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A construction of a quasi-random potential for cold atoms using dark states emerging in Λ level
configuration is proposed. Speckle laser fields are used as a source of randomness. Anderson locali-
sation in such potentials is studied and compared with the known results for the speckle potential
itself. It is found out that the localisation length is greatly decreased due to the non-linear fashion
in which dark-state potential is obtained. In effect, random dark state potentials resemble those
occurring in random Kronig-Penney-type Hamiltonians.

I. INTRODUCTION

A particle moving in the potential consisting of narrow
peaks may be described by Kronig-Penney-type Hamil-
tonians [1]. When the potential is periodic, the problem
is solved by a simple Bloch approach. The presence of
disorder enriches the physics. Here one can imagine that
periodicity is broken either by different potential ampli-
tudes at periodically distributed sites - the case some-
times called a compositional disorder [2] or by random
position of scatterers having then structural (or posi-
tional) disorder. In both cases one typically expects An-
derson localization [3] at all energies for one-dimensional
(1D) system and uncorrelated disorder. The presence
of correlations leads to mobility edges as predicted and
verified experimentally for a number of models [2, 4–13].

A standard way to implement potentials for ultracold
atoms is to use off-resonant laser standing waves via
an AC Stark effect [14]. Such light-shift potentials en-
abled experiments typical for condensed matter systems
as manifested by e.g. the pioneering observation of Mott
insulator to superfluid quantum phase transition [15].
Later research in optical lattice potentials involved the
use of different atomic species that feature strong, long
range interactions [16–18], creation of topological insu-
lators [19] or studies of non-equilibrium dynamics [20].
In particular, the 1D experiments with ultracold atoms
in random potentials have been conducted with the far
off-resonant speckle potential [21], bichromatic fields [22]
or digital mirror devices [23].

The AC Stark based approach leads, naturally, to
diffraction-limitations that prohibit creating potentials
with features much sharper than half of the laser wave-
length. To remedy that, a construction based on ultra-
cold atoms in many-levels coupling schemes [24, 25] was
proposed. Coherent population of a dark state in the
three-levels Λ configuration was used to create a periodic
comb potential consisting of subwavelength peaks [26].
Involving more than three atomic levels [27, 28] opens
possibilities for more complex potentials [29, 30].
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Figure 1. The Λ level configuration considered in this work.
The states |1⟩, |2⟩, are assumed to be the ground state sub-
levels while |3⟩ is the excited state with the spontaneous emis-
sion rate Γe. The Rabi frequencies Ωi(x) may be due to laser
standing waves or a speckle field and are typically position
dependent.

In this work we shall use a similar Λ scheme to create
random correlated potentials featuring sharp peaks, even
beyond the diffraction limit. The underlying model and
creation of a random dark state potential is described in
Section II. The shapes of the potential peaks and basic
statistical properties of the potential are quantitatively
analyzed in Section III. We focus on two cases. In Subsec-
tion III A both lasers forming the legs of the Λ system are
due to a speckle field. In Subsection III B one of them is
due to a running wave, with corresponding potential con-
sisting of equidistant sharp tall peaks of a (quasi)random
height.

In Section IV, we study Anderson localization of a ran-
dom potential from Subsection III A, linking the localiza-
tion length Lloc to the correlations functions of the po-
tential. We discuss the possibility for approximation of
the potential by properly placed Dirac-delta scatterers.

In Section V we analyze Anderson localization in po-
tential defined in III B. We also discuss the role of corre-
lations between potential peaks height on singularity in
a dependence of the localization length on energy.
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II. THE MODEL

We consider a gas of ultracold atoms of mass m con-
fined to a 1D tube along the x axis by a tight transverse
harmonic confinement in y, z realised by the potential
V (x, y, z) = mω2

⊥(y
2 + z2)/2. The ℏω⊥ is assumed to

be sufficiently large for excited transverse modes to re-
main unpopulated. We assume no confinement along the
x direction, but in real experiment one would use either
harmonic confinement or sheet light implementing hard-
wall boundary condition [31].

The atoms are driven by resonant laser light coupling
three atomic (sub)levels in the Λ configuration as shown
in Fig. 1. We assume the gas is non-interacting. In
[26] this was realised using fermionic 171Yb, where s-
wave contact interactions were suppressed. Whether the
scheme can be successfully implemented with bosons is
still an open question, due to possible detrimental effect
of collisional losses.

The Hamiltonian of the model takes the form

H = − ℏ2

2m

d2

dx2
+Ha, (1)

Ha =
ℏ
2

 0 0 Ω∗
1(x)

0 0 Ω∗
2(x)

Ω1(x) Ω2(x) −iΓe

 .

The Rabi frequencies Ωi, i = 1, 2 describe laser driving
of the corresponding transitions between basis states |i⟩
and |3⟩. The Γe denotes the spontaneous emission decay
rate of the upper state in the Λ scheme. The fields Ωi(x)
can be due to a laser standing wave or a speckle field as
discussed later on.

The “atomic” part of the Hamiltonian, Ha for each
x ∈ R has a zero eigenvalue with associated “dark state”
eigenvector:

|D(x)⟩=−Ω2(x)|1⟩+Ω1(x)|2⟩√
|Ω1(x)|2+|Ω2(x)|2

=cosαx|2⟩−sinαx|1⟩,(2)

The remaining eigenvectors |Bj(x)⟩, j = 1, 2 are called
bright states since they have a nonzero contribution
from the excited state |3⟩. When Γe ̸= 0 the matrix
Ha is non-Hermitian and the set of right eigenvectors
B = {|D(x)⟩, |B1(x)⟩, |B2(x)⟩} has the associated “ket”
states ⟨D(x)|, ⟨Bj(x)| that complete the biorthonormal
system. The latter are always meant as proper “left”
eigenvectors, and in general ⟨Bi(x)| ≠ |Bi(x)⟩†.

The bright state energies are:

Ej(x) =
ℏ
4

(
−iΓ + (−1)j

√
−Γ2

e + 4|Ω1(x)|2 + 4|Ω2(x)|2
)
.

(3)
The gap to bright states is non-zero if both Ω1(x),Ω2(x)
do not vanish at some x. This can be ensured e.g. when
one of Ω1(x) is position-independent and non-zero.

When expressed in the position-dependent basis B, de-
fined above, the Hamiltonian (1) takes the form (see

[29, 30, 32]):

H =
1

2m
(p−A)2 +

2∑
i=1

Ej(x)|Bj⟩⟨Bj | (4)

with Aij = −iℏ⟨Bi|∂x|Bj⟩. One can always choose the
local phases of basis vectors |1⟩, . . . , |3⟩ such that Ωi(x)
are real. Then, after projection onto |D(x)⟩ state the
Hamiltonian (1) reduces to the form:

H = − ℏ2

2m

d2

dx2
+ VD(x), (5)

where

VD(x) = − ℏ2

2m
⟨D(x)|∂xx|D(x)⟩, (6)

is the dark state potential. Using Eq. (2) one obtains:

VD(x) =
ℏ2

2m

(Ω′
1(x)Ω2(x)− Ω1(x)Ω

′
2(x))

2

(Ω2
1(x) + Ω2

2(x))
2

=
ℏ2

2m
(α′

x)
2.

(7)
Under the condition

|Ej(x)| ≫ |Akl(x)|, j ∈ {1, 2}, k ̸= l, (8)

valid for sufficiently large Ωi [24, 33], the dark state is
only very weakly depopulated.

The Rabi frequencies.- The Rabi frequencies in the
Hamiltonian (1) considered in this work are due to a
standing/running laser wave or a speckle field. In the
former case they are of the form:

Ωi(x) = Ω̃i sin(kix+ ϕ) + Ω̃0
i . (9)

The ki = 2π/λi and λi is the wavelength of the laser im-
plementing Ωi(x). The value of ki in Eq. (9) may be also
(smoothly) controlled if the lasers creating the standing
wave propagate at a finite angle with respect to x̂. The
intensity of the lasers controls the amplitude Ω̃i. Imple-
mentation of the term Ω̃0

i requires phase coherent pro-
jection of a running wave in the direction perpendicular
to the x̂ axis (see [34]).

The wave number k1 defines the recoil energy:

Er =
ℏ2k21
2m

. (10)

in this work we always use the recoil energy defined with
respect to k1. Thus Er carries no index "i".

The potential VD(x) is randomized by using random
Rabi frequency Ωi(x). That may be accomplished by
driving the corresponding transition with a quasi-random
electric field in the form of the speckle field. It is created
by propagating a laser beam from the direction perpen-
dicular to the x axis through a diffusive plate, and fo-
cusing it with the lens. The complex amplitude of the
electric field along the system, near the focal point of the
lens, is then given by the formula [35]:

F (x) ∼ ei
2πf
λ

iλf
ei

π
λf x2

ˆ R/2

−R/2

dρµ(ρ)w(ρ)ei
π
λf ρ2

e−i 2π
λf xρ.

(11)
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The λ is the laser wavelength, f – the focal distance of
the used lens and R indicates the radius of the diffu-
sive plate (we assume it to be identical to the radius of
the lens). Here we skip the index i. The µ(·) are ran-
dom complex phases imprinted by the diffusive surface.
They are assumed to be completely random phase fac-
tors with a homogeneous probability density over a unit
circle. The above formula is valid in the paraxial approx-
imation, namely f ≫ R. The ratio R/f determines the
degree to which the laser field is focused. This ratio con-
trols the effective length scale of F (x) (11). Specifically

σR =
λf

πR
,

is the correlation length for the speckle potential, a con-
venient length unit for the speckle field. In this work even
if several speckle fields are used simultaneously in some
laser configuration, it is assumed, for simplicity, that they
have the same σR. We then define

EσR
=

ℏ2

2mσ2
R

, (12)

as a characteristic speckle energy scale. It is interesting
to compare the above expression to the recoil energy for
a laser with same wavelength. It is

Er = (2f/R)2EσR
, (13)

which for the assumed in this work ratio R/f = 1/3,
leads to Er = 36EσR

. The field F (x) generates a Rabi
frequency Ωi(x) which may be for convenience expressed
as a product of its mean value Ω̃i and the dimensionless
function Si(x):

Ωi(x) = Ω̃iSi(x), (14)

where 1
L

´ L
0
|S(x)|dx→ 1 as L→ ∞. The Ωi as above is

non-zero, but it takes arbitrary small value with a finite
probability. To overcome this problem (recall small Ωi

may be harmful to our Λ scheme properties) one can add
a phase coherent laser field which leads to:

Ωi(x) = Ω̃iSi(x) + Ω̃0
i , (15)

where both Ω̃0
i , Ω̃i are independently controlled by inten-

sity of the respective laser field. Again, without a loss of
generality Si(x), Ω̃

0
i , Ω̃i ∈ R.

The Speckle potential.- The speckle laser field can be
used to create an optical speckle potential via the AC
Start shift in the two level system. The speckle laser
field with Rabi frequency Ω(x), detuned by ∆ from the
resonance creates the optical potential

Vsp(x) = ℏ
Ω2(x)

4∆
. (16)

The Window function.- The formula (11) takes into
account the window function w(·) which can be used to
tune the statistical properties of F (x). We consider win-
dows of the form

w(ρ) = Θ(|ρ| −R/2 +W )−Θ(|ρ| −R/2) (17)

which form a double-slit system [35]. In the simplest
case, W = R/2, w(ρ) = 1 for |ρ| ≤ R/2.

III. THE DARK STATE POTENTIAL

The features of the dark state potential VD(x) depend
solely on those of the dark state |D(x)⟩, compare (6). In
contrast to potentials created by AC-Stark shifts, tuning
the laser intensity does not necessarily modify the am-
plitude of the potential. Scaling of all Ωi by a common
factor leaves the dressed states and VD(x) unaffected due
to a functional form of |D(x)⟩ [see (2)].

The amplitude and shape of VD(x) is rather controlled
by relative magnitudes of the two Rabi frequencies Ω1(x)
and Ω2(x), which prompts us to define the dimensionless
parameter:

ϵ12 =
Ω̃1

Ω̃2

= ϵ−1
21 , (18)

controlling that aspect of the setup. Obviously when
in a specific situation roles of Ω1(x) and Ω2(x) are inter-
changeable, then configurations for ϵ12 = ϵ and ϵ12 = ϵ−1

are equivalent. From Eq. (6) one sees that potentials
peaks in VD(x) occur where |D(x)⟩ changes substan-
tially over a short distance. This may occur e.g in those
places where Ω1(x),Ω2(x) go from Ω1(x) ≪ Ω2(x) to
Ω1(x) ≫ Ω2(x) regime or vice versa.

To get more insight into the genesis and shape of
VD(x), we first look in more detail at two important spe-
cial cases.

First, when Ω2(x) is due to a speckle field and Ω1(x)
is constant or slowly varying on a scale much larger than
the wavelength of the speckle. The potential typically
consists of double-peak structures that appear near min-
ima of Ω2(x). This is discussed below in IIIA together
with basic statistical properties of this potential.

Secondly, we consider the case when Ω1(x) is due to
a running wave, Eq. (9). Then VD(x) has sharp poten-
tial peaks near zeros of Ω1, where Ω2(x) may be consid-
ered constant locally. To randomize the heights of VD(x)
peaks, the Ω2(x) may come from a speckle field or a run-
ning wave, Eq. (15) with a wavelength incommensurate
with the Ω1(x), creating a quasiperiodic pattern.

A. The VD(x) near finite minima of Ω2 due to a
speckle field

The Ω2(x) coming from the speckle field does not fea-
ture exact zeros, but rather it has local minima. Consider
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Figure 2. Panel a): shape of double peak structure of VD(x)
potential for the 3-level Λ system near quadratic minimum
of Ω2(x) – Eq. (19). To reach a substantial peak height, one
needs b ≪ ϵ12 ≪ 1. Panel b) shows two exemplary realiza-
tions of the speckle shape functions Si(x). Panels c) and d)
show the dark state potential VD(x) when Ω2(x) = Ω̃2S2(x).

Panel c) is for a constant Ω1(x) = Ω̃1 while in panel d)
Ω1(x) = Ω̃1S1(x). The relative strengths of Ω1(x) and Ω2(x)
are indicated in the legends.

a minimum of Ω2(x) at x = x0. For x ≈ x0 we approxi-
mate Ω2(x) as:

Ω2(x) ≡ Ω̃2

[
b+

κ2

2
(x− x0)

2

]
. (19)

The part in bracket is a quadratic expansion of the func-
tion S2(x) around a particular minimum. We do not
include the value of b in Ω̃2 as we assume that the Ω̃2 is
defined by Eq. (15) for a given realization of Ω2(x).

We consider Ω1(x) = Ω̃1 = const. and |Ω2(x0)| ≪ Ω̃1.
Under these assumptions, the dark state potential VD(x)
reveals, locally, a double peak structure (see Fig. 2a).

Analytically, we have (see [34]):

VD(x) =
ℏ2κ2

2m

ϵ212κ
2(x− x0)

2[
[b+ κ2

2 (x− x0)2]2 + ϵ212
]2 , (20)

where ϵ12 is given by Eq. (18). The value of this param-
eter depends only on amplitudes of the Rabi frequencies,
and is the same for different minima of a single realization
of Ω̃1(x).

For arbitrary ϵ12, b the width of this structure is

∆x(b, ϵ12, κ) = 2κ−1

√
2

3

√√
4b2 + 3ϵ212 − b (21)

and its height is

Vmax(b, ϵ12, κ) =
ℏ2κ2

2m

27ϵ212

(√
4b2 + 3ϵ212 − b

)
8
(
b
(√

4b2 + 3ϵ212 + 2b
)
+ 3ϵ212

)2 .

(22)
For ϵ12 ≫ b the width:

∆x(b, ϵ12, κ) →
√
8ϵ12
4
√
3
κ−1, (23)

and the height :

Vmax(b, ϵ12, κ) →
3
√
3

8ϵ12

ℏ2κ2

2m
. (24)

If additionally ϵ12 → 0 the two potential peaks converge
to π

2
√
ϵ12
δ(x− x0).

For b≫ ϵ12 the width is

∆x(b, ϵ12, κ) → 2k−1

√
2

3
b, (25)

and the height of both peaks is

Vmax(b, ϵ12, κ) →
27ϵ212
128b3

ℏ2κ2

2m
. (26)

The Figure 2c) shows the exemplary dark state po-
tentials obtained for Ω2(x) equal to the speckle shown in
Fig. 2b) with a black line, while Ω1 remains position inde-
pendent. The plot shows two cases ϵ12 = 1 and ϵ12 = 0.2
with relative peak heights following (24) and (26). For
fixed ϵ12 we may ascribe the value of parameter bi from
Eq. (19) to each of the minima of Ω2(x) at xi, indexed
by i. If the value of ϵ12 is lowered, potential peaks for
which ϵ12 ≫ bi are made higher and narrower, but those
that already passed to the opposite ϵ12 ≪ bi regime have
their height further reduced (see Eq. (26)). Decrease of
ϵ12 results in fewer sharp peaks in VD(x) but height of
some of those peaks can increase.

Similar observations may be made in the case when
Ω1(x) is not constant but is due to a speckle field itself.
Figure 2d) shows the corresponding exemplary potential
for same Ω2(x) as in Fig. 2c) and Ω1(x) given by the
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red curve in Fig. 2b). Most of the potential peaks occur
where one of Ω1(x), Ω2(x) has a minimum and the other
may be considered approximately constant. Similarly one
can use Eq. (19) applied to Ω1(x) or Ω2(x) and ascribe
bi’s to each minimum.

Since now Ω1(x) is position dependent, in order to
characterize individual peaks near minima of Ω2(x)
via (20) we have to substitute ϵ12 → ϵ12,i where

ϵ12,i =
Ω̃1S1(xi)

Ω̃2

, (27)

with ϵ12,i specific for each minimum. In case of the
minima of Ω1, we consider ϵ21,i defined as above with
swapped Ω1 and Ω2.

Let us consider reducing the amplitude Ω̃1. As ϵ12,i ∼
Ω̃1, the discussion of regimes ϵ12,i ≪ bi vs ϵ12,i ≫ bi
carried out for constant Ω1(x) still applies. The poten-
tial peaks near the minima of Ω1(x) are characterized by
ϵ21,i ∼ Ω̃−1

1 . Thus for smaller and smaller Ω̃1 height of
the latter family of peaks is reduced as well.
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R

Figure 3. Panel (a) shows the mean height V̄D (red lines)
and standard deviation ∆̄VD (black lines) for potential VD(x)
for W = R/2 (solid) and W = R/5 (dashed lines). In both
panels Ω2(x) = Ω̃2S2(x). In panel a) Ω1(x) = Ω̃1 and in b)
Ω1(x) = Ω̃1S1(x) is due to a speckle field.

Let us now see how the above observations manifest
in statistical properties of the potential VD(x). Figure 3
presents V̄D – the mean, and ∆̄VD – the standard de-
viation of VD(x) as a function of Ω̃1/Ω̃2 for the case of

constant Ω1(x) = Ω̃1 (panel a) and for the case when
Ω1(x) = Ω̃1S1(x) (panel b). In the latter there is an
obvious symmetry (Ω̃1, Ω̃2) → (Ω̃2, Ω̃1).

In both cases for Ω̃1/Ω̃2 < 1, as this ratio decreases,
the standard deviation of VD(x) grows, and mean V̄D con-
verges to a constant. This is consistent with increasingly
more sparse minima satisfying bi ≪ ϵ12 (or bi ≪ ϵ12,i for
panel b) ).

For large values of Ω̃1/Ω̃2, in case of constant Ω1(x) =

Ω̃1 ≫ Ω2(x), we approximately have:

|D(x)⟩ ≈ −Ω2(x)

Ω̃1

|1⟩+ |2⟩, (28)

and:

VD(x) ≈ Ω′
2(x)

2

Ω̃2
1

= (S′
2(x))

2ϵ−2
12 . (29)

This means that both the mean height V̄D and the stan-
dard deviation ∆̄VD decrease to 0, for incraesing Ω̃1/Ω̃2.
Their ratio ∆̄VD/V̄D → 1.32 ± 0.02 as seen in Fig. 3a).
This limit is larger than the ∆̄Vsp/V̄sp → 1 for the far-
detuned AC-Stark optical potential Vsp(x) created by
laser speckle, in a standard optical lattice setting where
Vsp(x) ∼ Ω2

1(x)/(4δ) (with δ the detuning from the reso-
nance).

In the situation when both Ω1(x) and Ω2(x) are due
to speckle fields, the standard deviation ∆̄VD decreases
towards a minimum at exactly Ω̃1 = Ω̃2. For both
Ω̃1/Ω̃2 → 0 and Ω̃1/Ω̃2 → ∞ the behaviour of ∆̄VD
is similar to the case of constant Ω1(x). The marked dif-
ference is that V̄D is Ω̃1/Ω̃2-independent. Qualitatively
speaking, this is because change of Ω̃1/Ω̃2 has the oppo-
site effect on potential peaks near minima of Ω2(x) and
Ω1(x) when it comes to their height and width.

In Fig. 3 we mark with the dashed lines results for
two cases discussed above when the obstacle is put onto
the diffusive plate. We chose to illustrate this by setting
the parameter W = R/5, in Eq. (11) (note that the case
W = R/2 corresponds to no obstacle). The obstacle
suppresses low frequencies from the Fourier expansion of
the F (x) and the resulting potential VD(x) has higher
mean and variance.

B. The dark state potential near zeros of Ωi’s

Let us now consider the situation when Ω1(x) posses
a zero over the real axis at x = xi, as in, e.g., the case
of Ω1(x) being due to a standing wave, Eq. (9). We
assume Ω2(x) to be locally constant Ω2(x) ≈ Ω̃2,i near
xi. This creates the setting similar to the dark state
lattice proposal [24]. We then linearize

Ω1(x) ≈ Ω̃1k1(x− x0), (30)
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Figure 4. Panel a): shape of peak structure in VD(x)
potential for the 3-level Λ system near a zero of Ω1(x) at
x = x0- Eq. (31) for different values of Ω̃2/Ω̃1. Panel b)
shows VD(x) when both Ω1(x),Ω2(x) are due to a standing
wave. The Ω1(x) = Ω̃1 sin(k1x) and Ω2(x) = Ω̃2 sin(k2x)+Ω̃0

2

such that ϵ+ = 0.15, ϵ− = 0.1. The ratio k1/k2 takes the
examplary value k1/k2 = (1 +

√
5)/2. Panel c) dark state

potential VD(x) for the Λ system with Ω1(x) = Ω̃1 sin(k1x),

Ω2(x) = Ω̃2S2(x) + Ω̃0
2 such that ϵ+ = 0.15, ϵ− = 0.1. The k1

is set such that k1σR = 1, and R/f = 1/3.

which gives VD(x) of the form:

VD(x) ≈
ϵ221,iEr

[k21(x− x0)2 + ϵ221,i]
2

(31)

It describes a peak of width ∼ ϵ21,iλ1 and height ϵ−2
21,iEr

with ϵ21,i = Ω̃2,i/Ω̃1 (see Fig. 4a). In the limit ϵ21,i →
0 each of the potential peaks converges to π

2ϵ21,i
δ(x −

x0). If Ω2(x) were truly constant, the subsequent peaks
would create a lattice of narrow peaks of identical shape
and height, just as in [24]. To randomize them, we use
pseudorandom Ω2(x). We discuss two possibilities.

One option is to choose Ω2(x) as in Eq. (9) with
k1/k2 ̸= Q. In that case for different xi such that

Ω1(xi) = 0 we have ϵ21,i that vary between ϵ− =

max(0, [−Ω̃2 + Ω̃0
2]/Ω̃1) and ϵ+ = [Ω̃2 + Ω̃0

2]/Ω̃1. This
translates into pseudo-random height and width of sub-
sequent peaks of VD(x) determined by subsequent ϵ21,i’s.
The resulting potential consisting of equidistant pseudo-
random peaks is shown in Fig. 4b) for ϵ+ = 0.15 and
ϵ− = 0.1. The expressions for ϵ−, ϵ+ show that one can
control the amplitude of the disorder simply by changing
Ω̃2, Ω̃0

2 and Ω̃1

One should note that, in general, there are additional
potential peaks near minima of Ω2(x) at points designed
x′i. Such peaks are described by Eq. (31) or Eq. (20) with
values of ϵ12,i = Ω1(x

′
i)/Ω2(x

′
i) for x′i far from any xj we

have ϵ12,i ≫ and for x′i equal to some xj the potential
peak is mainly due to zero of Ω1(x). These peaks are
automatically included in the numerical treatment of the
model that takes exact value of VD(x).

One can make similar construction with Ω2(x) due to
a speckle field, Eq. (15). In contrast to the sine function
case, the S2 in Eq. (15) is strictly limited only from below
(by zero). The probability for taking the value above
2 is nevertheless exponentially suppressed. This means
that for most ϵi characterizing individual peaks, we have
ϵi ∈ [ϵ−, ϵ+] where ϵ− = max(0, [−2Ω̃2 + Ω̃0

2]/Ω̃1) and
ϵ+ = [2Ω̃2 + Ω̃0

2]/Ω̃1. The resulting potential VD(x) is
shown in Fig. (4)c) for ϵ+ = 0.15 and ϵ− = 0.1. In broad
terms it is similar to the previously considered Ω2(x) as
in Eq. (9), but differs in statistical properties of peak
heights. This is discussed further in Section V where we
calculate tight-binding parameters for movement in this
kind of random potential.

IV. LOCALIZATION

In the case when Ω1(x) = const. and Ω2(x) = S2(x)Ω̃2

the VD(x) consists of relatively narrow random double
peaks. In this settings it is natural to consider Ander-
son localization which has been traditionally studied in
the optical potential created by a speckle field via AC-
Stark effect. To that end we first discuss the two-point
correlation function of the VD(x) potential in such a case.

A. Correlation functions

Let us consider two point correlation function

C2(δx) = V (x)V (x+ δx).

For random potentials it is directly related to the so-
called Anderson localization length, Lloc of the eigen-
states [35, 36]. Generically in one-dimensional systems
with a random potential V (x),

H = − ℏ2

2m

d2

dx2
+ V (x), (32)
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one expects [3, 36] that eigenstates ψi(x) are exponen-
tially localized:

|ψi(x)| ∼ exp[−|x|/Lloc(E)]. (33)

The E in Lloc(E) is the energy of ψi. Often Lloc(E)
quickly grows with E.

The localization length may be related to the cor-
relation function via a series expansion with respect
to increasing powers of (∆̄V/

√
EσR

(E − V̄ ))1/2, where
V̄ , ∆̄V are the mean and standard deviation of V (x).
Specifically:

L−1
loc(E − V̄ ) =

∑
n≥2

γ(n)(E − V̄ ). (34)

The lowest term γ(2) is given by

γ(2)(E − V̄ ) =
m

4ℏ2(E − V̄ )
C̃2

[
2

√
2m(E − V̄ )

ℏ2

]
. (35)

Here, C̃2 is a Fourier transform of C2. Higher order terms
contain multi-point correlation functions, beyond two-
point C2. The expansion holds for a small ∆̄V . The
other cases can be handled by numerical determination
of L−1

loc.
For the speckle optical potential, Vsp(x), with a con-

stant window function W = R/2, the correlation func-
tion is:

C2(δx) = Vsp
2

{
1 +

[
sin(x/σR)

x/σR

]2}
, (36)

and its Fourier transform (see Fig. 5a):

C̃2(k) = Vsp
2
{
2π
δ(k)

σR
+ πmax

(
0, 1− |k|σR

2

)}
. (37)

It is important to note that for |k| ≥ k0 = 2
σR

C̃2(k)

vanishes [36, 37]. This implies significantly longer local-
ization lengths for energies E above V̄ +E0, E0 =

ℏ2k2
0

2m .
This is because the value of Lloc is solely due to higher
order terms in the expansion (34).

The insertion of the obstacle in the optical system, that
amounts to W ̸= R/2 in (17), has a profound impact
on the correlation function C̃2(k). For W ≤ D/3 the
C̃2(k) vanishes not only for |k| ≥ k0 but also for some
intermediate values of |k| within the interval [0, k0] as
well. This is illustrated for W = D/5 in Fig. 5a).

Consider now the dark state potentials VD(x) as in
the preceding section, for the case when Ω1(x) = Ω̃1 and
Ω2(x) = Ω̃2S2(x). For such a configuration the correla-
tion functions C2 and C̃2 are shown the Fig. 5b) and
Fig. 5c). Contrary to the Vsp potential case, here C̃2(k)
is non-zero for large values of momenta, k. This corre-
sponds, in the position space, to the shape of C2 shown

0 1 2 3kσR
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m
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W = D/2, Ω̃2/Ω̃1 = 0.3

0 2 4 6 8 10x/σR

0.00

0.25

0.50

0.75

1.00
C

2(
x)

/
m

ax
x

C
2(

x) c) Vsp , W = D/2

Vsp , W = D/5

VD , W = D/2
VD , W = D/5

Figure 5. Panel (a) shows C̃2 for the speckle potential Vsp

for W = D/2 (solid line), W = D/5 (dashed line). Panel
(b) same as above for the dark state VD(x) potential with
Ω2(x) = Ω̃2S2(x) – a speckle field) for Ω̃2/Ω̃1 = 0.1 and
W = D/2 (solid line), W = D/5 (dashed line). The dashed-
dotted line shows data for Ω̃2/Ω̃1 = 0.3 and W = D/2. Panel
(c) shows the spatial correlation function C2(x) for all of the
above potentials with matching colors. In all of the above the
normalization of the plot has been chosen so that the maximal
value of each line is 1.

in Fig. 5c) where the dark-state C2(x) features a narrow
peak. These statements hold for both W = R/2 and
W = R/5. In the latter case, when the obstacle is put
in front of the diffusive plate, the strong modulation of
C̃2(x) occurs.

Let us track the reason why high Fourier components
C̃2 behave differently for Vsp and VD(x). The speckle po-
tential Vsp(x) is proportional to the square of the Rabi
frequency Ω(x), as in Eq. (16). Taking the square at
most doubles the extent of k that index non-zero Fourier
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components of Vsp. This allows C̃2(k) = 0, k ≥ k0. In
the case of the dark state potential, the highly nonlin-
ear dependence of VD(x) on Ωi(x)’s in Eq. (11) produces
arbitrarily large Fourier components in VD(x) and there
is no reason for C̃2(k) to vanish for large k. This is a
manifestation of the origin of the dark state potential
coming from position-dependent dark state in contrast
to the conventional AC-Stark shift.

Another feature worth pointing out is that by changing
the ratio Ω̃2/Ω̃1 one controls the shape of the potential
as proven by manifestly different C̃2 for Ω̃2/Ω̃1 set to two
exemplary values of 0.1 and 0.3. In case of the speckle
potential change of Ω(x) changes the constant factor in
C̃2(x), but keeps the overall shape of C̃2 from Fig. 5a).

B. Anderson localization in a dark state potential

To quantitatively analyze the physical implications of a
particular form of C̃2, we simulate the Anderson localiza-
tion of a particle moving in VD, Vsp. Specifically, we look
for eigenstates of Hamiltonian (32) at energy E such that
ℏ2k2 = 2m(E − V̄ ). The resulting Schrödinger equation
is solved over an interval x ∈ [0, L] with the condition
ψ(x) → e−ikx, x → 0+. This is the outgoing amplitude
of a particle that has entered the sample at x = L. Near
x = L the wavefunction has the incoming and reflected
components ψ(x→ L) = Ae−ikx+Beikx proportional to
A and B respectively. The values of A, B are determined
numerically.

We define the localization length Lloc by the condition

⟨log |A|⟩ → L/Lloc, L→ ∞, (38)

where ⟨·⟩ denotes averaging over disorder realizations.
Figure 6 shows Lloc for large L = 5 × 104σR, and

104 disorder realizations. Let us focus on the black
dashed curve corresponding to σR/Lloc for Vsp with shal-
low V̄sp = ∆̄Vsp = 0.04EσR

. Its dependence on k shows
a kink at k = k0 such that k0σR = 1. By Eq. (35) this
corresponds to a transition from C̃2 ̸= 0 for k ≤ 2k0 to
C̃2 = 0 for k ≥ 2k0. The kink is followed by a sudden
increase of Lloc as first observed in [36].

We now show σR/Lloc computed numerically for the
dark state potential VD. We focus on the case where
Ω1(x) = Ω̃1 and Ω2(x) = Ω̃2S2(x) and present it in the
same Fig. 6a). We chose the value of Ω̃1/Ω̃2 ≈ 2.357 to
ensure that ∆̄VD = ∆̄Vsp = 0.04EσR

. One sees that for
low momenta, smaller than the threshold value set by k0,
the localization length is similar to that for the speckle
potential. At k0 both potentials feature a kink. For such
a small potential variance, the main contribution to the
correlation length comes from γ(2)(k0). It is proportional
to C̃2(2k0). For k > k0 C̃2(k) = 0 for the the speckle po-
tential while for the dark state potential a notable kink
in C̃2 at k0 remains.

The main difference comes for kσR ≥ k0σR where the
localization is strongly suppressed in the speckle poten-
tial but not in the dark state potential VD, again easily

0 1 2 3 4 5kσR

10−7

10−5

10−3

10−1

σ
R

/
L lo

c

a)

0 1 2 3 4 5kσR

10−8

10−6

10−4

10−2

100

σ
R

/
L lo

c

b)

Figure 6. Localization lengths Lloc for various considered
potentials. Panel a) compares the localization length in a
speckle potential (dashed lines) and VD potential for the Λ

system with Ω1(x) = Ω̃1,Ω2(x) = Ω̃2S2(x). For the speckle
field we show two cases V̄ = ∆̄V = 0.04EσR , 0.5EσR respec-
tively with black dashed and blue dashed lines. Dark state
potential VD(x) for matching ∆̄V is shown with same colors
and solid line. Respectively Ω̃1/Ω̃2 = ϵ12 = 2.357 (black) and
ϵ12 = 0.333 (blue). Panel b) shows the effect of putting the
obstacle in optical paths. The solid lines show σR/Lloc for
W = R/2 (lines repeated from a) for easing the comparison)
and W = R/5 (dashed lines). The ϵ12 = 2.357 and 3.398
ensure ∆̄V = 0.04EσR for the VD(x) potential for W = R/2
and W = R/5 respectively.

explained by properties of C̃2. Thus the non-linear de-
pendence of the potential VD on Ω’s translated directly
to an observable much stronger localization for large par-
ticle energies.

For a sufficiently large amplitude of the disordered po-
tential, the γ(2) term is no longer a dominant contribu-
tion to the inverse localization length. This is evident in
Fig. 5a) where ∆̄VD = ∆̄Vsp = 0.5EσR

. The kink at k0
no longer can be observed in the dependence of σR/Lloc
on kσR for both Vsp and VD, and the localization length
is strongly decreased. Still for large momenta the lo-
calization is much stronger in the non-linear dark state
potential.

When a non-trivial window function is used, the cor-
relation function C̃2 for the VD potential, for increasing
kσR shows oscillations as in Fig. 5b). These oscillations
find their way to the dependence of σR/Lloc on the free
momentum of the wave-function [see Fig. (6)b)].
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Figure 7. Inverse localization length σR/Lloc for potentials
Vsp, VD and their Dirac delta approximations Vδ,sp, Vδ,D

(see legend) for [panel a)] shallow disorder: ∆̄VD = ∆̄Vsp =
0.04EσR and [panel b)] ∆̄VD = ∆̄Vsp = 0.5EσR . In all cases
the peak approximation parameter δ = 0.25.

C. Dirac Delta approximation

In this Section we determine if localization in the dark
state potential VD may be approximately described us-
ing a potential consisting of series of Dirac-delta peaks
(Kronig-Penney model), Vδ,D(x):

H =
p2

2m
+
∑
n

Vnδ(x− xn)︸ ︷︷ ︸
Vδ,D(x)

. (39)

Specifically, we compare the Anderson localization length
for both VD and Vδ,D.

To choose Vn and xn for a particular potential realiza-
tion of VD(x) and obtain the approximate Vδ,D(x), we
define a sequence of intervals In = (an, bn) ⊂ R such
that:

(A) V (x) has at least one local maximum in In,

(B) V (an), V (bn) ≤ δmaxx∈In V (x) for δ being a
small positive real number,

(C) no sub-interval contained in In satisfies the
above.

Intuitively, we want each intervals to contain a large por-
tion of a single potential peak. The small value of δ
ensures that the V (x) is small outside of each interval In
with respect to the maximum value. On the other hand
δ should not be chosen too small as it would lead to too
large In encompassing more than one peak. We opt to
choose δ = 0.25.

The above definition does not automatically imply that
different intervals are disjoint. To ensure that, we actu-
ally find In in the following way:

1. For numerics we consider a particular realization
over a finite interval x ∈ [0, L].

2. We store all local maxima of V (x), x ∈ [0, L] in the
decreasing order with respect to their value,

3. We find the interval I1 encompassing largest max-
imum that satisfies (A)-(C),

4. After first n of intervals In are determined, the (A)-
(C) define a candidate for the next interval I ′n+1.
The set In+1 := I ′n+1 \

⋃n
i=1 Ii is an interval. If it

is empty then it is not added to the In sequence.

Each In allows us to define an effective peak height

Vn =

ˆ
In

V (x)dx, (40)

and position

xn =
1

Vn

ˆ
In

xV (x)dx. (41)

Let us note that it is possible that two very close max-
ima, for which V (x) does not fall below the threshold
defined by the δ will be approximated by a single Dirac
Delta.

Localization length calculation We have performed
the transfer-matrix calculation of σR/Lloc for potentials
Vδ,sp and Vδ,D the Dirac-delta approximations of the po-
tentials Vsp and VD respectively. We focus on two cases
where the disorder of the pottential is 0.04EσR

or 0.5EσR
.

When generating potentials Vδ,sp and Vδ,D we assume
that it is the variance of the potential being approxi-
mated that is equal to one of the above values.

For the case of low variance of the potentials 0.04EσR

the inverse localization lengths is shown in Fig. 7a). For
small kσR the inverse localization lengths in all four cases
are similar. This is because, for shallow disorder the se-
ries expansion given by (34) holds and σR/Lloc is deter-
mined by the variance of the potential that closely match.

For kσR near 1, we observe "kinks" in the dependence
of σ/Lloc on kσR. In case of the speckle potential this
is followed by a sudden drop of σR/Lloc. This is in a
stark contrast to the Dirac-delta approximation of the
speckle potential Vδ,sp (and Vδ,D). This is not surprising
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as the speckle potential is smooth and Fourier transform
of its correlation function has finite support. We saw in
previous sections that for dark state potentials the C̃2

contained arbitrarily high nonzero Fourier components
explaining why σR/Lloc for VD and Vδ,D are closer than
for Vsp and Vδ,sp. The agreement of σR/Lloc for Vδ,D of
VD may be regarded as at most qualitative for kσR. Still
the Dirac-delta approximation of VD reproduces the fine
details of the dependence of σR/Lloc on kσR such as the
kink at kσR = 1.

For the deeper disorder with potential variance of
0.5EσR

, we see in Fig. 7b) that the σR/Lloc for VD and
Vδ,D nearly match. This is because the dark state poten-
tial consists now of well-defined narrow peaks, which are
well approximated by discrete Dirac-deleta peaks of Vδ,D.
The difference shows up for only very high momenta, be-
ginning from kσR ≈ 3.5.

For both shallow and deeper disorder potential, one
can reach the conclusion that the Dirac delta Vδ,D po-
tential is a valid approximation for the low-energy part
of the spectrum of Hamiltonian of a particle moving in
the dark state potential VD (only qualitative for a shal-
low disorder). This is in contrast to the localization in
a speckle field which cannot be described by a Kronig-
Penney-like model.

V. TIGHT-BINDING DESCRIPTION OF
MOVEMENT IN RANDOM COMB POTENTIAL

In this Section we discuss localization in the dark
state potenial VD for the configuration presented in Sec-
tion III B for Ω1(x) = Ω̃1 sin(k1x), Ω2(x) = Ω̃2S2(x)+Ω̃0

2,
when the potential consists narrow peaks separated by
a = π/k1. The low energy dynamics in such a potential
is captured by a Dirac-delta approximation VD,δ, Eq. (39)
with Vn given by (40) and xn = na. Localization in such
a lattice has been previously intensively studied [38]. Fol-
lowing that review, we consider the Schrödinger equation
in the following form:[

− ℏ2

2m

d2

dx2
+

∞∑
n=−∞

Er(V̄ +δVn)δ(k1x−k1xn)
]
ψ(x)=

=
ℏ2q2

2m
ψ(x),

(42)

where V̄ + δVn = Vn, ⟨δVn⟩n∈Z = 0, σ2 = ⟨(δVn)2⟩n∈Z ≪
V̄ 2. Under above assumptions the inverse localization
length, Lloc is:

a

Lloc
=

1

8

k21 sin qa

q2 sin2 ka

∞∑
l=−∞

⟨δVnδVn+l⟩n∈Z cos(2kal). (43)

The wavevector k is obtained from

cos(ka) = cos(qa) +
V̄ k1
2Erq

sin(qa). (44)
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Figure 8. The inverse localization length in Kronig-Penney-
like potentials with compositional disorder. Panel (a) random
Dirac delta peaks, thick lines: ϵ+ = 0.15, ϵ− = 0.1, thin lines:
ϵ+ = 0.126, ϵ− = 0.124; solid black lines: numerical calcula-
tion of σR/Lloc for sample length L = 16 · 106/k1; red dashed
lines show analytical, Eq. (43). The gray areas denote q’s not
in applicability interval of this equation. Panel (b) green line:
σR/Lloc for ϵ+ = 0.15, ϵ− = 0.1 for Vδ,D, δ = 0.0005. Black:
random uncorrelated Dirac delta scatterers ϵ+ = 0.1444,
ϵ− = 0.1087, red: localization length in the dark state po-
tential VD for Ω1(x) = Ω̃1 sin(k1x),Ω2(x) = Ω̃2S2(x) + Ω̃0

2,
ϵ+ = 0.15, ϵ− = 0.1, green: VD,δ approximation of VD(x)
given by the red curves. The k1 is set such that k1σR = 1
and R/f = 1/3.

for those q that correspond to the band in case of δVn = 0.
The equation (43) is valid only for those q’s and it cannot
be applied in the forbidden bands. There, in presence of
disorder, the density of states is exponentially suppressed
[39–41], but it is non-zero. The localization for those en-
ergies can be addressed numerically. Additionally, the
analytic expression is not expected to hold near the bot-
tom and the top of the band. Another limitation follows
from the details of derivation of Eq. (43) (see [38]): the
latter does not yield an anomaly in the localization length
at the band centre. It predicts a smooth dependence of
Lloc.

Random uncorrelated disorder.- We first consider
(42) with random, uncorrelated δVn. The exact values
Vn = π

2ϵ are based on random value of ϵ with uniform
distribution in [0.124, 0.126] (weak disorder case) and in
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[0.1, 0.15] (strong disorder case). The mean potential
heights are V̄ = 12.56 and 12.73 respectively. The in-
tervals of applicability of Eq. (43) are q/k1 ∈ [0.9096, 1]
and q/k1 ∈ [0.9085, 1]. There (44) can be solved for Bloch
momentum.

In Figure 8a) we compare the localization length given
by Eq. (43) to the numerically determined Lloc as the
function of q/k1 for q within the regions of validity
marked with vertical gray dashed lines [42]. We find the
quantitatively good agreement between the localization
length obtained from Eq. (43) (red lines) and from nu-
merics (black lines). This is true for both weak disorder
(thin lines) and strong disorder cases (thick lines). The
discrepancies appear near band edges where the analyti-
cal expression for the inverse correlation length diverges
or equals to zero The singularity present in the depen-
dence of Lloc on q/k1 determined numerically [see inset
in Fig. 8a)] is absent in the analytic expression, Eq. (43).

Dark state potential.- We now consider the full dark
state potential for Ω1(x) = Ω̃1 sin(k1x), Ω2(x) =

Ω̃2S2(x)+Ω̃0
2. For comparison, we again consider Hamil-

tonian Eq. (43) with δVn based on Vδ,D approximation,
Eq. (41) and (40). For the parameters considered in this
section the potential VD consists of isolated, well-defined
peaks. This allows us to use δ = 0.0005, much smaller
than δ = 0.25 used in Section IV C. We focus on the
strong disorder case where for the dark state potential
ϵ+ = 0.15 and ϵ− = 0.1. The majority of peaks of the
dark state potential is between 44.4Er and 100Er. When
the integral (40) is calculated, this gives the Vδ,D con-
sisting of Dirac deltas with V̄ = 12.51. We can also find
parameters of the Hamiltonian with uncorrelated δVn’s
that will have the same V̄ , the amplitude of the disorder
is matched by requiring that the standard deviation of
δVn’s is the same. Fulfilling those two requirements re-
sults in parameters ϵ+ = 0.1444 and ϵ− = 0.1087 for the
random δVn case.

We now compare the localization length determined
numerically for the dark state potential VD(x) and for
the Vδ,D Dirac-delta approximation. In Fig. 8b) we show
a/Lloc as the function of q/k1 (respectively red and green
lines). In both cases the inverse localization length shows
a dip for the values of ℏ2q2/2m that can be traced back
to the conduction band in the case of no disorder. The
visible difference in the location of this region in q/k1 is
due to a finite width of potential peaks.

One also can observe that the singularity near the band
centre is very pronounced. It is much larger than in the
random uncorrelated disorder case (see black curve in
Fig. 8b)). This occurs for both VD(x) potential and its
Dirac-delta approximation Vδ,D(x). This is in contrast

to the model with random and uncorrelated δVn’s with
V̄n and the standard deviation of Vn matching that of
Vδ,D(x). We find that correlations between Vn’s in Vδ,D
and in the VD(x) potential enhance the amplitude of the
band centre anomaly. This is a known possible effect of
disorder correlation [38, 43].

Moreover for the actual dark state potential VD(x) the
localization length Lloc does not monotonically increase
with q/k1. The maximal Lloc is reached near the anomaly
band center, not at the top of the band like in Vδ,D(x).

VI. CONCLUSIONS AND OUTLOOKS

We have shown the construction of the potential for ul-
tracold atoms using a three-level atomic system. The po-
tential applies to the ultracold atoms populating the dark
state. The potentials consist of narrow pseudo-random
peaks, with randomness driven by the speckle laser field.
We have contrasted the properties of the dark state po-
tential against the off-resonant optical lattice potential
given by the speckle field.

We have found substantially enhanced localization in
the dark state potential, especially for high kinetic en-
ergy of the particle. This is explained by a slow decay of
the two-point correlation function in the Fourier space, a
manifestation of the non-linearity of the dark state poten-
tial. This is rooted in different mechanism of generation
of the dark state potential than that of the speckle po-
tential which is due to far off-resonant AC-Stark process.

Our findings indicate that the potential generation via
a dark state of a three level system enhances the resolu-
tion of the speckle potential and preserves its randomness
properties. This can be further extended by replacing
speckle fields generating Rabi frequency Ω1 with a laser
standing wave. It leads to a completely different class
of potentials that consist of tall, pseudorandom potential
peaks implementing e.g a Kronig-Penney model struc-
tural disorder akin to [2, 44].

ACKNOWLEDGMENTS

M.Ł. and J.Z. acknowledge support from Na-
tional Science Centre (Poland) through grants No.
2019/35/B/ST2/00838 and 2019/35/B/ST2/00034, re-
spectively. The research has been supported by a
grant from the Priority Research Area (DigiWorld) under
the Strategic Programme Excellence Initiative at Jagiel-
lonian University. No part of this work was written by
the artificial intelligence.

[1] R. d. L. Kronig and W. G. Penney, Proceedings of the
royal society of London. series A, containing papers of a
mathematical and physical character 130, 499 (1931).

[2] F. Izrailev, A. Krokhin, and S. Ulloa, Physical Review B
63, 041102 (2001).

[3] P. W. Anderson, Physical review 109, 1492 (1958).



12

[4] C. M. Soukoulis and E. N. Economou, Phys. Rev. Lett.
48, 1043 (1982).

[5] J. C. Flores, Journal of Physics: Condensed Matter 1,
8471 (1989).

[6] D. H. Dunlap, H.-L. Wu, and P. W. Phillips, Phys. Rev.
Lett. 65, 88 (1990).

[7] E. Diez, A. Sánchez, and F. Domínguez-Adame, Phys.
Rev. B 50, 14359 (1994).

[8] V. Bellani, E. Diez, R. Hey, L. Toni, L. Tarricone,
G. B. Parravicini, F. Domínguez-Adame, and R. Gómez-
Alcalá, Phys. Rev. Lett. 82, 2159 (1999).

[9] F. Izrailev and A. Krokhin, Physical review letters 82,
4062 (1999).

[10] J. Biddle and S. Das Sarma, Phys. Rev. Lett. 104, 070601
(2010).

[11] S. Ganeshan, J. H. Pixley, and S. Das Sarma, Phys. Rev.
Lett. 114, 146601 (2015).

[12] J. Major, G. Morigi, and J. Zakrzewski, Phys. Rev. A
98, 053633 (2018).

[13] T. Kohlert, S. Scherg, X. Li, H. P. Lüschen, S. Das Sarma,
I. Bloch, and M. Aidelsburger, Phys. Rev. Lett. 122,
170403 (2019).

[14] D. Jaksch, C. Bruder, J. I. Cirac, C. W. Gardiner, and
P. Zoller, Physical Review Letters 81, 3108 (1998).

[15] M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and
I. Bloch, nature 415, 39 (2002).

[16] T. Lahaye, C. Menotti, L. Santos, M. Lewenstein, and
T. Pfau, Reports on Progress in Physics 72, 126401
(2009).

[17] M. Lewenstein, A. Sanpera, and V. Ahufinger, Ultracold
Atoms in Optical Lattices: Simulating quantum many-
body systems (OUP Oxford, 2012).

[18] O. Dutta, M. Gajda, P. Hauke, M. Lewenstein, D.-
S. Lühmann, B. A. Malomed, T. Sowiński, and J. Za-
krzewski, Reports on Progress in Physics 78, 066001
(2015).

[19] N. Cooper, J. Dalibard, and I. Spielman, Reviews of mod-
ern physics 91, 015005 (2019).

[20] T. Langen, R. Geiger, and J. Schmiedmayer, Annu. Rev.
Condens. Matter Phys. 6, 201 (2015).

[21] J. Billy, V. Josse, Z. Zuo, A. Bernard, B. Hambrecht,
P. Lugan, D. Clément, L. Sanchez-Palencia, P. Bouyer,
and A. Aspect, Nature 453, 891 (2008).

[22] L. Fallani, J. Lye, V. Guarrera, C. Fort, and M. Inguscio,
Physical review letters 98, 130404 (2007).

[23] G. Gauthier, I. Lenton, N. M. Parry, M. Baker, M. Davis,
H. Rubinsztein-Dunlop, and T. Neely, Optica 3, 1136

(2016).
[24] M. Łącki, M. Baranov, H. Pichler, and P. Zoller, Physical

review letters 117, 233001 (2016).
[25] F. Jendrzejewski, S. Eckel, T. Tiecke, G. Juzeliūnas,
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