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Abstract— In this paper we present a genetic algorithm for 
concurrent real-time optimization for detecting unexpected 
tasks in IoT design process. The process can be split into two 
phases which impact each other in real-time. Modification of 
one phase modifies the second one. The algorithm detects 
unexpected tasks as a connection of parts of predicted tasks. 
Therefore, there can exist more than one way to resolve the 
unexpected situation. The algorithm searches for optimal 
solution making concurrent optimization of two phases of the 
design process. Use of genetic algorithm helps also to eliminate 
connections of subtasks which do not give a good result. 

Keywords— optimization, genetic algorithm, artificial 
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I. INTRODUCTION  

Development of new technologies requires development 
of new tools for optimization. In this paper we  investigate an 
optimization problem which appeared in the Internet of 
Things (IoT) [1] design process. This problem is related to 
assignment of unexpected tasks for embedded systems 
[2][3][4]. Internet of Things (IoT) is a network consisting of 
connected “things” like: physical systems, sensors, 
communication protocols, embedded systems, etc. The 
elements of the network should be uniquely identified. One of 
popular methods of identification are RMID (Radio 
Frequency IDentification) tags [6]. Some elements of IoT 
network are able to perform/execute tasks. Such elements can 
be divided into two groups: Processing Resources (PRs) and 
Communication Resources (CRs). PRs are responsible for 
tasks execution. CRs provide communication between 
connected PRs. PRs can be further divided into two groups: 
Dedicated Resources (DRs) which are able to execute only 
one specific type of  task, and Universal Resources (URs) 
which can execute more than one type of task.  IoT concepts 
are widely used in “smart” solutions like smart cities [7][8], 
smart transport [9], smart houses [5][10] and many others 
[11]. The designers of IoT systems concentrate on 
communication [6] [12] and security problems [13][14][15].  

The design methods, like for example [16], do not 
investigate unexpected situations and concentrate only on 
extending IoT network with new elements. When IoT network 
is designed, modifications to a new situation is not always 
possible as the network cannot be freely extended by new 
resources. The problem of unexpected tasks was described by 
Górski and Ogorzałek [2][4] but only for the case of 
embedded systems. The strongest constraint of their algorithm 
is that all of the information about unexpected tasks must be 
given. In [3] authors propose an algorithm to detect 
unexpected tasks for embedded systems. The algorithm finds 
unexpected tasks as connections of some numbers of subtasks 
of predicted tasks. The authors indicated that unexpected 
situation can be resolved in different ways, but did not search 
for optimal set of the subtasks. Therefore, the algorithm was 

finding the first solution, not necessary the best one. In this 
paper we also concentrate on situation when unexpected tasks 
can be presented  as a set of some numbers of subtasks of other 
tasks that need to be executed by the network. However it is 
not known at the beginning which set of the subtasks is better. 
What is more, it is not known which sets of subtasks can be 
even equal to execute unexpected task. Therefore, the problem 
can be divided into two phases. The first phase is responsible 
for finding number of subtasks necessary to solve unexpected 
situation. The second phase finds the optimal assignment of 
subtasks to the resources. However every subtask can be 
executed on many elements of IoT network which can consist 
of many resources. Every resource can have different values 
of optimizing parameters for each subtasks. Thus we would  
not have been able to find the optimal set of subtasks if those 
two phases would have been optimized separately. Moreover, 
separate optimization of those phases does not give the 
information about optimization criteria. Therefore, these two 
phases must be optimized concurrently. It has to be noted that 
optimization in each phase impacts the other in real-time. 
Further description of the problem is given in chapter 4. 

In this paper we propose a genetic algorithm to solve the 
optimization problem of two concurrent phases which impact 
each-other in real-time during the IoT design process. Such 
algorithms [17] start with an initial population of individuals, 
and using genetic operators: selection, crossover and mutation 
generate new populations of individuals. Presented algorithm 
enables to eliminate connections of subtasks which do not 
solve unexpected situations. The algorithm chooses the best 
connection of subtasks and concurrently assigns them to 
resources. Genetic algorithms are known for being able to 
escape local minima of optimized function in the parameter 
space. Further, using genetic solution to the problem 
investigated in this paper can help to generate different set of 
subtasks to solve unexpected situation. 

The paper is organized as follows: chapter 2 gives basic 
notations used in the paper, chapter 3 describes representation 
of IoT and the IoT design process.  Chapter 4 contains general 
presentation of new optimization problem that needs to be 
solved. In chapter 5 the algorithm is described. Chapter 6 
gives the description of experiments. In chapter 7 conclusions 
are discussed and future work is also considered. 

II. BASIC NOTATION 

PR – processing resource 
DR – dedicated resource 
UR – universal resource 
CR – communication resource 
Ti – i number of task 
G=(T,E) – task graph 
E – edge in the graph 
eij ϵ E – egde between tasks Ti and Tj 

74



   

 

   

 

t – time of execution 
ts – starting moment of execution 
c – cost of execution 
tci,j – communication time between tasks Ti and Tj 
b – bandwidth of Communication Resource  
d – amount of data that need to be send between two 

connected tasks  
n – number of predicted tasks 
u – number of unexpected tasks 
v – number of processing resources 
m – number of universal resources 
o – number of dedicated resources 
Π – number of individuals in each generation 

III. PRELIMINARIES 

In this paper we use the concept of task graph G=(T,E) 
representation to describe behavior of an IoT network. Some 
elements of the network (especially embedded systems) 
execute tasks (T). Tasks are represented in the graph as nodes. 
Each edge eij ϵ E represents amount of data that needs to be 
transferred between two connected tasks Ti and Tj ϵ T. Fig. 1 
presents an example of a part of task graph.  
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T5 
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Fig. 1. Example of a task graph with inserted unexpedted tasks 

Table I presents an example of a resource database for the 
part of the network described by the task graph form Fig.1.  

TABLE I.  RESOURCE  DATABASE  

 

UR1 
C=500 

UR2 
C=400 DR1 DR2 

t c t c t c t c 
T1 150 7 125 5 30 150 20 350 

T2 80 2 50 3 20 100 10 180 

T3 300 22 350 19 100 300 80 450 

T4 120 24 150 22 12 128 8 350 

T5 230 32 200 28 55 45 63 40 

T6 30 25 60 18 32 120 40 100 

CR1, b=2 c=4 c=3 c=12 

CR2, b=10 C=5 c=4 c=18 

 

 The example consists of 6 tasks: T1, T2, T3, T4, T5 and 
T6. Each task can be executed by a single resource. Resource 
can be a single element of the IoT or a part of an element. 
Tasks T6 T2, and T3, T4 are parallel and can be executed at 
the same time by different resources. Each CR has 
a bandwidth b which describes amount of data that can be 
transferred in a time unit. The tasks are characterized by two 
parameters: time and cost of its execution on each resource. 
DRs are fast but expensive. URs are cheaper but slower. The 
IoT designer must find the compromise between time and cost 
of the network.  

The target IoT network must meet time constrains – all the 
tasks in the network must finish their execution before the 
maximum allowed time:                          
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where: CRi,j is communication resource which connects 
PRs executing tasks Ti and Tj. If Ti and Tj are executed on the 
same resource transmission time is equal to zero. 

Every task presented in the graph from Fig. 1 can be 
divided into some number of subtasks. 

Unexpected tasks appear when IoT network is ready and 
no new element cannot be added to the network. They can 
appear at any moment of the work of the network and must be 
inserted into task graph. If the target IoT network consists of 
m universal resources, p communication resources, the task 
graph contains n tasks and there are u unexpected tasks, the 
total cost of the network (C’o) can be described by the 
following formula:  
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where: CRk is a type of k-th communication resource, 
which is connected to Pk processing resource, and PCl is 
a type of l-th PR connected to CRk.  

IV. NEW PROBLEM STATEMRNT 

The problem which we investigate in this paper is the 
concurrent optimization of two phases which impact each-
other in real-time. The first phase is responsible for providing 
the parameters to optimize. The second phase optimizes the 
parameters given in the first phase and checks if the selection 
made in the first phase was correct. Only the verification in 
the second phase can give the answer if the selection made in 
the first phase can even give a result. If not, the optimized 
parameters must be changed. However, if optimizing 
parameters are changed the optimization in the second phase 
must also be changed or even repeated from the beginning. 
Therefore, it is not possible to optimize the phases separately. 
However, in case of different choice of optimizing parameters 
how can we know which choice is better? To solve this 
problem we must assume that there exists at least one common 
parameter for each of the solutions which allows to compare 
the results. Therefore, as it can be observed, the optimization 
problem is multicriterial:  

 ))(),...,(),(min()( 21 nxfxfxfxf =  (4) 

 Sxx n ∈...1  (5) 

where: S is a set of possible solutions. 75



   

 

   

 

For better presentation of the problem let us consider 
a simple example. Let us assume that we would like to pick 
up an apple from a tree. There are several possibilities to do 
that. We can climb the tree, shake the tree, use a ladder or a 
tool. Every choice gives us different parameters to optimize. 
If we choose to climb the tree we can optimize the path. 
Choosing to shake the tree makes us optimize a point of 
shaking and a force. However, the main question is how to 
decide which way is better without picking up the apple? 
Therefore, there must be at least one parameter which is 
common for every choice. In that case such a parameter can 
be, for example, a time of getting the apple. The problem can 
be split into two phases. First phase chooses the way of 
picking up the apple. The chosen way specifies the parameters 
to optimize. The second phase optimizes chosen parameters. 
However, during the second phase it can be found that it is 
impossible to pick the apple according to the way chosen in 
the first phase. What is very important, such information was 
not given at the beginning of the process. In the analysed case, 
such a situation can appear if the decision was to climb a tree 
and after some distance it was observed that it was impossible 
to continue climbing. The second phase modifies the first one. 
Modification of the first phase (changing a way of picking up 
an apple) gives different parameters to optimize and thus 
immediately changes the second phase. Another question is: 
should all the processes be repeated in such a case or maybe it 
is better to connect performed steps with another way of 
obtaining the apple?  

We believe that such an easy example gives a good insight 
into the problem that is investigated in this paper. In the next 
chapter we define the optimization problem for the IoT 
network design process. 

A. Concurrent Real-Time Optimization in IoT Design 
Process 

 We assume that during work IoT network encounters 
unexpected situations. Therefore, the network must execute 
some unexpected tasks. There is no upfront information about 
those tasks. The only information which is given is associated 
with the target (what kind of data is needed to be obtained). 
Therefore, to solve this problem all expected tasks must be 
split into possible number of subtasks. In this paper we 
concentrate on situation where unexpected tasks can be solved 
as connection of some subtasks of other tasks. The 
optimization is divided into two phases. The first phase is 
responsible for choosing the number and the types of subtasks. 
The second phase gives the parameters to optimize and 
searches for their optimal values by making tasks assignment. 
Typical goals of optimization can be the cost of the network, 
time of execution of all the tasks, power consumption, etc. The 
optimization process of both phases must be done 
concurrently. Otherwise, if the phases would be optimized 
sequentially, the first phase could only concentrate on the 
number of subtasks. That information is not necessarily 
important for IoT designer. Without a selection of the 
subtasks, task assignment cannot be made. The second phase 
also verifies the choice made in the first phase. If anything 
changes in one of the phases it will affect the other one in real-
time. To solve such a problem we propose to use a genetic 
algorithm. The algorithm is described in the next section. 

V. THE ALGORITHM 

During the work of IoT, unexpected situations are met. 
The only information which is given is the type of target data. 

First, in accordance with genetic rules, the population of 
random genotypes must be created. The number of generated 
individuals (Π) is controlled by α parameter and is equal to the 
formula:  

 vs **α=Π  (6) 

Where s is a number of possible subtasks and v is a number 
of possible types of PR in an IoT network. 

The genotype is a string which contains numbers of the 
resources for each subtask chosen in the first optimization 
phase. For each genotype subtasks are chosen randomly. 
Therefore, selected subtasks may be different for every 
genotype. The resources are also chosen randomly.  

We characterize the IoT network by two parameters: 
execution time and cost of the system. We decided to search 
for the cheapest solution which satisfies the time constrains. 
After creating a genotype the values of time and cost are 
calculated. As it was mentioned in previous chapters some 
generated solutions are invalid. It means that for some of 
them, desired values were not obtained. Therefore, 
connections of subtasks in those solutions are not valid too.  

In this paper we decided to use standard genetic operators: 
crossover, mutation, cloning and ranked selection. Solutions 
are ranked by cost. At the top of the rank list valid solutions 
are placed. However, invalid solutions are not necessarily 
passed over. Because some of the genotypes have different 
number of genes after crossover operation it is possible to 
obtain solution that is not valid. The algorithm stops after 
ε generations without better solution. 

VI. EXPERIMENTAL RESULTS 

According to our best knowledge this is the first paper 
which deals with concurrent real-time optimization in IoT 
design process. In table II we present experimental results for 
randomly generated graphs with 10, 20 30, 40 and 50 nodes. 
It is known from literature [18][19] that crossover operator in 
the genetic algorithm typically gives better solutions than 
mutation. Therefore in the experiments 70% of obtained 
individuals in each population are obtained by crossover, 20% 
by mutation and 10% by cloning. The rest of the parameters 
which control the evolution process were arbitrarily set for 
every experiment as: α=100, v=4 and ε=5. 

TABLE II.  THE RESULTS 

N Tm 
Best results Worst results 

time cost gen time cost gen 
10 300 284 1600 5 290 1978 10 

20 400 396 2649 15 303 3255 16 

30 1000 975 2842 22 960 2852 19 

40 1600 1175 4632 42 1156 5527 47 

50 1500 1422 4538 39 1401 5121 44 

 

To simplify computations we assumed that all of the 
unexpected tasks appeared after all predicted tasks were 
executed. Therefore, the initial cost and time of execution 
predicted tasks is known. 

 In most of cases with decreasing cost of the task 
execution, time of execution of all the tasks is rising. It can be 
observed for graphs with 20, 30 40 and 50 nodes. For the 
graph with 20 nodes the best result with cost equal to 2649, 

76



   

 

   

 

the time of execution of all the tasks was equal to 396. In the 
worst case experiment the cost was equal to 3255 and the time 
of execution of all the tasks was equal to 303. For graph with 
30 nodes solution with lower cost (2842) was characterized by 
time of execution of all the tasks equal to 975, meanwhile 
solution 15 time units faster (975) was 10 cost units cheaper 
(2852). For graphs with 40 and 50 nodes such difference was 
even greater. The cheapest solution for a graph with 40 nodes 
(4632) has time equal to 1422. Solution which is only 19 time 
units slower has cost equal to 5527 (almost 900 cost units 
more in comparison with the best result). The cheapest result 
for graph with 50 nodes (4538) was characterized by time 
value equal to 1422. The worst solution for graph with 50 
nodes was 21 time units faster (1401) but almost 600 cost units 
more expensive (cost equal to 5121). Only for graph with 10 
nodes the situation was different. In the best result not only 
cost of the system was lower (equal to 1600 for the best 
individual and 1978 for the worst solution) but also time of 
execution of all the tasks was lower (284 for the best result 
and 290 for the worst result). We suppose that such a situation 
could appear because of several reasons. According to 
formula (9), for graph with 10 nodes in each population 4000 
individuals were generated. For other graphs much more 
results were created in every population: 8000 for graph with 
20 nodes, 12000 for graph with 30 nodes, 16000 for graph 
with 40 nodes and 20000 for graph with 50 nodes. Because 
subtasks are chosen randomly it is possible that any solution 
of detected unexpected situation contains unnecessary 
subtask. After generating more results the chance of not 
existing unnecessary tasks is lower, but not equal to zero 
because of probabilistic nature of the algorithm. It can be also 
observed that the larger the task graph the more generations of 
individuals were created. This is because for graph with more 
tasks the search space is greater.  

In table II we present the results of experiment in case 
when more individuals are created using mutation parameter 
and less using crossover. The number of individuals in each 
population and the stop condition is the same as in previous 
set of experiments. Therefore the parameters which control the 
evolution have the following values: α=100, v=4, β=0,2, 
γ=0,6, δ=0,2, ε=5. 

VII. CONCLUSIONS 

In this paper we present genetic algorithm to concurrent 
optimization in two phases which impact each-other in real 
time in IoT design process. The problem appears when IoT 
network must execute unexpected tasks and no information 
about the tasks is given. The algorithm is able to detect 
unexpected tasks and search for their better solutions. It is also 
able to eliminate connections of subtasks which do not give an 
acceptable solution. 

Future work will concentrate on providing new algorithm 
to solve the presented problem. We will also concentrate on 
other aspects such as dependence on choice of constants and 
parameters for the problems of concurrent real-time 
optimisation and unexpected tasks in IoT design process. 
Another important issue is to connect presented method with 
other algorithms to obtain cheaper or faster IoT networks. 
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