

1

Iraqi Journal for Computers and Informatics

 Vol. [48], Issue [2], Year (2022)

PARALLEL PROCESSING OUTCOMES OF E-ABDULRAZZAQ

ALGORITHM USING MULTI-CORE TECHNIQUE

Atheer Akram AbdulRazzaq1 Nur’Aini Abdul Rashid2
1Businesses Informatics College, University of Information

Technology and Communications, Baghdad Iraq

athproof@uoitc.edu.iq

Department of Parallel and Distributed Processing, School of

ComputerSciences Universiti Sains Malaysia, 11800 Pulau

Pinang, Malaysia.

nurainipng@gmail.com, nuraini@cs.usm.my

 Abstract - The string matching problem is considered one of

the substantial problems in the fields of computer science like

speech and pattern recognition, signal and image processing, and

artificial intelligence (AI). The increase in the speedup of

performance is considered an important factor in meeting the

growth rate of databases, Subsequently, one of the determinations

to address this issue is the parallelization for exact string matching

algorithms. In this study, the E-Abdulrazzaq string matching

algorithm is chosen to be executed with the multi-core

environment utilizing the OpenMP paradigm which can be

utilized to decrease the execution time and increase the speedup of

the algorithm. The parallelization algorithm got positive results

within the parallel execution time, and excellent speeding-up

capabilities, in comparison to the successive result. The Protein

database showed optimal results in parallel execution time, and

when utilizing short and long pattern lengths. The DNA database

showed optimal speedup execution when utilizing short and long

pattern lengths, while no specific database obtained the worst

results.

 Index Terms - Database types, E-AbdulRazzaq algorithm,

OpenMP directive, Parallel execution time, Speedup.

I. INTRODUCTION

 String matching is the method of identifying all

alignment occurrences by comparing two finite-length

strings[1], [2], [3]. String matching is among the foremost

imperative issues connected in numerous computer science

applications, such as speech and pattern recognition, artificial

intelligence (AI), signal and image processing, intrusion

detection systems, operating systems [4], web search engines

[5], [6] information retrieval[7], [8] and search analysis [9].

String matching is additionally utilized to analyze protein

sequences and for DNA pattern matching. The tireless

challenges of string matching incorporate the duplication of

databases every two years, and this influences the speed of

computers, which leads to an increase in the measure of

memory. Thus, the utilization of effective algorithms of string-

matching is crucial to solving these issues [10].

 The brute force algorithm is considered the simplest

algorithm technique compared to other string-matching

algorithms which scan the text pattern with text substring from

left to right. when the match is complete or a mismatch occurs

the shifts precisely one position to the right. Thus, the brute-

force algorithm runs in O(mn) time [11]. The KMP algorithm

is efficient and considered the first liner algorithm in the time.

The comparison of the algorithm depends on the execution from

left to right and the shifting depends on the last character[12].

The Boyer-Moore algorithm is predominantly and broadly

utilized due to its high proficiency. The comparison in this

algorithm is started from the right to left. There's a plausibility

of a match or mismatch between the pattern and text window,

where it is the shifting depends on the good suffix and the bad

character functions[13]. The Karp-Rabin algorithm is the

algorithm used with the hash function, and the comparison

depends on execution from left to right. This algorithm depends

on the computation of the hash function of the pattern and text

window. It is subordinate to the calculation of the hash work of

the design and the content window. The hash strategy has a high

execution which diminishes the utilization of time due to the

utilization of integer numbers [14], [15].In addition, The two-

sliding windows algorithm (TSW), depends on the design of

sliding windows to check the content at the same time from the

left and right sides. This algorithm utilizes two windows, one

from the left side, and the second from the right side. The

comparison technique between the pattern and text occurs from

both sides at the same time, when there's a mismatch, the

shifting will at that point happen for both of the two sides, from

the left side a move will be executed to the left, and the right

will move to the right side. The shift operation depends on the

Berry- Ravindran shift technique, which takes two characters

continuously [16], [17].

 Parallel processing is a feasible way of reducing

computing time. Parallelism depends on collaboration among

the processors or cores in computers to settle sequential

computer problems. The parallel applications depend on two

strategies: data decomposition and function decomposition.

The parallel computer architecture is classified into two: shared

memory and distributed memory. These techniques are

classified according to how they access memory. The

processors in the first technique (shared memory technique) use

one access way to reach the common memory. Shared memory

is used to save data as well as other purposes such as

synchronization and communications among the processors

[18].

2

Iraqi Journal for Computers and Informatics

 Vol. [48], Issue [2], Year (2022)

 Open Multi-Processing (OpenMP) is considered as a

standard application programming interface (API) in the

utilization of shared memory applications. OpenMP uses

C/C++ implementations and has many beneficial attributes than

other parallel programing interfaces, such as having less

complications when using parallel implementations; more

popularly used than other parallel APIs in PCs like The

Message Passing Interface (MPI) and POSIX; uses data design

and decompositions automatically[10], [19], [20].

 The parallelization of the shared memory is used in

various applications of computers such as the classification of

pictures [21], Restoration of the image [22], direct polynomial

math [23], information mining [24], bioinformatics [25],

Intrusion detection system (IDS) [26], [27], [28].

 This paper concentrates on the issues that are related to

the execution of the E- AbdulRazzaq algorithm, with the aim of

growing the speedup by reducing the successive time and

exploring the appropriateness of the parallelization of the E-

AbdulRazzaq algorithm on the multi-core technique by

utilizing the OpenMP model. Here, we assessed the execution

of the algorithm depending on various factors such as the length

of the pattern, the number of cores, and using different database

types. Section 2 clarifies the string matching algorithms using

parallel processing, Section 3 describes the implementation and

technique of the E-AbdulRazzaq algorithm and OpenMP

technique, the results and analysis are obtained in Section 4, and

the conclusion in Section 5.

II. STRING MATCHING ALGORITHMS USING PARALLEL

PROCESSING

 String matching algorithms are used to obtain optimal

results when dealing with different data sets, and solving

problems that are related to computer applications. Nowadays,

many challenges on string matching are emerging, and the

performance of sequential algorithms are insufficient in

accomplishing the big procedures when dealing with huge

datasets and the long elapsed time of these algorithms,

therefore, parallel processing used in solving these problems,

especially those related to large databases [29]. There are a

number of exact string matching algorithms used in application

parallel interfaces in solving the many problems related to these

algorithms. Some algorithms, such as the Quick-Search

algorithm, use multi-core technology; the Quick-Search

algorithm uses two parallelization paradigms, the OpenMP and

the Pthread, to enhance the filtering of the IDS by increasing

the speed to make the IDS faster, and obtain the efficient

algorithm in this field [24]. Other algorithms, like brute force,

Boyer-Moore (BM), and KMP, also use multi-core technology.

The technique of these algorithms depends on the division of

the text into subtexts, and all of these subtexts are used

separately by the different parallelized algorithms (KMP, BM,

and brute force). Computation includes the time and the number

of matching after finishing each subtext for each algorithm

separately, calculating the final result of each algorithm, and

then comparing the results with that of other algorithms. The

BM algorithm showed the best result than the rest, and the KMP

algorithm was not better than the brute force algorithm in terms

of the rate of results [30].

 The KMP-BM algorithm is hybrid algorithm that uses

multi-core technology; this algorithm depends on dividing the

large text into smaller blocks, and separately using the same

pattern with all the blocks simultaneously. The last m−1

characters in the pattern are saved in all the blocks to avoid any

problem in the character comparison between the blocks and

the pattern; this procedure was used because the blocks deal

with different processors [31]. There are algorithms used in the

GPU technique, like the Naive, Quick- Search, KMP and

Horspool algorithms. All of these algorithms use the GPU

separately, and obtains significant results, and are faster than

the original algorithms by dealing with the low-latency ability

of the shared memory of the GPU [32].

III. THE IMPLEMENTATION OF THE ALGORITHM

TECHNIQUE

3.1 E-Abdulrazzaq algorithm

 The technique of the E-Abdulrazzaq algorithm depends on

two phases the preprocessing phase and the searching phase.

The preprocessing phase is reliant on the selected functions of

two algorithms (Abdulrazzaq and Berry-Ravindran)

comprising Prime and composite numbers functions; Boyer-

Moore bad character (bmBc) function, Berry-Ravindran bad

character (brBc) function, and the hash function. In the interim,

The searching phase in the E-Abdulrazzaq algorithm has three

steps. In the first step, the hashing of the prime numbers in the

text window is calculated and compared with the hashing value

of the prime number characters in the pattern. If a match is

obtained, the comparison between the prime number characters

of the text window and pattern proceeds. If a match is obtained,

then the second step follows. In the second step, if a match is

obtained in the first step, the comparison between hashing

characters in the pattern and text window proceeds. The

calculated hash value in the composite number characters in the

text window. If a match is obtained in the hashing value, the

comparison of the characters between the pattern and text

proceeds. If a match is found between these characters, the third

step follows; The comparison of character number one in the

pattern with character number one in the text window proceeds.

. However, if a mismatch or match is obtained for each step

and in the hashing comparison or in the character comparison,

the shifting will depend on the maximum value of m from the

(bmBc) table and the (m + 1 and m + 2) value from the (brBc)

table.

3.2 Parallel of E-Abdulrazzaq algorithm using OpenMP

This section highlights the parallel design of E-AbdulRazzaq

algorithm and the parallel process includes the following steps:

3

Iraqi Journal for Computers and Informatics

 Vol. [48], Issue [2], Year (2022)

a) The first step is executed by #pragma omp parallel shared (),

which share threads that work together. The data becomes

visible and can be accessed by a group of threads wherein the

same address is accessible to all threads. The variables are

shared in the shared region in all steps except the repetition

counter loop. In this function, a set of variables, namely, pattern

x, length of pattern m, text y, and length of text n, are used as

parameters in the algorithms. The functions used for shifting

and building tables, such as bmBc and brBc, and two functions,

such as prime/composite function and set prime/ set composite

function are used in the proposed algorithm.

b) In the second step, the threads are created with each core

containing one thread because the cores inside the processors of

the Khawarizmi cluster have single threads. The number of

threads (i.e., OMP) that run in a parallel region and can be

controlled by a specific function is related to the number of

threads in the team, returns the number between 0 to number of

threads−1. The master threads return the number 0. The

omp_get_thread_num (iThreads) function is used to control the

number of threads.

c) In the third step, data are decomposed to small blocks p by

dividing the array y [] related to the text and p blocks processed

by individual threads in parallel (p = number of threads). The

division cannot be strictly n/p but can be n/p + m−1 because of

the nature of the pattern search algorithm, and this division

process called the overlapping boundaries among the small

blocks p. The dotted line is the boundary of each block and the

distance confines the dotted line into the non-dotted line as

pattern length − 1(m − 1), which denotes the pattern length

added for each block. This procedure is applied to prevent any

problems when the pattern originates from data that are divided

into substrings; these types of data cannot be discovered

because each substring handles different threads. This

procedure is also employed to avoid problems when the same

pattern string is compared with substrings.

d) In the fourth step, each thread inside each core takes one

block after the division of data text into blocks (e.g., thread

number 1 processes block number 1 and thread number 2

processes block number 2). All threads then take the same

pattern with each thread by using the pattern separately with a

specific block depending on the technique of the algorithm. In

proposed algorithm each thread applies hash function twice

with prime and composite numbers in the pattern stages, and

then starting in searching phase. After each thread completes

the comparison between the segment of text (block) and the

pattern, the time consumption is calculated.

e) In the fifth step, the reduction clause is performed. The

reduction clause collects the results from partial accounts (i.e.,

threads) as a single result. This function informs the OMP to

copy summarization counters into each thread separately and to

sum up their values after each thread ends. The reduction

function, reduction (+: attempts, count, comparisons), is used

in parallel proposed algorithm to calculate the time

consumption by each thread. The results are calculated and set

in the master thread. Figure 1 showed the Flowchart for parallel

of E-AbdulRazzaq algorithm using OpenMP model.

3.3 Implementation and environment

3.3.1 Hardware and software

 This experiment uses the Khawarizmi cluster from the

School of Computer Sciences at USM

(khawarizmi.cs.usm.my). The cluster contains the following

nodes: Dell PowerEdge 1950 (master node) (2 × Quad-Core

Intel Xeon E5450 3.00 GHz, 2 × 12 MB Cache, 1333 MHz

FSB) and 2 × Dell PowerEdge 1950 (Slave nodes) (2 × Quad-

Core Intel Xeon 1.6 GHz, 2 × 4 MB Cache, 1066 MHz FSB).

The operating system is Linux (rocks cluster distribution 6.1,

centos 6.3, 64- bit). The compiler used in this cluster is GCC

4.4.6, and the purpose of this cluster is to use the OpenMP

paradigm.

3.3.2 Khawarizmi cluster architecture

 This cluster includes three nodes. Each node contains two

processors that have four cores each and one thread in each

core. The buffered memory for the master node is 16 GB (2 × 8

GB, DDR-2 667 MHz ECC 2R), and the hard drive for the

master node is a 1 TB 3.5-inch 7.2K RPM SATA II. The

buffered memory for each slave node is 8GB (4 × 2 GB, DDR-

2 667 MHz ECC 2R), and the hard drive is a 250 GB 3.5-inch

7.2K RPM SATA II.

 3.3.3 Performance comparison

 The proposed algorithm is dependent on the metrics that

are used to compare the results of the sequential and parallel

algorithms, in arrange to calculate the degree of enhancement

between them. This study utilized metrics comprising the

execution time and speedup [33].

 The execution time is the time passed between the

beginning and wrap-up of the execution time in one processor,

which contains all processing times. The parallel time is the

passed time between the begin of the first processor and the

conclusion time of last processor. The successive and parallel

elapsed time are indicated as Ts and Tp, respectively.

 Speedup is utilized to get the focal points of parallel

operation. The calculation of speedup depends on the

successive and parallel consumed times or the proportion of the

devoured time within the serial stage to the expended time

within the parallel stage. The time is calculated in milliseconds

and depends on the following equation:.

Speedup (S) = Ts / Tp

Where Ts and Tp are the time consumed in the sequential and

parallel stages, respectively [34].

4

Iraqi Journal for Computers and Informatics

 Vol. [48], Issue [2], Year (2022)

Fig.1 Flowchart for parallel E-AbdulRazzaq algorithm using OpenMP Model

No

Yes

End

Calculate the hash values of prime
numbers (Ph1)

Final results in master thread

bmBc [x] function
brBc [x] function

Start

Matching function

Benchmark

databases

Pattern

Hash function

(Set number threads)
omp_set_num_threads()

T [0] T [1] T [n-1]

Searching phase of E-AbdulRazzaq
Algorithm

Calculate no. of attempts, no. of character
comparisons and consumed time

Prime and composite function
Set prime and composite function

Calculate the hash values of Composite
numbers (Ch2)

Reduction operation copy of counters and sum no. of attempts,
character comparisons and consumed time

Omp parallel shared variables(x, m, yb, nb, brBc, bmBc)

IF
N_blocks /

iTh < m

 Print

“Error”

Benchmark

databases

Text
Data decomposition and

Compute data boundaries

Each third process one block (T[0]
process b1…T[n-1] process lastb n-1

iThread = omp_get_thread_num()

Lastblock =lastblock+m-1

5

Iraqi Journal for Computers and Informatics

 Vol. [48], Issue [2], Year (2022)

3.3.4 Experiment design

 The databases utilized in the experiment are downloaded

from the (http://pizzachili.dcc.uchile.cl/texts.html).This

experiment utilized the following databases; DNA, Protein,

and English text, with 400 MB data size. The program is

worked five times for each database and then the average is

calculated. Eight cores are applied in this study because the

number of cores in each node inside the cluster only rises to

eight. Moreover, the comes about will be counterproductive

and futile in the event that the number of cores increments.

The number of cores utilized within the figures depends on

the core power of two between 2^1 to 2^3. The sequential time

utilized with the results is (Seq), and the numbers of cores

utilized are two cores (C2), four cores (C4), and eight cores

(C8). The sequential algorithm results are compared with the

results of these cores.

IV. THE RESULTS AND ANALYSIS

 The overall parallel time shows the best performance

compared with the sequential time in a 400 MB data size

when short and long patterns are used. The Protein database

demonstrates the best time in most short and long patterns.

DNA database is the worst performing database in all short

and long patterns lengths, as shown in table 1., and table 2.

Table 1. Sequential and parallel execution times and short pattern length

with 400MB database size

Table 2. Sequential and parallel execution times and long pattern length

when using 400MB database size

 The overall speedup performance is high in a 400 MB

data size when short and long patterns are used. DNA obtains

the best results in most short and long pattern lengths. No

specific database obtains the worst data when short and long

patterns are used, as shown in Table 3. and Table 4.

Table 3. Speedup and short pattern length when using 400MB database size

Length

of

pattern

Number of

cores

Sequential execution time and

parallel execution time (Ms.)

DNA Protein English

32

Sequential 2212 843 851

2 1171 448 453

4 591 227 229

8 298 117 118

64

Sequential 3102 685 739

2 1613 360 386

4 812 184 197

8 409 96 102

128

Sequential 3931 638 715

2 1997 332 381

4 1003 170 195

8 505 92 104

256

Sequential 7130 609 709

2 3624 314 364

4 1820 161 187

8 914 87 98

512

Sequential 12194 707 758

2 6150 362 386

4 3078 185 198

8 1556 98 104

1024

Sequential 21877 977 854

2 11014 500 436

4 5508 254 226

8 2776 132 118

Length

of

pattern

Number of

cores

Sequential execution time and parallel

execution time (Ms.)

DNA Protein English

4

Sequential 3343 1966 1930

2 1813 1111 1095

4 911 558 550

8 461 282 278

8

Sequential 2245 1522 1546

2 1219 840 852

4 611 422 429

8 308 214 217

12

Sequential 2196 1236 1353

2 1191 675 734

4 597 340 371

8 323 173 188

16

Sequential 1964 1051 1104

2 1062 572 601

4 529 288 303

8 277 147 155

20

Sequential 2022 1068 1085

2 1056 574 582

4 531 291 294

8 291 148 150

24

Sequential 1868 959 967

2 986 513 516

4 496 258 260

8 251 132 133

28

Sequential 1995 854 857

2 1055 457 458

4 532 232 232

8 269 119 119

Length of

pattern

Number

of cores

Speedup (Stime / Ptime)

DNA Protein English

4

2 1.84 1.77 1.76

4 3.67 3.52 3.51

8 7.25 6.97 6.94

8

2 1.84 1.81 1.81

4 3.67 3.61 3.60

8 7.29 7.11 7.12

12

2 1.84 1.83 1.84

4 3.68 3.64 3.65

8 6.80 7.14 7.20

16

2 1.85 1.84 1.84

4 3.71 3.65 3.64

8 7.09 7.15 7.12

20

2 1.91 1.86 1.86

4 3.81 3.67 3.69

8 6.95 7.22 7.23

24

2 1.89 1.87 1.87

4 3.77 3.72 3.72

8 7.44 7.27 7.27

28

2 1.89 1.87 1.87

4 3.75 3.68 3.69

8 7.42 7.18 7.20

6

Iraqi Journal for Computers and Informatics

 Vol. [48], Issue [2], Year (2022)

Table 4. Speedup and long pattern length when using 400MB database size

4.1 Evaluation of parallel of the E-AbdulRazzaq algorithm

 The results of the E-AbdulRazzaq algorithm in parallel

time compared with sequential time are obtained by

evaluating parallelization performance, which depends on

two factors, namely, parallel execution time and speedup in

short and long patterns with different types of databases and

400MB size.

Table 5. Performance evaluation for the average sequential and parallel

execution times (ms) of the E-AbdulRazzaq algorithm

Performance

comparison

factors

400MB data size

Short Long

Types of

databases
Seq C2 C4 C8 Seq C2 C4 C8

DNA 2233 1197 601 311 8408 4262 2135 1076

Protein 1237 677 341 174 743 386 197 104

English 1263 691 348 177 771 401 205 107

 Parallel time results in better performance than

sequential time when short and long patterns with 400MB

data sizes are used. When the number of cores increased, the

parallel time decreased because the communication time

increased [34], [35]. Time in DNA data increases when long

patterns are used because of the small alphabet size and the

hash function technique, which depends on the repeated

checking of characters, thus increasing time consumption in

long patterns [12]. The best sequential results recorded are

1237 ms in short patterns, and 743 ms in long patterns. The

worst sequential results are 2233 ms in short patterns with

400 MB data sizes, and 8408 ms in long patterns. The best

parallel results when using short patterns with 400 MB data

size are respectively presented as follows: two cores, 677

ms; four cores, 341 ms; eight cores, 174 ms. The best parallel

results when using long patterns with 400 MB data size are

respectively presented as follows: two cores, 386 ms; four

cores, 197 ms; eight cores, 104 ms. The worst parallel results

when short patterns with 400 MB data size are used are

respectively presented as follows: with two cores, 1197 ms ;

four cores, 601 ms; eight cores, 311 ms. The worst parallel

results when long patterns with 400 MB data sizes are used

are respectively presented as follows:: two cores, 4262 ms;

four cores, 2135 ms; eight cores, 1076 ms (Table 5.).

 The Protein database obtains the best sequential and

parallel times when using short and long patterns with 400

MB data size because the E-AbdulRazzaq technique contains

efficient functions (bmBc and hash) for dealing with the

Protein database. The DNA database obtains the worst results

in sequential and parallel times because of the small alphabet

size, which require further shifting and time. Parallel time is

affected by the type of database because the difference in the

alphabet size used in a database affected its performance [36].

Table 6. Performance evaluation of the average speedup

of parallel E-AbdulRazzaq

 The results show a high speed up when using short and

long patterns in 400 MB data sizes. The E-AbdulRazzaq

algorithm has high sequential time because it can calculate

the hashing values for all prime number characters in the first

step in the searching technique, that is, this algorithm has

character selectivity, does not depend on the character type

of databases, and has high consumption of sequential time,

particularly when long patterns are used. The best speedup

results in short patterns with 400 MB data size are

respectively presented as follows: two cores, 1.87; four cores,

3.72; eight cores, 7.17. The best speedup results in long

patterns 400 MB data sizes are respectively presented as

follows: two cores, 1.95; four cores, 3.89; eight cores, 7.72.

The worst speedup results in short patterns 400 MB data size

are respectively presented as follows: two cores, 1.84; four

cores, 3.64; eight cores, 7.15. The worst speedup results in

long patterns with 400 MB data size are respectively

presented as follows: two cores, 1.92; four cores, 3.76; eight

cores, 7.15 (Table 6.).

 The best speedup results are found in DNA when short

and long patterns with 400 MB data size are used because

DNA exhibit the highest rate of improvement in parallel time

compared with sequential time among the databases.

Moreover, speedup increases when parallel time is shorter

than sequential time and vice versa. No specific database

Length of

pattern

Number

of cores

Speedup (Stime / Ptime)

DNA Protein English

32

2 1.89 1.88 1.88

4 3.74 3.71 3.72

8 7.42 7.21 7.21

64

2 1.92 1.90 1.91

4 3.82 3.72 3.75

8 7.58 7.14 7.25

128

2 1.97 1.92 1.88

4 3.92 3.75 3.67

8 7.78 6.93 6.88

256

2 1.97 1.94 1.95

4 3.92 3.78 3.79

8 7.80 7.00 7.23

512

2 1.98 1.95 1.96

4 3.96 3.82 3.83

8 7.84 7.21 7.29

1024

2 1.99 1.95 1.96

4 3.97 3.85 3.78

8 7.88 7.40 7.24

Performance

comparison

factors

400MB data size

Short Long

Types of

databases
C2 C4 C8 C2 C4 C8

DNA 1.87 3.72 7.17 1.95 3.89 7.72

Protein 1.84 3.64 7.15 1.92 3.77 7.15

English 1.84 3.64 7.15 1.92 3.76 7.18

7

Iraqi Journal for Computers and Informatics

 Vol. [48], Issue [2], Year (2022)

obtains the worst data when short and long patterns are used

because stability is observed in the speedup of most

databases.

V. CONCLUSION

 The performance of the sequential and parallel algorithm

will be measured based on the execution time and speed up

when using short and long patterns with various databases

and 400MB data size. The parallelization of the E-

AbdulRazzaq algorithm has gotten high execution comes

about in comparison to consecutive execution when using the

OpenMP model as a multi-core technology. The Protein and

DNA databases obtained the best and worst sequential and

parallel times using enhanced hybrid algorithm, respectively.

Among the databases studied, DNA obtained the best results

in terms of speedup when using E-AbdulRazzaq algorithm

,while no specific database was determined to be the worst.

References

[1] C. Ryu, T. Lecroq, and K. Park, “Fast string matching for

DNA sequences”, Theoretical Computer Science, vol.

812, pp. 137-148, 2020.

[2] A. A. AbdulRazzaq, Nur'Aini Abdul Rashid, A. Ahmed

Abbood, and Z. Zainol, “The Improved Hybrid Algorithm

for the Atheer and Berry-Ravindran Algorithms,”

International Journal of Electrical and Computer

Engineering (IJECE), vol. 8, no. 6, pp. 4321-4333, 2018,

doi: 10.11591/ijece.v8i6.pp4321-4333.

[3] D. Jargalsaikhan, D. Hendrian, R. Yoshinaka, and

A.Shinohara, Parallel Algorithm for Pattern Matching

Problems Under Substring Consistent Equivalence

Relations, LIPIcs, 33rd Annual Symposium on

Combinatorial Pattern Matching (CPM 2022), Vol. 223,

2022, DOI: 10.4230/LIPIcs.CPM.2022.28.

[4] A. A. AbdulRazzaq, N. A. Rashid, and A. M. Taha, “The

enhanced hybrid algorithm for the AbdulRazzaq and

Berry-Ravindran algorithms,” International Journal of

Engineering and Technology, vol. 7, no. 3, pp. 1709-

1717, 2018, doi: 10.14419/ijet.v7i3.12436.

[5] X. Qi, B. Liu, Y. Li, Y. Du, Y. Li, D. Niu, A Parallel BMH

String Matching Algorithm Based on OpenMP, 2019

IEEE 21st International Conference on High Performance

Computing and Communications; IEEE 17th

International Conference on Smart City; IEEE 5th

International Conference on Data Science and Systems

(HPCC/SmartCity/DSS), 2019. DOI: 10.1109/HPCC/

SmartCity/ DSS.2019.00026

[6] W. Dababat, and M. Itriq, Parallel Enhanced Pattern

Matching Algorithm with Two Sliding Windows

PETSW, International Journal of Computer Applications

,Vol; 179 (18), pp.0975 – 8887,2018.

[7] A. W. Mahmood, N. A. Rashid, and A. A. A. Rozaq,

“BM-KMP hybrid algorithm for exact and subsequence

string matching,” Proceeding of the 3rd International

Conference on Informatics and Technology, (Informatics

'09), 2009, pp. 81-87.

[8] P. NEAMATOLLAH , M. HADI , AND M.

NAGHIBZADEH, Simple and Efficient Pattern

Matching Algorithms for Biological Sequences, 2020

25th International Computer Conference, (CSICC), pp.

23838 - 23846, 2020.

[9] S .S. M. Al-Dabbag,. and Y. M. Abdal., Parallel Hybrid

String Matching Algorithm Using CUDA API Function,

2021 International Conference on Computing and

Communications Applications and Technologies

(I3CAT), 2021. DOI: 10.1109 /I3CAT53310. 2021.

9629415.

[10] A. A. AbdulRazzaq, Q. S. Hamad, and A. M. Taha,

“Parallel implementation of maximum-shift algorithm

using OpenMp,” Indonesian Journal of Electrical

Engineering and Computer Science (IJEECS), vol. 22, no.

3, pp. 1529-1539, 2021, doi:

10.11591/ijeecs.v22.i3.pp1529-1539.

 [11] L. S. N. Nunes, J. L. Bordim, Y. I., and K.Nakano

“Parallel Rabin-Karp Algorithm Implementation on GPU

(preliminary version)” Bulletin of Networking,

Computing, Systems, and Software, Vol. 7, No. 1, pp: 28-

32, 2018.

[12] S. I. Hakak, A. Kamsin, P. Shivakumara, G. A. Gilkar,

W. Z. Khan, and M. Imran, “Exact string matching

algorithms: survey, issues, and future research

directions,” New Trends in Brain Signal Processing and

Analysis IEEE Access, vol. 7, pp. 69614-69637, April

2019, doi: 10.1109/ACCESS.2019.2914071.

[13] N. B. Nsira, T. Lecroq, and M. Elloumi, ”A fast boyer-

moore type pattern matching algorithm for highly similar

sequence,” International Journal of Data Mining and

Bioinformatics, vol. 13, no. 3, pp. 266-88, 2015, doi:

10.1504/ijdmb.2015.072101.

[14] R. E. Putri and A. Siahaan, ”Examination of document

similarity using rabin-karp algorithm,” International

Journal Of Recent Trends In Engineering and Research,

vol. 03, no. 08, pp. 196-201, 2017, doi:

10.23883/IJRTER.2017.3404.4SNDK.

[15] A. B. Khoir, H. Qodim, B. Busro, and A. R. Atmadja,

“Implementation of rabin-karp algorithm to determine the

similarity of synoptic gospels,” 1st International

Conference on Advance and Scientific Innovation

(ICASI), pp.1-7, 2019, doi: 10.1088/1742-

6596/1175/1/012120.

[16] A. Hudaib, R. Al-khalid, D. Suleiman, and M. Abd

Alfattah Itriq,“A Fast Pattern Matching Algorithm with

Two Sliding Windows (TSW) A Fast Pattern Matching

Algorithm with Two Sliding Windows (TSW),” Journal

of Computer Science, vol. 4, no. 5, pp. 393-401, 2008,

doi: 10.3844/jcssp.2008.393.401.

[17] A. Hudaib, D. Suleiman, and A. Awajan, “A Fast Pattern

Matching Algorithm Using Changing Consecutive

Characters,” Journal of Software Engineering and

8

Iraqi Journal for Computers and Informatics

 Vol. [48], Issue [2], Year (2022)

Applications (JSEA), vol. 9,no. 8, pp. 399-411, 2016, doi:

10.4236/jsea.2016.98026.

[18] C. S. Kouzinopoulos, Parallel and Distributed

Implementations of Multiple and Two-Dimensional

Pattern Matching Algorithms. Doctoral Thesis

Department of Applied Informatics, University of

Macedonia, 2013.

[19] D. Dhar, L. Hegde, S. M. Patil, S. Chickerur,

“Parallelization of Protein Clustering Algorithm Using

OpenMP,” (2018, April). In InternationalConference on

Advances in Computing and Data Sciences, 2018, pp.

108-118, 2018.

[20] C. S. Kouzinopoulos, P. D Michailidis, and K. G.

Margaritis, “Parallel Implementation of Exact Two

Dimensional Pattern Matching Algorithms using MPI and

OpenMP,” 9th Hellenic European Research on Computer

Mathematics and its Applications Conference” pp. 1-6,

2009.

[21] M. Hemnani, “Parallel processing techniques for high

performance image processing applications,” 2016 IEEE

Students' Conference on Electrical, Electronics and

Computer Science (SCEECS), pp. 1-4, 2016, doi:

10.1109/SCEECS.2016.7509316.

[22] K. N. Rai, K. Nath Rai, and V. Kumar Singh, “A Parallel

Processing Technique Based on GMO and BCS for

Medical Image Encryption,” International Journal of

Innovative Technology and Exploring Engineering

(IJITEE), vol. 9, no. 3, pp. 3418-3427, 2020.

[23] J. Cámara, J. Cuenca, L. P. García, and D. Giméneza,

“Empirical Modelling of Linear Algebra Shared-Memory

Routines Empirical Modelling of Linear Algebra Shared-

Memory Routines,” Procedia Computer Science, vol 18,

pp. 110-119, 2013, doi: 10.1016/j.procs.2013.05.174.

[24] R. Jin, G. Yang, and G. Agrawal, “Shared Memory

Parallelization of Data Mining Algorithms: Techniques,

Programming Interface, and Performance,” IEEE

Transactions on Knowledge and Data Engineering, vol.

17, no. 1, pp. 1-19, 2005, doi: 10.1109/TKDE.2005.18.

[25] N. P. Tran, M. Lee, and D. Hoon Choi, “Cache Locality-

Centric Parallel String Matching on Many-Core

Accelerator Chips,” Hindawi Publishing Corporation,

Scientific Programming, vol. 2015, pp. 1-21, 2015, doi:

10.1155/2015/937694.

[26] A.A. Hnaif, A. Aldahoud, M. A Alia, I. S. Al’otoum,

and D. Nazzal, ,‘Multiprocessing scalable string matching

algorithm for network intrusion detection system’, Int. J.

High Performance Systems Architecture, Vol. 8, No. 3,

pp.159–168, 2019.

 [27]A. A. Hasan, N. Abdul Rashid, A. A. Abdulrazzaq, and

M. A. Abu-Hashem, “String Matching Algorithms for

Intrusion Detection System A Survey and Taxonomy,”

International Journal of Advancements in Computing

Technology, vol. 5, no. 8, pp. 317-333, 2013,

doi:10.4156/ijact.vol5.issue8.36.

[28] Hung. C.L., Hsu. T.H., Wang. H.H., Lin. C.Y., GPU-

based Bit-Parallel Multiple Pattern Matching Algorithm,

2018 IEEE 20th International Conference on High

Performance Computing and Communications, 2018,

DOI: 10.1109/HPCC/SmartCity/DSS.2018.00205.

[29] K. B. Raju, , C. S. Rao, , and S.V. Raju, ‘A Frame Work

for Parallel String Matching-A Computational Approach

with Omega Model.” Global Journal of Computer

Science and Technology Hardware & Computation

(GJCST), vol.13, no.2, pp: 13-20, 2013.

[30] C. S. Rao, , K. B. Raju, , and S.V. Raju, “Parallel String

Matching with ulti Core Processors-A Comparative Study

for Gene Sequences”. Global Journal of Computer

Science and Technology Hardware & Computation

(GJCST), vol.3,no.1,pp: 27-42, 2013.

[31] A. Rasool, and N. Khare,” Parallelization of KMP String

Matching Algorithm on Different SIMD architectures:

Multi-Core and GPGPU’s.” International Journal of

Computer Applications, vol.49, pp:26-28, 2012.

[32] C. S. Kouzinopoulos, and K. Margaritis, “ String

Matching on a multicoreGPU using CUDA,” In

Proceedings of the 13th Panhellenic Conference on

nformatics, pp:14-18, 2009.

[33] A. A. Alsaheel, A. H. Alqahtani, and A. M. Alabdulatif,

“Analysis of Parallel Boyer-Moore String Search

Algorithm,” Global journal of computer science and

technology, vol. 13, no. 1, pp. 1-7 2013.

[34] A. A. Abdulrazzaq, N. A. Rashid, and A. H. A. Alezzi,

“Parallel processing of hybrid exact string matching

algorithm,” In 2013 IEEE International Conference on

Control System, Computing and Engineering, pp. 203-

209, 2013, doi: 10.1109/ICCSCE.2013.6719959.

[35] K. Hamidouche, A. Borghi, P. Esterie, J. Falcou, and S.

Peyronnet, “Three high performance architectures in the

parallel APMC boat,” In 2010 Ninth International

Workshop on Parallel and Distributed Methods in

Verification, and Second International Workshop on High

Performance Computational Systems Biology, pp. 20-27,

2010, doi: 10.1109/PDMC-HiBi.2010.12.

[36] C. S. Kouzinopoulos, P. D.Michailidis, and K. G.

Margaritis, “Performance Study of Parallel Hybrid

Multiple Pattern Matching Algorithms for Biological

Sequences”, In Proceedings of the International

Conference on Bioinformatics Models, Methods and

Algorithms, pp:182-187, 2012.

