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Abstract
Rationale Emerging evidence indicates that stem cell (SC)- derived extracellular vesicles (EVs) carrying bioactive miRNAs 
are able to repair damaged or infarcted myocardium and ameliorate adverse remodeling. Fibroblasts represent a major cell 
population responsible for scar formation in the damaged heart. However, the effects of EVs on cardiac fibroblast (CFs) 
biology and function has not been investigated.
Objective To analyze the biological impact of stem cell-derived EVs (SC-EVs) enriched in miR-1 and miR-199a on CFs 
and to elucidate the underlying molecular mechanisms.
Methods and Results Genetically engineered human induced pluripotent stem cells (hiPS) and umbilical cord-derived 
mesenchymal stem cells (UC-MSCs) expressing miR-1 or miR-199a were used to produce miR-EVs. Cells and EVs were 
thoughtfully analyzed for miRNA expression using RT-qPCR method. Both hiPS-miRs-EVs and UC-MSC-miRs-EVs effec-
tively transferred miRNAs to recipient CFs, however, hiPS-miRs-EVs triggered cardiomyogenic gene expression in CFs 
more efficiently than UC-MSC-miRs-EVs. Importantly, hiPS-miR-1-EVs exhibited cytoprotective effects on CFs by reduc-
ing apoptosis, decreasing levels of pro-inflammatory cytokines (CCL2, IL-1β, IL-8) and downregulating the expression 
of a pro-fibrotic gene – α-smooth muscle actin (α-SMA). Notably, we identified a novel role of miR-199a-3p delivered by 
hiPS-EVs to CFs, in triggering the expression of cardiomyogenic genes (NKX2.5, TNTC, MEF2C) and ion channels involved 
in cardiomyocyte contractility (HCN2, SCN5A, KCNJ2, KCND3). By targeting SERPINE2, miR-199a-3p may reduce pro-
fibrotic properties of CFs, whereas miR-199a-5p targeted BCAM and TSPAN6, which may be implicated in downregulation 
of inflammation.
Conclusions hiPS-EVs carrying miR-1 and miR-199a attenuate apoptosis and pro-fibrotic and pro-inflammatory activities 
of CFs, and increase cardiomyogenic gene expression. These finding serve as rationale for targeting fibroblasts with novel 
EV-based miRNA therapies to improve heart repair after myocardial injury.
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Abbreviations
EVs  Extracellular vesicles
CFs  Cardiac fibroblasts
hiPS  Human induced pluripotent stem cells
UC-MSCs  Umbilical cord-derived mesenchymal 

stem cells
hiPS-EVs  Human induced pluripotent stem cell–

derived extracellular vesicles
UC-MSC-EVs  Umbilical cord-derived mesenchymal 

stem cells–derived extracellular vesicles
miR-EVs  MicroRNA-enriched extracellular 

vesicles
CMs  Cardiomyocytes
MI  Myocardial infarction
WT  Wild type
FMT  Fibroblast-to-myofibroblast transition

Introduction

Cardiovascular diseases remain the major cause of mor-
tality and morbidity worldwide, raising serious socio-
economic challenges [1]. Cardiomyocytes (CMs) loss and 
their replacement by fibroblasts forming a scar are the 
main consequences of heart injury or myocardial infarc-
tion (MI). Recent advances in cardiac cell-based therapies 
rely on injection of either CMs or various populations of 
stem cells, with the goal to reconstitute functional cardiac 
tissue [2]. However, the level of stem cells engraftment 
remains usually very low due to also unfavourable post-
ischemic environment [3]. The inflammatory response to 
ischemia–reperfusion is a critical factor determining the 
size of the infarct zone and the extent of adverse heart tissue 
remodelling [4]. The key players in triggering inflammation 
in the post-ischemic heart are dying cardiomyocytes and 
endothelial cells, which release necrotic factors, and cardiac 
fibroblasts (CFs). Importantly, CFs constitute almost 20% 
of heart cells and they actively participate in the process of 
tissue remodelling after CMs damage [5]. By secretion of 
pro-inflammatory cytokines they attract immune cells to the 
site of injury and upon fibroblast-to-myofibroblast transition 
(FMT), they are responsible for heart tissue fibrosis [6, 7]. 
Thus, modulating inflammatory and pro-fibrotic properties 
of CFs seems to be an attractive target in the future cardio-
vascular therapies.

Apart from direct differentiation of stem cells towards 
CMs, recent studies have pointed towards important role 
of stem cells’ paracrine activity during heart regeneration 
[8]. In this regard, the role of extracellular vesicles (EVs) 
secreted by all eukaryotic cells, is particularly important 
[9]. EVs are composed of a cellular membrane enclosing 
bioactive cytosolic cargo, including proteins, lipids and 
nucleic acids (mainly RNA, such as mRNA, microRNA; 

miRNA and long non-coding RNA; lncRNA). Role of 
stem cell-derived EVs in cardiac tissue repair has been 
investigated in several pre-clinical animal models. In par-
ticular, embryonic stem cells (ESCs), induced pluripotent 
stem cells (iPS), mesenchymal stem cells (MSCs), cardiac 
progenitor cells (CPCs) and CD34-positive hematopoietic 
stem cells (HSCs) were used as a source of reparative EVs 
[10–12]. In our previous work, we demonstrated that injec-
tion of murine iPS cell- derived EVs ameliorated adverse 
remodeling after acute MI in mice, reduced CM apoptosis 
and enhanced angiogenesis [13]. Collectively, these results 
showed significant beneficial effects of stem cell-EV-based 
therapy in heart regeneration.

It is now believed that one of the major determinants of 
EVs’ effects on target cells represents small RNA molecules. 
Among them, micro-RNAs (miRNAs) have gained particular 
interest, as epigenetic modifiers of cellular function. miRNAs 
important for CM homeostasis have been described, includ-
ing miR-1 and miR-133 involved in CM differentiation; miR-
199a, miR-590, miR-17–92 cluster driving CM proliferation; 
and miR-21, miR-24 protecting from apoptosis [14–16]. How-
ever, potential roles of these miRNAs on CFs, which represent 
a major cellular population in the myocardium, has not been 
examined. Interestingly, serum level of miR-1 is increased 
after MI [17] and miR-1 overexpression prevents heart tissue 
from fibrosis [18] and hypertrophy [19, 20]. Further, miR-
199a has been implicated in specification of mesodermal 
lineages [21, 22] including maturation of embryonic stem 
cell-derived CMs [23], and its delivery to infarcted hearts 
improved cardiac function [24, 25]. Thus, we hypothesized 
that miR-1 and miR199a are involved in the regulation of CF 
fate decisions and biological activities.

To verify our hypotheses, we genetically engineered human 
iPS cells and umbilical cord-derived MSC (UC-MSC) to stably 
express miR-1 and miR-199a. EVs released by parental cells 
were collected and used to study miR-1 and miR-199a effects 
on CFs. We first validated efficacy of miRNA transfer by hiPS 
and UC-MSC-derived EVs to CFs and their ability to change 
fate decision toward cardiomyocytes. We found stronger induc-
tion of cardiomyogenic genes after hiPS-miRs-EVs treatment, in 
comparison with the activity of UC-MSC-miR-EVs. Next, we 
experimentally tested miRNAs-EV role in CF biological func-
tions, and observed decreased proliferation, increased metabolic 
activity after treatment with miR-1/miR-199a-EVs; decreased 
apoptosis, particularly after miR-1-EVs; and enhanced spon-
taneous cardiomyogenic differentiation post miR-199a-EVs 
treatment. Finally, we sought to identify molecular mechanisms 
underlying miRNA-EVs-mediated effects on CFs. For the first 
time, we demonstrated anti-apoptotic, anti-inflammatory and 
anti-fibrotic role of miR-1-EVs on CFs. Moreover, we identi-
fied a role of miR-199a-3p in the induction of cardiomyogenesis 
in CFs, and possible involvement in attenuation of inflamma-
tion and reduction of fibrosis. These findings may be utilized to 
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develop EV-based novel therapies to ameliorate adverse remod-
eling after myocardial injuries and improve heart function in 
patients with heart diseases.

Methods

Cell Culture

UC-MSCs were maintained according to the approval 
of local ethical committee. Umbilical cord was provided 
by the Polish Stem Cell Bank (Warsaw, Poland) accord-
ingly to required legal approvals and procedures hold by 
PBKM. UC-MSCs were isolated using an explant method 
described previously [26]. Cells were cultured in DMEM/
F12 (Gibco/Thermo Fisher Scientific, Waltham, MA, USA) 
supplemented with 10% fetal bovine serum (FBS; Sigma-
Aldrich/Merck, St. Louis, MO, USA) and penicillin (100 
U/ml), streptomycin (100 μg/ml) solution (P/S; Gibco).

CFs were purchased from Lonza (Normal Human Cardiac 
Fibroblasts – Ventricular; NHCF-V; Lonza, Basel, Switzer-
land) and were cultured in DMEM/F12 (Sigma-Aldrich) 
containing 15% FBS (Sigma-Aldrich) and P/S (Gibco).

hiPS cells generated in our laboratory [27] were cul-
tured in feeder- serum- and xeno-free conditions in Essen-
tial 8 medium (Gibco) supplemented with P/S (Gibco) on 
rhVitronectin (50 μg/ml; Gibco) coated plates. Every four 
days cells were re-seeded on new plates using 0.5 mM 
EDTA (Invitrogen/Thermo Fisher Scientific) and sup-
plemented with 10 µM/ml Rho-associated protein kinase 
inhibitor (Y-27632, Merck) for the first day.

Lentivirus Production and Generation of Stable Cell 
Lines Expressing miRNAs

Lentiviral expression vectors for human pre-miR-1 and pre-
miR-199a (pHMIR-1 and pHMIR-199a) were purchased from 
Systems Biosciences (Palo Alto, CA, USA). Control vector 
expressing green fluorescent protein (copGFP) was created 
by deleting DNA fragment containing CMV7 promoter with 
miRNA sequence from pHMIR-1 plasmid by Spe I and Not 
I digestion (both from New England Biolabs), blunting DNA 
ends with the Quick blunting Kit (New England Biolabs, 
Ipswich, MA, USA) and re-ligation with the T4 DNA Ligase 
(Thermo Fisher Scientific).

Lentiviral vector particles were produced in HEK293T/17 
packaging cell line (ATCC-CRL-11260; LGC Standards, 
Teddington, UK), by co-transfection of miRNA/copGFP-
expression plasmid with psPAX2 and pMD2G packaging 
plasmids (#12260 and #12259, respectively; Addgene, 
Cambridge, MA, USA), using Lipofectamine2000 (Invitro-
gen/Thermo Fisher Scientific) as a transfection agent. Cell 

supernatants were filtered through 0.2 µm pores PVDF filters 
(Millipore/Merck) and used for infection of hiPS cells and 
UC-MSCs with MOI of 5 in Essential 8 medium or DMEM/
F12 supplemented with 5% FBS, respectively, and with addi-
tion of 10 µg/1 mL of polybrene (Milipore). After culture 
expansion for at least 6 days, cells expressing copGFP were 
sorted using the cell sorter FACS Aria III (BD Biosciences, 
San Jose, CA, USA).

EV Isolation

At 70–90% confluency, conditioned medium was collected 
form cultures of control wild type (hiPS-WT/UC-MSC-
WT), control copGFP- expressing (hiPS-copGFP/UC-MSC-
copGFP) and miRs- overexpressing (hiPS-miRs/UC-MSC-
miRs) cells for extracellular vesicles isolation. UC-MSC-miRs 
were washed twice with PBS to remove FBS and for EV col-
lection cells were kept in DMEM/F12 supplemented with 
0.5% bovine serum albumin (BSA; Sigma-Aldrich) and P/S 
for 48 h. EVs from iPS cell lines were directly harvested 
from the serum- free medium used for cell culture. EVs were 
isolated according to sequential centrifugation protocol, as 
previously described [26, 27]. The obtained EV pellets were 
re-suspended in 150 μL of PBS (Lonza). Protein concentra-
tion was determined with the Bradford assay.

Nanoparticle Tracking Analysis (NTA)

Concentration and size distribution of EVs was measured 
with the NanoSight NS300 nanoparticle analyzer (Malvern, 
Worchestershire, UK). All data were collected with the 
camera level of 13 and the detection threshold of 3. Sam-
ples were diluted in PBS 1:1000 for optimal particle count 
(1 ×  108 to 1 ×  1010). Using the script control function, three 
60-s videos were recorded for each sample.

Transmission Electron Microscopy (TEM)

20 µM of EV suspension in PBS was added to nickel grids 
(Agar Scientific, Stansted, UK) for 30 min. EVs were fixed 
for 5 min with 2,5% glutaraldehyde solution. The grid was 
blotted with filter paper and stained with 2% uranyl acetate 
for 2 times for 30 min. Next, grids were washed in distilled 
water 3 times for 1 min. Grids was dried and EVs were vis-
ualizes by JEOL JEM2100 HT CRYO LaB6 transmission 
electron microscope (JEOL, Peabody, MA, USA).

EV Incubation with CFs

CFs were seeded on 24-well plates in DMEM/F12 medium sup-
plemented with 15% FBS and P/S. After 24 h, cells were treated 
with EVs (20 ng/1000 cells) for 3 h. After indicated time points, 
cells were washed twice with PBS and collected for analysis.
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Cardiac Differentiation

CFs were subjected to two distinct cardiac differentiation 
protocols. In both, 5 ×  104 cells were seeded on 12-well 
plates in DMEM/F12 with 15% FBS (Sigma-Aldrich) and 
P/S. After 1 day cells were treated with EVs (20 ng/1000 
cells) for 24 h. In the first protocol cells were treated with 
differentiation medium, composed of DMEM/F12 supple-
mented with 2% FBS and 10 ng/mL bFGF, 10 ng/mL VEGF, 
and 10 ng/mL TGFβ1 (all growth factors from PeproTech, 
London, UK). In the second protocol, EV-treated cells were 
cultured in DMEM/F12 supplemented with 2% FBS. Con-
trol cells were placed in differentiation medium (described 
above). The medium was changed every day in both proto-
cols. After 7 days, cells were collected for analysis.

Proliferation

The rate of CF proliferation was examined using the Cell Count-
ing Kit-8 (Sigma) according to vendor’s instruction. CFs were 
seeded in DMEM/F12 medium supplemented with 15% FBS 
and P/S. After 24 h, cells were treated with EVs (20 ng/1000 
cells) for 24 h. Proliferation was evaluated at 24, 48 and 96 h 
after EV treatment in cells cultured in standard conditions (21% 
 O2) or in hypoxia (1%  O2). Absorbance was measured using 
Multiskan FC Microplate Photometer (Thermo Fisher).

Metabolic Activity Analysis

ATP production was measured with the ATPLite Kit (Perki-
nElmer Waltham, MA, USA) according to manufacturer’s 
protocol. CFs were seeded in DMEM/F12 medium supple-
mented with 15% FBS and P/S and after 24 h, cells were 
treated with EVs for the next 24 h. Metabolic activity was 
evaluated at 24, 48 and 96 h after EV treatment in CFs cul-
tured in normoxia (21%  O2) or hypoxia (1%  O2). Lumines-
cence was measured using the Infinite M200 Microplate 
Reader (Tecan, San Jose, CA, USA).

Apoptosis Analysis

Apoptosis was examined using the CellEvent Caspase-3/7 
Green Detection Reagent (Thermo Fisher) in two experi-
ments. First, to verify whether EV pretreatment induces 
cytoprotective benefits, CFs were seeded on 6-well plates, 
and after 24 h treatment with EVs (20 ng/1000 cells), 1 μM 
of staurosporine (Santa Cruz Biotechnology, Dallas, TX, 
USA) was added for 6 h (marked as EVs- > S). Second, to 
examine whether EV treatment can salvage cells from apop-
tosis after an injury, CFs were first treated with 1 μM of 
staurosporine for 6 h followed by EVs addition (20 ng/1000 
cells) for 24 h (marked as S- > EVs). Fluorescence was meas-
ured on LSR Fortessa flow cytometer (BD Biosciences).

Treatment of CFs with miRNA Inhibitors

CFs were first treated with EVs (20 ng/1000 cells) for 24 h, 
and then electroporated using the Neon Transfection System 
(Thermo Fisher Scientific) with the following electric pulse 
parameters: 1400 V, 20 ms, 3 pulses, to introduce miRNA 
inhibitors (miR-1-3p, miR-199a-3p and miR-199a-5p from 
Exiqon/Qiagen or control inhibitor from Qiagen, German-
town, MD, USA) at 50 nM final concentration per 50,000 
cells. After 48 h cells were collected for molecular analy-
sis. One experimental sample was composed of cells from 
3 nucleofections. To assess cardiac differentiation of CFs 
treated with miR-199a-EVs, cells after nucleofection were 
kept in DMEM/F12 supplemented with 2% FBS for 7 days 
with daily medium change. For apoptosis assessment in CFs 
treated with miR-1-EVs, 24 h post-nucleofection 1uM of 
staurosporine was added for 6 h and then cells were col-
lected for analysis.

Quantitative Real‑time PCR Analysis

Total RNA was isolated from cellular or EV samples using 
the GeneMATRIX Universal RNA/miRNA Purification Kit 
(Eurx, Gdansk, Poland) and used for cDNA synthesis with 
the NG dART RT Kit (Eurx) for mRNA analysis or with 
the Universal cDNA synthesis Kit II (Exiqon) for miRNA 
analysis, according to the manufacturers’ instructions. Tran-
script levels were measured using the real-time PCR method 
with the SYBR Green Master Mix (Applied Biosystems/
Thermo Fisher Scientific) and specific primer sets listed 
in the Supplementary Table 1 or purchased from the Real 
Time Primers (Elkins Park, PA, USA) for miRNA target 
screen. For miRNA expression Power SYBR Green Master 
Mix (Applied Biosystems/Thermo Fisher Scientific) was 
used with specific LNA-primers (Exiqon). Quantification 
of mRNA and miRNA content was performed on the Quant-
Studio 6 Fast Real-Time PCR System (Applied Biosystems/
Thermo Fisher Scientific) using the ∆∆Ct method with 
β-2-microglobulin as endogenous control for mRNA and 
U6 snRNA for miRNA analysis. The data were normalized 
when compared to control (WT) cellular or EV samples.

Western Blot

Genetically modified and unmodified hiPS cells, UC-MSCs 
and EVs derived from these cells were lysed in RIPA buffer 
(Thermo Fisher Scientific) containing proteinase inhibitors. 
EVs were lysed in 3:1 ratio. 30 µg of protein extracts were sep-
arated by Mini-PROTEAN TGXPrecast Gels (BioRad, Her-
cules, CA, USA) and transferred to PVDF membranes using 
Trans-Blot Turbo RTA Mini PVDF Transfer Kit (BioRad). 
Proteins were detected with the mouse monoclonal exosome 
anti-CD9 (10626D, Invitrogen), goat polyclonal anti-Syntenin/
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SDCBP (PA5-18595, Invitrogen), goat polyclonal anti-Cal-
nexin (PA5-19169, Invitrogen), mouse monoclonal anti-
alpha smooth muscle actin (A2547, Sigma), mouse mono-
clonal anti-Desmin (D1033), and rabbit polyclonal anti-Cx43 
(C6219, Sigma) antibodies. Equal loading was evaluated by 
staining the samples with the mouse monoclonal IgG β-actin 
(sc-81178, Santa Cruz Biotechnology) or mouse monoclonal 
anti-beta tubulin (T4026, Sigma) antibodies. The proteins were 
detected with horse radish peroxidase (HRP)-conjugated rabbit 
anti-goat IgG (H + L) (R21459, Invitrogen), goat anti-mouse 
IgG, IgM (H + L) (31444, Invitrogen) or goat anti-rabbit IgG 
(H + L) (A27036, Invitrogen) secondary antibodies. The 
membranes were developed with Luminata Crescendo West-
ern HRP Substrate (Merck) and imaged by Gel Doc XR + Gel 
Documentation System (Bio-Rad).

Proteome Arrays

The Human Phospho Kinase Protein Array kit (ARY003B) 
and the Human Apoptosis Array Kit (ARY009) (both from 
R&D Systems, Minneapolis, MN, USA) were used to 
evaluate the relative protein levels in CF treated with EV-
miRs and with respective inhibitors. The procedures were 
performed according to the vendor’s recommendation. 
Chemiluminescent signals were detected by the ChemiDoc 
XRS + System (BioRad). Pixel density was measured using 
the Quantity One software (BioRad) by an independent 
researcher, who did not perform the experiments and was 
blinded to the samples names.

Statistical Analysis

At least two experiments were performed in duplicate for 
each study. The data are presented as means ± standard devi-
ations (SD). Statistical analyses were done with unpaired 
Student’s t-test or one-way ANOVA and Tukey’s multiple 
comparisons test using GraphPad Prism7 (GraphPad Soft-
ware, La Jolla, CA, USA). p value of < 0.05 was consid-
ered statistically significant (* p < 0.05; ** p < 0.01; *** 
p < 0.001).

Results

Genetically Modified Stem Cell Lines Express High 
Levels of Transgenic miRNAs

Since the major goal of this study was to use EVs derived 
from stem cells as carriers of selected miRNAs to improve CF 
function, we first generated stable stem cell lines expressing 
miR-1 and miR-199a. We used hiPS cell line generated in our 
laboratory [27] and UC-MSCs, since unmodified EVs from 
both stem cell populations showed efficacy in ameliorating 

myocardial infarction symptoms [28]. To test the hypothe-
sis that pro-cardiomyogenic miRNAs loaded into EVs may 
further boost protective effects exerted on heart cells, hiPS 
cells and UC-MSCs were transduced with lentiviral vectors 
expressing miR-1 or miR-199a (Fig. 1A). The vector addition-
ally contained a marker protein, copGFP, for easy selection 
and monitoring of transgene expression in cells (Fig. 1B). 
Next, we measured miRNAs levels in genetically modified 
stem cell populations and control cells: unmodified (wild type; 
WT) and copGFP cells. We detected high expression levels of 
both miR-1 and miR-199a in respective hiPS cells and UC-
MSCs (Fig. 1C and D, respectively). Moreover, to verify the 
impact of upregulated miRNAs on the global miRNome in the 
engineered cells, we screened the expression levels of the 44 
most abundant miRNAs detected in hiPSCs and UC-MSCs. 
Our analysis revealed that expression of miR-1 and miR-199a 
led to upregulation of other miRNAs both in hiPS cells and 
UC-MSCs (Fig. 1E and F, respectively). Notably, hiPS-miR-
199a transduced cells displayed the highest number of co-
induced miRNAs (Fig. 1E).

EVs Serve as Carriers of Transduced miRNAs

To verify whether transduced miRNAs can be exported 
from parental cells to EVs, we isolated EVs from condi-
tioned media collected from genetically modified and con-
trol stem cell lines, using the sequential ultracentrifugation 
method. Particle distribution analysis with NTA revealed 
that the mean EV size was in a range of 110 – 120 nm 
in diameter (Fig. 2A and Supplementary Table 2). EVs 
were then examined for the presence of typical proteins, 
according to the criteria launched by the International 
Society of Extracellular Vesicles (ISEV) [29]. Western 
blot analysis showed that EVs from genetically engi-
neered and control stem cell lines expressed a membrane-
bound tetraspanin CD9, intraluminal syntenin, low level 
of endoplasmic reticulum-associated calnexin, and control 
protein, β-actin (Fig. 2B). Expression of these proteins 
was also analyzed in parental cells, which is shown in the 
Supplementary Fig. 1. EVs were then visualized by TEM 
(Fig. 2C and Supplementary Fig. 2). Finally, we analyzed 
miRNAs levels in EVs from genetically modified and 
unmodified stem cell lines and we observed substantial 
enrichment in EVs of the respective overexpressed miR-
NAs (Fig. 2D, E). However, variable level of miRNAs 
content between hiPS cell- and UC-MSC- derived EVs 
suggests selective packaging of miRNAs into the EVs, 
depending on cell type. Similarly, as in parental cells, 
overexpression of certain miRNA led to global changes 
in miRNome profile in EVs (Fig. 2F, G), in particular in 
case of miR-199a-enriched EVs. To investigate the poten-
tial role of upregulated miRNAs in hiPS-miR-199a-EVs 
and UC-MSC-miR-199a-EVs, we performed pathway 
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Fig. 1  Generation of transgenic stem cell lines overexpressing miR-1 
and miR-199a. (A) Scheme of cassette harbouring miR-1 or miR-
199a coding sequence in lentiviral vector used for transduction. 
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elongation factor 1 alpha gene promoter; copGFP, variant of a green 
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Representative microscopic images of hiPS and UC-MSC genetically 
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copGFP in green). Scale bar = 100  μm. Relative miRNA expression 
levels of miR-1 or miR-199a in genetically engineered hiPS cells (C) 
and UC-MSCs (D). Expression levels of miRNAs co-induced after 
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(F). The data on panels C-F were normalized compared with the 
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Fig. 2  Characterization of EVs from hiPS cells and UC-MSCs stably 
expressing miR-1 or miR-199a. (A) Particle size distribution in EV 
samples derived from control and genetically modified stem cells, 
measured by nanoparticle tracking analysis (NTA). Representative 
histograms are shown. (B) Western blot analysis of selected proteins 
in hiPS-miRs-EVs and UC-MSC-miRs-EVs. (C) Representative 
images of EVs obtained by transmission electron microscopy. Scale 
bars = 150 nm. (D) Relative levels of miR-1 and miR-199a in hiPS-
miR-1-EVs and hiPS-miR-199a-EVs, respectively. (E) Relative levels 

of miR-1 and miR-199a in UC-MSC-miR-1-EVs and UC-MSC-miR-
199a-EVs, respectively. (F) Other miRNAs found at elevated levels 
in hiPS-miR-1-EVs or hiPS-miR-199a-EVs, when compared with 
hiPS-WT control. (G) Other miRNAs found at elevated levels in UC-
MSC-miR-1-EVs or UC-MSC-miR-199a-EVs, when compared with 
UC-MSC-WT control. The data on panels D-G were normalized 
compared with the respective control (WT) EV samples. Student’s 
t-test; comparison with copGFP-control EVs; *p < 0.05, **p < 0.01
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analysis using the DIANA-miRPath v3.0 online software 
[30]. Importantly, the screen revealed regulatory role of 
miR199a-EVs derived from both stem cell populations 
in TGFβ (transforming growth factor β) signaling, FoxO 
(Forkhead box O) signaling, Hippo pathway, extracellular 
matrix (ECM)-receptor interactions, regulation of pluri-
potency (Supplementary Fig. 3 and Fig. 4).

hiPS‑EVs Outperform UC‑MSC‑EVs in Inducing 
Cardiomyogenesis

We tested the efficacy of EVs derived from the two stem cell 
populations in miRNA transfer to CFs. After 3 h of incuba-
tion with miRNA-EVs, CFs were analyzed for the expres-
sion of selected miRNAs. Our results confirmed that both 
hiPS-EVs and UC-MSC-EVs serve as good vehicles for 
miRNA delivery to CFs, leading to 1.5 – twofold increase in 
miR-1 and miR-199a levels (Fig. 3A, B). Notably, hiPS-EVs 
co-transferred pluripotency-associated miRNAs (miR-302b, 
miR-302d [31], miR-524-5p [32]; Fig. 3C), which was not 
observed with UC-MSC-EVs treatment (Fig. 3D). Based on 
our previous findings indicating enhanced cardiac differen-
tiation of human mesenchymal stromal cells after hiPS-EVs 
treatment [27], we tested efficiency of cardiomyogenesis 
induction in CFs after hiPS-miRs-EVs and UC-MSC-miRs-
EVs. Our results show elevated transcript levels of genes 
involved in cardiac lineage specification (GATA4, NKX2.5, 
TNTC) particularly after hiPS-miRs-EVs (Fig. 3E). Although 
incubation with UC-MSC-miRs-EVs followed by cardiac dif-
ferentiation of CFs led to increased expression of NKX2.5 
and TNTC, the transcript levels were substantially lower than 
after hiPS-miRs-EVs (Fig. 3F). Moreover, during culture 
and expansion of stem cell populations expressing miRNAs, 
we observed remarkably higher proliferative ratio for miR-
transduced hiPS cells, in comparison to miR-transduced UC-
MSCs. This observation was supported by the detection of 
higher mRNA levels for anti-apoptotic gene BCL2, regulators 
of proliferation (c-MYC) and cell cycle progression (CDK2, 
CCNE1) in miR-transduced hiPS cells (Supplementary 
Fig. 5A). On the contrary, miR-transduced UC-MSCs exhib-
ited higher level of pro-apoptotic gene BAX and cell cycle 
inhibitors (p21, CCND1; Supplementary Fig. 5B). Consider-
ing that large quantities of cell supernatant are required for EV 
isolation, we chose miR-transduced hiPS cell lines as superior 
EV-producer cells for further studies.

hiPS‑miRNA‑EVs Decrease Proliferation and Increase 
ATP Levels in CFs

To analyze biological impact of hiPS-miRNAs-EVs on tar-
get cells, CFs were subjected to proliferation and metabolic 
activity tests upon miRs-EVs treatment. The assays were 

performed in normoxic (21%  O2) or hypoxic condition (1% 
 O2), the latter of which mimiced deleterious environment 
within the ischemic tissue. We observed decreased prolifera-
tion of CFs after hiPS-miR-1-EVs and hiPS-miR-199a-EVs, 
in both, ambient and reduced oxygen conditions (Fig. 4A). 
On the contrary, ATP production, which is a surrogate of 
metabolic activity, was elevated in CFs after hiPS-miR-
1-EVs and hiPS-miR-199a-EVs treatment in normoxia or 
hypoxia, at 24 and 48 h post-treatment (Fig. 4B). This effect 
declined at 96 h post-treatment, indicating transient effect 
mediated by hiPS-miRs-EVs on CFs. Interestingly, we also 
observed enhanced migratory activity of CFs upon stimu-
lation with hiPS-miRs-EVs in terms of speed and the dis-
tance (Supplementary Fig. 6). However, the observed effects 
were not specific to miR-1 or miR-199a since control hiPS-
copGFP-EVs stimulated migration of CFs at the same level 
as hiPS-miR-1-EVs and hiPS-miR-199a-EVs (Supplemen-
tary Fig. 6).

Antiapoptotic and Cardiomyogenic Effects 
hiPS‑miR‑1‑EV and hiPS‑miR‑199a‑EV on CFs

To further examine the impact of miR-1-EVs and miR-199a-
EVs on CFs, target cells were subjected to apoptosis and 
cardiomyogenesis stimulating assays. Cytoprotective and 
anti-apoptotic properties of EVs were evaluated in stauro-
sporine-induced cell death experiments. First, to study cyto-
protection, CFs were co-incubated with hiPS-miRs-EVs for 
24 h, followed by the drug treatment for 6 h and enumeration 
of live and apoptotic events by flow cytometry (Fig. 5A). 
Impressively, pretreatment with all types of hiPS-miRs-EVs 
and control EVs exerted strong cytoprotective effect on CFs, 
as evidenced by increased percentage of live cells (Fig. 5A, 
left). Second, to verify anti-apoptotic ability of hiPS-miRs-
EVs, CFs were first subjected to staurosporine for 6 h first, 
after which EVs were added to the culture for the next 24 h. 
In this scenario, significant improvement of cell survival 
was detected only for hiPS-miR-1-EVs (Fig. 5A, middle).

Knowing that the transfer of bioactive cargo of hiPS-
EVs to recipient cells may trigger lineage specification, we 
analyzed expression of cardiomyogenesis-related genes in 
CFs upon treatment with hiPS-miRs-EVs. Following a dif-
ferentiation protocol based on the use of cardiomyogenic 
medium, we observed a significant upregulation of TNTC 
transcript level after treatment with hiPS-miR-1-EVs and 
hiPS-miR-199a-EVs (Fig. 5C, left). We also noted strong 
increase in MYHCB transcript level, however, also in case of 
the treatment with control hiPS-copGFP-EVs (Fig. 5C, left). 
With respect to cardiac ion channels, we detected significant 
upregulation of a sodium channel SCN5A after stimulation 
with hiPS-miR-199a-EVs in comparison to control (Fig. 5C, 
right). The expression of a potassium channel KCND3 was 
strongly upregulated in cells treated with hiPS-EVs derived 
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from all types of genetically engineered cells, including con-
trol hiPS-copGFP-EVs.

Next, we examined any spontaneous cardiomyogenic dif-
ferentiation of CFs without the necessity of differentiation 
medium, but after incubation with EVs. We treated CFs with 
hiPS-miRs-EVs for 24 h, and 7 days later measured the lev-
els of expression of selected genes. Our analysis revealed 
that incubation with hiPS-miR-199a-EVs in particular 
significantly increased transcript levels of several genes 
involved in cardiomyogenesis, including TNTC, MEF2C and 

MYCHCB in CFs (Fig. 5C, left), as well as for sodium and 
potassium channels (SCN5A and KCNJ2) (Fig. 5C, right). 
Moreover, we detected the highest level for GATA4 protein 
in CFs treated with hiPS-miR-199a-EVs (Fig. 5D).

hiPS‑miR‑1‑EVs Reduce Apoptosis, Inflammatory 
Response and Fibrosis in CFs

Having detected the anti-apoptotic properties of hiPS-miR-
1-EVs on CFs, we examined the underlying molecular 
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mechanisms and potential target genes responsible for 
miR-1-EV-mediated effects. Accordingly, we introduced 
miR-1-3p specific inhibitor to CFs after co-incubation with 
hiPS-miR-1-EVs and performed molecular analyses. First, 
CFs were treated with staurosporine and expression levels 
of various proteins involved in regulation of apoptosis were 
measured semi-quantitatively using the “Human Apopto-
sis Array Kit”. hiPS-miR-1-EVs reduced level of cleaved 
caspase-3 in CFs by upregulation of protective proteins, 
such BCL2 and HO-1 (Fig. 6A). Interestingly, hiPS-miR-
1-EVs markedly reduced heat shock protein levels in CFs, 
particularly HSP60 (Supplementary Fig. 7), suggesting that 
the abundance of pro-survival signals played a predominant 
role in protecting CFs from apoptosis. To further investi-
gate hiPS-miR-1-EVs function in CFs, we performed a pro-
teome profiling of kinases activities in target CFs. In agree-
ment with the above-described anti-proliferative effect of 
hiPS-miR-1-EVs on CFs (Fig. 4A), we detected significant 
downregulation of phosphorylated kinases: Mitogen- And 
Stress-Activated Protein Kinase 1/2 (MSK1/2), YES proto-
oncogene 1, p38 Mitogen Activated Protein Kinase, Signal 
Transducer and Activator of Transcription (STAT)5a/5b, 
STAT2, AMP-activated Protein Kinase (AMPKa2), c-Jun 
N-Terminal Protein Kinase (JNK1/2/3) (Fig. 6B).

Next, to identify target genes for miR-1-3p in CFs, we 
selected 47 candidate genes using the TargetScan 7.1 data-
base [33]. Our screen revealed a chemokine (C–C motif) 
ligand 2 (CCL2) also known as monocyte chemoattractant 
protein 1 (MCP1) to be targeted by miR-1 in CFs (Fig. 6C 
and Supplementary Table 3). Since CCL2 plays pro-inflam-
matory role, we wanted to verify whether its inhibition by 
hiPS-miR-1-EVs results in downregulation of other pro-
inflammatory molecules released by CFs. Indeed, we found 
significant decrease in transcript levels of interleukin 1b (IL-
1b) and interleukin 8 (IL-8) upon hiPS-miR-1-EVs treatment 
in CFs (Fig. 6C). The inhibitory effect was abrogated after 
addition of miR-1 inhibitor. Although other important fibro-
sis related genes such as collagen may play important role in 
this process, our search did not identified this genes as tar-
gets for miR-1. Knowing that pro-inflammatory properties of 
CFs are linked to development of fibrosis, we analyzed levels 
of pro-fibrotic proteins in CFs. Notably, high expression of 
alpha smooth muscle actin (α-SMA), which is a hallmark of 
myofibroblasts [34], was substantially decreased after CFs 
treatment with hiPS-miR-1-EVs (Fig. 6D). Again, addi-
tion of miR-1 inhibitor led to reduced expression on both 

protein (Fig. 6D) and mRNA (not shown) levels. However, 
expression of other pro-fibrotic proteins, such as connexin 
43 (Cx43) and desmin, were unaffected by hiPS-miR-1-EVs 
treatment (Fig. 6D).

hiPS‑miR199a‑EVs Induce Cardiomyogenesis 
and Favourably Modulates Pro‑inflammatory 
and Pro‑fibrotic Genes in CFs

After we observed the cardiomyogenic effects of hiPS-miR-
199a-EVs on CFs (Fig. 5C, D), we investigated which miR-
199a variant (3p or 5p) was responsible for this effect. Thus, 
we treated CFs with hiPS-miR-199a-EVs and subsequently 
with inhibitor for miR-199a-3p or miR-199a-5p. Thereaf-
ter, CFs were cultured for 7 days in serum-reduced medium 
to induce spontaneous differentiation. Next, we analyzed 
transcript levels of genes related to cardiomyogenesis and 
encoding ion channels regulating cell contractility. The addi-
tion of miR-199a-3p inhibitor led to significant downregula-
tion in expression of genes belonging to the cardiomyogenic 
differentiation pathway,including GATA4, NKX2.5, MEF2C, 
TNTC, and MYHCB, as well as for the genes encoding ion 
channels (Fig. 7A). These results suggest a regulatory role of 
miR-199a-3p in cardiac lineage specification in CFs. Next, 
we wanted, to define which intracellular pathways were 
affected by hiPS-miR-199a-EVs in CFs. Therefore, we meas-
ured protein levels of selected kinases in CFs. We detected 
elevated levels of phosphorylated Focal Adhesion Kinase 
(FAK), Proline-Rich Akt Substrate, 40 KDa (PRAS40) and 
MSK1/2 after treatment with hiPS-miR-199a-EVs (Fig. 7B). 
Decreased levels of these kinases were detected after addi-
tion of hiPS-miR-199a-3p inhibitor to CFs, indicating an 
important regulatory role of miR-199-3p in modulation of 
CF function. Going a step further, we performed a screen of 
target genes in CFs upon hiPS-miR-199a-EVs treatment and 
addition of respective inhibitors. Among selected candidate 
genes, we found SERPINE2 to be specifically targeted by 
miR-199a-3p in CFs (Fig. 7C and Supplementary Table 4) 
and two target genes: BCAM and TSPAN6 for miR-199a-5p 
(Fig. 7C and Supplementary Table 5), which are linked to 
inflammation and fibrosis.

Discussion

Cardiovascular diseases continue to account for signifi-
cant morbidity and mortality throughout the world. Due 
to very limited regenerative capacity of the human heart 
and failure of previous cell-based attempts to reconstitute 
damaged heart tissue, the need for novel treatment options 
is warranted. Because CFs represent a major cell popula-
tion responsible for heart dysfunction due to the induction 
of fibrosis, we aimed to modify their biological behavior 

Fig. 4  Proliferation and metabolic activity of cardiac fibroblasts after 
EVs treatment. Analysis of proliferation capacity (A) and metabolic 
activity (B) of CFs following EV treatment for 24  h. The analyses 
were performed at 24, 48 and 96 h after incubation with EVs on CFs 
cultured in normoxic (upper panels) or hypoxic (1%  O2; lower pan-
els) conditions. The data were normalized compared with control CFs 
without EV treatment; red line. Student’s t-test; *p < 0.05

◂
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with/ without respective inhibitor. ANOVA multiple comparisons and 
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with miRNA-enriched-EVs to prevent adverse heart tissue 
remodeling.

Growing body of evidence indicates important regula-
tory role of miRNAs not only in CMs, but explicitly in CFs 
[35, 36] highlighting the relevance of impacting biological 
properties of the CFs by treatment with selected miRNAs. 
However, whether stem cells-derived EVs as carriers of 
miR-1 and miR-199a can attenuate inflammatory and pro-
fibrotic role of CFs and induce cardiomyogenesis in CFs 

has not been examined. Therefore, we utilized EVs from 
genetically modified hiPS UC-MSC overexpressing miR-1 
or miR-199a, to further boost positive outcome of stem cell-
EV-based therapy.

Importantly, as shown by Agarwal et al. in their elegant 
study, CFs constitute the major target cell population for 
the uptake of small EVs (exosomes) among cells that reside 
within the myocardium [37]. The highest concentration of 
fluorescently-labeled exosomes was identified in fibroblasts, 
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followed by cardiac endothelial cells and the lowest fluores-
cence intensity was detected in CMs. Moreover, although 
low amount of exosomes was transferred into CMs, this did 
not trigger any substantial functional effect in the recipient 
cells.

These data support our notion of that targeting CFs with 
miRs-enriched EVs may produce superior outcomes in 
future EV-based therapy for heart diseases.

We used stem cells-derived EVs enriched with miR-1 and 
miR-199a, whose proven functional effects may be benefi-
cial for attenuating fibrosis and enhancing cardiomyogenesis 
[18–20, 24, 25].

We performed comprehensive functional and molecular 
studies to decipher the mechanisms of the miR-1/miR-199a-
EVs effects on CF biological functions. Our results show the 
effects of hiPS-miR-1/miR-199a-EVs toward ameliorating 
inflammatory and pro-fibrotic properties of CFs and trigger-
ing cardiomyogenesis. These data may further be advanced 
for the development of novel cardiovascular therapies.

In particular, we discovered anti-proliferative and cyto-
protective role of hiPS-miR-1-EVs on CFs, which may 
be important in prevention of excessive cell death upon 
ischemia–reperfusion and amelioration of fibrosis. Treat-
ment of CFs with hiPS-miR-1-EVs substantially increased 
intracellular levels of pro-survival proteins Bcl-2 and HO-1. 
The role of HO-1 in cardioprotection after ischemia–reperfu-
sion has been well documented [38]. HO-1 regulates inflam-
matory signaling and mitochondrial function, ultimately 
leading to heart tissue recovery upon injury. Similarly, over-
expression of Bcl-2 significantly reduced ischemia–reperfu-
sion-induced heart damage in an animal model, by modu-
lating energy metabolism and mitigating acidification [39, 
40]. Collectively, we reveal a novel role of miR-1-EVs in 
CFs, which seems to be opposite to miR-1 function in CMs. 
It has been shown that miR-1 targets cl in CMs directing 
cells towards apoptosis [41, 42]. However, miR-1 delivery 
to the mouse hearts attenuated pathological hypertrophy 
and fibrosis [17–20]. Similarly, restoration of physiological 
miR-1 levels in the heart by transgenic delivery of SER-
CA2a improved cardiac function [43]. These data suggest 
that careful optimization of the correct timing of the admin-
istration of miR-1-EVs would be prerequisite for achieving 
optimal results of their proregenerative activity.

Importantly, by identification of CCL2 gene as a target for 
miR-1 in CFs, we revealed the anti-inflammatory function 
of hiPS-miR-1-EVs. Since the CCL2 protein is an important 
mediator of inflammatory pathways in CFs, which ultimately 
contribute to heart failure [44, 45], decreasing CCL2 lev-
els may inhibit pathological inflammatory cascade in the 
post-ischemic heart. Indeed, transcript levels of other pro-
inflammatory cytokines, including IL-1β and IL-8 were also 
reduced in CFs after treatment with hiPS-miR-1-EVs. Fur-
thermore, knowing that inflammation is a stage preceding 

the development of fibrosis [6, 7], we evaluated expression 
levels of pro-fibrotic proteins in CFs. We detected significant 
downregulation of α-SMA expression in CFs, after treatment 
with hiPS-miR-1-EVs. The inhibitory effect was reverted 
upon CFs treatment with miR-1-3p inhibitor, indicating a 
causal role of miR-1 in this process. Together, these data 
indicate that hiPS-miR-1-EVs induce cytoprotective, anti-
inflammatory and anti-fibrotic attributes in CFs.

With respect to hiPS-mir-199a-EVs, we demonstrated 
their cardiomyogenic function in CFs. By inducing the 
expression of a number of genes involved in cardiomyogen-
esis, such as NKX2.5, TNTC, MEF2C and MYCHCB, and the 
ion channels necessary for CM contractility, hiPS-miR-199a-
EVs may offer the advantage of epigenetic conversion of 
CFs to CMs, or at least enhancing CFs properties to recon-
stitute functional heart tissue. Importantly, miRNAs are able 
to mediate reprograming of CFs to CMs both in vitro and 
in vivo [36, 37]. Our studies with miR-199a specific inhibi-
tors indicated a causal role of miR-199a-3p in inducing pro-
cardiomyogenic effects in CFs. To delineate the underlying 
molecular mechanisms, we performed screening of kinases 
activities in CFs after hiPS-miR-199a-EVs treatment. We 
observed significantly enhanced phosphorylation of FAK 
and PRAS40. Since FAK has been implicated in key intra-
cellular processes including heart development [46], we 
propose its regulatory role in driving cardiomyogenesis 
in CFs. In turn, PRAS40 activation in CFs after treatment 
with hiPS-miR-199a-EVs points towards anti-fibrotic and 
anti-inflammatory function. Notably, mice over-express-
ing PRAS40 exhibited attenuated fibrotic remodeling and 
decreased hypertrophy [47].

To further decipher components of molecular effects 
of miR-199a-expessing EVs in CFs, we screened for tar-
get genes in recipient cells. Our data indicated SERPINE2 
as a target for miR-199a-3p in CFs and BCAM, as well as 
TSPAN6 for miR-199a-5p. SERPINE has been implicated in 
the development of myocardial fibrosis via collagen deposi-
tion [48, 49], thus downregulating its expression may lead to 
reduction of scar tissue and improved heart function. BCAM 
and TSPAN6 are involved in signal transduction. Importantly, 
BCAM was recently identified as target of miR-199a-5p in 
skin keratinocytes, where it acts as a tumor suppressor by 
inhibiting invasiveness [50], and in placenta, where it inhib-
its trophoblast proliferation, migration and invasion [51]. 
These activities of BCAM may support the safety of our 
approach of hiPS-miRs-EVs delivery to the heart in future 
therapy. Function of tetraspanins has not been studied in 
CFs, although their role in regulation of inflammation was 
depicted in endothelial cells [52]. Therefore, by dowregulat-
ing their target genes, miR-199a-3p and miR-199a-5p may 
suppress inflammation and fibrosis and enhance cardiomyo-
genesis in CFs. Importantly, in light of a recent report, con-
version of fibroblasts to CMs can substantially be enhanced 
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by inhibiting pro-fibrotic signaling [53]. Thus, in our model, 
the observed cardiomyogeneic effect of hiPS-miR-199a-EVs 
may be supported by the inhibition of pro-fibrotic signaling. 
However, further studies are necessary to fully understand 
the mechanisms behind hiPS-miR-199a-EVs-medited induc-
tion of cardiomyogenesis.

Another advantage of our approach is the use of producer 
cells stably overexpressing specific miRNAs for EV collec-
tion. Thus, we overcome the need for repeated EVs trans-
fection with costly synthetic miRNAs, an aspect important 
for the future good manufacturing practice (GMP)-based 
preparation of transplantable biological products. Moreo-
ver, our discovery that upregulation of one miRNA can 
entail elevated levels of other miRNAs confirms that a fine-
tuned miRNA regulatory network exists in cells. Thus, it is 
likely that the cellular response not to a single miRNA but 
to different interacting miRNAs that determines the ulti-
mate effects. The identified pathways for miR-199a-EVs 
implicate TGFβ, FOXO, and Hippo signaling and regula-
tion of pluripotency, which were have been shown to be 
important for heart function and recovery [54–56]. These 
provide additional support toward feasibility and efficacy of 
miRNA-EVs-based therapies for heart repair.

Conclusions

Our data indicate that hiPS-miR-1-EV treatment protects 
CFs from apoptosis, decreases their proliferation and there-
fore, may mitigate the risk of fibrosis in the injured heart. 
hiPS-miR-1-EV treatment of CFs also attenuates inflamma-
tory reaction by targeting CCL-2 and reducing IL-1β and 
IL-8. Further, by regulating the production of pro-fibrotic 
proteins such as α-SMA, hiPS-miR-1EVs may reduce the 
scar formation and ameliorate stiffness of the infarct zone. 
Treatment with hiPS-miR-199a-EVs induces cardiomyo-
genesis and increases expression of transcripts encoding 
ion channels, enabling superior signal transduction and 
enhanced cardiomyocyte contractility. By targeting SER-
PINE2, BCAM and TSPAN6, miR-199a-EVs may further 
reduce inflammation and fibrosis, bringing synergistic repar-
ative effects. Thus, targeting CFs with specific miR-EVs may 
create an environment that would favor myocardial repair 
and reconstitution.
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