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Abstract

Gamma-ray bursts (GRBs), as they are observed at high redshift (z= 9.4), are vital to cosmological studies and
investigating Population III stars. To tackle these studies, we need correlations among relevant GRB variables with the
requirement of small uncertainties on their variables. Thus, we must have good coverage of GRB light curves (LCs).
However, gaps in the LC hinder the precise determination of GRB properties and are often unavoidable. Therefore,
extensive categorization of GRB LCs remains a hurdle. We address LC gaps using a stochastic reconstruction, wherein
we fit two preexisting models (the Willingale model; W07; and a broken power law; BPL) to the observed LC, then use
the distribution of flux residuals from the original data to generate data to fill in the temporal gaps. We also demonstrate
a model-independent LC reconstruction via Gaussian processes. At 10% noise, the uncertainty of the end time of the
plateau, its correspondent flux, and the temporal decay index after the plateau decreases by 33.3%, 35.03%, and 43.32%
on average for the W07, and by 33.3%, 30.78%, 43.9% for the BPL, respectively. The uncertainty of the slope of the
plateau decreases by 14.76% in the BPL. After using the Gaussian process technique, we see similar trends of a decrease
in uncertainty for all model parameters for both the W07 and BPL models. These improvements are essential for the
application of GRBs as standard candles in cosmology, for the investigation of theoretical models, and for inferring the
redshift of GRBs with future machine-learning analyses.

Unified Astronomy Thesaurus concepts: Gamma-ray bursts (629); Gamma-rays (637); Gamma-ray astron-
omy (628)

Supporting material: machine-readable tables

1. Introduction

Gamma-ray bursts (GRBs) are transient astrophysical events
that can be observed up to redshift z= 8.2 (Salvaterra et al.
2009; Tanvir et al. 2009) and z= 9.4 (Cucchiara et al. 2011).
Thus, they are excellent candidates for cosmological tools that
can be used to probe the early Universe. Moreover, a
comprehensive characterization of GRBs can provide insight
into Population III stars, the most ancient stars observed at the
epoch of reionization. Having a reliable taxonomy of GRB
classes and good data coverage will favor future population
studies and thus will enhance the determination of the
cosmological evolution of GRB properties and the invest-
igation of their emission mechanism and/or progenitors. All
these are foundational topics for astrophysics.

The lack of a robust GRB classification scheme, the
incompleteness of redshift information in the existing sample
of observed GRBs, gaps in the light curves (LCs), and the need
for a unique database repository are some of the many difficult
challenges that astrophysicists need to overcome. In this paper,
we attempt to solve the issue related to the temporal gaps in
the LCs.

Observationally, GRB emission can be divided into two
phases: the prompt, and the afterglow. The prompt is the
primary phase observed from high-energy γ-rays to X-rays and
sometimes in optical bands (Blake et al. 2005; Vestrand et al.
2005; Beskin et al. 2010; Gorbovskoy et al. 2012; Vestrand
et al. 2014). The prompt is followed by an afterglow phase
(Costa et al. 1997; van Paradijs et al. 1997; Piro et al. 1998;
Gehrels et al. 2009) that is observed in multiple wavelengths
such as X-rays, optical, and sometimes radio bands.
Historically, GRBs have been divided into two classes

depending on their prompt duration, T90, the time interval
during which a burst releases 90% of its total background-
subtracted counts, beginning after 5% of the total counts have
been measured (Mazets et al. 1981; Kouveliotou et al. 1993).
Short GRBs (SGRBs), with T90� 2 s, are produced by the
merging of compact objects (Duncan & Thompson 1992;
Narayan et al. 1992; Usov 1992; Thompson 1994; Levan et al.
2008; Metzger et al. 2011; Bucciantini et al. 2012; Perna et al.
2016), and long GRBs (LGRBs), with T90� 2 s, result from
collapsing massive stars (Woosley 1993; Paczyński 1998;
MacFadyen & Woosley 1999; Bloom et al. 2002; Hjorth et al.
2003; Woosley & Bloom 2006; Woosley & Heger 2006;
Bucciantini et al. 2008; Kumar et al. 2008; Hjorth &
Bloom 2012; Cano et al. 2017; Lyman et al. 2017; Perna
et al. 2018; Ahumada et al. 2021; Aloy & Obergaulinger 2021).
However, this historical classification into LGRBs and SGRBs
simplifies a more complex and realistic picture where many
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more classes have been discovered in the literature since then
(see Section 1.3 for more details). In the analysis proposed
here, the reconstruction of GRB LCs will improve GRB
characterization to cast further light on the different classes.

The Neil Gehrels Swift Observatory (Swift; Gehrels et al.
2004) is crucial for observing GRB temporal properties. The
Swift Burst Alert Telescope (BAT, 15–150 keV; Barthelmy
et al. 2005) enables the rapid detection of the prompt emission
and a fast follow-up of the afterglow by the X-ray (XRT,
0.3–10 keV; Burrows et al. 2005) and ultraviolet telescopes
(UVOT 170–600 nm; Roming et al. 2005). Furthermore, due to
rapid afterglow follow-up in several wavelengths, Swift data
have shown new features in the GRB LCs (Tagliaferri et al.
2005; Nousek et al. 2006; Troja et al. 2007).

Many X-ray LCs have a steep flux decay after the prompt
emission ends, sometimes followed by flares and a plateau
(Nousek et al. 2006; O’Brien et al. 2006; Zhang et al. 2006;
Willingale et al. 2007; Liang et al. 2007; Sakamoto et al. 2007;
Dainotti et al. 2008, 2010, 2016, 2017). Specifically, XRT
detections are available for 81% of the Swift GRBs: 42% have
X-ray plateaus (Evans et al. 2009; Li et al. 2018b). The X-ray
plateau generally lasts 102–105 s and has a subsequent phase
characterized by a power-law (PL) decay. In addition, about
30% of optical LCs observed by UVOT and ground-based
facilities also exhibit a shallow decay phase (Vestrand et al.
2005; Kann et al. 2006; Zeh et al. 2006; Panaitescu &
Vestrand 2008; Kann et al. 2010, 2011; Panaitescu &
Vestrand 2011; Li et al. 2012; Oates et al. 2012; Margutti
et al. 2013; Zaninoni et al. 2013; Melandri et al. 2014; Li et al.
2015, 2018a; Si et al. 2018; Dainotti et al. 2020b). The plateau
can be fitted with a BPL (Zhang et al. 2006; Racusin et al.
2009), a smoothly broken PL (SBPL), or the Willingale et al.
(2007) phenomenological model (W07; Willingale et al. 2007).
The W07 model determines the time at the end of the plateau
(Ta), its corresponding flux (Fa), and the temporal index after
the plateau (αa). The BPL determines Ta, Fa, and the slope of
the LC during the plateau (α1) and after the plateau (α2). These
models are briefly described in Section 2.1.

The plateau is usually explained via the magnetar model,
based on the dipole radiation emitted by the rotational energy
of a newly born neutron star (NS). In this model, the plateau
ends when the NS reaches its critical spin-down timescale; the
uncertainties on Ta can be ascribed to the uncertainties on the
magnetar spin period and magnetic field.

However, the characterization of the plateau emission can be
hindered by temporal gaps, which can occur in the beginning,
during, and at the end of the plateau. These may arise from the
orbital period of satellites, lack of fast follow-up studies,
atmospheric turbulence, and instrumental errors or failures.
Thus, the extensive characterization of GRB LCs remains a
bottleneck.

Therefore, we propose a method for reconstructing LCs
starting from the plateau emission, which, due to its theoretical
interpretation within the magnetar model, is grounded in
fundamental physics. Morphologically, the plateau has more
standard features among diverse GRBs (e.g., its length and
flatness) than the prompt properties. The plateau features have
attracted attention due to their use in building relevant
correlations with the plateau parameters and their application
as cosmological tools. Specifically, Dainotti et al.
(2008, 2010, 2011, 2013, 2015, 2017) and Li et al. (2018b)
explored the luminosity at the end of the plateau, LX,a, versus

its rest-frame time TX a,* (known as the Dainotti relation, or 2D
L-T relation).9 The 2D relation has also been discovered in
optical plateau emissions (Dainotti et al. 2020b, 2022f). Within
the theoretical magnetar scenario, Rowlinson et al. (2014)
showed that the X-ray Dainotti relation is reproduced with a
slope for La,X-Ta X,* of −1. This correlation has already been
applied in the cosmological framework to construct a GRB
Hubble diagram out to z> 8 (Cardone et al. 2009, 2010;
Dainotti et al. 2013; Postnikov et al. 2014).
An extension of the 2D L-T relation, obtained by adding the

peak prompt luminosity, LX,peak, has led to the Dainotti 3D
relation (Dainotti et al. 2016, 2017, 2020a, 2022f). This 3D
relation has also been successfully applied to constrain
cosmological parameters (Cao et al. 2022a, 2022b; Dainotti
et al. 2022b, 2022d, 2022e, 2023b). Importantly, Dainotti et al.
(2022d) have shown that if we reduce the uncertainties on the
parameters of the plateau emission by 47.5%, we will reach the
same precision on the cosmological value of ΩM quoted in
Conley et al. (2011) even now, compared to the same accuracy
that we would reach in 2037 based on current observation rates
and parameter uncertainties. This shows how appealing a more
robust LC reconstruction (LCR) can be, given that it would
save us 15 yr of observations to reduce the uncertainties on
cosmological parameters to reach the same precision as
achieved by supernovae (SNe) Ia (for details, see Dainotti
et al. 2020a).
In addition, the plateau emission has been the object of

investigation concerning the closure relations (the relations
between the temporal and spectral index during or after the
plateau region), which allows us to test the viability of the
standard fireball model for the observations carrying plateau
emission in high-energy γ-rays, X-rays, or optical wavelengths
(Willingale et al. 2007; Evans et al. 2009; Racusin et al. 2009;
Kumar & Barniol Duran 2010; Oates et al. 2012; Gao et al.
2013; Wang et al. 2015; Tak et al. 2019; Srinivasaragavan et al.
2020; Fraija et al. 2020; Ryan et al. 2020; Dainotti et al.
2021b, 2021d, 2022c, 2023a; Misra et al. 2021; Levine et al.
2023). Although closure relations are a quick way to test the
standard fireball model, a more precise characterization of the
decay index after the plateau emission would allow for better
precision in determining these relations.
Finally, another relevant application is to use the recon-

structed LCs to train machine-learning models for a redshift
estimation and classification of all redshifts, especially of high-
z GRBs.
Because of the many applications, both from a theoretical

and a cosmological perspective, the plateau parameters must be
well constrained. In this regard, reconstructing LCs with
plateaus in the plateau region is extremely important. Indeed,
LCs with gaps are in many circumstances not usable for
cosmological applications. In addition, LCs with temporal gaps
cannot be reliably used to test theoretical models that attempt to
explain the GRB emission (e.g., the standard fireball model;
Cavallo & Rees 1978; Meszaros & Rees 1993; Meszaros 1997;
Piran 1999; Panaitescu & Kumar 2000; Mészáros 2001;
Panaitescu & Kumar 2001; Zhang & Meszaros 2002;
Piran 2004; Zhang & Mészáros 2004; Zhang et al. 2006;
Scargle 2020). Thus, LCs with better coverage will facilitate
the modeling and determining the correlations among critical
physical properties.

9 The rest-frame time is denoted with an asterisk.
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Our reconstruction method gives us a glimpse into what the
data likely would have been in these gaps and increases the
overall density distribution of the LCs over time. As a result,
we can improve how well LCs can be used as standard candles
and for theoretical modeling.

In this paper, we take the first step toward a full LCR: we
develop a reconstruction technique and test its performance on
our data set. This paper is divided into the following sections:
in Section 1.1 we provide the definition of the LCR, in
Section 1.2 we describe the scientific motivation for the LCR,
and in Section 1.3 we outline the GRB classification. Then, in
Section 2, we outline the data sample, the Willingale and BPL
models (Section 2.1), and we report in detail the algorithms we
used to obtain the reconstructed LCs, including the functional
form toy model (Section 2.2) and the Gaussian processes (GPs;
Section 2.3). The results are summarized in Section 3 for the
functional form toy model approach (Section 3.1) and for the
GPs (Section 3.2). We draw our conclusions in Section 4.

1.1. Light-curve Reconstruction

The LCR offers an innovative solution to the problem of
temporal gaps in LCs. In several domains of astronomy,
statistical LCR methods have been used to account for missing
data. These methods have also been applied to Cepheids using
simulated annealing and Fourier decomposition techniques
(Ngeow et al. 2003). A similar application of reconstruction
methods on LCs can be seen in Huber et al. (2010) for
planetary eclipse mapping and in Geiger & Schneider (1996)
for the measurement of time delay in gravitational lens systems.
However, an application of reconstruction techniques on GRB
LCs has yet to be undertaken because GRB LCs have very
variable features. They present a wide range of shapes,
including smooth single pulses and multiple peaks with
different widths occurring at different times, while others
exhibit a more complex behavior.

As a first step of addressing this problem and evaluating the
performance of LCR, we have used a relatively simple method
that chooses a model to fit the LCs. Many groups have
classified the LC morphology with a simple PL, BPL, smooth
BPL, or W07 model; some with plateaus, and some with
double breaks (Giblin et al. 2002; Nousek et al. 2006; De
Pasquale et al. 2008; Evans et al. 2009; Liang et al. 2009;
Racusin et al. 2009; Cenko et al. 2010). Although our results
depend on the underlying model chosen for the reconstruction,
we can give a first estimate of how the LCR can enhance the
determination of the plateau parameters. Thus, we show how a
more accurate morphological LC classification can be enabled
and how the GRB parameters can be determined. Our LCR
analysis reduced the uncertainties on the parameters of the
plateau by 37.22% for a 10% noise level on average among all
plateau parameters for the reconstruction with the W07
functional form toy model and by 30.69% for a 10% noise
level for the BPL functional form toy model. Furthermore,
using the GPs, the uncertainties on all plateau parameters are
decreased by 31.43% for the W07 and 21.99% for the BPL, on
average (see Section 3).

1.2. The Advantage of the Light-curve Reconstruction in
Theoretical Models

We can anticipate that with the new reconstructed LCs, we
can use them directly to test theoretical models. We here limit

ourselves to provide two examples because this topic is far
beyond the current focus of the paper, and it will be
investigated in a forthcoming paper. One of the most
immediate advantages is the use of the parameters of the
BPL obtained with the reconstructed LCs with GPs or the other
functional toy model LCR modeling to test the standard fireball
model via the closure relations, which are the relations among
the temporal, α, and spectral indices, β, of the LCs. For a
precise new estimate of the modeling, one could check the
differences between the results obtained in X-rays from
previous papers (Srinivasaragavan et al. 2020; Dainotti et al.
2021b) and those from the LCR. We envision that the
prediction of the closure relations will be around 40% more
accurate compared to the current estimate in the literature.
Indeed, 43.32% is the percentage reduction of the uncertainty
on the temporal index, α, after the plateau phase when we
consider, for example, the W07 functional toy model for the
reconstruction, and for the BPL, the uncertainty in the slope of
the LC after the plateau phase, α2, decreases by 43.9%. For the
GPs, the uncertainty in the W07 α parameter decreases by
41.5% and the uncertainty in the α2 parameter decreases by
35.92%. There are cases for which it is not possible to uniquely
determine the outcome of the closure relations, namely whether
the closure relation favors a scenario with a fast or slow
cooling, or if a constant medium or a wind medium is
preferred. We can anticipate that a fraction of cases with the
LCR will be able to discern the interstellar medium and the
regime better and will be able to remove part of the degeneracy
in the theoretical model investigation. Srinivasaragavan et al.
(2020) found that >50% follow 11 out of the 16 closure
relations tested. It is interesting to check how the exact
percentage of fulfillment could change when LCR is adopted in
this scenario. Another model that can benefit from the LCR is
the magnetar model. Indeed, it was shown by Stratta et al.
(2018) that due to the temporal gaps in some of the LCs, the
magnetic field, the spin period parameters, or the electron
energy fraction could not be determined very precisely;
namely, their uncertainties are so large that the estimate cannot
be considered reliable. In this scenario, it is important to have
full coverage of the LC so that a combination of the magnetic
field, the spin period, and the electron energy fraction could
solve cases in which, due to these uncertainties on the
parameters, it is even hard to distinguish between models
(magnetars versus black hole). The LCR can alleviate the
degeneracy of the parameters of the model by reducing the
uncertainties of the parameters. However, some degree of
degeneracy inherent to the model will still remain unavoidable.
Here, we recall that this LCR will be approached as a first step,
but it can also be extended in high-energy γ-rays, optical, and
radio wavelengths for the determination of the closure relation
in these respective energy bands (Dainotti et al. 2021d,
2022c, 2023a; Levine et al. 2023).

1.3. The Connection of the Light-curve Reconstruction and the
Gamma-ray Burst Classification and Properties

The classification of GRB properties is often challenging
because of the general lack of data points in the LC or, more
often, for the lack of data points in a crucial part of the LC for
which a feature is expected, e.g., the beginning or end of the
plateau emission. This section aims to clarify how many GRBs
classified in the literature as, for example, LGRBs, SGRBs, or
the other classes defined below correspond to the
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morphological classes defined here. Indeed, this analysis is
relevant because with this study, we can check the percentage
of the good GRBs that fall in a given class.

In addition to the long and short classification, we point out
that other subclasses have been discovered. Intrinsically
SGRBs (IS) have T90/(1+ z)< 2s (Levesque et al. 2010;
Zhang et al. 2021; Rossi et al. 2022). SGRBs with extended
emission (SEE; Norris et al. 2000; Norris & Bonnell 2006;
Levan et al. 2007; Norris et al. 2010; Dichiara et al. 2021) are
SGRBs with mixed properties between LGRBs because they
have T90> 2 s, but they are harder in their spectral properties
than the LGRBs, and in this regard, they are similar to SGRBs.
From the observational point of view, they have a spike in the
prompt followed by a long tail. The spike of the initial emission
is followed by a brief pause in emission, lasting for ;10 s, after
which the emission increases again on a timescale of 30–50 s
(Norris & Bonnell 2006). Ultralong GRBs (ULGRBs) have
T90� 1000s (Gendre et al. 2013; Nakauchi et al. 2013; Stratta
et al. 2013; Levan et al. 2014; Piro et al. 2014; Zhang et al.
2014; Greiner et al. 2015; Kann et al. 2018; Gendre et al.
2019). These GRBs may originate from engine-driven explo-
sions of stars much larger than LGRB progenitors (Levan et al.
2014). X-ray flashes (XRFs; Soderberg et al. 2004; Chincarini
et al. 2010) are LGRBs with greater flux in X-rays (230 keV)
than in γ-rays (30–400 keV), while X-ray rich (XRR) GRBs
are an intermediate class between XRFs and LGRBs that
display very strong X-ray emission. SNe-GRBs are LGRBs
associated with SNe of type Ic (SNe Ic) for which the SNe has
been clearly observed (Dainotti et al. 2007, 2022a). These
subclasses may imply diverse progenitors or the same
progenitor in different circumburst media.

Zhang et al. (2007a, 2007b, 2009) unified the classification
in terms of progenitors, with Type I and Type II GRB classes.
Type I includes SGRBs, SEE, and IS, and Type II includes
LGRBs, XRFs, XRRs, GRB-SNe, and ULGRBs. For sche-
matic pictures of the classes, see Figure 1.

2. Method

We aim to fill temporal gaps in GRB LCs by compiling all
observations from Swift XRT taken from the BAT+XRT
repository. To account for the missing data points, we adopt a
stochastic approach where the reconstructed points are built
from a chosen LC model. To account for the realistic variation
of the data, a noise function that considers the residuals from
the initially observed flux data points is used to inject additive
noise into the reconstructed points.

Figure 1. Schematic of GRB classes divided into Type I and Type II and their related subcategories.

Table 1
Full Sample of 455 GRBs, Including Redshift z, Observer-frame Burst

Duration T90, and Rest-frame Duration ( )+
T

z1
90 Long vs. Short Classification,

GRB Type, and Reference

GRB NAME z T90 ( )+
T

z1
90

Long/
Short Type Reference

GRB050128 L 28.00 L L SNe-
GRB

(1)

GRB050315 1.95 95.40 32.35 L XRR (2)
GRB050318 1.44 40.00 16.37 L XRR (1)
GRB050319 3.24 151.74 35.79 L XRF (2)
GRB050401 2.90 33.30 8.54 L L (1)
GRB050416A 0.65 6.62 4.01 L XRF/

SNe-
GRB,
D

(1), (3)

GRB050502B 5.20 17.72 2.86 L XRR (2)
GRB050505 4.27 58.90 11.18 L L (1)
GRB050607 L 48.00 L L XRR (2)

References. (1) Sakamoto et al. (2008); (2) Bi et al. (2018); (3) Dainotti et al.
(2022a) and additional references in the online table, including Dainotti et al.
(2017); Dainotti et al. (2020a); Dainotti et al. (2021a); Gendre et al. (2019);
Lien et al. (2016); Lipunov et al. (2018); Norris et al. (2010); Sakamoto et al.
(2011); Tian et al. (2022); van Putten et al. (2014); Xu & Tang (2021); Yi et al.
(2016), as well as GCN Circulars listed individually in the online table.

(This table is available in its entirety in machine-readable form.)
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2.1. Data Sampling, the Willingale Model, and the Broken
Power-law Model

We take a sample of 455 GRBs from Srinivasaragavan et al.
(2020) with X-ray plateaus (222 with known redshift and 233
without known redshift), originally obtained from the Swift
BAT-XRT repository (Evans et al. 2007, 2009). A sample of
the data is presented in Table 1. These GRBs are fitted with the
W07 function, described in Equation (1) as presented in
Willingale et al. (2007),

( )( )
( )

( )
( )

( ) ( )
a

=
- - <

-
a-

f t
F t T

F t T

exp 1 exp for

exp for ,
1

i i
t

T

t

t i

i
t

T

t

t i

i

i

i

i
i 

⎧

⎨
⎪

⎩⎪

where Ti and Fi are the times and fluxes, respectively, either at
the end of the prompt (denoted with p) or at the end of the
plateau emission (denoted with a). The parameter αi is the
temporal index after Ti. The initial rise time is marked by the
time ti, which reads as ta for the afterglow emission. The
maximum flux occurs at =t tT ai c i .

We also fit the GRBs with the simple BPL model,

( )
( )

( ) ( )=
<

a

a

-

-f t
F t T

F t T

for

for ,
2

i
t

T i

i
t

T i

i

i

1

2



⎧

⎨
⎪

⎩⎪

where Ti and Fi are the times and fluxes, respectively, at the
break time (coincident with the end time of the plateau), α1 is
the slope of the LC before the break, and α2 is the slope of the
LC after the break. In both our Willingale and BPL fit, as in
W07, we take the logarithm in base 10 of these functions.
We focus our reconstruction efforts on the plateau region of

the GRB LCs, where our method works effectively. Before the
plateau, the prompt emission has significant variability
compared to the afterglow, and thus the prompt is difficult to
model accurately. The stochastic approach used in this paper
will also not account for flares and bumps in the afterglow
because such variations are randomized to a very high degree.
This is a first step toward understanding the feasibility of LCR.
More complex methods that can generalize this first attempt to
the prompt emission or flares in the afterglow phase will be
explored in future works.
The 455 LCs were then separated into categories based on

the afterglow features. For the subsequent analysis, we
categorize the GRB afterglow LCs into those having (i) good
approximation with the W07 model (hereafter called good
GRBs), (ii) flares or bumps throughout the afterglow region,
(iii) a double break at the end of the LC, and (iv) flares/bumps
along with a double break. Figure 2 shows LCs belonging to
each category with the W07 model fit superimposed. We take
the Willingale function parameter values (for each GRB LC)
from Srinivasaragavan et al. (2020).

Figure 2. LCs divided into four categories depending on the afterglow feature. (i) good GRBs (top left); (ii) a break at the end of the LC (top right); (iii) flares/bumps
in the afterglow (bottom left); and (iv) flares/bumps with a double break at the end of the LC (bottom right).
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We segregate the GRBs into classes to better understand the
characterization of the good LCs, which make up 48% of our
total sample of 455 GRBs. We show a breakdown of our
sample into classes in Figure 3—the top left chart shows the
classification by duration into LGRBs, SGRBs, SEEs, and IS
GRBs. The top right chart shows the classification into
morphological classes. The bottom two charts show the
classification by type (XRRs, XRFs, ULGRBs, and SNe-
GRBs) for all LGRBs (left) and all good GRBs (right). For the
good GRBs, we see that the largest fraction of the GRBs are
XRR GRBs (39%), with the second-most frequent class being
simply LGRBs (38%). The third-most frequent class is the
XRF (5%). This would indicate that many LCs in our good
sample have very strong emissions in X-rays. There is no
strong preference for any other class, with the other classes
comprising more than 5% of the good sample.

2.2. The Reconstruction Method with the Functional Forms

We segregate the 455 GRBs into the previously mentioned
classes to understand how many good GRBs belong to a given
class. Then, for simplicity, we limit the application of the
reconstruction technique to only the good GRB LCs, which
still constitute a large fraction (48%; 218 GRBs) of our total
sample. Indeed, we aim for a procedure that works for well-
behaved morphological LCs and can be extended to more
complex cases in the future.

We compute the flux residual for each LC. The flux residual
is defined as the difference between the logarithm of the flux
value of the original LC and the corresponding logarithmic
value of the flux given by the W07 fit for a given instant of time
t (in log10 scale). This can be represented by

( ) ( )= -F F f tlog log log , 3t10 res 10
obs

10

where Flog10 res is the logarithm of the flux residual, ( )f tlog10 is

the W07 model or the BPL model flux at time t, and Flog t10
obs

is the observed log flux at time t.
In the left panels of Figure 4, we show as an example the

fitting of a good LC, GRB 121217A with the W07 model (top;
shown in red) beginning from the plateau emission, and the
BPL model (bottom; shown in black). In the right panel of
Figure 4, we show the corresponding log10 flux residual
histograms, or normalized histogram of F(res) detailed in
Equation (3), with the best-fit Gaussian overlaid for this GRBs.
The purpose of generating these histograms is to check the
deviation of the original flux values from the fitted W07 or BPL
model. Based on these histograms, we performed the fitting
using the best-fit distribution for each GRB, which resulted in
the Gaussian/normal distribution,

( ) ( )( )

s p
= m s- -P x e

1

2
, 4x 22 2

where μ is the mean of the distribution, σ is the standard
deviation, and

s p
1

2
is the normalization constant.

Figure 3. Top left: breakdown of all 455 GRBs by duration: long (L), short (S), short with extended emission (SEE), and intrinsically short (IS); top right: breakdown
of all 455 GRBs by morphological class; bottom left: breakdown of all long GRBs into types: X-ray rich (XRR), X-ray flash (XRF), supernova-associated (SNe-
GRB), ultralong (UL), SEE, IS, and combinations thereof; bottom right: breakdown of only good GRBs used for reconstruction into types.
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We draw random variate samples from the fitted Gaussian to
generate our reconstructed data points based on our previous
assumption that the flux has Gaussian-distributed errors. We
checked that the Gaussian is indeed the best-fit distribution
with the Mathematica10 function FindDistribution and
find that the values for normality for GRB121217A are
μ=−0.0016, and σ= 0.12.

For a given time, t, the reconstructed flux at that time is
defined in Equation (5) as the sum of the fitted flux value and
the noise based on the random variate sampled from the flux
residual Gaussian distribution,

( ) ( ) ( )= + + ´ F f t n RVlog log 1 . 5t10
recon

10

Here, Ft
recon is the reconstructed value of flux at time t, f (t) is

the W07 or BPL flux value at time t, n is the noise level, and
RV is the random variate sampled from the normal (Gaussian)

distribution.
We add the noise parameter to mimic the realistic variations

seen in the observed LCs. We assume the noise to be
stationary, meaning that the noise on the flux does not change
with time and is random without temporal autocorrelation.

Usually, it is common to encounter cases in which the noise
level is increased by 10% or 20%. We acknowledge that the
choice of noise level is arbitrary, but the purpose here is to
show how LCR works with realistic cases. Anyone with the
detailed procedure we have described can change the noise
level for the particular LCs they are reconstructing.
The RV for this noise is generated at every instant of time,

starting from the beginning of the plateau from the distribution
of the residuals fitted with a Gaussian. Thus, the reconstructed
flux value is different for each point. In this manner, we can
reconstruct data points within the temporal gaps of each LC.
Applying this method will result in all the reconstructed data

points in the afterglow LC being, statistically, the same
distance from the best fit of the W07 or BPL model as the
initially observed data points. We choose the time of the
reconstructed points along the fitting line with a time range
distributed equally in the log scale. To this end, for practicality,
we use the function in Python called geomspace, with the
minimum and maximum time set at the beginning of the
plateau and the last data point of the observed LC, respectively.
Thus, each reconstructed LC is customized to each observed
LC, which ensures the realistic nature of these reconstructed
LCs for future use in cosmological studies.

Figure 4. The left panels show the LCs of GRB GRB 121217A starting from the plateau emission, and the best-fit W07 model is shown in red in the upper panels and
the BPL fit is shown in black in the lower panels. The right panels show the log(flux) residual histogram, and the best-fit Gaussian distribution is shown in black.

10 Using Wolfram Mathematica 12.3.
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Due to the random noise added to the reconstructed data
points, we perform the reconstruction steps mentioned above
for each GRB 100 times. This helps in derandomizing the
results and stabilizing them. Then, the chosen function is fit on
each iteration of the reconstructed LC, providing us with 100
new fit parameters and error estimates for each GRB. It should
be noted that the new fit is performed on the LC, which
contains the reconstructed flux and the original observations.
So the combined LC is used here. The flux uncertainties for
each reconstructed data point are generated randomly from a
Gaussian distribution, which is the best-fit distribution of the
uncertainties of the observed fluxes.

Thus, with the LCR procedure, we combine the recon-
structed and original data points to create a new enhanced LC,
which we refit with the chosen model with a least-squares
regression. For this, we use the minimize() method from the
lmfit library (Newville et al. 2016), which is an interface for
fitting curves in Python. It is a further extension of the
optimization techniques available in the methods of scipy.
optimize. The minimize() function is used as an
optimization function that minimizes the residuals to the fit
line while doing the refitting. We provide this function with the
model we wish to fit, the initial guess for the parameters, the
data to fit (the reconstructed LCs), and the method to be used
for the fitting. This function returns the updated values of the
chosen model parameters and their associated uncertainties.

2.3. The Reconstruction Method with the Gaussian Processes

We briefly describe GPs and how we use them. GPs is a
generic supervised-learning method that can generate precise
predictions and is designed to solve regression problems. It is
based on the mathematical properties of the Gaussian/normal
distribution.

Due to its probabilistic nature, a GP model does not merely
produce a singular prediction, but rather calculates the
likelihood for each possible prediction.

A GP works on the postulates of Bayesian inference. It
begins by inspecting the prior, which contains the leverage of
knowledge of existing trends in the initial data, and using
Bayesian inference to compute a posterior, a probabilistic
description of the outcomes that agree with both the data and
the prior. Each prediction has an associated confidence interval,
which limits the region of the likelihood of the prediction.

The capacity to find confidence intervals/regions is the true
utility of a GP model. The set of possible predictions might be
a normal distribution with the mean as the model prediction
and a variance that characterizes the deviation of the
predictions from the mean. A lower uncertainty corresponds
to a thinner confidence region, and the model is said to be
confident with its prediction.

Covariance functions, also known as kernels, are a
fundamental requirement for using a GP model. A kernel can
be defined as a measure of the degree of similarity between two
given input space data points. This contains the assumption that
two similar data points should yield two similar output values.
Kernels can be of different types: those depending directly on
the difference between the two data points, that is, - ¢x x , and
those depending on the specific values of the data points x and
¢x themselves. Kernels depending upon just their difference are

translation-invariant in the input space. Furthermore, if the
kernel in question merely depends on ∣ ∣- ¢x x , then the kernel

is said to be isotropic in the input space. An example of such a
kernel would be a radial basis function (RBF) kernel.
We here use the RBF plus the contribution of a white-noise

kernel because we assume that the noises of the flux are
independent and identically normally distributed. We use the
built-in function GaussianProcessRegressor, which enables
prediction without prior fitting, but only with prior knowledge
of the GP. The prior in our analysis is not normalized, meaning
that the mean is centered at zero. Here normalizing means that
we would normalize the fluxes by removing the mean and
scaling to unit-variance. We choose the default option as false.
Then we fit the GP regression model with the built-in fit
function to our data. Next, we have used the in-built predict
function to obtain the reconstructed data points.
To reconstruct the LC with GP, we have chosen as the

interval for the reconstruction the 95% confidence interval. We
have populated the data points by using the Equation (5) again,
but here the function f (t), instead of being the W07 or the BPL
function, is the function found via the GP. To avoid a strong
dependence of the distribution of the data points in the GPs on
the shape of the function obtained with the Gaussian regressor
function, which is a built-in function in Python, we perform
100 Markov Chain Monte Carlo (MCMC) simulations of the
reconstructed LC for each different LC. Then, we randomly
pick one value for the data point and its associated uncertainty.

3. Results

3.1. Results from Functional Form Reconstruction

Applying our LCR method to the 218 good GRBs in our
sample, we expect to see a reduction in the uncertainties on the
chosen model parameters. To measure this, we compute the
error fractions associated with each of the model parameters for
the original and reconstructed fit. The error fractions for the
three Willingale parameters are given by

( )
( )

( )( ) =
D

EF
T

T

log

log
, 6T

a

a
log

10

10
a10

( )
( )

( )( ) =
D

EF
F

F

log

log
, 7F

a

a
log

10

10
a10

( )a
a

=
D

aEF . 8a

a
a

Here, EFX is the error fraction associated with the parameter
X, and ΔX is the uncertainty associated with the parameter X.
The X and ΔX for ( )Tlog a10 , ( )Flog a10 and αa before
reconstruction are taken from Srinivasaragavan et al. (2020),
as previously indicated.
The computed error fractions before and after reconstruction

for the W07 model were performed for the full sample of 218
good GRBs for two noise levels, 10% and 20%, in Table 2. The
first three columns show the error fraction for each W07
parameter from the original fitting. The second three columns
show the error fraction for each W07 from the new fitting after
reconstruction. These are averages of 100 iterations, as
mentioned previously.
We calculate the percentage decrease in the error fractions

for each noise level to analyze the improvement of the fit
following the reconstruction. The formula used for the
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percentage decrease is given as

∣ ∣ ∣ ∣
∣ ∣

( )=
-

´
EF EF

EF
% 100. 9X X

X
DEC

after before

before

The last three columns of Table 2 show the percent change in
the error fraction after reconstruction for the two noise levels.
From our analysis, we see that the error fraction on the
reconstructed parameters is lower than the error fraction on the
original parameters in all three cases. To better understand how
this applies to the sample as a whole, we compute the average
percentage decrease in error fraction for all good GRBs tested
at each noise level. For the 10% noise level, we obtain a

33.33% decrease in the error fraction on the ( )Tlog a parameter,
a 35.03% decrease in the error fraction on the ( )Flog a

parameter, and a 43.32% decrease in the error fraction on the
α parameter. For the 20% noise level, we obtain a 29.49%
decrease in the error fraction on the ( )Tlog a parameter, a
31.24% decrease in the error fraction on the ( )Flog a parameter,
and a 40.57% decrease in the error fraction on the α parameter.
As expected, when we introduce a higher noise level, the
decrease on the uncertainty also decreases because the spread
around the best-fit line increases.
A visual comparison between two noise levels for a sample

GRB, GRB121217A, for 10% and 20% of the W07 fit is
shown in the upper panels of Figure 5. We observe that lower

Table 2
The Error Fractions of ( )Tlog a10 , ( )Flog a10 and αa before and after Reconstruction (with Relative Percentage Decrease in Error for All Three Parameters) at 10% Noise

(n = 0.1; Top) and 20% Noise (n = 0.2; Bottom)

GRB ID ( )EF Tlog i10 ( )EF Flog i10 aEF i ( )EF Tlog i10
RC ( )EF Flog i10

RC aEF i RC ( )% Tlog i10 ( )% Flog i10 a% i

10% noise

050712 0.019 0.005 0.044 0.014 0.004 0.027 −26.67 −24.96 −38.04
050318 0.011 0.006 0.046 0.008 0.004 0.033 −22.91 −24.05 −28.62
050416A 0.024 0.005 0.018 0.016 0.003 0.012 −31.24 −33.54 −34.85
050607 0.021 0.005 0.044 0.016 0.004 0.027 −22.62 −22.79 −39.18
050713A 0.01 0.003 0.018 0.008 0.002 0.011 −16.21 −14.31 −36.35
050822 0.011 0.003 0.026 0.007 0.002 0.015 −31.06 −35.46 −43.07
050824 0.025 0.006 0.094 0.015 0.003 0.056 −40.7 −38.45 −40.27
050826 0.029 0.019 0.131 0.026 0.016 0.196 −9.54 −15.21 49.99
050915B 0.036 0.008 0.115 0.025 0.005 0.068 −29.03 −34.25 −40.92
051016A 0.033 0.006 0.051 0.021 0.004 0.024 −36.11 −28.49 −53
051109A 0.012 0.005 0.016 0.006 0.002 0.01 −51.32 −58.89 −33.99
051221A 0.02 0.005 0.051 0.015 0.004 0.033 −27.39 −28.33 −34.6
060105 0.004 0.001 0.007 0.003 0.001 0.003 −16.2 −14.1 −54.34
060108 0.024 0.006 0.071 0.018 0.004 0.047 −26.39 −30.58 −33.59
060109 0.014 0.005 0.057 0.008 0.003 0.025 −40.63 −45.09 −56.2
060124 0.008 0.004 0.012 0.006 0.003 0.007 −28.27 −29.34 −42.7
060218 0.028 0.014 0.082 0.014 0.005 0.065 −50.59 −63 −20.77
060306 0.012 0.003 0.024 0.009 0.002 0.017 −22.76 −28.7 −29.23
060418 0.018 0.005 0.03 0.01 0.003 0.01 −43.68 −32.48 −66.37
060421 0.041 0.01 0.087 0.022 0.006 0.039 −46.03 −40.58 −55.27

20% noise

050712 0.019 0.005 0.044 0.014 0.004 0.028 −24.37 −22.28 −35.56
050318 0.011 0.006 0.046 0.009 0.004 0.034 −18.58 −19.74 −24.97
050416A 0.024 0.005 0.018 0.017 0.003 0.012 −27.39 −29.91 −31.97
050607 0.021 0.005 0.044 0.017 0.004 0.028 −17.04 −17.37 −36.04
050713A 0.01 0.003 0.018 0.009 0.003 0.012 −12.34 −10.16 −33.05
050822 0.011 0.003 0.026 0.008 0.002 0.015 −27.43 −32.13 −40.11
050824 0.025 0.006 0.094 0.016 0.004 0.059 −37.67 −35.27 −36.93
050826 0.029 0.019 0.131 0.025 0.014 0.172 −13.33 −28.04 31.46
050915B 0.036 0.008 0.115 0.027 0.006 0.073 −23.99 −30.54 −37.03
051016A 0.033 0.006 0.051 0.022 0.004 0.025 −32.78 −24.82 −50.61
051109A 0.012 0.005 0.016 0.006 0.002 0.011 −48.9 −56.82 −30.45
051221A 0.02 0.005 0.051 0.016 0.004 0.035 −23.51 −24.37 −31.17
060105 0.004 0.001 0.007 0.003 0.001 0.003 −11.94 −9.72 −51.99
060108 0.024 0.006 0.071 0.018 0.004 0.049 −23.82 −27.76 −30.82
060109 0.014 0.005 0.057 0.009 0.003 0.026 −37.84 −42.4 −54.15
060124 0.008 0.004 0.012 0.006 0.003 0.007 −23.7 −24.55 −40.13
060218 0.028 0.014 0.082 0.014 0.005 0.067 −48.31 −61.5 −18.12
060306 0.012 0.003 0.024 0.01 0.002 0.018 −20.13 −25.98 −26.29
060418 0.018 0.005 0.03 0.011 0.003 0.011 −41.52 −29.94 −64.95
060421 0.041 0.01 0.087 0.024 0.006 0.041 −41.96 −36.37 −52.87

Note. The first three columns give the error fraction for the original W07 fit, and the second three columns give the error fraction for new W07 fit after reconstruction.
The final three columns give the percentage decrease in error fraction after reconstruction.

(This table is available in its entirety in machine-readable form.)
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noise levels generate points somewhat close to the W07 fit,
and these points are further spread out as the noise level
increases. The reconstructed LC plots are picked randomly
from the 100 reconstructions for each GRB. As expected, we
can approximate the flux uncertainties with a Gaussian
distribution, as shown in Figure 6. The histograms of
Figure 7 show the distribution of the percentage decrease
(the upper panel shows the 10% noise level, and the bottom
panel shows the 20% noise level) for all three of the W07
parameters. As is evident, the reconstruction leads to a
decrease in the errors on the W07 parameters for all the
GRBs. After fitting the model, we expect a decrease in the
uncertainty because we are refitting more points with the
same model. However, the point of this approach is to
provide a first simple solution to the LCR. This toy model for
the reconstruction is indeed model dependent, but in
principle, this method can work on any model.

To assess the dependence of the method on a particular
model, we also fit with the BPL model and check the
differences regarding the decrease in the uncertainties. To
test the BPL, we perform the same method as used on the
W07 fits. Again, we see an overall decrease in the error
fraction on the reconstructed parameters as compared to the
error fraction on the original parameters. We again compute
the average percentage decrease in the error fraction for all
good GRBs tested at each noise level. For the 10% noise

level, we obtain a 33.31% decrease in the error fraction on the
( )Tlog a parameter, a 30.79% decrease in the error fraction on

the ( )Flog a parameter, a 14.76% decrease in the error fraction
on the α1 parameter, and a 43.98% decrease in the error
fraction on the α2 parameter. For the 20% noise level, we
obtain a 29.88% decrease in the error fraction on the ( )Tlog a

parameter, a 27.20% decrease in error fraction on the ( )Flog a

parameter, a 1.78% decrease in the error fraction on the α1

parameter, and a 41.1% decrease in the error fraction on the
α2 parameter.
Overall, we see a similar trend to the W07 fitting. The results

for the average change in error fraction for the BPL fitting are
given in Table 3. The comparison between two noise levels for
a sample GRB, GRB121217A, for 10% and 20% of the BPL fit
is shown in the lower panels of Figure 5. Figure 8 shows the
distribution of the percentage decrease (the upper panel shows
the 10% noise level, and the bottom panel shows the 20% noise
level) for all four of the BPL parameters. Again, the
reconstruction leads to a decrease in the uncertainties on the
BPL parameters for all the GRBs. The average percentage
decrease on all parameters for both the W07 and BPL fits is
summarized in Table 4.
We also check the differences between the GPs (a

completely model-independent approach) and the BPL (a
model-dependent approach) to assess the differences between
these methods.

Figure 5. Reconstructed LCs for GRB121217A at two noise levels, using the W07 and BPL fits. The first row shows the reconstructed LCs using the W07 model at
10% and 20% noise, and the bottom row show the reconstructed LCs using the BPL model at 10% and 20% noise. These data points are generated from the noise
distribution produced by fitting a Gaussian distribution on the flux residual histograms.
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Figure 6. Histogram of the error bars of the observed fluxes, shown to be approximated with a Gaussian distribution.

Figure 7. Distribution of the relative percentage decrease for the parameters of the W07 function when we apply the W07 for the reconstruction.
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3.2. Results from Gaussian Process Reconstruction

The GP-based reconstruction provides a model-independent
way of achieving our aim. The reconstructed LC of
GRB121217A is presented in Figure 9. Following the
reconstruction, the full LC is fitted with both the W07 and
the BPL model to obtain new estimates of the parameters and
their errors.

For the parameter ( )Tlog a , we observe an average decrease in
the error fraction of 25%. Similarly, for ( )Flog a and α, the
average decreases in the error fraction are 27.9% and 41.5%,

respectively. Note that in this case, the error fractions are also
calculated according to Equation (9). The histogram distribu-
tions of Figure 10 show the distribution of the relative
percentage decrease of the three W07 parameters. The results
of the GP for the W07 are given for each GRB in Table 5, and
the average percentage decrease on the uncertainties of the
parameters for all GRBs are presented in Table 4.
For the BPL fits, we see that for the α1 parameter, there is

occasionally an increase in the error fraction from the original
parameters to the reconstructed parameters. This is because the

Table 3
The Error Fractions of ( )Tlog a10 , ( )Flog a10 , α1 and α2 before and after Reconstruction (with the Relative Percentage Decrease in the Error for All Three Parameters) at

10% Noise (n = 0.1; Top) and 20% Noise (n = 0.2; Bottom)

GRB ID ( )EF Tlog i10 ( )EF Flog i10 aEF 1 aEF 2 ( )EF Tlog i10
RC ( )EF Flog i10

RC aEF 1 RC aEF 2 RC ( )% Tlog i10 ( )% Flog i10 a% 1 a% 2

10%
noise

GRB050712 0.031 0.031 0.155 0.056 0.022 0.008 0.158 0.033 −30.6 −28.48 2.15 −39.97
GRB050318 0.011 −0.007 0.075 0.047 0.009 0.005 0.058 0.038 −20.09 −23.11 −23.14 −19.47
GRB050416A 0.038 −0.01 0.078 0.023 0.029 0.007 0.056 0.013 −23.52 −22.5 −28.03 −40.54
GRB050607 0.036 −0.011 0.15 0.053 0.03 0.01 0.166 0.03 −16.39 −11.78 10.48 −43.15
GRB050713A 0.015 −0.006 0.043 0.019 0.012 0.004 0.039 0.013 −18.58 −18.89 −9.77 −34.12
GRB050822 0.012 −0.004 0.223 0.024 0.01 0.004 0.164 0.014 −14.58 −14.2 −26.57 −42.26
GRB050824 0.026 −0.006 0.276 0.105 0.015 0.004 0.223 0.057 −40.25 −30.63 −19.2 −46.1
GRB050826 0.008 −0.004 0.328 0.064 0.005 0.002 0.226 0.039 −33.14 −35.02 −30.9 −38.46
GRB050915B 0.021 −0.006 0.085 0.13 0.012 0.004 0.057 0.069 −43.28 −33.53 −32.4 −46.8
GRB051016A 0.089 −0.025 0.327 0.048 0.047 0.013 0.2 0.024 −47.27 −48.27 −38.99 −49.86
GRB051109A 0.011 −0.005 0.136 0.015 0.009 0.003 0.049 0.01 −21.7 −24.17 −63.81 −31.43
GRB051221A 0.021 −0.007 0.082 0.058 0.016 0.006 0.067 0.038 −23.99 −23.82 −18.86 −34.93
GRB060105 0.007 −0.002 0.011 0.011 0.003 0.002 0.011 0.003 −51.9 −34.29 8.85 −68.73
GRB060108 0.026 −0.008 0.147 0.075 0.019 0.006 0.113 0.048 −26.83 −25.54 −23.34 −36.11
GRB060109 0.01 −0.003 0.347 0.047 0.007 0.003 0.271 0.022 −26.18 −9.85 −22.03 −54.26
GRB060124 0.014 −0.008 0.034 0.019 0.011 0.007 0.027 0.01 −17.7 −16.08 −21.58 −47.95
GRB060218 0.013 −0.005 0.582 0.064 0.01 0.004 0.811 0.042 −22.2 −21.99 39.27 −34.22
GRB060306 0.075 −0.026 0.395 0.024 0.018 0.006 0.107 0.018 −76.3 −78.27 −72.97 −24.73
GRB060418 0.066 −0.034 0.11 0.029 0.029 0.014 0.054 0.011 −56.32 −57.75 −51.17 −64.14
GRB060421 0.092 −0.038 0.557 0.082 0.04 0.015 0.249 0.041 −56.87 −59.92 −55.33 −50.46

20%
noise

GRB050712 0.031 −0.011 0.155 0.056 0.022 0.008 0.161 0.035 −28.73 −25.69 3.85 −37.46
GRB050318 0.011 −0.007 0.075 0.047 0.009 0.006 0.061 0.039 −16.43 −19.69 −19.51 −17.34
GRB050416A 0.038 −0.01 0.078 0.023 0.03 0.008 0.06 0.014 −20.36 −19.71 −23.32 −38.02
GRB050607 0.036 −0.011 0.15 0.053 0.031 0.01 0.175 0.032 −13.92 −9.42 16.3 −40.4
GRB050713A 0.015 −0.006 0.043 0.019 0.012 0.005 0.04 0.013 −15.14 −15.83 −7.65 −30.87
GRB050822 0.012 −0.004 0.223 0.024 0.011 0.004 0.176 0.015 −10.2 −9.64 −21.26 −39.39
GRB050824 0.026 −0.006 0.276 0.105 0.016 0.005 0.243 0.06 −36.94 −26.72 −11.73 −43.25
GRB050826 0.008 −0.004 0.328 0.064 0.005 0.003 0.228 0.041 −29.66 −32.24 −30.38 −35.41
GRB050915B 0.021 −0.006 0.085 0.13 0.012 0.004 0.059 0.071 −42.53 −31.23 −30.44 −45.47
GRB051016A 0.089 −0.025 0.327 0.048 0.049 0.013 0.199 0.025 −44.35 −45.47 −39.16 −48.04
GRB051109A 0.011 −0.005 0.136 0.015 0.009 0.004 0.051 0.011 −18.25 −20.91 −62.47 −28.61
GRB051221A 0.021 −0.007 0.082 0.058 0.017 0.006 0.071 0.04 −19.03 −18.86 −14.41 −31.45
GRB060105 0.007 −0.002 0.011 0.011 0.004 0.002 0.012 0.004 −49.46 −30.98 14.36 −67.13
GRB060108 0.026 −0.008 0.147 0.075 0.02 0.006 0.12 0.05 −24.59 −22.87 −18.53 −33.57
GRB060109 0.01 −0.003 0.347 0.047 0.008 0.003 0.291 0.023 −22.04 −4.53 −16.26 −51.69
GRB060124 0.014 −0.008 0.034 0.019 0.012 0.007 0.029 0.01 −13.29 −11.75 −15.88 −45.85
GRB060218 0.013 −0.005 0.582 0.064 0.01 0.004 0.876 0.045 −17.72 −17.19 50.51 −30.2
GRB060306 0.075 −0.026 0.395 0.024 0.018 0.006 0.108 0.019 −75.59 −77.65 −72.61 −20.71
GRB060418 0.066 −0.034 0.11 0.029 0.03 0.015 0.056 0.011 −53.89 −55.46 −49.07 −62.74
GRB060421 0.092 −0.038 0.557 0.082 0.041 0.016 0.262 0.041 −55.29 −58.42 −53.06 −50.02

Note. The first three columns give the error fraction for the original BPL fit, and the second three columns give the error fraction for the new W07 fit after
reconstruction. The final three columns give the percentage decrease in the error fraction after reconstruction.

(This table is available in its entirety in machine-readable form.)
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Figure 8. Distribution of the relative percentage decrease for the parameters of the BPL fit when we apply the BPL for the reconstruction.

Figure 9. Gaussian process for the GRB 121217A. The left panel shows the GP fit, and the right panel shows the reconstructed LCs.

Table 4
The Average Percentage Decrease in the Error Fractions for the Various Parameters, Following the Reconstruction

Reconstruction Process ( )% Tlog
avg

a10 ( )% Flog
avg

a10 a%avg
a a%avg

1 a%avg
2

W07 reconstruction (10%) −33.33 −35.03 −43.32 L L
W07 reconstruction (20%) −29.49 −31.24 −40.57 L L

BPL reconstruction (10%) −33.3 −30.78 L −14.76 −43.9
BPL reconstruction (20%) −29.88 −27.2 L −1.7 −41.1

Gaussian process (W07) −24.9 −27.9 −41.5 L L

Gaussian process (BPL) −15.02 −11.91 L −25.10 −35.92
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slope of the LC before the break in the BPL fitting can be very
flat, which will cause the uncertainty to be high compared to
the α1 value and cause the error fraction to be >1. Because of
this, we remove the GRBs that exhibit a flat α1 or |α1|< 0.1.
We see a percentage decrease in the parameters of 15.02% for

( )Tlog a , 11.91% for ( )Flog a , 25.10% for α1, and 35.92% for α2.
Again, the BPL fitting results show a similar trend to the W07
fits. The histogram distributions of Figure 11 show the
distribution of the relative percentage decrease of the four
BPL parameters. The results of the GP for each GRB are given
in Table 6, and the average percentage decrease in the
uncertainties of the parameters for all GRBs are given in
Table 4.

4. Summary and Conclusion

We propose a relatively simple method for GRB LCR for
LCs with X-ray plateaus observed by Swift. This case study
involves two functional form toy models, the W07 and the BPL
model and a limited GRB sample, as the main aim is to open
the way for a new method that can be tested with more fitting
functions and different statistics (e.g., Bayesian) in the future.
Our method assumes the W07 and the BPL models as the

starting model for reconstruction, but the method presented here
is versatile and can be extended to any other model (smooth
BPL, double BPL, etc). Even models such as the pulse model,
which includes the prompt emission, can be explored in the
future. We also took a further step in the analysis adopting GPs

Figure 10. Distribution of the relative percentage decrease for the parameters of the W07 function following GP reconstruction.

Table 5
The W07 Error Fractions of ( )Tlog a10 , ( )Flog a10 and αa before and after Performing the GP Reconstruction (with the Relative Percentage Decrease in Error for All

Three Parameters)

GRB ID ( )EF Tlog i10 ( )EF Flog i10 aEF i ( )EF Tlog i10
RC ( )EF Flog i10

RC aEF i RC ( )% Tlog i10 ( )% Flog i10 a% i

GP (W07)

050712 0.019 0.005 0.044 0.012 0.003 0.028 −34.01 −31.09 −36.97
050318 0.011 0.006 0.046 0.008 0.004 0.031 −26.66 −27.68 −32.19
050416A 0.024 0.005 0.018 0.016 0.003 0.011 −32.44 −34.04 −38.46
050607 0.021 0.005 0.044 0.017 0.004 0.028 −18.58 −19.62 −36.98
050713A 0.01 0.003 0.018 0.008 0.002 0.011 −18.81 −15.29 −35.28
050822 0.011 0.003 0.026 0.008 0.002 0.015 −29.98 −33.14 −43.56
050824 0.025 0.006 0.094 0.015 0.003 0.056 −39.2 −37.19 −40.83
050826 0.029 0.019 0.131 0.02 0.012 0.156 −32.22 −36.64 19.63
050915B 0.036 0.008 0.115 0.024 0.005 0.068 −34.36 −37.46 −41.29
051016A 0.033 0.006 0.051 0.024 0.005 0.025 −25.01 −17.02 −51.08
051109A 0.012 0.005 0.016 0.007 0.002 0.009 −41.5 −49.53 −40.98
051221A 0.02 0.005 0.051 0.013 0.004 0.033 −33.79 −32.68 −34.76
060105 0.004 0.001 0.007 0.003 0.001 0.003 −23.04 −20.31 −52.2
060108 0.024 0.006 0.071 0.018 0.004 0.047 −23.29 −28.84 −33.57
060109 0.014 0.005 0.057 0.008 0.003 0.025 −40.9 −44.23 −55.74
060124 0.008 0.004 0.012 0.005 0.003 0.007 −34.32 −34.36 −45.13
060218 0.028 0.014 0.082 0.013 0.005 0.062 −54.56 −65.62 −24.38
060306 0.012 0.003 0.024 0.01 0.002 0.018 −19.95 −26.66 −26.92
060418 0.018 0.005 0.03 0.009 0.003 0.01 −48.49 −37.4 −67.46
060421 0.041 0.01 0.087 0.032 0.008 0.046 −21.65 −20.75 −46.81

Note. The first three columns give the error fraction for the original W07 fit, and the second three columns give the error fraction for the new W07 fit after GP
reconstruction. The final three columns give the percentage decrease in the error fraction after GP reconstruction.

(This table is available in its entirety in machine-readable form.)
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with the aim of being completely model independent. We find
that after testing our method on a sample of 218 good GRBs, we
obtain a reduction in the error bars of the plateau parameters of
the W07 fitting—in this case, we have a reduction of 37.22% on
average for all parameters when the noise is set at the 10% level,
and a 33.77% reduction, on average, for all parameters with a
20% noise level. Regarding the BPL, we have a reduction of
30.69% on average for the 10% noise level and a reduction of
24.97% for the 20% noise level. For the GP, we have a decrease
of 31.43% for the W07 and 21.99% for the BPL on average. The
reduction of the uncertainties on the plateau parameters can be
crucial for many cosmological studies that benefit from precise
measurements of these parameters, including the investigation of
Population III stars or the use of GRBs as standard candles to
study the early Universe.

There are many advantages for the community from our
study because filling in the temporal gaps of observed LCs with

a toy model solves the problem of the lack of data and thus
allows us to use the reconstructed LC for

1. discovering plateau features in GRB LCs, which other-
wise may remain undetected,

2. increasing the sample size for building GRB correlations
among the plateau parameters,

3. testing theoretical models that would use the recon-
structed LCs because the method is general and can be
used with many different functions,

4. cosmological studies to reduce the scatter on the
cosmological parameters. This will be achieved using
the enhanced GRB correlations involving the plateau
emission built with LCR,

5. estimating the redshift information with a machine-
learning analysis that uses the new, more accurate
estimates of the plateau parameters. This can allow us

Figure 11. Distribution of the relative percentage decrease for the parameters of the BPL function following GP reconstruction.

Table 6
Data for the BPL Fit of the GP-based Reconstruction

GP (BPL)

GRB ID ( )EF Tlog i10 ( )EF Flog i10 aEF 1 aEF 2 ( )EF Tlog i10
RC ( )EF Flog i10

RC aEF 1 RC aEF 2 RC ( )% Tlog i10 ( )% Flog i10 a% 1 a% 2

050712 0.031 −0.011 0.155 0.056 0.02 0.008 0.114 0.035 −36.96 −31.16 −26.56 −36.7
050318 0.011 −0.007 0.075 0.047 0.009 0.005 0.057 0.037 −21.44 −24.84 −25.07 −22.08
050416A 0.038 −0.01 0.078 0.023 0.03 0.008 0.054 0.013 −22.17 −20.55 −30.49 −41.1
050607 0.036 −0.011 0.15 0.053 0.033 0.01 0.265 0.03 −9.03 −6.18 76.48 −44.07
050713A 0.015 −0.006 0.043 0.019 0.012 0.005 0.038 0.013 −19.09 −17.92 −10.82 −33.81
050822 0.012 −0.004 0.223 0.024 0.011 0.004 0.126 0.014 −13.12 −10.96 −43.37 −40.74
050824 0.026 −0.006 0.276 0.105 0.016 0.004 0.257 0.056 −36.37 −29.54 −6.94 −47.22
050826 0.008 −0.004 0.328 0.064 0.009 0.004 0.387 0.068 18.19 10 18.16 6.79
050915B 0.021 −0.006 0.085 0.13 0.017 0.005 0.068 0.085 −19.3 −12.5 −19.55 −34.08
051016A 0.089 −0.025 0.327 0.048 0.055 0.016 0.123 0.029 −38.03 −36.85 −62.33 −38.73
051109A 0.011 −0.005 0.136 0.015 0.009 0.004 0.043 0.01 −17.46 −18.84 −67.92 −33.14
051221A 0.021 −0.007 0.082 0.058 0.015 0.005 0.062 0.038 −29.47 −27.45 −24.21 −34.37
060105 0.007 −0.002 0.011 0.011 0.004 0.002 0.012 0.004 −47.21 −29.55 16.34 −66.73
060108 0.026 −0.008 0.147 0.075 0.02 0.006 0.13 0.05 −21.43 −19.39 −11.85 −33.82
060109 0.01 −0.003 0.347 0.047 0.008 0.003 0.249 0.022 −22.93 −1 −28.48 −52.56
060124 0.014 −0.008 0.034 0.019 0.012 0.007 0.026 0.009 −15.57 −14.13 −24.78 −49.47
060218 0.013 −0.005 0.582 0.064 0.011 0.004 0.551 0.045 −16.69 −15.08 −5.28 −29.79
060306 0.075 −0.026 0.395 0.024 0.017 0.005 0.092 0.019 −77.62 −79.69 −76.75 −20.34
060418 0.066 −0.034 0.11 0.029 0.031 0.015 0.068 0.01 −52.96 −55.91 −38.76 −64.8
060421 0.092 −0.038 0.557 0.082 0.053 0.02 0.177 0.051 −43.01 −46.22 −68.23 −37.96

Note. The BPL error fractions of ( )Tlog a10 , ( )Flog a10 , α1, and α2 before and after GP reconstruction (with the relative percentage decrease in the error for all three
parameters). The first four columns give the error fraction for the original BPL fit, and the second four columns give the error fraction for the new BPL fit after GP
reconstruction. The final four columns give the percentage decrease in the error fraction after reconstruction.

(This table is available in its entirety in machine-readable form.)
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to determine the redshift of the high-z GRBs and thus
further enhance the studies of Population III stars,

6. and a classification of GRBs according to their morph-
ology with increased accuracy.

As a final remark, this reconstruction is based on the LCs
provided by Swift, but it can be extended to any current or
future missions and across different wavelengths as well.
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