
SoftwareX 25 (2024) 101606

A
2

O

J
A
A
a

b

c

d

e

A

K
O
I
U

C

1

r
o
m
d
s
n
o

h
R

Contents lists available at ScienceDirect

SoftwareX

journal homepage: www.elsevier.com/locate/softx

riginal software publication

oseph the MoUSE — Mouse Ultrasonic Sound Explorer
dam Kania a,1, Weronika Ormaniec b,1, Dmytro Zhylko c,1, Leszek Grzanka d, Diana Piotrowska e,
ndrzej Siódmok a,∗

Jagiellonian University, Kraków, Poland
ETH Zürich, Switzerland
AGH University of Science and Technology, Kraków, Poland
Institute of Nuclear Physics, Polish Academy of Sciences, Kraków, Poland
Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland

R T I C L E I N F O

eywords:
bject detection

mage processing
ltrasonic vocalizations

A B S T R A C T

Joseph the MoUSE — Mouse Ultrasonic Sound Explorer (MoUSE) software aims to address the issue of
manual analysis of recordings from experiments on rodents by introducing automatic techniques for ultrasonic
vocalization (USV) detection. It combines deep learning (DL) methods with classical pattern recognition and
computer graphics algorithms. During development, we used a dataset that consisted of recordings from real-
world experiments in the open field. Recordings like these pose obstacles to automatic USV detection, one of
which is the noise produced by mice in the experimental area or in nearby cages. Therefore, additionally, we
conducted research and implemented de-noising methods along with detection algorithms. The project includes
Python packages with algorithms for sound noise removal and USV detection, and provides a user-friendly
graphical interface.

ode metadata

Current code version 1.0
Permanent link to code/repository used for this code version https://github.com/ElsevierSoftwareX/SOFTX-D-23-00410
Permanent link to Reproducible Capsule
Legal Code License MIT
Code versioning system used git
Software code languages, tools, and services used Python
Compilation requirements, operating environments & dependencies Python 3.8
If available Link to developer documentation/manual github.com/JosephTheMoUSE/MoUSE-docs/wiki
Support email for questions josephthemouse@googlegroups.com

. Motivation and significance

Rodents such as mice and rats play an essential role in biomedical
esearch. They are the subject of experiments that allow scientists to
bserve the course of various diseases close to the human environ-
ent. Because of this, they constitute a significant part of the drug
iscovery process and psychological research. In the latter case, key
ymptoms cannot be observed conventionally because they usually do
ot affect the physical state of the rodent. That is why other methods
f measuring the well-being of animals have been developed. Several
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E-mail address: andrzej.siodmok@uj.edu.pl (Andrzej Siódmok).

1 These authors contributed equally to this work and share first authorship.

research articles [1–6] confirm that ultrasonic vocalizations (USVs) of
rodents provide the possibility to assess their condition and emotional
state. These vocalizations typically fall in the 20–90 kHz frequency
range and can be divided into two main categories: alarm calls and
appetitive calls. Animals make emergency calls when they sense danger
or as an effect of a negative stimulus. In contrast, rewards and positive
social interactions trigger appetitive calls. Duration of vocalization, fre-
quency modulation, and bandwidth categorize these two main groups
further [7].
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The typical way to collect data on rodent vocalizations is to record
them using an ultrasound microphone (e.g. Avisoft-Bioacoustics, CM16/
CMPA). Analysis of recordings involves searching and categorizing
vocalizations, with a particular emphasis on disregarding laboratory
noise. In an experiment conducted in the Maj Institute of Pharmacology
of the Polish Academy of Sciences, where Mouse Ultrasonic Sound
Explorer (MoUSE) was first used, rats were placed on an open field
arena measuring approximately 55 × 55 cm. Typically, two unfamiliar
rodents are placed in the arena for a 10-min social interaction test.
An ultrasonic microphone that operates in the range from 10 kHz to
120 kHz was located about 20–30 cm above the box. The microphone
recorded rodent sounds overlaid with many background noises, such as
human speech, high-frequency sounds generated by a monitor, sounds
generated by the animals waiting in their home cages and by the tested
rats themselves, e.g., scratching with their claws. After the recordings
are collected, the researchers usually manually select and classify the
vocalizations of the rodents. This process is laborious and tedious and
requires a significant amount of the researcher’s time, which is its major
disadvantage. This is, in fact, the main reason why researchers often
abandon recording vocalizations and fall back to techniques based only
on video recordings. Sometimes, custom-made software is used to help
with the USVs’ analysing process [8]. Joseph the MoUSE — Mouse
Ultrasonic Sound Explorer was created to facilitate, speed up, and
automate this process. It should be noted that many efforts have been
made to automate this process [9–15]. For example in [16], the authors
of DeepSqueak used deep learning methods to identify and classify
USVs. A detailed comparison of various programmes for vocalization
analysis is found in [17,18].

Among the already existing solutions used for USV analysis the most
common tools are Avisoft SasLab Pro [19] and Raven Pro [20]. Despite
their widespread usage, existing methods suffer from limited support
for automated detection and classification. Furthermore in experiments
involving open-field settings low-frequency calls can be easily mistaken
for background noise, even by human annotators, leading to inaccurate
results.

Other software created to tackle the problem of USV detection in-
cludes WAAVES [21] and USV detection using template matching [22].
Both of them achieve great success in the experiments described in the
original articles but still require manual tuning, which means that they
do not generalize across a wide spectrum of experiments. Lastly, there
is the software application known as DeepSqueak [16] which uses the
power of Deep Learning and Computer Vision to replace human visual
analysis of spectrograms.

MoUSE brings the benefits of the OpenSource software: the code is
free to use and relies on a freely available library with a permissive
licence. It can be deployed and installed in most laboratories without
the need to buy any additional software.

2. Software description

We chose to use spectrogram as our sound data representation,
since it is the most descriptive format to analyse by humans and is
the format in which data was originally analysed in. This however
poses technical challenges, due to the size of the input spectrogram
(tens of gigabytes per typical experimental day), efficient processing
of multiple recordings can pose significant computational challenges.
Therefore, our proposed solution is designed to be compatible with
an average PC, ensuring that the processing time remains reasonable.
Our approach involves the utilization of our own dedicated library
with specialized algorithms for audio denoising, ultrasonic vocalization
(USV) detection, and classification. This library is seamlessly integrated
into an application with a graphical user interface, providing a user-
friendly way for conducting these tasks. The application can be found
in our GitHub repository together with instructions on how to install it
(see Code metadata).

The primary purpose of the application is to aid researchers in the
analysis, detection, and classification of USVs in the audio recordings

2.1. Software architecture

We have chosen to split the codebase into a couple of separate
repositories grouped under the GitHub organization, https://github.
com/JosephTheMoUSE. Major repositories are GUI application, core
library and documentation. The repositories are linked by the mech-
anism of git submodules.

The source code was written in Python programming language, as
currently, it seems to be the best solution for data analysis and ma-
chine learning projects. Python provides a rich ecosystem of machine-
learning related libraries and has decent support for modern cross-
platform GUI libraries such as Qt6. The popularity of Python (at the
time of writing) simplifies the process of code development and its
maintenance.

The core library contains code responsible for major features of
MoUSE. This includes audio denoising, USV detection and classifica-
tion. The architecture of the GUI application follows the popular and
successful Model-View-Controller software design pattern [23]. Apart
from application source code, both repositories contain configuration
files for code formatters and unit tests covering crucial parts of the
code.

The main flow of application execution is composed of steps re-
flecting a typical data analysis process: data loading, denoising, USV
detection and classification, filtering and exporting the results (see
Fig. 1). Each step of the analysis process is pre-configured with default
parameters, which can be easily adjusted by the user. Denoising and de-
tection configuration screens contain a recording preview. This preview
visualizes the results of applying a given method, thus providing quick
feedback about the selected configuration (see Fig. 2). This is especially
helpful, as the user can select a particularly problematic fragment of the
recording for configuration tuning.

2.2. Software functionalities

The MoUSE platform can be run on Windows and Linux operating
systems. It reads audio data in WAV format and exports detected and
annotated USVs in comma-separated values (CSV) format accepted by
most data analysis tools. It supports displaying the spectrogram and
provides basic operations on it. For example, the user can manually
select a fragment of a spectrogram and edit or delete previous selec-
tions. A more detailed explanation of all the features can be found in
the MoUSE platform documentation (see Code metadata).

In the following section, we outline the key features of the MoUSE
platform. Note, that all presented algorithms utilize spectrogram repre-
sentation of sound data.

2.2.1. Denoising
The MoUSE platform supports three audio denoising methods:

• Bilateral filter is a standard, non-iterative denoising algorithm,
which also found its application in bioacoustics [24]. This al-
gorithm can smooth a spectrogram while preserving the edges.
Bilateral filter substitutes the intensity value of each pixel with a
weighted average of intensities derived from neighbouring pixels.
The weight is determined by the Euclidean distance between the
pixels in both the spatial and intensity domains.

• Short duration transient suppression (SDTS) filter is a Gaussian-
filter-based algorithm that was primarily used for denoising dol-
phin whistle recordings. According to [24] this method should
remove vertical line patterns in the spectrogram. The working
principle of the SDTS filter can be explained as follows: If the pre-
dominant pattern within the pixel’s vicinity is vertically oriented,
the pixel’s value will be reduced. The determination of direction
significance relies on the analysis of intensity relationships in four
intermediate images generated through modified Gaussian filters.
Each filter intensifies pixels being part of a pattern oriented in
one of four main directions: vertical, horizontal and two diagonal
2
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Fig. 1. MoUSE application flow.

Fig. 2. Denoising settings. The top graph displays the raw spectrogram with USVs and noise in green colour. The bottom graph represents the same spectrogram processed with
a noise gate filter, with the configuration presented in the setting panel above the spectrograms. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

• Noise gate filter is an algorithm we implemented from scratch
based on its description on the Audacity website [25]. This
method needs to be initialized by the user with a fragment of a
noisy spectrogram which is used to estimate noise statistics. These
statistics are used to compute noise thresholds for each spectro-
gram frequency band. If the pixel intensity value is smaller than
the corresponding threshold, it gets attenuated to the minimal
value found in the input spectrogram.

2.2.2. Detection

The MoUSE platform offers two distinct approaches for detecting
USVs. The first approach involves the use of Morphological Geodesic
Active Contour (GAC) [26], which allows users to manually fine-tune
the algorithm for optimal precision and recall. Alternatively, users can
opt for the Neural Network approach, which relies on a learned model
but may not perform optimally in cases where there is a significant
3
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Table 1
Global coverage. All values are multiplied by 100 for better visibility.

FRCNN GAC 1 GAC 2 GAC 3 GAC 4 GAC 5

Coverage of ground truth
by detected

80.95 47.14 47.34 55.30 55.32 55.92

Coverage of detected by
ground truth

68.25 76.68 77.44 60.48 62.02 39.90

Table 2
Global recall and precision. IoU threshold: 0.1. All values are multiplied by 100 for
better visibility.

FRCNN GAC 1 GAC 2 GAC 3 GAC 4 GAC 5

Recall 97.91 80.46 80.67 70.31 70.31 73.95
Precision 81.28 77.70 78.06 86.04 87.19 83.73
F1 88.46 78.42 78.76 75.88 75.99 78.24

disparity between the training data and the data being analysed. Fur-
ther information on these approaches can be found in the respective
paragraphs.

Morphological geodesic active contour (GAC). GAC is an algorithm that
can find image areas with high gradient. The main advantage of this
method is that it does not require training. The fact that this method
is non-trainable creates the need for configuring the method for the
user. To make the configuration more transparent and easy to use,
MoUSE provides a preview on which the configuration can be tested.
The preview shows a user-selected fragment of the spectrogram, on
which each iteration of the algorithm is visualized. After the method
finishes execution, detected USVs are shown on the preview.

An alternative method for autoconfiguration of GAC is also avail-
able. The method uses a fragment of an annotated spectrogram (e.g.,
10 s) and Bayesian optimization in order to find parameters that
maximize a selected metric.

Neural network approach. Faster R-CNN [27] — currently the only
supported architecture by MoUSE. This is a neural network architec-
ture trained end-to-end with a convolutional NN as a backbone. The
model is capable of working without user input and is suitable for
preliminary analysis of large amounts of recordings. Feature extractor
size and architecture choice are mainly dictated by computational
resources, so MoUSE may be used on middle/high-end consumer-grade
PCs. We experimented with different variants of ResNet [28] model
and settled with a modified resnet-50 variant with half of the blocks
removed, essentially leaving 21 convolutional layers across 2 stacks of
bottlenecks, to produce wider spacial feature maps, while being mem-
ory efficient and capturing different features with increased channel
number, for better detection. Increasing the size of the model and/or
reducing spacial reduction would improve detection performance, but
was prohibitively expensive to train and inference with. Final results
are presented in Tables 1 and 2 (labelled FRCNN). We also present
the capabilities of FRCNN classification head, which is a part of the
detection pipeline, in Fig. 4. We detail our training procedure and
hyperparameter choice in Appendix C. Apart from the standard steps
of training object detection neural network, we used a custom data
augmentation technique, that exploits the fact of vocalizations being
time-invariant, so we could safely generate more examples by ‘‘sliding’’
existing boxes across time domain, with the restriction of not causing
any unintentional intersections between annotations.

2.2.3. Classification
The MoUSE Platform supports two kinds of classification methods:

• Simple classification — it classifies USVs solely on their mean fre-
quency, which is enough to distinguish emergency calls (22 kHz;

near-constant frequency calls between 20 and 25 kHz) from ap-
petitive calls (the 50 kHz, ‘happy’ calls of much more heteroge-
neous structure, appearing between 30 and 90 kHz).

• Advanced classification — it is currently supported only as a part
of the neural network-based detection algorithm. The classifica-
tion module is end-to-end learned for detection purposes during
training. In advanced classification, the appetitive (’happy’) calls
are further divided into the following sub-categories: short (sh;
duration less than 12 ms), flat (fl; calls with a near-constant
frequency, longer than 12 ms), one-component (oc; monosyllable
calls), multi-component (mc; calls consisting of at least two syl-
lables), trills (tr ; very highly modulated calls, most characteristic
category, consisting of several spike-like syllables), complex trills
(trc; trills with elements of other call categories e.g. fl or oc).
The choice and description of call categories were based mostly
on [29].

2.2.4. USV filtering
In our platform, we currently have two options for filtering incorrect

detections:

• Rule-based — remove USVs that are mostly (more than half of the
box) below a frequency threshold. This can help with removing
false positives in low-frequency ranges (scratching, music, etc.)

• Neural Network based — binary classification network trained to
distinguish between noise and USVs.

3. Illustrative examples

3.1. Using MoUSE desktop application

In this section, we present a general example of how the MoUSE
platform is used. We discuss:

• how the spectrogram can be preprocessed,
• how detection and classification of USVs can be configured,
• what can be done with the results.

For a more detailed usage description please refer the documen-
tation (https://github.com/JosephTheMoUSE/MoUSE-docs/wiki). Ad-
ditionally, we attach an explanatory video that shows all the steps
described in this section (see https://youtu.be/qmGrD-POp10).

After audio files are loaded into MoUSE, a user can proceed to
configure audio denoising. Each of the previously described audio-
denoising methods can be tested on a user-selected fragment of the
spectrogram. In Fig. 2 a spectrogram fragment denoised with a noise
gate filter is presented (bottom one).

When the amount of noise in the spectrogram is at a satisfactory
level, a user can proceed to the configuration of USV detection. MoUSE
platform provides a preview spectrogram on which detection methods
can be tested. In Fig. 3 we present an example of a configuration
window with GAC method selected for detection.

The MoUSE platform incorporates a configurable filtering step,
allowing users to eliminate false detections. Users are offered both
frequency-based and neural network-based approaches for this purpose.

Users are also provided with a USV classification configuration win-
4
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Fig. 3. Detection settings on the ‘‘GAC’’ page. The top graph displays a denoised spectrogram with several USVs. The bottom graph illustrates the initial state of the active contour
algorithm’s bitmap, which is iteratively updated during the execution of the algorithm. The final state of this bitmap corresponds to the algorithm’s ‘detections’.

Fig. 4. Confusion matrix for Faster R-CNN classification on the test set.
5
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Table 3
Recall per vocalization category. IoU threshold: 0.1. All values are multiplied by 100 for better visibility.

FRCNN GAC 1 GAC 2 GAC 3 GAC 4 GAC 5

tr 83.33 79.21 79.21 74.31 74.31 78.74
oc 77.46 74.53 74.53 67.06 67.06 66.50
mc 98.34 86.35 87.08 83.12 83.12 79.15
sh 99.51 69.02 69.02 61.42 61.42 45.32
fl 33.33 25.69 25.69 27.78 27.78 23.61
trc 66.67 56.33 56.33 57.78 57.78 57.78
22 kHz 31.94 15.28 15.28 0.00 0.00 23.61

of each call is necessary. Currently, users can select between a simple
rule that can differentiate between emergency and appetitive calls and
a neural network-based classification algorithm.

Detection and classification results can be fine-grained by the user
manually through interacting with graphical annotation representation
(bounding boxes) and through changing values in the annotations
table. When the user is satisfied, MoUSE allows exporting data to a
tab-separated values (TSV) file, including results and metadata.

3.2. Performance of detection and classification algorithms

In this section, we evaluate the performance of the algorithms
supported by MoUSE. The dataset used for our analysis is a 6-min
recording with manually selected and classified vocalizations that we
treat as ground truth. A manual selection is a rectangular bounding
box around the vocalization. Similarly, our algorithms also return
rectangular bounding boxes.

MoUSE offers multiple configurations of algorithms for denoising
and detection. In this section, we present results for the following
configurations: FRCNN, GAC 1, GAC 2, GAC 3, GAC 4, GAC 5 all
defined in Appendix A. The first metric we present here is the bounding
box coverage. Having two bounding boxes 𝐴 and 𝐵 we define coverage
of 𝐴 by 𝐵 as 𝑐𝑜𝑣(𝐴,𝐵) ∶= 𝐴∩𝐵

𝐴 . In Table 1 we present the coverage
f ground truth bounding boxes by detected bounding boxes and vice
ersa for the experiments described above. One can notice that FRCNN
s better at creating bounding boxes that cover ground truth bounding
oxes than any GAC configuration we tested. It is expected behaviour as
RCNN interacts with human-made annotations during training. GAC
n the other hand is a fully unsupervised method. By comparing these 2
ypes of coverage we can conclude that GAC in general creates smaller
ounding boxes than FRCNN or human annotators. For the purpose of
urther analysis, we define Intersection over Union (𝐼𝑜𝑈) between 2
ounding boxes 𝐴 and 𝐵 as 𝐼𝑜𝑈 (𝐴,𝐵) ∶= 𝐴∩𝐵

𝐴∪𝐵 . Now given a threshold
we can define the following categories for bounding boxes:

• TP (true positives) — a bounding box 𝐴 returned by the detection
algorithm is considered a true positive when there exists a ground
truth bounding box 𝐵 such as 𝐼𝑜𝑈 (𝐴,𝐵) ≥ 𝑇 .

• FP (false positives) — a bounding box 𝐴 returned by the detection
algorithm is considered false positive when there is no ground
truth bounding box 𝐵 such as 𝐼𝑜𝑈 (𝐴,𝐵) ≥ 𝑇 .

• FN (false negatives) — a ground truth bounding box 𝐵 is consid-
ered a false negative when there is no bounding box 𝐴 returned
by a detection algorithm such as 𝐼𝑜𝑈 (𝐴,𝐵) ≥ 𝑇 .

Using these definitions, in Table 2 we report global precision, recall
nd F1 scores achieved by different algorithms. Because of the discrete
ature of the spectrogram and annotation process, we chose a low
hreshold to fairly compare different methods. We observed that GAC
ends to produce the smallest bounding boxes. This is a desirable
rait but tends to be unfavourable in cases where small inconsistency
n annotations based on discrete pixels (due to potentially different
pectrogram configurations and/or manual annotation) constitutes a
ubstantial difference in bounding box surface area, like extremely long

or extremely short USVs. In this section we present results for threshold
𝑇 = 0.1, extended results are presented in Appendix B. Hence, we
consider even a small intersection over union a success. One can see
that all the methods achieve a rather high global recall with FRCNN
performing the best. Further analysis reveals that we, in fact, have
3 distinct families of methods. The first is a neural network with a
great capacity to learn from annotated data, which produces the best
results but may not be transferable to out-of-domain data. And second
and third families are represented by different parametrizations of
GAC method. GAC allows more control over recall vs. precision trade-
off and is highly adaptable. We observe GAC 1 reaching high recall,
while additional postprocessing filtering helps boost the precision of
the model without hurting recall (GAC 2). In GAC 3–4 we can observe
the same effect of postprocessing. But with the addition of noise-gate
filtering, we can significantly increase recall as demonstrated by GAC
5, by denoising low-frequency range and uncovering 22 kHz USVs
covered in noise. Filtering, however, can also introduce some issues
with short (sh) USVs, making them less visible or removing them
entirely, so it should be used with consideration and might require
some experience to properly work. All effects on recall caused by
denoising can be observed in Table 3. In this table, we have categorized
the automatically detected bounding boxes according to the labels of
the ground truth bounding boxes with which they intersect the most.

Finally, in order to quantify Faster R-CNN classification perfor-
mance we define predictor as a bounding box with the greatest IoU,
but no less than 10% relative to each ground truth box. In this case,
a correct prediction is a predicted bounding box with the same label
as the corresponding ground truth box. In cases where no prediction
boxes satisfy the IoU requirement, we consider the predicted label to
be ‘‘noise’’. In Fig. 4 you can find the confusion matrix for the Faster
R-CNN model. As expected, the model performs well for distinct classes
and we observe an accuracy drop for classes that can be misclassified
by human annotators. For example, mc and tr vocalization appear to
be very similar, which is reflected in many confusions. Also, a perfor-
mance drop is observed in low cardinality classes, which is expected
considering that Neural Networks learn from data and tend to perform
worse for underrepresented classes.

In summary, MoUSE presents users with an easy-to-use black box
solution, that will work very well for users with a similar experimental
setup and a manual human-in-the-loop method, which requires some
degree of expertise but can perform just as well. MoUSE also provides
methods that can boost the performance of detection algorithms.

4. Impact

Measuring rodents’ ultrasonic vocalizations has become a popular
tool in behavioural research within the last two decades, but the
currently used methods have some serious limitations. As mentioned
above, the analysis of rodent USVs recordings is usually done manually
and consumes a large amount of time. This fact discourages many labo-
ratories from recording vocalizations. MoUSE was created to facilitate,
speed up, and automate this process. Therefore, the programme will
allow the exploration of novel research enquiries that were previously
6
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Recording ultrasonic communication is most commonly done in
research focused on the sociality and sociability of laboratory rodents,
but USVs provide insight also into the emotional state of these animals,
making USVs recordings a useful tool for monitoring their well-being.
Understanding rodents’ emotional state is important not only in the
fundamental research but also during the preclinical development of
new drugs for psychiatric disorders, for example, lowering anxiety
levels or aversion to certain situations will have an impact on rodents’
vocalizations [30]. The pattern of emitted USVs also changes under the
influence of drugs of abuse such as amphetamine, cocaine or morphine
(for a review, see [31]). By recording and analysing USVs during free
exploration of testing apparatus, researchers can, for instance, gain
insight into individual tendencies of animals to vocalize, differentiating
between low and high vocalizers [32,33]. Through automated analysis,
researchers can obtain valuable data that can contribute to a better
understanding of animal behaviour. Our tool contributes to this re-
search in two key ways. First, it is open access, ensuring accessibility
to a wider audience. Second, it provides two distinct methods for USV
detection: a more advanced Faster R-CNN and a simpler one named
GAC. GAC does not require a manually annotated dataset, making it
adaptable across various experiments. Additionally, our tool can serve
as an initial detection tool, offering potential value in preliminary
detection tasks.

Another goal of MoUSE is to provide a flexible system for the
automated classification of detected USVs. This is important because
the calls differ from each other and their ‘meaning’ is probably also
different. Typically, the USVs are analysed and classified by the exper-
imenter or by students, sometimes by several people per one larger
project. This carries the risk of differences in classification by dif-
ferent people since there are many categories and the classification
is arbitrary. Automated classification is less prone to such mistakes
and is more objective since there is no risk of human bias. For now,
there are as many ways of classifying calls as laboratories which
record them. Unified classification allows for a more accurate compar-
ison of the collected data between different experiments in different
laboratories as well as for the retrospective re-analysis of some old
datasets.

In contrast to some other similar tools, MoUSE is designed as
an open-source, free equipment, which allows other research groups
to use it without extra costs. The installation process is simple and
available for all major operating systems (Windows and Linux). Ad-
ditionally, no programming experience is required to use the MoUSE
tool. The interface is user-friendly and intuitive. Users can easily adjust
the parameters of automated detection and classification to suit their
needs.

In the future, we plan to apply MoUSE to other animal species
such as dolphins. MoUSE also opens the possibility of being coupled
with information about mouse/rat behaviour taken from another device
(i.e., MS Kinect device or webcam), which we plan to add in the
future.

5. Conclusions

We presented a software tool that is capable of efficient detection
and classification of rodents’ ultrasonic vocalizations. Our platform
combines deep learning methods with ideas from classical pattern
recognition and computer graphics. We investigated the accuracy and
performance of several detection and classification algorithms. Apply-
ing the MoUSE platform to real experimental data we obtained a decent
performance. Contrary to other approaches it is based solely on open-
source frameworks and programming languages, that does not require
expensive licenses.
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Appendix A. Configurations of algorithms

In Section 3.2 we present the results for the following configurations
of algorithms for denoising and detection:

• FRCNN — Faster R-CNN model (NN with ∼ 107 parameters) with-
out any additional spectrogram preprocessing or postprocessing.
For this method, we filter all the bounding boxes with prediction
scores less than the threshold of 0.5. The value of this threshold
can be adjusted, nevertheless, the default value works reasonably
across a variety of examples.

• GAC 1

– Sigma: 7.0,
– Alpha: 50.0,
– Flood level: 0.9,
– Balloon: negative,
– Balloon threshold: 0.9,
– Smoothing: 3,
– Iterations: 15.

• GAC 2 — configuration as in GAC 1, but with post-detection
filtering of lower-frequency detections (threshold: 18 kHz).

• GAC 3

– Sigma: 10.0,
– Alpha: 500.0,
– Flood level: 0.7,
– Balloon: negative,
– Balloon threshold: 0.7,
– Smoothing: 3,
– Iterations: 15.

• GAC 4 — configuration as in GAC 3, but with post-detection
filtering of lower-frequency detections (threshold: 18 kHz).

• GAC 5 — configuration as in GAC 4 with noise-gate filtering.
The noise source was a 300 ms piece of the same audio file,
automatically selected so it does not contain any vocalizations.
Noise-gate denoising has the following parameters:

– Gradient pixels number (frequency): 3.0,
– Gradient pixels number (time): 3.0,
– Number std cutoff: 1.0,
– Noise decrease: 0.3.

A more detailed explanation of all the GAC settings can be found in
the MoUSE platform documentation (see Code metadata). For all GAC
1–5 detections we have also applied additional filtering, that removes
artefacts that are frequently produced by the method, namely: overly
7
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Table B.4
Global recall and precision. For multiple IoU thresholds: [0.1 0.3 0.5 0.8 0.9]. All values are multiplied by
100 for better visibility.

FRCNN GAC 1 GAC 2 GAC 3 GAC 4 GAC 5

precision@10 81.28 77.70 78.06 86.04 87.19 83.73
recall@10 97.91 80.46 80.67 70.31 70.31 73.95
f1@10 88.46 78.42 78.76 75.88 75.99 78.24
precision@30 68.68 61.21 62.00 77.56 76.64 69.89
recall@30 84.81 63.89 64.93 63.74 63.19 61.52
f1@30 75.70 62.15 63.03 68.52 67.75 65.20
precision@50 60.19 42.98 42.65 52.74 53.44 47.22
recall@50 76.96 44.20 43.87 44.36 44.36 41.69
f1@50 67.44 43.40 43.08 47.26 47.32 44.12
precision@80 23.61 6.02 6.42 4.64 4.64 3.19
recall@80 33.44 6.02 6.42 4.39 4.39 2.96
f1@80 27.66 6.01 6.41 4.50 4.50 3.06
precision@90 5.78 0.74 0.84 0.00 0.00 0.18
recall@90 8.53 0.73 0.83 0.00 0.00 0.17
f1@90 6.88 0.73 0.83 0.00 0.00 0.17

Table B.5
Recall per vocalization category. For multiple IoU thresholds: [0.1 0.3 0.5 0.8 0.9]. All values are multiplied
by 100 for better visibility.

FRCNN GAC 1 GAC 2 GAC 3 GAC 4 GAC 5

sh@10 99.51 69.02 69.02 61.42 61.42 45.32
oc@10 77.46 74.53 74.53 67.06 67.06 66.50
mc@10 98.34 86.35 87.08 83.12 83.12 79.15
tr@10 83.33 79.21 79.21 74.31 74.31 78.74
trc@10 66.67 56.33 56.33 57.78 57.78 57.78
sh@30 85.87 61.97 64.06 43.38 35.05 30.64
oc@30 77.46 73.02 73.02 67.06 67.06 66.50
mc@30 98.03 68.58 68.58 77.40 77.40 73.64
tr@30 82.29 67.82 67.82 70.92 70.92 73.77
trc@30 63.89 40.44 40.44 48.78 48.78 43.22
sh@50 71.29 28.62 27.58 0.00 0.00 0.49
oc@50 72.50 61.87 61.55 41.94 41.94 47.15
mc@50 92.92 50.54 50.85 59.21 59.21 49.98
tr@50 78.09 50.63 50.63 53.33 53.33 57.51
trc@50 63.89 28.67 28.67 39.11 39.11 33.56
sh@80 7.34 0.00 0.00 0.00 0.00 0.00
oc@80 25.60 3.99 2.48 0.00 0.00 0.00
mc@80 39.73 8.35 9.81 3.91 3.91 2.56
tr@80 34.09 5.76 5.76 5.41 5.41 6.05
trc@80 42.78 4.67 4.67 9.00 9.00 0.67
sh@90 2.45 0.00 0.00 0.00 0.00 0.00
oc@90 3.35 0.00 0.00 0.00 0.00 0.00
mc@90 13.72 0.54 0.84 0.00 0.00 0.33
tr@90 10.14 0.41 0.41 0.00 0.00 0.00
trc@90 0.00 2.00 2.00 0.00 0.00 0.00
22kHz@10 31.94 15.28 15.28 0.00 0.00 23.61
22kHz@30 18.75 9.72 10.42 0.00 0.00 8.33
22kHz@50 16.67 8.33 8.33 0.00 0.00 8.33
22kHz@80 0.00 0.00 0.00 0.00 0.00 0.00
22kHz@90 0.00 0.00 0.00 0.00 0.00 0.00
fl@10 33.33 25.69 25.69 27.78 27.78 23.61
fl@30 33.33 25.69 25.69 18.06 18.06 21.53
fl@50 27.78 13.19 7.64 2.08 2.08 2.08
fl@80 0.00 0.00 0.00 0.00 0.00 0.00
fl@90 0.00 0.00 0.00 0.00 0.00 0.00

and/or frequency axis. We eliminate them with the simple assumption
that detections cannot span more than ∼ 40% of the frequency axis (100
pixels) and cannot last longer than ∼ 5 seconds in the time axis (5000
pixels).

Appendix B. Extended results

In this section, we demonstrate model performance for different
values of threshold values. We can observe a drastic decrease in per-
formance for classes, where annotation imprecision constitutes big
differences in annotation surface area. 22 kHz is the hardest category

which makes partial coverage more likely, due to the process of merg-
ing boxes based on probability threshold (e.g. one missing sufficiently
large bounding box in the middle window will split detection into two
separate, decreasing IoU, while we consider this detection to be correct,
tho undesirable) (see Tables B.4 and B.5).

Appendix C. Hypermarameters

C.1. Spectrogram

We are using unnormalized spectrograms as the basic data represen-
tation for the detection and classification algorithms. The spectrograms
8
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Table C.6
FRCNN training parameters.

Parameter Value

Optimizer AdamW
Learning rate 5e−3
Weight decay 5e−4
Learning Rate Scheduling linear with warmup
Warmup steps 300
Max Epochs 200 (best checkpoint arrived at 15)
Example duration 0.25[s]
Overlap 0.125[s]

Table C.7
FRCNN model hyperparameters.

Parameter Value

Backbone resnet-50/2
Anchor generator aspect ratios [0.0078125, 0.015625, 0.25, 0.5, 1.0, 2.0, 6.0]
Anchor generator sizes [32, 64, 128, 256]
RoI output size 7
RoI sampling ratio 2
FRCNN box head
representation size

256

Normalization mean −0.8314
Normalization std 0.2978

are generated using the FFT algorithm from time windows of 512 sam-
ples with hop length 256 and n_fft parameter set to 512. The frequency
domain reaches about 120 kHz with ∼ 400 Hz/pixel resolution and the
time domain resolution is ∼ 1𝑒− 3 s/pixel. Spectrograms are generated
sing torchaudio package.

.2. FRCNN training

Training and architectural parameters are listed in Tables C.6 and
.7. We use ResNet-50 variant with only 2 stacks of bottleneck layers,
e use this bottleneck, because it captures a large number of different

eatures with a large number of output channels (512), while spe-
ial reduction is low enough to produce accurate detection of small
ounding boxes, that would otherwise be lost in a smaller feature
ap. We call this modification ’resnet-50/2’. During training we use
sliding window of examples, meaning that we select a chunk of

ecording of length ’Example duration’ and move the sliding window
n accordance with the ‘Overlap’ parameter. We drop all chunks that
nly contain noise, to moderate the number of easy negative examples
n train and validation datasets. Then each example is passed through
n augmentation pipeline, that clips the spectrogram to the 18 kHz+
ange, applies log transform to manage very small and very large values
n the spectrogram and finally applies sliding transform with 20%
robability to each bounding box. We do not use random rescaling,
ecause we found that it does not improve the training performance
f our model. Unmentioned parameters are set to torchvision defaults.
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