

Concurrent Real-Time optimization of detecting

unexpected tasks in IoT design process using GA

Adam Górski
Dept. of Information Technologies

 Jagiellonian University
Cracow, Poland

a.gorski@uj.edu.pl

Maciej Ogorzałek
Dept. of Information Technologies

 Jagiellonian University
Cracow, Poland

maciej.ogorzalek@uj.edu.pl

Abstract— In this paper we present a genetic algorithm for
concurrent real-time optimization for detecting unexpected
tasks in IoT design process. The process can be split into two
phases which impact each other in real-time. Modification of
one phase modifies the second one. The algorithm detects
unexpected tasks as a connection of parts of predicted tasks.
Therefore, there can exist more than one way to resolve the
unexpected situation. The algorithm searches for optimal
solution making concurrent optimization of two phases of the
design process. Use of genetic algorithm helps also to eliminate
connections of subtasks which do not give a good result.

Keywords— optimization, genetic algorithm, artificial
intelligence, Internet of Things, unexpected tasks

I. INTRODUCTION

Development of new technologies requires development
of new tools for optimization. In this paper we investigate an
optimization problem which appeared in the Internet of
Things (IoT) [1] design process. This problem is related to
assignment of unexpected tasks for embedded systems
[2][3][4]. Internet of Things (IoT) is a network consisting of
connected “things” like: physical systems, sensors,
communication protocols, embedded systems, etc. The
elements of the network should be uniquely identified. One of
popular methods of identification are RMID (Radio
Frequency IDentification) tags [6]. Some elements of IoT
network are able to perform/execute tasks. Such elements can
be divided into two groups: Processing Resources (PRs) and
Communication Resources (CRs). PRs are responsible for
tasks execution. CRs provide communication between
connected PRs. PRs can be further divided into two groups:
Dedicated Resources (DRs) which are able to execute only
one specific type of task, and Universal Resources (URs)
which can execute more than one type of task. IoT concepts
are widely used in “smart” solutions like smart cities [7][8],
smart transport [9], smart houses [5][10] and many others
[11]. The designers of IoT systems concentrate on
communication [6] [12] and security problems [13][14][15].

The design methods, like for example [16], do not
investigate unexpected situations and concentrate only on
extending IoT network with new elements. When IoT network
is designed, modifications to a new situation is not always
possible as the network cannot be freely extended by new
resources. The problem of unexpected tasks was described by
Górski and Ogorzałek [2][4] but only for the case of
embedded systems. The strongest constraint of their algorithm
is that all of the information about unexpected tasks must be
given. In [3] authors propose an algorithm to detect
unexpected tasks for embedded systems. The algorithm finds
unexpected tasks as connections of some numbers of subtasks
of predicted tasks. The authors indicated that unexpected
situation can be resolved in different ways, but did not search
for optimal set of the subtasks. Therefore, the algorithm was

finding the first solution, not necessary the best one. In this
paper we also concentrate on situation when unexpected tasks
can be presented as a set of some numbers of subtasks of other
tasks that need to be executed by the network. However it is
not known at the beginning which set of the subtasks is better.
What is more, it is not known which sets of subtasks can be
even equal to execute unexpected task. Therefore, the problem
can be divided into two phases. The first phase is responsible
for finding number of subtasks necessary to solve unexpected
situation. The second phase finds the optimal assignment of
subtasks to the resources. However every subtask can be
executed on many elements of IoT network which can consist
of many resources. Every resource can have different values
of optimizing parameters for each subtasks. Thus we would
not have been able to find the optimal set of subtasks if those
two phases would have been optimized separately. Moreover,
separate optimization of those phases does not give the
information about optimization criteria. Therefore, these two
phases must be optimized concurrently. It has to be noted that
optimization in each phase impacts the other in real-time.
Further description of the problem is given in chapter 4.

In this paper we propose a genetic algorithm to solve the
optimization problem of two concurrent phases which impact
each-other in real-time during the IoT design process. Such
algorithms [17] start with an initial population of individuals,
and using genetic operators: selection, crossover and mutation
generate new populations of individuals. Presented algorithm
enables to eliminate connections of subtasks which do not
solve unexpected situations. The algorithm chooses the best
connection of subtasks and concurrently assigns them to
resources. Genetic algorithms are known for being able to
escape local minima of optimized function in the parameter
space. Further, using genetic solution to the problem
investigated in this paper can help to generate different set of
subtasks to solve unexpected situation.

The paper is organized as follows: chapter 2 gives basic
notations used in the paper, chapter 3 describes representation
of IoT and the IoT design process. Chapter 4 contains general
presentation of new optimization problem that needs to be
solved. In chapter 5 the algorithm is described. Chapter 6
gives the description of experiments. In chapter 7 conclusions
are discussed and future work is also considered.

II. BASIC NOTATION

PR – processing resource
DR – dedicated resource
UR – universal resource
CR – communication resource
Ti – i number of task
G=(T,E) – task graph
E – edge in the graph
eij ϵ E – egde between tasks Ti and Tj

74

t – time of execution
ts – starting moment of execution
c – cost of execution
tci,j – communication time between tasks Ti and Tj
b – bandwidth of Communication Resource
d – amount of data that need to be send between two

connected tasks
n – number of predicted tasks
u – number of unexpected tasks
v – number of processing resources
m – number of universal resources
o – number of dedicated resources
Π – number of individuals in each generation

III. PRELIMINARIES

In this paper we use the concept of task graph G=(T,E)
representation to describe behavior of an IoT network. Some
elements of the network (especially embedded systems)
execute tasks (T). Tasks are represented in the graph as nodes.
Each edge eij ϵ E represents amount of data that needs to be
transferred between two connected tasks Ti and Tj ϵ T. Fig. 1
presents an example of a part of task graph.

T2

T1

T6

T3 T4

80 100

12 16

T5

40

Fig. 1. Example of a task graph with inserted unexpedted tasks

Table I presents an example of a resource database for the
part of the network described by the task graph form Fig.1.

TABLE I. RESOURCE DATABASE

UR1
C=500

UR2
C=400 DR1 DR2

t c t c t c t c
T1 150 7 125 5 30 150 20 350

T2 80 2 50 3 20 100 10 180

T3 300 22 350 19 100 300 80 450

T4 120 24 150 22 12 128 8 350

T5 230 32 200 28 55 45 63 40

T6 30 25 60 18 32 120 40 100

CR1, b=2 c=4 c=3 c=12

CR2, b=10 C=5 c=4 c=18

 The example consists of 6 tasks: T1, T2, T3, T4, T5 and
T6. Each task can be executed by a single resource. Resource
can be a single element of the IoT or a part of an element.
Tasks T6 T2, and T3, T4 are parallel and can be executed at
the same time by different resources. Each CR has
a bandwidth b which describes amount of data that can be
transferred in a time unit. The tasks are characterized by two
parameters: time and cost of its execution on each resource.
DRs are fast but expensive. URs are cheaper but slower. The
IoT designer must find the compromise between time and cost
of the network.

The target IoT network must meet time constrains – all the
tasks in the network must finish their execution before the
maximum allowed time:

 jiriij
e

tcttsts
i

ji

,,

,

++≥∀ (1)

where:












=

jiCR

ji
ji b

d
tc

,

,

, (2)

where: CRi,j is communication resource which connects
PRs executing tasks Ti and Tj. If Ti and Tj are executed on the
same resource transmission time is equal to zero.

Every task presented in the graph from Fig. 1 can be
divided into some number of subtasks.

Unexpected tasks appear when IoT network is ready and
no new element cannot be added to the network. They can
appear at any moment of the work of the network and must be
inserted into task graph. If the target IoT network consists of
m universal resources, p communication resources, the task
graph contains n tasks and there are u unexpected tasks, the
total cost of the network (C’o) can be described by the
following formula:

 
== ===

+++=
u

s
l

p

k

P

l
PCCR

n

j
j

m

i
URo CCCCC

k

lki
11 1

,

11

' (3)

where: CRk is a type of k-th communication resource,
which is connected to Pk processing resource, and PCl is
a type of l-th PR connected to CRk.

IV. NEW PROBLEM STATEMRNT

The problem which we investigate in this paper is the
concurrent optimization of two phases which impact each-
other in real-time. The first phase is responsible for providing
the parameters to optimize. The second phase optimizes the
parameters given in the first phase and checks if the selection
made in the first phase was correct. Only the verification in
the second phase can give the answer if the selection made in
the first phase can even give a result. If not, the optimized
parameters must be changed. However, if optimizing
parameters are changed the optimization in the second phase
must also be changed or even repeated from the beginning.
Therefore, it is not possible to optimize the phases separately.
However, in case of different choice of optimizing parameters
how can we know which choice is better? To solve this
problem we must assume that there exists at least one common
parameter for each of the solutions which allows to compare
the results. Therefore, as it can be observed, the optimization
problem is multicriterial:

))(),...,(),(min()(21 nxfxfxfxf = (4)

 Sxx n ∈...1 (5)

where: S is a set of possible solutions. 75

For better presentation of the problem let us consider
a simple example. Let us assume that we would like to pick
up an apple from a tree. There are several possibilities to do
that. We can climb the tree, shake the tree, use a ladder or a
tool. Every choice gives us different parameters to optimize.
If we choose to climb the tree we can optimize the path.
Choosing to shake the tree makes us optimize a point of
shaking and a force. However, the main question is how to
decide which way is better without picking up the apple?
Therefore, there must be at least one parameter which is
common for every choice. In that case such a parameter can
be, for example, a time of getting the apple. The problem can
be split into two phases. First phase chooses the way of
picking up the apple. The chosen way specifies the parameters
to optimize. The second phase optimizes chosen parameters.
However, during the second phase it can be found that it is
impossible to pick the apple according to the way chosen in
the first phase. What is very important, such information was
not given at the beginning of the process. In the analysed case,
such a situation can appear if the decision was to climb a tree
and after some distance it was observed that it was impossible
to continue climbing. The second phase modifies the first one.
Modification of the first phase (changing a way of picking up
an apple) gives different parameters to optimize and thus
immediately changes the second phase. Another question is:
should all the processes be repeated in such a case or maybe it
is better to connect performed steps with another way of
obtaining the apple?

We believe that such an easy example gives a good insight
into the problem that is investigated in this paper. In the next
chapter we define the optimization problem for the IoT
network design process.

A. Concurrent Real-Time Optimization in IoT Design
Process

 We assume that during work IoT network encounters
unexpected situations. Therefore, the network must execute
some unexpected tasks. There is no upfront information about
those tasks. The only information which is given is associated
with the target (what kind of data is needed to be obtained).
Therefore, to solve this problem all expected tasks must be
split into possible number of subtasks. In this paper we
concentrate on situation where unexpected tasks can be solved
as connection of some subtasks of other tasks. The
optimization is divided into two phases. The first phase is
responsible for choosing the number and the types of subtasks.
The second phase gives the parameters to optimize and
searches for their optimal values by making tasks assignment.
Typical goals of optimization can be the cost of the network,
time of execution of all the tasks, power consumption, etc. The
optimization process of both phases must be done
concurrently. Otherwise, if the phases would be optimized
sequentially, the first phase could only concentrate on the
number of subtasks. That information is not necessarily
important for IoT designer. Without a selection of the
subtasks, task assignment cannot be made. The second phase
also verifies the choice made in the first phase. If anything
changes in one of the phases it will affect the other one in real-
time. To solve such a problem we propose to use a genetic
algorithm. The algorithm is described in the next section.

V. THE ALGORITHM

During the work of IoT, unexpected situations are met.
The only information which is given is the type of target data.

First, in accordance with genetic rules, the population of
random genotypes must be created. The number of generated
individuals (Π) is controlled by α parameter and is equal to the
formula:

 vs **α=Π (6)

Where s is a number of possible subtasks and v is a number
of possible types of PR in an IoT network.

The genotype is a string which contains numbers of the
resources for each subtask chosen in the first optimization
phase. For each genotype subtasks are chosen randomly.
Therefore, selected subtasks may be different for every
genotype. The resources are also chosen randomly.

We characterize the IoT network by two parameters:
execution time and cost of the system. We decided to search
for the cheapest solution which satisfies the time constrains.
After creating a genotype the values of time and cost are
calculated. As it was mentioned in previous chapters some
generated solutions are invalid. It means that for some of
them, desired values were not obtained. Therefore,
connections of subtasks in those solutions are not valid too.

In this paper we decided to use standard genetic operators:
crossover, mutation, cloning and ranked selection. Solutions
are ranked by cost. At the top of the rank list valid solutions
are placed. However, invalid solutions are not necessarily
passed over. Because some of the genotypes have different
number of genes after crossover operation it is possible to
obtain solution that is not valid. The algorithm stops after
ε generations without better solution.

VI. EXPERIMENTAL RESULTS

According to our best knowledge this is the first paper
which deals with concurrent real-time optimization in IoT
design process. In table II we present experimental results for
randomly generated graphs with 10, 20 30, 40 and 50 nodes.
It is known from literature [18][19] that crossover operator in
the genetic algorithm typically gives better solutions than
mutation. Therefore in the experiments 70% of obtained
individuals in each population are obtained by crossover, 20%
by mutation and 10% by cloning. The rest of the parameters
which control the evolution process were arbitrarily set for
every experiment as: α=100, v=4 and ε=5.

TABLE II. THE RESULTS

N Tm
Best results Worst results

time cost gen time cost gen
10 300 284 1600 5 290 1978 10

20 400 396 2649 15 303 3255 16

30 1000 975 2842 22 960 2852 19

40 1600 1175 4632 42 1156 5527 47

50 1500 1422 4538 39 1401 5121 44

To simplify computations we assumed that all of the
unexpected tasks appeared after all predicted tasks were
executed. Therefore, the initial cost and time of execution
predicted tasks is known.

 In most of cases with decreasing cost of the task
execution, time of execution of all the tasks is rising. It can be
observed for graphs with 20, 30 40 and 50 nodes. For the
graph with 20 nodes the best result with cost equal to 2649,

76

the time of execution of all the tasks was equal to 396. In the
worst case experiment the cost was equal to 3255 and the time
of execution of all the tasks was equal to 303. For graph with
30 nodes solution with lower cost (2842) was characterized by
time of execution of all the tasks equal to 975, meanwhile
solution 15 time units faster (975) was 10 cost units cheaper
(2852). For graphs with 40 and 50 nodes such difference was
even greater. The cheapest solution for a graph with 40 nodes
(4632) has time equal to 1422. Solution which is only 19 time
units slower has cost equal to 5527 (almost 900 cost units
more in comparison with the best result). The cheapest result
for graph with 50 nodes (4538) was characterized by time
value equal to 1422. The worst solution for graph with 50
nodes was 21 time units faster (1401) but almost 600 cost units
more expensive (cost equal to 5121). Only for graph with 10
nodes the situation was different. In the best result not only
cost of the system was lower (equal to 1600 for the best
individual and 1978 for the worst solution) but also time of
execution of all the tasks was lower (284 for the best result
and 290 for the worst result). We suppose that such a situation
could appear because of several reasons. According to
formula (9), for graph with 10 nodes in each population 4000
individuals were generated. For other graphs much more
results were created in every population: 8000 for graph with
20 nodes, 12000 for graph with 30 nodes, 16000 for graph
with 40 nodes and 20000 for graph with 50 nodes. Because
subtasks are chosen randomly it is possible that any solution
of detected unexpected situation contains unnecessary
subtask. After generating more results the chance of not
existing unnecessary tasks is lower, but not equal to zero
because of probabilistic nature of the algorithm. It can be also
observed that the larger the task graph the more generations of
individuals were created. This is because for graph with more
tasks the search space is greater.

In table II we present the results of experiment in case
when more individuals are created using mutation parameter
and less using crossover. The number of individuals in each
population and the stop condition is the same as in previous
set of experiments. Therefore the parameters which control the
evolution have the following values: α=100, v=4, β=0,2,
γ=0,6, δ=0,2, ε=5.

VII. CONCLUSIONS

In this paper we present genetic algorithm to concurrent
optimization in two phases which impact each-other in real
time in IoT design process. The problem appears when IoT
network must execute unexpected tasks and no information
about the tasks is given. The algorithm is able to detect
unexpected tasks and search for their better solutions. It is also
able to eliminate connections of subtasks which do not give an
acceptable solution.

Future work will concentrate on providing new algorithm
to solve the presented problem. We will also concentrate on
other aspects such as dependence on choice of constants and
parameters for the problems of concurrent real-time
optimisation and unexpected tasks in IoT design process.
Another important issue is to connect presented method with
other algorithms to obtain cheaper or faster IoT networks.

REFERENCES

[1] C. R. Srinivasan, B. Rajesh , P. Saikalyan, K. Premsagar, and E. S.
Yadav, “A review on the different types of internet of things (IoT)”,

Journal of Advanced Research in Dynamical and Control Systems,
11(1), 2019, pp. 154-158.

[2] A. Górski and M. Ogorzałek “Assignment of unexpected tasks in
embedded system design process”, Microprocessors and
Microsystems, Vol. 44, 2016, pp. 17-21.

[3] A. Górski and M. Ogorzałek ”Auto-detection and assignment of
unexpected tasks in embedded systems design process”, in proceedings
of the 23rd International Workshop of the European Group for
Intelligent Computing in Engineering, 2016, pp. 179-188.

[4] A. Górski and M. Ogorzałek “Assignment of unexpected tasks for a
group of embedded systems”, IFAC-PapersOnLine, vol. 51 issue 6,
2018, pp. 102-106.

[5] T. Perumal, E. Ramanujam, S. Suman, A. Sharma and H. Singhal,
"Internet of Things Centric-Based Multiactivity Recognition in Smart
Home Environment," in IEEE Internet of Things Journal, vol. 10, no. 2,
pp. 1724-1732, 15 Jan.15, 2023, doi: 10.1109/JIOT.2022.3209970.

[6] I. Yaqoob, I. A. Targio Hashem, A. Ahmed, S.M. Ahsan Kazmi and
C. S Hong, “Internet of things forensics: Recent advances, taxonomy,
requirements, and open challenges”, Future Generation Computer
Systems 92, 2019, pp. 265–275.

[7] G. Pan, G. Qi, W. Zhang, S. Li, Z. Wu and L. T. Yang, "Trace analysis
and mining for smart cities: issues, methods, and applications," in IEEE
Communications Magazine, vol. 51, no. 6, pp. 120-126, June 2013,
doi: 10.1109/MCOM.2013.6525604.

[8] G. Chen, W. Zou, W. Jing, W. Wei and R. Scherer, "Improving the
Efficiency of the EMS-Based Smart City: A Novel Distributed
Framework for Spatial Data," in IEEE Transactions on Industrial
Informatics, vol. 19, no. 1, pp. 594-604, Jan. 2023,
doi: 10.1109/TII.2022.3194056.

[9] S. Greengard, “Smart transportation networks drive gains”.
Communications of the ACM 58 (1), 2015, pp. 25–27.

[10] A. Al Hammadi, A. Al Zaabi, B. Al Marzooqi, S. Al Neyadi,
Z. Al Hashmi, and M. Shatnawi, “Survey of IoT-Based Smart Home
Approaches”, Proceedings of the International conference on Advances
in Science and Engineering Technology (ASET), 2019
pp. 1-6, doi: 10.1109/ICASET.2019.8714572.

[11] J. L. Hernández-Ramos, M. P. Pawlowski, A. J. Jara, A. F. Skarmeta
and L. Ladid, "Toward a Lightweight Authentication and
Authorization Framework for Smart Objects," in IEEE Journal on
Selected Areas in Communications, vol. 33, no. 4, pp. 690-702, April
2015, doi: 10.1109/JSAC.2015.2393436.

[12] J. Jagannath, N. Polosky, A. Jagannath, F. Restucci and T. Melodia,
“Machine learning for wireless communications in the Internet of
Things: A comprehensive survey”, Ad Hoc Networks 93 101913, 2019.

[13] Y. Li, Y. Zuo, H. Song and Z. Lv, "Deep Learning in Security of
Internet of Things," in IEEE Internet of Things Journal, vol. 9, no. 22,
pp. 22133-22146, 15 Nov.15, 2022, doi: 10.1109/JIOT.2021.3106898.

[14] K. Sha, W. Wei, T. A. Yang, Z. Wan and W. Shi, "On security
challenges and open issues in Internet of Things”. Future Generation
Computer Systems 83, 2019, pp. 326–337.

[15] Z. A. Baig, S. Sanguanpong, S. N. Firdous, V. N. Vo, T. G. Nguyen
and C. So-In, ‘‘Averaged dependence estimators for DoS attack
detection in IoT networks,’’ Future Generation Computer Systems 102,
2020 pp. 198–209.

[16] A. Bąk, R. Czarnecki and S. Deniziak, “Synthesis of Real-Time
Applications for Internet of Things,” Lecture Notes in Computer
Science, Vol. 7719, 2013, pp. 35-49.

[17] J. H. Holland, “Adaptation in Natural and Artificial Systems: An
Introductory Analysis with Applications to Biology, Control, and
Artificial Intelligence University of Michigan Press, Ann Arbor, MI
(reprinted, MIT Press, Cambridge, MA), 1992.

[18] D. Zaharie, “Influence of crossover on the behavior of Differential
Evolution”, Applied Soft Computing, volume 9, issue 3, 2009
pp. 1126-1138.

[19] A. Sharma and M. Sinha, "Influence of crossover and mutation on the
behavior of Genetic algorithms in Mobile Ad-hoc Networks," 2014
International Conference on Computing for Sustainable Global
Development (INDIACom), New Delhi, India, 2014, pp. 895-899,
doi: 10.1109/IndiaCom.2014.6828092.

77

	Welcome Message
	Exploring Radiologists’ Workload-Related Gaze Patterns with AI: A Study of Workload and X-ray Abnormalities
	Multilevel Image Segmentation of Breast Cancer using Improved Differential Evolution
	Identifying Regions of Intensive Cyclone using Multilevel Thresholding with Variant of Differential Evolution
	Whale Optimization of an Echo State Neural Network for Electric Load Forecasting
	Multi-Scale Evolving Deep Neural Networks for Retinal Funds Image Segmentation
	Approximating and Predicting Energy Consumption of Portable Devices
	Examining the Success of an Open Source Software Project Analysing Its Repository
	Evolutionary Computation-based Assessment Model for Human-Machine Co-Learning on Taiwanese and English Language between Taiwan and Japan
	Nature‑Inspired Techniques for Dynamic Constraint Satisfaction Problems
	Fake News Identification Using Artificial Immune Systems
	An Evolutionary Ensemble Learning Method for Endpoint Quality Prediction in Steelmaking Process
	A multi-objective optimization scheduling for multi-energy system in iron and steel enterprise
	Virtual Worlds and Artificial Intelligence for Indigenous Engagement
	Niching Improves Recombinative Search: Revisiting the New York City Tunnels Problem
	Electricity Technician Dispatch Routing Optimization
	Meta-Heuristic Algorithm for Model Order Reduction using the Nu-Gap Metric
	Designing Photo-Voltaic Array Layouts using a Genetic Algorithm
	Concurrent Real-Time optimization of detecting unexpected tasks in IoT design process using GA
	On the Use of Machine-Learning based Surrogate Models in Continuous Optimisation

