correlated with bands from 
the methyl and methylene motions from proteins and pep-
tides at 1448  cm−1, 1299  cm−1, and 1378  cm−1, suggesting 
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high content of methylated amino acids in the cytoplasm of 
AVAC and IPMC. Moreover, a strong positive correlation 
is also visible at 1128  cm−1, which was found to be a spec-
troscopic marker of reduced cytochrome C in mitochondria 
[49]. The negative correlation of PC-3 loadings, which is 
characteristic of spectra acquired from cytoplasmic areas of 

cPDAC, is observed for the band from the C-C6H5 stretch-
ing in Phe and tryptophan (Trp) at 1208  cm−1 indicating 
the presence of Phe- and Trp-rich proteins in cPDAC cells 
cytoplasm.

To summarize, the exploration of cytoplasmic parts of 
PC cells revealed a high content of turns and unstructured 

Fig. 3  Molecular characteristics of the cytoplasm of PC tumors. 
Raman spectra from the cytoplasm of all cells obtained from AVAC, 
cPDAC, and IPMC samples are presented as A linearly plotted mean 

spectra, B PCA 2D scores plots, C the PCA scores count plot show-
ing the separation of their centroids, and D corresponding loadings 
plots with significant peaks marked
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coil proteins in the IPMC, and what is more high content 
of Tyr-rich proteins was observed locally in the PMC cyto-
plasm. AVAC and some IPMCs were filled with methyl-
ated proteins, and a high content of reduced cytochrome 
C was detected. On the other hand, cPDAC cytoplasm 
included proteins rich in Phe and Trp.

Discussion

It was shown that CNN efficiently differentiates between 
the main types of PC [24]. Currently, we deepen the 
insight into the PC’s molecular composition by extract-
ing subcellular regions of cancerous tissues, allowing the 
distinction not only between AVAC, cPDAC, and IPMC 
but the nuclei and cytoplasm of their cells. This approach 
revealed new possibilities for investigating molecular char-
acteristics of PC cells very precisely with considerable 
certainty of results interpretation. VS methods are great 
tools for molecular studies of cancerous tissues; however, 
the standard approach of random blind spot measurements 
[41] or rare grid mapping [42] might be prone to mix-
ing the results with tumor necrosis and fibrosis, areas of 
inflammation, or benign pancreatic tissue. This leads to 
false results or misinterpretation. The VS methodology’s 
success depends on the cognitive selection of areas of 
measurement. The CNN-driven selection of target spec-
tra is a very efficient, unsupervised, automatic, and high-
throughput approach for errorless investigations into the 
nature of PC. The distinction between nuclear and cyto-
plasmic regions of cancer cells allows for separate inter-
pretations of each, and thus, adds to the knowledge of the 
molecular nature of PC.

Various models of neural networks including CNNs 
were introduced to solve classification problems in medi-
cal science. Widely reported algorithms, which were suc-
cessful in image recognition in pathology [50] or radiol-
ogy [51–53], proteomics classification [54], or spectral 
data recognition for cancer diagnostics [19, 55–59], focus 
largely on classification only. Although CNNs are gen-
erally known to be efficient in predicting (true problem 
solvers), the mechanisms of that verdict are somehow hid-
den, making them unsuitable for studying the nature of the 
problem. Although CNNs are great at reading the slightest 
differences in spectral analysis, due to the “fingerprint” 
character of VS results, in the path of CNN prediction 
that information is lost, and only the classification result 
remains. The findings of our study show differently. We go 
beyond CNN-based classification, and we propose using 
CNN for spectral data biomolecular interpretation. Moreo-
ver, our approach is automatic, time-efficient, and might 
be unsupervised. We combined a very accurate CNN 
classifier with PCA which reduced the dimensionality of 

CNN-predicted spectra revealing significant differences in 
spectral bands characteristic of cellular nuclei and cyto-
plasm of main PC tumors, specifically AVAC, cPDAC, and 
IPMC. Both methods (CNN and PCA) utilize automatic 
feature extraction; however, using PCA only would not 
recognize the spectra of each class (in subcellular scale) 
with such specificity and accuracy as the CNN. Moreover, 
CNN has a great feature of generalization, meaning that it 
handles relatively well data that it has not been trained on 
before. On the other hand, CNN only would not highlight 
spectral variabilities between classes, making it useless in 
terms of molecular interpretation. Both methods supple-
ment each other and together become a universal tool for 
molecular studies of tissue samples by VS (such as RHM).

Here, in an automatic manner, we identified cellular 
nuclei and cytoplasm regions of AVAC’s, cPDAC’s, and 
IPMC’s cells with a custom-designed CNN model. The 
annotation process for the CNN training required only less 
than 22% of the spectra to be marked, leaving the rest for 
the CNN generalization. First, we trained the CNN model by 
feeding it with raw spectral data. The achieved training and 
validation accuracy was very good (approximately 97%); 
however, that model did not perform well in predicting all 
seven classes when validated on new samples (new RHM 
map). To accentuate the meaningful information, spectra 
preprocessing were required. We removed the noise, base-
line-corrected, and limited the range of analysis to that of 
biological samples (1800–650  cm−1). Not surprisingly, the 
CNN model trained well but relatively early it started to 
overfit (the validation accuracy would not improve above 
85%). The data augmentation was performed, by adding 
random noise to the preprocessed spectra. Trained on this 
new dataset, our CNN model reached 92% in a successful 
validation. To further elevate the correct prediction score, 
we applied another neural network (NN) model — a shallow 
dense classifier. Some specific spectroscopic landmarks were 
recently established for PC subtypes, including global DNA 
methylation ratio or proteins secondary structure ratios [24]. 
These findings were included in generating the extended 
training dataset for the new NN, which involved combining 
the initial spectral CNN-based prediction class with calcu-
lated DNA methylation, proteins’ β-sheet, and proteins’ ran-
dom coil secondary structure ratios. By using this, combined 
automatic (by CNN) and manual (by dense classifier) feature 
extractor approach, the final classification reached over 98%, 
and more importantly, it performed efficiently with the new 
dataset (new PC sample).

For the CNN analysis of data, it is often beneficial to 
take advantage of the CNN’s ability to extract spatial fea-
tures. Although this type of analysis (called CNN-based 
image recognition) was largely applicated in medical sci-
ences in radiology [60] or pathology [61], not many studies 
evaluated such an approach to spectral data analysis. When 
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using RHM, it might be possible; however, we intentionally 
resigned from image recognition analysis, due to a couple 
of reasons. First of all, in our study, we aimed to recognize 
the molecular characteristics of PC tissues, for further direct 
translation of the results into other VS methodologies eligi-
ble for serum-based liquid biopsy testing. Among methods 
recognized as the most promising candidates in the diagnos-
tics of malignancies including PC, the ATR-FTIR is leading 
the board [3, 59]. In this particular VS method, as a result 
of the measurement, a single infrared spectrum is generated. 
Thus, any spatial recognition, in that case, is not an option. 
Another reason why we resigned from studying spatial fea-
tures in RHM map images was that it is hardly possible with 
good accuracy. To annotate the data for image recognition 
training of the CNN, one has to precisely select areas of a 
certain class and select them entirely. Although we could use 
for comparison the unstained tissue light microscope pic-
tures, normally taken before the Raman measurements, with 
unstained and deparaffinized tissue, precise recognition of 
all cellular components (i.e., the nuclei and the cytoplasm) 
is impossible, especially when dealing with such compli-
cated samples as PC tissues. The results of imprecise image 
recognition training might be a falsification. Last, but not 
least, the doubtful benefit of utilizing image recognition in 
our CNN model for the study results would be recognizable. 
Our approach of only spectral data CNN-based analysis was 
successful in 98% of spectra, the results of our studies can 
be directly translated into the development of PC diagnostic 
technology based on ATR-FTIR serum measurements, and 
we showed that the training of the CNN model with RHM 
data can be relatively easy, time-efficient, automatic, and 
have high throughput, thus showing the path for its imple-
mentation into studying of malignancies other than PC.

Subsequently, after successful classification, we pro-
ceeded to the characterization of each of the predicted 
classes, which included regions of nuclei and cytoplasm of 
AVAC, cPDAC, and IPMC. The automatic extraction of pre-
dicted spectra and the PCA of various pairwise and triple-
wise combinations of classes were conducted, uncovering 
the differentiating spectral bands among them.

Analyses of both nuclear and cytoplasmic cellular regions 
of PC cells differentiated these main PC groups and allowed 
biochemical interpretations characteristic of each of them. 
Specifically, all PC samples were rich in nuclear proteins. 
This was an expected finding since a high nuclear protein 
content is considered a hallmark of the ongoing process of 
DNA repair [44]. Similarly, as expected among nuclear pro-
teins, we found variabilities in their dominating secondary 
structure. Recently, the highest general content of β-sheet-
rich proteins was found in the samples of AVAC [24]; how-
ever, in the current study, we found the nuclei of cPDAC to 
be dominated by β-sheet-rich proteins and IPMCs’ by turns 
and unstructured coils. To explain these discrepancies, it is 

worth noting that the NMF protein compound used for the 
analysis by the authors of the aforementioned study [24] 
represented mainly cytoplasmic and extracellular matrix 
proteins, while we investigated spectra selected from the 
nuclei of the PC cells, thus not contaminated with other cel-
lular and extracellular regions of the studied tissue samples.

Both secondary structures we found (β-sheet, turns, and 
random coils) are domains of various proteins involved 
in carcinogenesis. In cellular nuclei, histones represent a 
substantial protein content, involved in DNA packaging or 
gene expression regulation [62]. Nevertheless, histones are 
primarily known for their α-helical structure. On the other 
hand, it was found that the β-sheet secondary structure pro-
moted abnormal protein aggregation [63], a hallmark of 
cancer initiation and progression [64]. A great example of 
such protein is p53, which creates β-sheet aggregates in cel-
lular nuclei of multiple cancers, including PC [65]. Another 
insulin-like growth factor-binding protein 2 (IGFBP2) was 
found to be associated with worse PC patients’ prognosis, by 
inducing the nuclear translocation and phosphorylation of 
the p65 subunit of nuclear factor kappa-light-chain enhancer 
of activated B cells (NF-κB) [66]. The latter (NF-κB) is a 
nuclear protein complex containing subunits rich in turns 
and random coils that are important for interacting with 
other proteins involved in transcriptional regulation [67]. 
Another random coil-rich protein is breast cancer type 1 
susceptibility protein (BRCA1), which is critically involved 
in the homology-directed repair pathway (HDR) of double-
strand breaks (DSB) of DNA [68] and was found to play an 
important role in PC tumorigenesis [69].

Aside from the protein structural variations, in the studies 
of nuclear spectra, we found high methylation rates of DNA 
and histones, most prevailing in AVAC and IPMC samples, 
which is in line with recent findings of DNA methylation 
among PC types [24]. DNA methylation and histone meth-
ylation are major players in epigenetic modification impor-
tant in PC growth and progression [70]. The importance of 
a deeper understanding of these alterations is well presented 
by DNA methylation profiling-based classification of the 
central nervous system tumors [43]. The knowledge of epi-
genetic variabilities among PC types shows promise for the 
development of new targeted therapies [71].

The analyses of PC cell cytoplasmic regions revealed a 
high Tyr content in IPMC samples, whereas the proteins of 
cPDACs cytoplasm were abundant in Phe and Trp. Examples 
of Tyr-rich cytoplasmic proteins involved in PC development 
and progression are Src kinase and focal adhesion kinase 
(FAK). Both interact with each other and combined with 
other proteins’ deregulation; they drive tumor–stroma cross-
talk and promote PC survival, adhesion, migration, and inva-
sion [72]. Another Tyr-rich protein, STAT3, is constitutively 
activated in PC by the phosphorylation of Tyr705, leading to 
PC tumor progression at multiple stages of tumorigenesis, 
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starting with the Pdx1 transcription factor-driven initiation 
of acinar-to-ductal metaplasia [73] (which is believed to be 
a precursor lesion of PC [1]). Yet, another Tyr-rich protein 
is phosphoinositide 3-kinase (PI3K), an important part of 
the PI3K/AKT/mTOR signaling pathway, which plays a key 
role in regulating PC cell growth and survival, and impor-
tantly might be targeted with PI3K inhibitors [74]. Addition-
ally, the cytoplasmic proteins of some of the studied IPMC 
samples contained methyl and methylene-rich proteins. 
Hypermethylation of cytoplasmic proteins, such as the Ras 
association domain family 1A (RASSF1A) promoter, was 
found in 64% of PCs in the study by Dammann et al. [75]. 
This epigenetic event downregulates RASSF1A and lowers 
its action, such as stimulation of mitotic arrest, DNA repair, 
and apoptosis, thus inhibiting tumor suppressor activity [75].

An important finding was made in AVAC and IPMC 
samples, in which we detected a high content of reduced 
mitochondrial cytochrome C. The tyrosine phosphorylation 
of Tyr48 in mitochondrial cytochrome C puts it in the redox 
state, thus preventing cancer cell apoptosis [76] and driving 
cancer progression [77].

Conclusions

The goal of our study was to extend the knowledge about 
the molecular nature of pancreatic tumors and find the best 
way of gaining it. These cancers are burdened with very high 
mortality, despite nearly daily reports adding to their under-
standing, multiple ongoing new therapeutic trials, or intro-
duction of early diagnostic attempts. In serum-based liquid 
biopsy testing, as some authors [3], we perceive a solution 
to elevating the survival rates of PC patients; however, the 
conventional LBMs have not been introduced into clinical 
practice, because of the complexity of the methodology, and 
their not satisfying specificity, although comparable with 
other single-marker techniques [6]. Blood serum testing by 
VS combined with neural networking (including CNN) was 
established to be efficient in differentiating patients with and 
without malignancies [19, 55–59]. Nevertheless, for success-
ful diagnostic technology, the ability to discriminate various 
malignancies in a single serum test is crucial; otherwise, one 
cannot be sure if the detected malignancy is truly the PC or 
maybe a gastric or colon cancer, making the test not use-
ful in early screening for PC. A comparative study of vari-
ous malignancies is required. Recently, in [24], the authors 
showed significant spectral variations among differentiated 
main groups of PC regarding global DNA methylation and 
the secondary structure of proteins. The results of their 
analysis, as well as ours, focusing on further interpretation 
of subcellular components of PC, can be directly translated 
into the development of PC diagnostic technology, which 
will be specific to PC (not other malignancies). However, 

this could not be achieved without our initial step taken in 
this study of characterizing the PC tissues first. It is due to 
the cognitive visualization by RHM and CNN prediction 
plotting, followed by PCA of each class that the true (not 
assumed) spectral interpretation was possible. A natural next 
step in establishing PC early screening technology is imple-
menting our results in liquid biopsy testing. Early screening 
of PC patients is crucial for lowering the percentage of PC 
treatment failure, as it leads to early-stage tumors, making 
them suitable for radical resection and longer survival of 
patients [2].
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