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Abstract
Quantum contextuality is one of the most recognized resources in quantum communication and
computing scenarios. We provide a new quantifier of this resource, the rank of contextuality (RC).
We define RC as the minimum number of non-contextual behaviors that are needed to simulate a
contextual behavior. We show that the logarithm of RC is a natural contextuality measure satisfying
several properties considered in the spirit of the resource-theoretic approach. The properties
include faithfulness, monotonicity, and additivity under tensor product. We also give examples of
how to construct contextual behaviors with an arbitrary value of RC exhibiting a natural
connection between this quantifier and the arboricity of an underlying hypergraph. We also discuss
exemplary areas of research in which the new measure appears as a natural quantifier.

1. Introduction

Quantum contextuality is one of the oldest genuinely quantum phenomena [1–4] which has been intensively
investigated in recent years (see [5] for a recent review). A number of its applications, which we will discuss
shortly in what follows, make it a resource in the context of classical and quantum information processing
[6]. This phenomenon is characterized by a set of partially commuting observables with property S . Namely,
they cannot be globally described by a distribution of value assignments of the outcomes of respective
measurements before these measurements happen to be performed. The values observed depend on the
context in which given observables are measured, i.e. a subset C ⊂ S of mutually commuting observables. In
the specific case where commutation relations are imposed by spatial separation of the observables,
contextuality is known as non-locality. This type of contextuality has attracted loads of attention, reaching
practical ideas in the realm of device-independent information processing [7].

The research on contextuality took the direction of finding low dimensional examples of this
phenomenon (exhibited by a relatively small number of observables, each with a low number of outcomes)
[8–10]. Further, a natural question was: is contextuality a resource, like non-locality? As we have noted,
contextuality is a resource in several applications. Just to mention a few there is among them the zero-error
channel capacity [11], quantum device-independent cryptography [12], magic-state based quantum
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computation [13, 14], quantum computation using shallow circuits [15] and one-way communication [16],
and capacity of multiple access channels [17]. For further development based on these seminal results, we
refer the reader to [18, 19] and the review [5].

Another question is: how can one quantify contextuality? Four major ways to achieve this goal are: the
contextuality fraction [20], relative entropy of contextuality [21], robustness of contextuality [22], and
memory of contextuality [23]. We focus on the latter quantity in this manuscript and define it in a novel way.
In [23], the memory is a resource connected to contextuality needed to simulate the behavior of a system. A
specific scenario of the Peres-Mermin Game [3, 4] was addressed there. The memory cost is counted as the
logarithm of the number of states of a finite automaton, which simulates a given set of observables. The
simulation reproduces observable outputs based on sequences of inputs to an (in general probabilistic)
automaton. The generated outputs satisfy the constraints of the Peres-Mermin Game [23] or even
reproduce the measurement outcomes of the interrogated observables acting on the internal quantum
state [24]. Additionally, there are also important connections established between contextuality and
incompatibility [25].

1.1. The scenario andmain results
In the formalism of [26], the problem becomes as follows. We have a given set of partially commuting
observables. Given a quantum state, by measuring subsets of mutually commuting observables on that state,
we generate a behavior, which we call challenging behavior C. We imagine a simulator S as a machine (finite
automaton) that is built from a certain number of non-contextual behaviors, i.e. obtainable in nature
without the use of the set of contextual observables (we consider them as free). We consider these behaviors
as the states of memory of the machine.

We say that the machine simulates our challenging behavior if, for any context, when asked to measure it,
the automaton outputs a sequence of symbols that are drawn from a distribution of that context, according
to the definition of C. In such a case, the machine is operationally indistinguishable from interrogating the
behavior C directly.

Let us note here that the simulator given in [24] does not satisfy this last property: it is easy to verify from
the frequency of output (given a sufficiently long sequence) that the output string is not compatible with
independent measurements of Peres-Mermin observables on a quantum state.

In the Theory of Finite Automata, the number of states is a quantifier of the needed memory to capture
the behavior of a system. In our case, the states correspond to distinct non-contextual behaviors. Following
the formalism of [26], we propose the logarithm of the number of the automaton states to measure the
memory cost for simulating the contextuality of a given set of observables.

Let us stress here that this approach does not measure totalmemory cost of simulating the set of
observables. In particular: the memory cost of a non-contextual set of quantum observables is by definition
zero (see figure 2 for an illustration of this behavior). One could, of course, fine-grain the outlook and
measure the memory cost of specific non-contextual behaviors. Or use completely different ‘states’ of
memory, e.g. classical distribution of context. In what follows, we will propose two natural axioms which may
serve as a reason for our choice of measure. The first one states that any contextuality measure should be zero
for non-contextual behaviors. The second extends it by saying that the measure on contextual behaviors has
to be larger than any value of this measure on the non-contextual one. The latter axiom rules out simulations
by contexts, as explained above.

Our second contribution, in the spirit of the resource theoretic approach of [26, 27], is the demonstration
that the (log-)rank of contextuality satisfies several of the axioms proposed in [26]. It includes faithfulness,
monotonicity under the broad class of operations (including some type of processing via so-called wirings
[28]), and additivity on the tensor product of behaviors. We also support the fact that the (log-)rank of
contextuality is a novel measure by comparing it with other previously known measures. We then provide an
upper bound on the rank of contextuality based on a graph-theoretic quantity called arboricity [29]. The
latter quantity is the number of distinct forests (possibly disconnected acyclic graphs) that one needs to split
a graph so that every edge belongs to one forest. A forest in our approach corresponds to a non-contextual
behavior, and a collection of such behaviors allows us to simulate the challenging behavior.

Finally, we discuss possible applications of the measures in two research areas. First, we propose to
describe probabilistic databases (PDBs) [30] employing our contextuality simulator S , and we argue how the
rank of contextuality would allow quantifying the storage overhead due to noise in strongly correlated
attributes of the database [31]. Furthermore, our analysis of the minimum number of non-contextual
behaviors necessary to simulate a PDB would allow us to describe the minimum repairs of unclean PBDs for
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the above class of noises. The second is the attacks by a non-signaling adversary on the device amplifying the
private randomness of the so-called Santha-Vasirani source [32–34].

The remainder of this manuscript is organized as follows. In section 2, we give introductory information.
In section 3, we define the (log-)rank of contextuality and discuss its connections to the automaton that
simulates behaviors. In section 4, we show that the log-rank is a contextuality measure and that it fulfills
some valuable properties. In section 5, we prove that log-rank admits additivity under the tensor product
operations and briefly discuss log-rank for a mixture of behaviors. In section 6, we provide examples of
calculating the log-rank for some classes of graphs and behaviors. Furthermore, we show an achievable upper
bound of the rank of contextuality based on graph arboricity. In section 7, we compare log-rank with other,
previously known, measures of contextuality. In section 8, we discuss two possible applications of our
measure of contextuality. Finally, in section 9, we summarize our results and provide some open questions
for further research.

2. Preliminaries

With any set of observables V= {Vi}, we can identify their commutation relations and represent them by a
hypergraph H on this set where hyperedges are subsets of the powerset of V that denote contexts, i.e. sets of
mutually commuting observables. A measurement selection X ∈ E is an input. We refer to output A given
input X as an ordered list of outcomes (a1,a2, . . . ,a|X|)), that is, it assigns a value to every observable in the
context corresponding to X.

The set of all conditional probability distributions denoted as P(A | X), such that
∑

AP(A | X) = 1 for
every X, defines a convex polytope P . The polytope is additionally constrained by the following consistency
condition:

∀
X,Y∈E

∀
{Ck}k∈X∩Y

∑
{Ai }i∈X\Y

P({Ai },{Ck} | X) =
∑

{Bj}j∈Y\X

P({Ck},{Bj} | Y) (1)

where Ai,Bj,Ck denotes outputs of observable i, j,k respectively. Hence it is called the consistency polytope.
We refer to a given point in polytope P(A | X) as a behavior, with input X and output A. Each behavior in

P can be either contextual or non-contextual. By non-contextual, we mean behaviors that have a so-called
non-contextual hidden variable model so that

PNC(A | X) =
∑
i

piDi(A | X), (2)

where Di(A | X) are deterministic behaviors, that is, for every context X there exists unique A= a, which is
the output with probability 1. Moreover, there exists a deterministic joint distribution for all the observables,
J=
∑

j qjDj(A | V) where Dj(A | V) is a behavior that outputs with probability 1 some fixed vector of
measurement outcomes (A1, . . . ,A|V|) of all the observables from V. In other words: a non-contextual
behavior PNC is a probabilistic mixture of deterministic behaviors that have fixed values of outcomes to any
observable beforehand. The set of all non-contextual behaviors forms a polytope within P , called
non-contextual polytopeN . Any behavior in P \N is called contextual.

The combination of two behaviors, P1,P2 is given by a tensor product, P1 ⊗ P2, which is defined by the set
of all products of the probability distributions of P1,P2. I.e., if P1 = {qα},P2 = {pβ} then P1 ⊗ P2 = {pαqβ}.

2.1. Twomodels of simulation
In this section, we describe, in detail, two models of simulating sets of observables. The first one has been
studied in the literature in the context of memory of contextuality [23] (see also [35]). We will refer to it as
observable-interrogation model. The second, called here context-interrogation model is intimately connected to
a tomographic scenario.

In the observable-interrogation model, the verifier checks if a given system is contextual by asking a
device to measure observables given in sequence. We expect that in steps i = 1,2, . . ., the description of an
observable Ai is given as an input to a device. The device has a simulator inside (a prover). The simulator is
required to reproduce data in the same manner as if a certain physical system was inside instead. The system
to be reproduced is represented by two entities. First is a quantum state ρ. The second is a (possibly infinite)
physical realization of the observables from the sequence A1,A2, . . .. The outputs of the device should
correspond to subsequent measurements: A1 on ρ, A2 on the output state of the measurement of A1 on ρ, i.e.
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A2(A1(ρ)) and so on. When Ai is asked twice in a row, the device should respond with the same output twice.
An automaton choosing at random from several deterministic automatons that meet the requirements
mentioned above has been given in [24].

A tomographic model that we also term here the context-interrogation model is much simpler as it
requires less from the prover. At each step i = 1,2, . . . (possibly infinite), a description of a context Xi is set to
a device that has a simulator inside. The simulator, made by the prover, should result in outputs in a manner
as if it contains a system that works in the following way: In each step, a new copy of a fixed quantum state σ
is selected, all observables from the context X are measured, and generate the outputs of the simulation
device. We remark that experimentalists often use the above simple model in the lab to verify the
contextuality of a set of observables.

In [23] the number of states of the previously described automaton (which can be in general probabilistic
[24]) determines the contextuality of the simulated device.

3. The (log-)rank of contextuality as the memory of a simulating automaton

In the tomographic scenario described in the previous section, as a measure of memory cost of simulation
for a given behavior C, we propose the following: The number (and logarithm of that number) of distinct NC
behaviors that are needed to simulate C. Formally it reads:

Definition 3.1 (Rank of contextuality). Let P be a behavior. LetN be the set of all non-contextual behaviors,
each of the form Ni(A | X). Then we define the rank of contextuality denoted as RC in the following way

RC(P) :=min

{
|S| : S⊂N , ∀

X=i
∃

N(A|X)∈S
∀
A

N(A | X= i) = P(A | X= i)

}
, (3)

where |S| denotes the cardinality of the set S.

We will also define the logarithmic version of the rank of contextuality in the following way.

Definition 3.2 (Log-rank). Let P be a behavior that has the rank of contextuality RC(P). Then the log-rank
denote as RC2 is given by

RC2(P) := log2RC(P). (4)

Let us discuss why we can view this number as a quantifier of memory. As an initial example, we address
the case of the Peres-Mermin square game (see figure 1). We exemplify an automaton that simulates the PM
game (see figure 2). The extension of this example for the general case of contextual behavior is
straightforward. More formally, a deterministic automaton is a tuple

T := 〈S,Σ,q0, δ,F〉 (5)

where S is the set of states and Σ is an alphabet of the inputs to the automaton. The state q0 ∈ S is the initial
state of the automation and δ : S×Σ→ S is a transition function, which given state and an input symbol
outputs a state. The set F⊂ S is the set of final states.

In our case S is the set of non-contextual behaviors and a symbol ω ∈ Σ which denotes finishing of the
use of the automaton: S := {N1, . . . ,Nn,q0,F}. The set Σ is the set of contexts C of a contextual behavior that
is simulated by T. The transition function δ is defined as follows: if a pair (Ni,C) is such that C ∈ Ni, the next
state is δ(Ni,C) := Ni. If it is not the case, then the next state is any fixed δ(Ni,C) := Nj such that C ∈ Nj. The
initial state q0 and final state F are added artificially, so that δ(q0,C) = Nk such that C ∈ Nk for any k and
δ(Nl, f) = F for any state Nl.

Following [24], the memory of the automaton T described above can be naturally taken as logn, i.e. the
logarithm of the number of its states, where we do not take into account the artificially introduced initial and
final states. The simplicity of this model lies in the fact that it does not allow for repetitive measurements. A
context measured twice can yield different outcomes. This model, however, is powerful enough to measure
the contextual inequalities that, in the case of the Peres-Mermin scenario, are equivalent to average values of
the observables from all the contexts [3, 4]:

〈C1〉+ 〈C2〉+ 〈C3〉+ 〈R1〉+ 〈R2〉+ 〈R3〉⩽ 5. (6)
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Figure 1. The hypergraph of the Peres-Mermin game. The 6 contexts are divided into two sets—of columns C1,C2,C3 and
rows R1,R2,R3. The solid line represents the even distribution of outputs, and the dashed line represents the odd one.

Figure 2. The finite automaton which is simulating the PM uniform behavior. Contexts represented by solid lines are even
distributions and dashed are odd distributions. Given input X from alphabet {C1,C2,C3,R1,R2,R3} it outputs symbols from a
distribution taken from a context X of a non-contextual behavior described by its current ‘state’ of memory: either P1NC or P2NC.
The arrows denote the change of states (loops—staying in the same state), while the symbols above them rule under which letter
of the alphabet the change of the state of memory happens. The P1NC is defined such that its rows are as those of the Peres-Mermin
behavior, while the columns are the products of 3 maximally mixed 1-bit distributions. The behavior P2NC is defined analogously:
the columns are defined as such as the corresponding columns of the Peres-Mermin behavior, while rows have maximally mixed
distribution.

4. Log-rank is a contextuality measure

We now discuss the criterion necessary for log-rank to be a contextuality measure and, more importantly, set
up the framework for a resource theory surrounding it. In that respect, we set as an axiom

Axiom 0 (Axiom 0). Any measure of memory cost of behavior simulation due to its contextuality should be
0 for non-contextual behaviors.

It is clearly in case of our measure RC2: the non-contextual behaviors the non-contextual behavior
simulates itself, so the minimal |S| equals 1 in equation (3). In the case that a contextuality measure does not
satisfy axiom 0, the following axiom is sufficient:

Axiom 1 (StaticMonotonicity). Any measureM of memory cost of simulation of behavior due to its contex-
tuality

∀
P∈N

C∈P\N

M(P)⩽M(C) (7)

where P is the set of all behaviors, N is the set of non-contextual behaviors, P \N is the set of contextual
behaviors, and P and C are behaviors from appropriate sets.

This assumption rules out the simulation, which as the ‘states’ of an automata’s memory use just classical
distributions of the contexts. If it was not for the above axiom, we could design a deterministic behavior,
which has more (exactly 5) distinct distributions of contexts than the Peres-Mermin one (that has 2 of them
see figure 1), e.g. a deterministic (hence non-contextual) behavior1 1 1

1 1 0
0 0 0

 (8)

where x takes the values of rows or columns.
When we look at the above matrix and compare it with the Peres-Mermin game (see figure 1), we can

observe that we have five contexts that fulfill the rules of the game. Columns C1 = (1,1,0)T,C2 = (1,1,0)T

and rows R1 = (0,0,0),R2 = (1,1,0) all have even number of ones. Also, column C3 = (1,0,0)T has odd
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numbers of ones. Therefore, we have five contexts that have entries compatible with the Peres-Mermin game.
Only the row R3 = (1,1,1) gives contradiction with the game.

There would be also a non-contextual behavior which has only 1 type of distribution D(a | x) defined as
∀xδa,0, i.e. behavior outputting deterministically all zeros. It implies that a measure that does not satisfy
axiom 1 would not reflect contextuality as a reason for the cost of memory of the simulation.

Let us note that the (log-)rank of contextuality also satisfies axiom 1. Further, one might wonder if the
(log-)rank of contextuality is monotonic under standard resource theoretic operations [21, 26]. Since the free
resources are explicitly non-contextual, (log-)rank has a direct relationship to quantifying contextuality. In
what follows, we will consider the set of ‘free’ operations that include the ones introduced in [26] extended
by the operations of wirings [28] and partial measurement. We will show that the log-rank resource does not
increase under such actions. The operations are:

1. Adding a non-contextual behavior. By this operation, we mean for a contextual challenging behavior
C(a | x)

M(C(a | x)) 7→ C(a | x)⊗ PNC(b | y). (9)

2. (Partial) measurement of a behavior, e.g.

P(a,b | x,y) 7→ P(a,b | x= x0,y), (10)

where a distribution P(a,b | x= x0,y) is still a behavior with possibly multiple input y but single input
x= x0. Measurement can be complete, resulting in behavior with single input and possibly multiple
outputs, i.e. a distribution embedded into the polytope P .

3. Proper, simple wirings. By simple wiring, we mean here the operation:

P1(a | x)⊗ P2(b | y) 7→
∑
c

P1(a | c)⊗ P2(c | y), (11)

where we assume that dimensions of output of P2 (i.e. |b|), and the input of P1 (i.e. |x|) match. We assume
also it to be proper which means that wiring is such, that it does not create contextuality when acting on an
NC behavior: for any PNC ∈N behavior, and proper wiringW(PNC) ∈N . For examples and the
definition of such wiring, see [26] and [28] respectively.

4. Partial trace. To give an example:

P(a,b | x,y) 7→
∑
a

P(a,b | x= x0,y). (12)

Let us note that this operation is well defined if and only if there is a consistency condition satisfied (aka
non-signaling) so that the marginal behavior does not depend on the input x0.

We now prove the following:

Theorem 4.1. Let the behavior P defined as P≡ P(a1, . . . ,adout | x1, . . . ,xdin) be such that its marginals are well
defined

∑
a ̸=ai

P(a | xj = x0j for i 6= j, xi). Then, for any composition of operations 1–4 defined above, call it Λ, we
have that:

RC2(Λ(P))⩽ RC2(P). (13)

Proof. The proof of the above theorem follows from the definition of the measure RC2 and the closure prop-
erties of the setN :

1. N is closed under the tensor product,
2. N is closed under proper simple wirings,
3. N is closed under partial trace.

First, thatN is closed under the tensor product is obvious—the independent combination of two probabil-
ity distributions over deterministic behaviors remains a probabilistic combination of deterministic behaviors.
The fact that N is closed under proper simple wirings follows from closure under the tensor product, and
some more detailed arguments showed below. Partial trace is similarly a restriction to certain deterministic
behaviors.

6
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Let’s fix a behavior C(a | x) and represent an optimal set S= {NC∗
i }Ki=1 of non-contextual behaviors real-

izing RC2(C) behaviors (this set need not be uniquely defined). Then a set that simulates the challenging beha-
vior C⊗ PNC is the following one: {NC∗

i ⊗ PNC}Ki=1. It does the job, as an input to the new behavior is a pair
(x,x ′) of inputs to the two of them. Since behavior PNS simulates itself, it can process any input x′ (i.e. output
of it under measurement x is compatible with that of PNC(a | x)) by definition. And since N is closed under
tensor product, this remains a non-contextual behavior. Therefore, the tensor product does not increase the
RC2 measure.

To see those simple proper wirings do not increase the rank of contextuality, we argue as follows. Consider
two behaviors of compatible input and outputs dimensions such that simple wiring is possible.

P(a | x) = {PNi}
KP
i=1, (14)

P(b | y) = {QNj}
KQ

j=1, (15)

then consider a⊗-simulation of the form: P(a | x)⊗ P(b | y)∼ {PNi ⊗QNj}
KP,KQ

i,j=1 . Let us now see what happens
to the simulation under simple wiring of the form

PNi ⊗QNj 7→
∑
b ′

PNi(a | b ′)⊗ PQj(b
′ | y). (16)

We want to show (i) that the RHS equals
∑

b ′ P(a | b ′)⊗ P(b ′ | y) and (ii) that the behaviors induced by
wiring form a valid simulation, i.e. all belong to the set of non-contextual behaviors. To see (i) let us first note
that by equation (15) for any y there exists QNj=y such that for any b there is P(b | y) = QNj=y(b | y) hence:∑

b ′

P(a | b ′)⊗ P(b ′ | y) =
∑
b ′

P(a | b ′)⊗QNj=y(b
′ | y). (17)

Now by equation (14), for any x, e.g. x= b ′ there exists PNi=x such that for any a P(a | b ′) = PNi=x(a | b ′)
thus,

∀
a,b ′,y

P(a | b ′)⊗ P(b ′ | y) = PNi=b ′ (a | b
′)⊗QNj=y(b

′ | y), (18)

hence,

∀
a,y

∑
b ′

P(a | b ′)⊗ P(b ′ | y) =
∑
b ′

PNi=b ′ (a | b
′)⊗QNj=y(b

′ | y)≡ P ′
N(a | y)(ij). (19)

The set of non-contextual behaviors is closed under wirings, hence the behavior PNi ⊗QNj is non-
contextual for any i, j. Since the wiring is proper, it sends non-contextual behaviors to non-contextual ones.
Because of that, the behavior P ′

N(a | y)(ij) is non-contextual. Since this holds for any (i, j) which pairs isKP ×KQ

many, we have that

W(a | y)≡
∑
b ′

P(a | b ′)⊗ P(b ′ | y)∼
{
P ′
N(a | y)(ij)

}KP,KQ

i,j=1
. (20)

Since this is just one possible simulation, and the rank of contextuality is the infimum over cardinalities of
the latter, we get that:

RC2(W(a | y))⩽ KP ×KQ = RC2(P(a | x)⊗ P(b | y)). (21)

Finally, we will show that (partial) measurement of behavior does not increase the log-rank. It is enough to
show that

∀
a=a0
x=x0

RC

(
P(a= a0,b | x= x0,y)

P(a= a0 | x= x0)

)
⩽ RC(P(a,b | x,y)). (22)

From the definition of the rank of contextuality, we know that behavior on the RHS can be simulated by some
set of non-contextual behaviors S= {NCi(a,b | x,y)}Ki=1. Let

NCa0|x0
i (b | y) := NCi(a= a0,b | x= x0,y)

NCi(a= a0 | x= x0)
. (23)

7
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We can now define the set

S ′ :=
{
NCa0|x0

i (b | y)
}K ′

i=1
, (24)

(where K ′ ⩽ K as some marginals of NCi(a,b | x,y) given input x0 and output a0 can coincide). In this set

every behavior NCa0|x0
i is result of measurement observable x= x0 on behavior NCi that gives output a= ai.

Since all behaviors NCi were non-contextual, we have that all NC
a0|x0
i behaviors are also non-contextual. We

also know that |S ′|⩽ |S|. The behavior from LHS can be simulated by the set S′, although it is not necessarily
true that the S′ is the smallest possible simulating set. We get, therefore, LHS⩽ RHS. The analogous inequality
is also true for RC2, which follows from the monotonicity of the logarithm that completes the proof.

5. Additivity of log-rank

In addition to the structure of a resource theory, the log-rank measure of contextuality admits additivity
under the tensor product operation.

Theorem 5.1. For any behaviors Pi ∈ C,

RC2

(
n⊗

i=1

Pi

)
=

n∑
i=1

RC2(Pi). (25)

Before the proof, we will present a short lemma that follows from the definition of RC2:

Lemma 5.1. Let {NCi(a,b | x,y)}Ki=1 is such that K= RC2(P(ab | xy)) and P(ab | xy) = P1(a | x)⊗ P2(b | y)
where P1 and P2 are two arbitrary behaviors. Then we obtain that the family of non-contextual behaviors

{Tr2(NCi(a,b | x,y))⊗Tr1(NCi(a,b | x,y))}Ki=1 (26)

is a non-contextual cover of P(ab | xy) = P1(a | x)⊗ P2(b | y).

Proof. By assumption, for all x,y context pairs, there exists an i such thatNCi(a,b | x,y) = P1(a | x)⊗ P2(b | y).
Then for that input pair, by definition:

Tr1NCi(a,b | x,y) = P2(b | y), (27)

Tr2NCi(a,b | x,y) = P1(a | x). (28)

It demonstrates that for all x,y, the product of the traces suffices for the simulation.

Proof. The proof of the theorem involves first proving the basic case of two contextual behaviors P1 ⊗ P2.
First, given RC2(P1) = log2K1 and RC2(P2) = log2K2, a naive simulation is simply to take the tensor product
of all non-contextual behaviors in each minimal simulation. So it is clear that RC2(P1 ⊗ P2)⩽ log2(K1 ·K2) =
log2K1 + log2K2 = RC2(P1)+RC2(P2).

By the Lemma, a given simulation of P1 ⊗ P2 can be written as {Ni(a | x)⊗Ni(b | y)}Ki=1. By definition
{Tr1Ni(a | x)⊗Ni(b | y)} ∼ P2, so K⩾ K2.

The set of inputs y to P2 are then divided into at least K2 subsets such that each subset of inputs requires a
different (one of at least K2) non-contextual behavior Ni(b | y) according to definition RC(P2). Let us call the
set of representants of these subsets as Ŷ . We have then |Ŷ|⩾ K2.

Let us then fix y0 ∈ Ŷ arbitrarily, such that the simulation of P2 requires a non-contextual behavior N̂(b | y)
when measurement y0 is chosen and there exists some i such that the marginal over system 1 of Ni(a | x)⊗
Ni(b | y) equals N̂(b | y) (it follows from the above that such i exists). We then ask how many behaviors of the
form Nj(a | x)⊗Nj(b | y) has Nj(b | y) = N̂(b | y). Let us denote the set of indices j satisfying this property J .
To answer this question observe that the family {Nj(a | x)⊗

∑
bNj(b | y0)}j∈J simulates P1. Indeed, the set

which simulates P1 ⊗ P2 must be ready for every pair of inputs (x,y0), and partial trace over system 2 of non-
contextual behavior which covers input (x,y0) is also non-contextual and covers input x. We will argue now
that |J |⩾ K1. Otherwise we could find a set of non-contextual behaviors of the form {Nj(a | x)⊗

∑
bNj(b |

y0)}j∈J that simulates P1 with less number of elements than K1. This, however, would contradict the fact that

RC(P1) = K1. Since y0 ∈ Ŷ was arbitrary, the same argument goes for any y ∈ Ŷ , of which there are K2 many.
This implies that K⩾ K1 ×K2, which completes the proof in the two-behavior case.

The general case follows from induction and the fact that the tensor product of contextual behaviors is
itself contextual.
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It turns out that the rank is not convex. However, it is upper bounded by the maximal value of the ranks
of the mixed behaviors, which we state below.

Remark 5.1. Let P1 and P2 be two behaviors defined on the same graphG. Then for any λ ∈ {0,1} themixture
of probabilities of those behavior P := λP1 +(1−λ)P2 fulfils

RC2(P)⩽max{RC2(P1),RC2(P2)}. (29)

Proof. From the definition of the rank of contextuality, we know that there exists a set of RC2(P1) contextual
behaviors {N1

i } that can simulate behaviorP1 and a set of RC2(P2) contextual behaviors {N2
i } that can simulate

behavior P2. The index i could be understood as the label of appropriate observable that is simulated by non-
contextual behaviorN1

i . Although it is important to remember that many observables can be simulated by the
same non-contextual behavior. Therefore, the size of the set {N1

i } is indeed RC2(P1) and can be smaller than
the number of observables. Both P1 and P2 are defined on the same graph G, therefore, mixture behavior is
also defined on the graph G. We can then construct a set of contextual behaviors {Ni} where Ni := λN1

i +
(1−λ)N2

i . The set {Ni} can always simulate behavior P. On the other hand, it does not exclude the possibility
that there exists some other set, smaller than {Ni}, that can simulate behavior P. The number of different,
non-contextual behavior in {Ni} is smaller or equal than maximum of the sizes of {N1

i } and {N2
i }. It gives us

desired inequality and finishes the proof.

6. Constructions of behaviors with arbitrary log-rank

In this section, we will show how to construct a behavior that has an arbitrary log-rank. We will restrict our
considerations here only to the case of standard graphs. It means that we consider the case when, in a
hypergraph, all the edges contain only two vertices, so the hypergraph becomes the usual (undirected) graph.
Before that, we will present some toy examples of calculating log-rank in simple cases.

We will start with an example of a 3-cycle behavior and then extend it to a cycle of arbitrary length. The
3-cycle behavior consists of 3 observables {A,B,C} which has output O= {0,1} and 3 contexts C1 = {A,B},
C2 = {B,C}, and C3 = {C,A}, and each of conditional probability is anticorrelation{

P(01 | Ci) = P(10 | Ci) =
1
2 ,

P(00 | Ci) = P(11 | Ci) = 0,
(30)

for every Ci. The 3-cycle behavior is contextual since no single non-contextual behavior reproduces all
conditional probabilities. On the other hand {P(o | Ci)}i=1,2 and {P(o | C3)} is extendable respectively. For
example {P(o | Ci)}i=1,2 can be reproduced by a non-contextual behavior N1:

PN1(010 | ABC) = PN1(101 | ABC) =
1

2
(31)

and {P(o | C3)} can be reproduced by a non-contextual behavior N2:

PN2(001 | ABC) = PN2(100 | ABC) =
1

2
. (32)

These two non-contextual behaviors N1,N2 simulate 3-cycle behavior. Therefore RC(3-cycle)⩽ 2.
We can easily extend this example to the case of arbitrary k-cycle behavior. In the case when k is odd, we

assign anticorrelations to all of the edges the same way as in 3-cycle one (see equation (30)). On the other
hand, if k is even, this will not work. The simplest solution is to assign correlation (identity operation) to one
edge and assign anticorrelations to all remaining k− 1 edges. The probability distribution would be then

P(01 | Ci) = P(10 | Ci) = 1
2 for i > 1,

P(00 | Ci) = P(11 | Ci) = 0 for i > 1,

P(00 | C1) = P(11 | C1) = 1
2 ,

P(01 | C1) = P(10 | C1) = 0.

(33)

Therefore RC(k-cycle)⩽ 2.
Now, we will present some definitions and lemmas needed to show how to construct a behavior with an

arbitrarily high value of log-rank.

Definition 6.1 (Arboricity). For a graph G, the arboricityΥ(G) is the minimum number of spanning forests
(edge-disjoint acyclic subgraphs) whose union is G.

9
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Figure 3. Examples of different graph types that are used in the text.

Definition 6.2 (Cycle graph). A cycle graphCn is a graph that has n vertices and n edges. Such a graph consists
of a single cycle that contains all vertices. See figure 3(d) for an example of cycle graph.

Definition6.3 (Complete graph). A complete graphKn is a graph that have n vertices and n(n− 1)/2 vertices.
In a complete graph, every two vertices are connected by an edge. See figure 3(c) for an example of complete
graph.

Lemma 6.1. Let Kn be a complete graph. Then the arboricity of the graph equalsΥ(Kn) = dn/2e.

Definition 6.4 (Complete bipartite graph). A complete bipartite graph Km,n is a graph that have m+ n ver-
tices that are partitioned into two sets V1 and V2 of size m and n respectively. The graph have mn edges
distributed in such a way that two vertices v1,v2 are connected by an edge if and only if v1 ∈ V1 and v2 ∈ V2.
See figure 3(a) for an example of complete bipartiate graph.

Lemma 6.2. Let Km,n be a complete bipartite graph that is a graph in which we can partition vertices into two
sets of vertices V1. Then the arboricity of the graph equals

Υ(Km,n) =

⌈
mn

m+ n− 1

⌉
. (34)

Definition 6.5 (Wheel graph). A wheel graph Kn is a graph that has n vertices and 2(n− 1) edges. The graph
is formed by connecting a single universal vertex to all vertices of a cycle Cn−1. See figure 3(b) for an example
of wheel graph.

For more information about arboricity, see, for example, Graph Theory book by Frank Harary [29].
From the toy example, we know that a behavior represented by an acyclic graph is non-contextual.

Additionally, the one represented by a cycle can have the rank of contextuality 0 or 1 depending on the
probabilities. We will now show that our measure of contextuality is upper bounded by the arboricity and
how, for every graph, construct a contextual behavior that has the rank of contextuality equal to its
arboricity. It is easy to see that rank of contextuality can not be greater than arboricity since we can divide the
graph G that represents the behavior intoΥ(G) forests that are always non-contextual. It is, however, more
complicated to show, that for every graph, we can assign probabilities in such a way that we obtain the

10
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Figure 4. Example of the set of three permutations (colors) acting on eight numbers.

maximal rank of contextuality. We should emphasize that the simple method we used for cycles will not
always work since many different cycles in the graph can share the same edge. For example, in the wheel
graphW5 (see figure 3(b)), it is impossible to assign correlations and anticorrelations to the edges in such a
way that there is a contradiction for every cycle. Therefore, have to use more elaborate construction.

Definition 6.6 (color). For any parameter m ∈ N let us define set of permutations {τo}mi=1 acting on the set
V= {0,1, . . . ,2m − 1} in the following way

τi(v) := v+(−1)(b
v

2i−1 c mod 2)2i−1. (35)

We will call such permutations colors.

In figure 4 we present an example of colors.
Although the above definition may appear complex, the reader should easily understand it in terms of bit

operations and binary representations. For every number v ∈ V we can assign its binary representation
v= bmbm−1 . . .bi . . .b2b1 where bi ∈ {0,1}. Then the permutation τ i is just a bit flip on ith position of binary
representation. We can formally write it as

τi(v) = τi(bmbm−1 . . .bi . . .b2b1) = bmbm−1 . . . b̄i . . . ,b2b1 (36)

where b̄i denotes bit flip.
Note that our definition of colors is different from the one presented in equation (3) and equation (4) of

the paper by Rosicka et al [36]). Although, we will show that our colors also fulfill properties P1 and P2
from [36].

• (P1) Each permutation is symmetric with respect to the exchange of players, i.e. the permutations are their
own inverse.

• (P2) Every pair (v, τ(v)) appears exactly once in the set of permutations (in particular, each permutation
assigns a different τ(v) for each given v ∈ V).

It is easy to see that symmetry comes from the fact that using the same permutation twice (which means
flipping the same bit twice) gives us identity. The second property is also obvious since any number of
different permutations (flipping two different bits of the same number) always give different results.

Lemma 6.3. The permutation defined by the composition of any number of different colors does not have fixed
points.

11
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Proof. Let τ be a composition of any number of different colors, meaning

τ := τi1 ◦ τi2 ◦ · · · ◦ τik (37)

where all ij are different numbers from 0 tom. We have to show that for all v ∈ V we have τ(v) 6= v. We know,
from binary representation, that τ i is a bit flip on position i then τ i is just an operation that flips bits on all
positions ij. Since there is at least one permutation in τ and no permutation appears more than once, at least
one bit is always different for any value v. Therefore τ does not have fixed points.

Theorem 6.1. For every graph G, there exists a behavior with the rank of contextuality equal to the arboricity of
the graph.

Proof. If the graph is acyclic (arboricity equals zero by definition), it is always non-contextual. Let us assume
that the graph G has m edges and arboricity Υ(G). We will assign a different color to each edge. From the
definition of arboricity, we know that we can not divide it into less than Υ(G) graph without cycles. Let us
assume that the rank of contextuality is less than Υ(G). Then at least one of the non-contextual behaviors
simulating the given behavior is represented by a subgraph that contains a cycle. Since all edges have different
colors, also this cycle edges have different colors. We will then assign probabilities to each edge according to
its color (permutation) using the formula{

P(o1o2 | Ci) =
1
2m if o2 = τi (o1),

P(o1o2 | Ci) = 0 otherwise.
(38)

In the above formula, Ci denotes the context (edge in the graph). Also, o1 and o2 denote outcomes of the
observables in the context Ci. We mean here the observables that are represented by the vertexes at the ends
of the edge. Finally, to clarify the if statement, by o2 = τi (o1), we mean that with the context Ci (represented
by the graph edge), we associate some unique permutation τ i (called color). That permutation defines what
combination of the outcomes of the observables are allowed. All allowed one can then occur with the same
probability 1/2m. On the other hand, other combinations of outcomes can not occur. From lemma6.3we know
that permutations represented by the composition of different colors do not have fixed points. Therefore, there
does not exist any deterministic assignment of values for the non-contextual behavior simulating the given
behavior, which leads to a contradiction.

7. Comparison to other contextuality measures

Here we show that log-rank yields different results than commonly used measures for specific behaviors,
justifying that it is a novel measure of contextuality. We first introduce the contextual fraction [20], then the
analogous robustness of contextuality [22], followed by relative entropy of contextuality [21], and finally the
contradiction number [37].

Definition 7.1 (Contextual fraction). The definition of the contextual fraction is given by the formula

CF(P) :=min{λ : P= λP ′ +(1−λ)PNC} . (39)

Definition 7.2 (Robustness of contextuality). The robustness of contextuality is defined as

R(P) :=min{λ : (1−λ)P+λPNC ∈ C} . (40)

Definition 7.3 ((Uniform) relative entropy of contextuality). The definition of the relative entropy of con-
textuality is given by

Xmax(P) := sup
P(X)

min
NC(A|X)

∑
X∈E

P(X)D(P(A | X) ||NC(A | X)) (41)

whereD is the relative entropy distance (for definition see for example [38]). We also define a different variant
of the above quantity called uniform relative entropy of contextuality as:

Xu(P) := min
NC(A|X)

∑
X∈E

1

|E|
D(P(A | X) ||NC(A | X)). (42)

Definition 7.4 (Contradiction number). The contradiction number of behavior B is the minimal number of
observables (vertices of the graph) that have to be removed from B in order to obtain non-contextual behavior.
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Lemma 7.1. The log-rank measure of contextuality differs from other contextuality measures presented in the
definitions 7.1–7.4 and the memory of contextuality of [23, 24].

Proof. Here we provide a simple example of the convex combination of the contextual uniform Mermin-
square behavior (MS) and isotropic behavior of equally-weighted outcomes (U), i.e.

C= λMS+(1−λ)U. (43)

Recall from figure 1 that RC2(PM) = 1, with two uniform behaviors being sufficient for simulation. Each
individual behavior is sufficient to simulate the isotropic behavior. Then the number of behaviors becomes 22

to account for the convex combination selection weighting.
It is evident from the fact that Mermin’s square has contextual fraction 1, that CF(C) = λ. Similarly,

R(C) = 1−λ with λ ∈ [0,1].
To show the difference from (uniform) relative entropy of contextuality, we will use an example of isotropic

Popescu–Rohrlich box denoted as PRα with α > 3/4.
The PR box is an extremal, non-local, no signaling box defined by the probability distribution P(ab|xy) =

δxy,a⊕b. On the other hand, we have pure noise local box with probability distribution P(ab|xy) = 1/4. Boxes
obtained as a linear combination of the two above are called isotropic boxes. An isotropic box can be, therefore,
described as

PRα(ab|xy) =

{
1+α
4 : a⊕ b= xy,

1−α
4 : otherwise,

(44)

for α ∈ [0,1].
It is easy to see that RC(PRα) = 2 and RC2(PRα) = 1. On the other hand, it was shown in [21] that

Xmax(PRα) = Xu(PRα) = log

(
4

3α

)
+ h(α) (45)

where h(α) :=−α logα(1−α) log(1−α). Therefore, since the values are clearly different, (uniform) relative
entropy of contextuality is different from our new measures. Concluding, in all of these cases, the log-rank
differs from these previously explored measures.

We compare it now with measures that take integer values. We first note that our measure differs from
the memory of contextuality for the Pers-Mermin set of observables, as it equals 3 [23, 24], while the value
of our measure equals 2 (see figure 2). Regarding the number of contradictions, the latter takes value 1 for
n-cycle graph, and 2 for the wheel graphWn (see figure 3), while the arboricity (which is equal to the rank of
contextuality for specially constructed behaviors), is equal to 2 for both the graphs (see figure 3). An example
showing a more significant difference than 1 comes from theorem 6.1. It is shown that for the bipartite graph
Km,n there exists a behavior with the RC equal to d(mn)/(m+ n− 1)e (see lemma 6.2). On the other hand,
it is easy to check that the contradiction number equals min{n,m}− 1. It is easy to see that if there are left
2 observables in both bipartitions, then a cycle (of length 4) is left in a graph. This cycle by construction can
be contextual. Hence in one bipartition, there must be left only 1 vertex, and the other bipartition can be left
untouched. It is then clear that the measures differ for Kn,m by about twice.

Concluding, in this section, we proved that our (log-)rank is different from previous contextuality
measures from the literature. We also believe that our measure can be more useful in the various application
(we give two explicit examples in section 8).

8. Towards potential applications

In this section, we show possible applications of our measure. We will do it regarding two unrelated
phenomena. In the first one, we propose a benchmark useful for data management of PDBs inspired by the
simulating automaton (5) and the rank of contextuality. The second one concerns the ways of attack by the
so-called non-signaling adversary. In the second example, we focus on the Bell non-locality scenario—a
specific case of the contextuality in which commutation relations between involved observables are enforced
by the no faster than light condition [7]. More precisely, the corresponding hypergraphs are bipartite graphs
Km,n where one party hasm and the other n observables.
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8.1. Management of unclean PDBs
The article [39] introduced a description of contextuality in the language of relational databases (RDBs).
This connection resulted in many contributions to the empirical description of contextuality [20], the
discovery of hierarchies between the contextuality demonstrations [40, 41] and the underlying logical
models [42]. While such a connection has shown the value of importing data science methods into the study
of quantum contextuality, we propose a complementary approach: The export of methods and results from
contextuality to data management.

Before presenting our proposal, it will be instructive to define some fundamental concepts of data
management in the language introduced in our work.

A database consists of a collection of tables, in which the first row presents the properties of one or more
entities and the subsequent rows show the possible simultaneous values of such properties. Data science
nomenclature for tables and properties is relations and attributes, respectively [43]. In quantum information,
the entities studied are always physical systems whose attributes identify with observables whose values an
agent could tabulate in a context.

Reversing the previous assignment, we can imagine a database as a collection of an entity’s observables
A1,A2, . . . ,A|X| tabulated in the first row and each possible output a= a1,a2, . . . ,a|X| in subsequent rows,
with a different table for each context X. The possible outputs a are denoted as tuples over the corresponding
table (relation) with attributes {X} [43]. In a database, tuples usually provide the data stored about each
entity studied.

So far, the above would suffice to describe in the language of contextuality the fundamental concepts of
RDBs and recover the connection described in [39]. However, we can further extend our description to
encompass a field that emerges at the intersection of machine learning and database theory: PDBs [30, 44].

Data management systems such as NELL [45], DeepDive [46], and YAGO [47] continuously crawl the
Web to extract structured information. Also, private Projects such as Microsoft’s Probase [48] or Google’s
Knowledge Vault [49] similarly learn structured data from text and fill their databases with millions of
entities and billions of facts. The above information extraction systems employ statistical machine learning
techniques to produce a probabilistic prediction. Therefore, it is common to interpret such large-scale
knowledge bases through probabilistic semantics.

The standard framework to represent probabilistic data is precisely that of PDBs. In the language of our
work a PDB is simply a database where in each table X we associate a probability pi and a deterministic
distribution Ti (a= ai | X) to every possible tuple ai, which is one if a= ai and zero otherwise. Asking for the
probability atributes A1,A2, . . . ,A|X| to have the values a in table X is a particular kind of query in database
language. The answer to the previous query in a PDB represented by {Ti (a= ai | X) ,pi} is given by a
probability P(a | X):

P(a | X) =
∑
i

piTi(a= ai | X). (46)

The above formally reproduces the essential definitions of PDBs as presented in [30]. Here, we remark that
in (46) the Ti (a= ai | X) are defined tablewise, i.e. for a particular set X. Moreover, tuple distributions Ti are
not necessarily the result of restricting a global deterministic assignment as happens for Di in (2) where
indeed exists a global deterministic joint distribution J.

Now, the main question arises: Could behaviors generated by PDBs show contextuality?, i.e. that no single
table PDB with X=V could reproduce all P(a | X)? We argue in the affirmative, and we illustrate an
exemplary situation with a PDB generating the 3-cycle behavior presented in section 6 (see figure 5).

Note, we could also consider cases in which a violation of condition (1) takes place; however, in such a
situation, contextuality would be more trivial since the direct probability assignment of tables would disagree
on common attributes, forcing a necessary split into a subset of PDBs. Such a situation would be easy to
detect by applying analogous queries as in testing pairwise agreement of tables in RDBs, which can be
answered polynomially in the number of tables [39, 50]. For this reason, we assume that any mismatch is
corrected, and we focus on the non-trivial case of a PDB equivalent to a collection P(a | X) which for all X
satisfies the consistency condition (1). The above PDB we denote as pairwise consistent.

A fundamental problem in managing PDBs is determining the source database when affected by noise,
which can be classified into label noises or attribute noises [31]. The former are modifications in the
attributes designated to the tables, while the latter are modifications of the values associated with the
attributes (tuple corruption), which are more common and harmful [31, 51].

It is standard to assume that a clean PDB contains tables that could be merged into a single table
(non-contextual), of which the others turn out to be reductions (marginals) to a PDB for a subset of
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Figure 5. (a) An example of how simple attribute noise could modify tuples in a source database to obtain a PDB that a single
table PDB can not reproduce. (b) A scheme in which a server makes up a noisy PDB by collecting data from sources at different
network nodes. In the previous typical situation, attribute noises due to transmission could lead to PDBs equivalent to contextual
behaviors like those studied in quantum contextuality.

attributes. For example, in figure 5(a) we see a PDB with a database composed of three tables, each with
attributes X1 = {AB}, X2 = {BC}, and X3 = {CA} and for each table we have the PDB description given by{{

T1

(
a= 01 | Xj

)
,
1

2

}
,

{
T2

(
a= 10 | Xj

)
,
1

2

}}2

j=1

, (47)

and {{
T1 (a= 00 | X3) ,

1

2

}
,

{
T2 (a= 11 | X3) ,

1

2

}}
, (48)

such a PDB could be merged to a single table with X= V= {ABC} with a PDB:{{
T1 (a= 010 |{ABC}) , 1

2

}
,

{
T2 (a= 101 |{ABC}) , 1

2

}}
(49)

denoted universal relation in database nomenclature [43, 50]. However, the situation can be drastically
different in the case of unclean PDBs, which are the result of attribute noise affecting their separate tables.
For example, consider a database distributed over a network and a server collecting the information for each
table Xj from a different source node figure 5(b). If in such a case, a systematic noise affects the values of the
tuples, as shown in figure 5(a), the PDB generated on the server would be{{

T1

(
a= 01 | Xj

)
,
1

2

}
,

{
T2

(
a= 10 | Xj

)
,
1

2

}}3

j=1

(50)

which is equivalent to the 3-cycle contextual behavior.
To date, we are not aware of any study on the contextuality of PDBs in databases, which we believe is due

to methodological contingencies: (a) most noise studies are about label noise [31, 52], while, as in our
example we expect systematic attribute noises to generate the contextual behaviors (b). Moreover, it is usual
to assume that the attributes are weakly correlated [51], and the repair methods rule out strongly correlated
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attributes a priori [53], which hides any potential contextuality in the studied databases since non-trivial
contextual behaviors happen only for strongly correlated attributes.

If realistic PDBs exhibit contextuality, the methods and results of our work would directly contribute to
the management of unclean PDBs:

• Firstly, thememory size of the automaton (5) could be used as a benchmark to study storage overhead due to
contextuality generating noise in the PDBs. Note that the overhead quantified by our quantifier is additional
to that generated by the noise that preserves non-contextuality.

• Secondly, a non zero rank of contextuality identifies when the assumption of weakly correlated attributes is
inadequate. Therefore, our quantifier is a valuable tool for selecting the attribute correlations model and/or
noise model.

• Thirdly, minimal states of the automaton’s memory show potential database repairs. Indeed, such a list of
states provides a starting point for finding an adequate model of the original data, which could later be
improved by additional knowledge of the noise or by exploiting the methods and techniques from list-
learning [54] and list-decoding [55, 56].

To illustrate the later repair strategy, note that the universal relation (49) is equivalent to the non-contextual
behavior (31) of our example from section 6. The above suggests that when repairing PDBs in situations like
in figure 5(b), a wise starting point would be the list of states provided by the automaton, like (31) or (32),
which minimally departure from the contextual PDB simulated. The further repair will depend on additional
insights into the noise model, such as the reliability we assigned to sources or transmission channels.

Moreover, the construction of contextual behaviors such as those presented in equation (38) allows us to
understand the possible results of data corruption and their generating operations. Indeed, in the language of
quantum resources, the previous noises would be instances of channels that generate contextuality. In this
sense, the automaton realization of such behaviors and channels would allow noise modeling in databases,
essential for controlling and cleaning PDBs.

The simplicity and naturalness with which a class of noise common in databases could generate a
contextual behavior in PDBs is an indication that such a phenomenology should affect data mining in
large-scale knowledge databases. Our conviction is that testing such a phenomenon in actual databases is a
relevant challenge due to its potential consequences for the field of data management. However, the
experimental demonstration of the previously described phenomenology goes beyond the scope of this work,
and we consider it a goal for future research in collaboration with data scientists.

8.2. Randomness amplification
The aim of the randomness amplification is to take outputs from some source of weak randomness and
process it to obtain a more random sequence. There are various models of a weak source of randomness, but
we will focus here on the most famous one proposed by Santhat and Vazirani [32]. The source is called ε-SV
source. We say that the source that produces a sequence of binary outputs S1,S2, . . . is ε-SV source if

1

2
− ε⩽ P(Sn | Sn−1,Sn−2, . . . ,S1,e)⩽

1

2
+ ε (51)

where e represents an arbitrary random variable prior to S1,
In other words, e includes all previous random variables (other than previous outputs). For example, if

the malicious source contains memory known and hidden by an adversary and outputs bits from this
memory then without e in the above definition, it could state that the source is even fully random. But for the
adversary, it would be, in fact, fully deterministic. Therefore, without assuming e, the definition would be
useless in cryptographic applications.

The ε ∈ [0,1/2] is a parameter that describes how random the source is. If ε= 0, then we obtain a truly
random sequence. On the other hand, if ε= 1/2, the source could even be deterministic. We then can
formally state that the goal of randomness amplification is to take some ε-SV source and process its output in
such a way that we obtain a sequence that fulfills the definition of ε ′-SV source for some ε ′ < ε.

Santha and Vazirani [32] proved that the randomness amplification of a single ε-SV source using a
classical extractor is impossible. However, in the seminal paper, Colbeck and Renner [34] showed that the
task can be achieved using quantum devices. Their result opened a new field in quantum information theory
and led to various new randomness amplification protocols.

One of the most important questions was: Is device-independent quantum randomness amplification
possible when the weak source is correlated with the quantum device? Wojewódka et al [33] investigated this
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problem and proved that although some correlations are allowed (the one that fulfills the so-called SV-box
condition), the amplification is impossible for arbitrary correlations.

That impossibility comes from the fact that the adversary can, for each input, use one of the deterministic
behaviors that are appropriate for that input and indistinguishable from the honest quantum
implementation.

This mechanism is described in details in section 3 and figure 2 from [33]. To recall the idea, we can look
at a simple example of an PR box that is an extremal non-signaling box. That box can not be simulated by
single local (or even quantum) behavior. On the other hand, it can be easily simulated by two non-contextual
behaviors. In most randomness amplification protocols the security is based on the fact that the
measurement (the context) is chosen using a weak source of randomness that is uncorrelated with the
quantum box (contextual behavior). On the contrary, if we allow correlations between the weak source of
randomness and the quantum device an adversary can exploit this and simulate the PR box using two
non-contextual behaviors. The number two here equals the rank of contextuality of the PR box behavior.

It is an identical mechanism as the simulating contextual behavior by some number of non-contextual
ones described in section 1.

In fact, actual randomness amplification protocols are based on more complex contextual behaviors than
the PR box from the toy example above. For example, in [33] so-called chain Bell inequality is used. In the
case of such complex behaviors, the question about the number of non-contextual behaviors needed for
simulation (and, therefore, for the attack on the protocol) is much more complicated. The rank of
contextuality gives the explicit answer to that question. Furthermore, if we do not allow arbitrary
correlations between a weak source of randomness and quantum device but only some amount of
correlations the question becomes even harder. Even in this hardest scenario rank of contextuality and its
properties could prove useful.

Therefore, we can use the rank of contextuality to measure the required resources for various forms of
attack on randomness amplification protocols when we allow different amounts of correlations. By
resources, we mean here the memory and the amount of correlation. Furthermore, the rank of contextuality
could help determine the number of resources needed for other attacks (such as side-channel attacks) on
different device-independent protocols.

9. Concluding remarks

We have introduced a measure of contextuality, the (log-)rank of contextuality, and confirm its novelty by
proving that it differs from other known measures. Subsequently, we show that the RC measure is monotonic
under a broad class of operations. Moreover, we provide a concrete example of (possibly supraquantum)
contextual behaviors whose rank of contextuality is any natural number. As potential applications, we
demonstrate that our measure naturally captures the cost of an attack by an adversary who correlates a
source of weakly-private randomness with an amplifying device. Additionally, we considered possible
contributions to the field of database management. In particular, we proposed a new avenue connecting
databases and contextuality by showing that contextual models can be valuable semantics for PDBs.

Specifically, we present a simple example where a PDB presents contextuality generated by attribute noise
on strongly correlated attributes. Our analysis suggests that models such as the automaton (5) would allow us
to simulate the generation of attribute noise and propose repair schemes beyond the usual assumption of
weakly correlated attributes [51, 53]. In addition, such a model would quantify the additional storage
overhead due to contextuality generating noise by computing the rank of contextuality.

To confirm the presence of contextuality in actual PDBs, one could test the correlations between
attributes and determine if they violate non-contextual inequalities [10, 57, 58]. This possibility suggests that
quantum contextuality methods would detect particular data corruptions analogously to how non-locality
techniques serve to detect causal connections in Bayesian networks [59, 60]. The preceding suggests research
in databases that we intend to develop in future works.

The main open question is: Can our (log-)rank which is a discrete measure of contextuality can be
extended to obtain a continuous measure? The (log-)rank of contextuality by design is a discrete measure
since it answers the question of how many non-contextual behaviors we need to simulate the contextual one.
Therefore, there is no natural way to say what its means to, for example, use half of the behavior. On the
other hand, contextuality as a resource seems to be continuous. We believe that in many applications the
discrete approximation is sufficient. However, there are situations in which a continuous version would be
very beneficial. For example, when one wants to take into account errors or when we work with mixtures of
behaviors. It would be interesting to find how the (log-)rank could be extended to continuous measures to
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close this gap. This task, however, is complicated, and there is probably no one unique way to do this.
Therefore, we postpone this task to future research.

Another minor open question would be to check relations between (log-)rank of contextuality and other,
previously defined in the literature, measures of contextuality. Although, in section 7, we showed that our
measure differs from others, it would be interesting to examine the relations between them in more detail.

Finally, it would be interesting to construct a quantum behavior having the rank of contextuality
different from the power of 2 (the power of 2 is achieved by a tensor product of the Peres-Mermin
behaviors). It also seems attractive to investigate if the RC measure is more directly related to the memory of
contextuality, going beyond the difference in the Peres-Mermin behavior.
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