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 Abstract - The string matching problem is considered one of 

the substantial problems in the fields of computer science like 

speech and pattern recognition, signal and image processing, and 

artificial intelligence (AI). The increase in the speedup of 

performance is considered an important factor in meeting the 

growth rate of databases, Subsequently, one of the determinations 

to address this issue is the parallelization for exact string matching 

algorithms. In this study, the  E-Abdulrazzaq string matching 

algorithm is chosen to be executed with the multi-core 

environment utilizing the OpenMP paradigm which can be 

utilized to decrease the execution time and increase the speedup of 

the algorithm. The parallelization algorithm got positive results 

within the parallel execution time, and excellent speeding-up 

capabilities, in comparison to the successive result. The Protein 

database showed optimal results in parallel execution time, and 

when utilizing short and long pattern lengths. The DNA database 

showed optimal speedup execution when utilizing short and long 

pattern lengths, while no specific database obtained the worst 

results. 
 

 Index Terms - Database types, E-AbdulRazzaq algorithm, 

OpenMP directive, Parallel execution time, Speedup. 

 

I.  INTRODUCTION 

 String matching is the method of identifying all 

alignment occurrences by comparing two finite-length 

strings[1], [2], [3]. String matching is among the foremost 

imperative issues connected in numerous computer science 

applications, such as speech and pattern recognition, artificial 

intelligence (AI), signal and image processing, intrusion 

detection systems, operating systems [4],  web search engines 

[5], [6] information retrieval[7], [8] and search analysis [9]. 

String matching is additionally utilized to analyze protein 

sequences and for DNA pattern matching. The tireless 

challenges of string matching incorporate the duplication of 

databases every two years, and this influences the speed of 

computers, which leads to an increase in the measure of 

memory. Thus, the utilization of effective algorithms of string-

matching is crucial to solving these issues [10].  

                The brute force algorithm is considered the simplest 

algorithm technique compared to other string-matching 

algorithms which scan the text pattern with text substring from 

left to right. when the match is complete or a mismatch occurs 

the shifts precisely one position to the right. Thus, the brute-

force algorithm runs in O(mn) time [11]. The KMP algorithm 

is efficient and considered the first liner algorithm in the time. 

The comparison of the algorithm depends on the execution from 

left to right and the shifting depends on the last character[12]. 

The Boyer-Moore algorithm is predominantly and broadly 

utilized due to its high proficiency. The comparison in this 

algorithm is started from the right to left. There's a plausibility 

of a match or mismatch between the pattern and text window, 

where it is the shifting depends on the good suffix and the bad 

character functions[13]. The Karp-Rabin algorithm is the 

algorithm used with the hash function, and the comparison 

depends on execution from left to right. This algorithm depends 

on the computation of the hash function of the pattern and text 

window. It is subordinate to the calculation of the hash work of 

the design and the content window. The hash strategy has a high 

execution which diminishes the utilization of time due to the 

utilization of integer numbers [14], [15].In addition, The two-

sliding windows algorithm (TSW), depends on the design of 

sliding windows to check the content at the same time from the 

left and right sides. This algorithm utilizes two windows, one 

from the left side, and the second from the right side. The 

comparison technique between the pattern and text occurs from 

both sides at the same time, when there's a mismatch, the 

shifting will at that point happen for both of the two sides, from 

the left side a move will be executed to the left, and the right 

will move to the right side. The shift operation depends on the 

Berry- Ravindran shift technique, which takes two characters 

continuously [16], [17]. 

               Parallel processing is a feasible way of reducing 

computing time. Parallelism depends on collaboration among 

the processors or cores in computers to settle sequential 

computer problems. The parallel applications depend on two 

strategies: data decomposition and function decomposition. 

The parallel computer architecture is classified into two: shared 

memory and distributed memory. These techniques are 

classified according to how they access memory. The 

processors in the first technique (shared memory technique) use 

one access way to reach the common memory. Shared memory 

is used to save data as well as other purposes such as 

synchronization and communications among the processors 

[18].  
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            Open Multi-Processing (OpenMP) is considered as a 

standard application programming interface (API) in the 

utilization of shared memory applications. OpenMP uses 

C/C++ implementations and has many beneficial attributes than 

other parallel programing interfaces, such as having less 

complications when using parallel implementations; more 

popularly used than other parallel APIs in PCs like The 

Message Passing Interface (MPI) and POSIX; uses data design 

and decompositions automatically[10], [19], [20]. 

          The parallelization of the shared memory is used in 

various applications of computers such as the classification of 

pictures [21], Restoration of the image [22], direct polynomial 

math [23],  information mining [24], bioinformatics [25], 

Intrusion detection system (IDS) [26], [27], [28]. 

            This paper concentrates on the issues that are related to 

the execution of the E- AbdulRazzaq algorithm, with the aim of 

growing the speedup by reducing the successive time and 

exploring the appropriateness of the parallelization of the E- 

AbdulRazzaq algorithm on the multi-core technique by 

utilizing the OpenMP model. Here, we assessed the execution 

of the algorithm depending on various factors such as the length 

of the pattern, the number of cores, and using different database 

types. Section 2 clarifies the string matching algorithms using 

parallel processing, Section 3 describes the implementation and 

technique of the E-AbdulRazzaq algorithm and OpenMP 

technique, the results and analysis are obtained in Section 4, and 

the conclusion in Section 5. 

 

II.  STRING MATCHING ALGORITHMS USING PARALLEL 

PROCESSING 

 

 String matching algorithms are used to obtain optimal 

results when dealing with different data sets, and solving 

problems that are related to computer applications. Nowadays, 

many challenges on string matching are emerging, and the 

performance of sequential algorithms are insufficient in 

accomplishing the big procedures when dealing with huge 

datasets and the long elapsed time of these algorithms, 

therefore, parallel processing used in solving these problems, 

especially those related to large databases [29]. There are a 

number of exact string matching algorithms used in application 

parallel interfaces in solving the many problems related to these 

algorithms. Some algorithms, such as the Quick-Search 

algorithm, use multi-core technology; the Quick-Search 

algorithm uses two parallelization paradigms, the OpenMP and 

the Pthread, to enhance the filtering of the IDS by increasing 

the speed to make the IDS faster, and obtain the efficient 

algorithm in this field [24]. Other algorithms, like brute force, 

Boyer-Moore (BM), and KMP, also use multi-core technology. 

The technique of these algorithms depends on the division of 

the text into subtexts, and all of these subtexts are used 

separately by the different parallelized algorithms (KMP, BM, 

and brute force). Computation includes the time and the number 

of matching after finishing each subtext for each algorithm 

separately, calculating the final result of each algorithm, and 

then comparing the results with that of other algorithms. The 

BM algorithm showed the best result than the rest, and the KMP 

algorithm was not better than the brute force algorithm in terms 

of the rate of results [30].  

          The KMP-BM algorithm is hybrid algorithm that uses 

multi-core technology; this algorithm depends on dividing the 

large text into smaller blocks, and separately using the same 

pattern with all the blocks simultaneously. The last m−1 

characters in the pattern are saved in all the blocks to avoid any 

problem in the character comparison between the blocks and 

the pattern; this procedure was used because the blocks deal 

with different processors [31]. There are algorithms used in the 

GPU technique, like the Naive, Quick- Search, KMP and 

Horspool algorithms. All of these algorithms use the GPU 

separately, and obtains significant results, and are faster than 

the original algorithms by dealing with the low-latency ability 

of the shared memory of the GPU [32].  

 

III. THE IMPLEMENTATION OF THE ALGORITHM 

TECHNIQUE 

 

3.1 E-Abdulrazzaq algorithm 

 

       The technique of the E-Abdulrazzaq algorithm depends on 

two phases the preprocessing phase and the searching phase. 

The preprocessing phase is reliant on the selected functions of 

two algorithms (Abdulrazzaq and Berry-Ravindran) 

comprising Prime and composite numbers functions; Boyer-

Moore bad character (bmBc) function, Berry-Ravindran bad 

character (brBc) function, and the hash function.  In the interim,  

The searching phase in the E-Abdulrazzaq algorithm has three 

steps. In the first step, the hashing of the prime numbers in the 

text window is calculated and compared with the hashing value 

of the prime number characters in the pattern. If a match is 

obtained, the comparison between the prime number characters 

of the text window and pattern proceeds. If a match is obtained, 

then the second step follows.  In the second step, if a match is 

obtained in the first step, the comparison between hashing 

characters in the pattern and text window proceeds. The 

calculated hash value in the composite number characters in the 

text window. If a match is obtained in the hashing value, the 

comparison of the characters between the pattern and text 

proceeds. If a match is found between these characters, the third 

step follows;  The comparison of character number one in the 

pattern with character number one in the text window proceeds. 

. However, if a mismatch or match is obtained  for each step 

and in the hashing comparison or in the character comparison, 

the shifting will depend on the maximum value of m from the 

(bmBc) table and the (m + 1 and m + 2) value from the (brBc) 

table.  

 

3.2 Parallel of E-Abdulrazzaq algorithm using OpenMP  

 

This section highlights the parallel design of E-AbdulRazzaq 

algorithm and the parallel process includes the following steps: 
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a) The first step is executed by #pragma omp parallel shared (), 

which share threads that work together. The data becomes 

visible and can be accessed by a group of threads wherein the 

same address is accessible to all threads. The variables are 

shared in the shared region in all steps except the repetition 

counter loop. In this function, a set of variables, namely, pattern 

x, length of pattern m, text y, and length of text n, are used as 

parameters in the algorithms. The functions used for shifting 

and building tables, such as bmBc and brBc, and two functions, 

such as prime/composite function and set prime/ set composite 

function are used in the proposed algorithm. 

 

b) In the second step, the threads are created with each core 

containing one thread because the cores inside the processors of 

the Khawarizmi cluster have single threads. The number of 

threads (i.e., OMP) that run in a parallel region and can be 

controlled by a specific function is related to the number of 

threads in the team, returns the number between 0 to number of 

threads−1. The master threads return the number 0. The 

omp_get_thread_num (iThreads) function is used to control the 

number of threads. 

 

c) In the third step, data are decomposed to small blocks p by 

dividing the array y [ ] related to the text and p blocks processed 

by individual threads in parallel (p = number of threads). The 

division cannot be strictly n/p but can be n/p + m−1 because of 

the nature of the pattern search algorithm, and this division 

process called the overlapping boundaries among the small 

blocks p. The dotted line is the boundary of each block and the 

distance confines the dotted line into the non-dotted line as 

pattern length − 1(m − 1), which denotes the pattern length 

added for each block. This procedure is applied to prevent any 

problems when the pattern originates from data that are divided 

into substrings; these types of data cannot be discovered 

because each substring handles different threads. This 

procedure is also employed to avoid problems when the same 

pattern string is compared with substrings. 

 

d) In the fourth step, each thread inside each core takes one 

block after the division of data text into blocks (e.g., thread 

number 1 processes block number 1 and thread number 2 

processes block number 2). All threads then take the same 

pattern with each thread by using the pattern separately with a 

specific block depending on the technique of the algorithm. In 

proposed algorithm each thread applies hash function twice 

with prime and composite numbers in the pattern stages, and 

then starting in searching phase. After each thread completes 

the comparison between the segment of text (block) and the 

pattern, the time consumption is calculated. 

 

e) In the fifth step, the reduction clause is performed. The 

reduction clause collects the results from partial accounts (i.e., 

threads) as a single result. This function informs the OMP to 

copy summarization counters into each thread separately and to 

sum up their values after each thread ends. The reduction 

function, reduction (+: attempts, count, comparisons), is used 

in parallel proposed algorithm to calculate the time 

consumption by each thread. The results are calculated and set 

in the master thread. Figure 1 showed the Flowchart for parallel 

of E-AbdulRazzaq algorithm using OpenMP model. 

 

3.3 Implementation and environment 

 

3.3.1 Hardware and software  

 

       This experiment uses the Khawarizmi cluster from the 

School of Computer Sciences at USM 

(khawarizmi.cs.usm.my). The cluster contains the following 

nodes: Dell PowerEdge 1950 (master node) (2 × Quad-Core 

Intel Xeon E5450 3.00 GHz, 2 × 12 MB Cache, 1333 MHz 

FSB) and 2 × Dell PowerEdge 1950 (Slave nodes) (2 × Quad-

Core Intel Xeon 1.6 GHz, 2 × 4 MB Cache, 1066 MHz FSB). 

The operating system is Linux (rocks cluster distribution 6.1, 

centos 6.3, 64- bit). The compiler used in this cluster is GCC 

4.4.6, and the purpose of this cluster is to use the OpenMP 

paradigm. 

 

3.3.2 Khawarizmi cluster architecture 

 

        This cluster includes three nodes. Each node contains two 

processors that have four cores each and one thread in each 

core. The buffered memory for the master node is 16 GB (2 × 8 

GB, DDR-2 667 MHz ECC 2R), and the hard drive for the 

master node is a 1 TB 3.5-inch 7.2K RPM SATA II. The 

buffered memory for each slave node is 8GB (4 × 2 GB, DDR-

2 667 MHz ECC 2R), and the hard drive is a 250 GB 3.5-inch 

7.2K RPM SATA II. 
 

   3.3.3 Performance comparison 

 

        The proposed algorithm is dependent on the metrics that 

are used to compare the results of the sequential and parallel 

algorithms, in arrange to calculate the degree of enhancement 

between them. This study utilized metrics comprising the 

execution time and speedup [33]. 

        The execution time is the time passed between the 

beginning and wrap-up of the execution time in one processor, 

which contains all processing times. The parallel time is the 

passed time between the begin of the first processor and the 

conclusion time of last processor. The successive and parallel 

elapsed time are indicated as Ts and Tp, respectively. 

        Speedup is utilized to get the focal points of parallel 

operation. The calculation of speedup depends on the 

successive and parallel consumed times or the proportion of the 

devoured time within the serial stage to the expended time 

within the parallel stage. The time is calculated in milliseconds 

and depends on the following equation:. 

 

Speedup (S) = Ts / Tp  

 

Where Ts and Tp are the time consumed in the sequential and 

parallel stages, respectively [34]. 
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Fig.1 Flowchart for parallel E-AbdulRazzaq algorithm using OpenMP Model 
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3.3.4  Experiment design 

 

      The databases utilized in the experiment are downloaded 

from the (http://pizzachili.dcc.uchile.cl/texts.html).This 

experiment utilized the following databases; DNA, Protein, 

and English text, with 400 MB data size. The program is 

worked five times for each database and then the average is 

calculated. Eight cores are applied in this study because the 

number of cores in each node inside the cluster only rises to 

eight. Moreover, the comes about will be counterproductive 

and futile in the event that the number of cores increments. 

The number of cores utilized within the figures depends on 

the core power of two between 2^1 to 2^3. The sequential time 

utilized with the results is (Seq), and the numbers of cores 

utilized are two cores (C2), four cores (C4), and eight cores 

(C8). The sequential algorithm results are compared with the 

results of these cores. 

 

IV. THE RESULTS AND ANALYSIS 

 

       The overall parallel time shows the best performance 

compared with the sequential time in a 400 MB data size 

when short and long patterns are used. The Protein database 

demonstrates the best time in most short and long patterns. 

DNA database is the worst performing database in all short 

and long patterns lengths, as shown in table 1., and table 2. 

 
Table 1. Sequential and parallel execution times and short pattern length 

with 400MB database size 

 

 
Table 2. Sequential and parallel execution times and long pattern length  

when using 400MB database size 

        The overall speedup performance is high in a 400 MB 

data size when short and long patterns are used. DNA obtains 

the best results in most short and long pattern lengths. No 

specific database obtains the worst data when short and  long 

patterns are used, as shown in Table 3. and Table 4. 
 
Table 3. Speedup and short pattern length when using 400MB database size 
 

Length 

of 

pattern 

Number of 

cores 

Sequential execution time and 

parallel execution time (Ms.) 

DNA Protein English 

32  

Sequential 2212 843 851 

2 1171 448 453 

4 591 227 229 

8 298 117 118 

64  

Sequential 3102 685 739 

2 1613 360 386 

4 812 184 197 

8 409 96 102 

128  

Sequential 3931 638 715 

2 1997 332 381 

4 1003 170 195 

8 505 92 104 

256  

Sequential 7130 609 709 

2 3624 314 364 

4 1820 161 187 

8 914 87 98 

512  

Sequential 12194 707 758 

2 6150 362 386 

4 3078 185 198 

8 1556 98 104 

1024  

Sequential 21877 977 854 

2 11014 500 436 

4 5508 254 226 

8 2776 132 118 

Length 

of 

pattern 

Number of 

cores 

Sequential execution time and parallel 

execution time (Ms.) 

DNA Protein English 

4 

Sequential 3343 1966 1930 

2 1813 1111 1095 

4 911 558 550 

8 461 282 278 

8  

Sequential 2245 1522 1546 

2 1219 840 852 

4 611 422 429 

8 308 214 217 

12  

Sequential 2196 1236 1353 

2 1191 675 734 

4 597 340 371 

8 323 173 188 

16  

Sequential 1964 1051 1104 

2 1062 572 601 

4 529 288 303 

8 277 147 155 

20 

Sequential 2022 1068 1085 

2 1056 574 582 

4 531 291 294 

8 291 148 150 

24 

Sequential 1868 959 967 

2 986 513 516 

4 496 258 260 

8 251 132 133 

28 

Sequential 1995 854 857 

2 1055 457 458 

4 532 232 232 

8 269 119 119 

Length of 

pattern 

Number 

of cores 

Speedup ( Stime / Ptime) 

DNA Protein English 

4  

2 1.84 1.77 1.76 

4 3.67 3.52 3.51 

8 7.25 6.97 6.94 

8 

2 1.84 1.81 1.81 

4 3.67 3.61 3.60 

8 7.29 7.11 7.12 

12 

2 1.84 1.83 1.84 

4 3.68 3.64 3.65 

8 6.80 7.14 7.20 

16 

2 1.85 1.84 1.84 

4 3.71 3.65 3.64 

8 7.09 7.15 7.12 

20 

2 1.91 1.86 1.86 

4 3.81 3.67 3.69 

8 6.95 7.22 7.23 

24 

2 1.89 1.87 1.87 

4 3.77 3.72 3.72 

8 7.44 7.27 7.27 

28 

2 1.89 1.87 1.87 

4 3.75 3.68 3.69 

8 7.42 7.18 7.20 
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Table 4. Speedup and long pattern length when using 400MB database size 

 

 

4.1 Evaluation of parallel of the E-AbdulRazzaq algorithm 

 

      The results of the E-AbdulRazzaq algorithm in parallel 

time compared with sequential time are obtained by 

evaluating parallelization performance, which depends on 

two factors, namely, parallel execution time and  speedup in 

short and long patterns with different types of databases and 

400MB size. 

 
Table 5. Performance evaluation for the average sequential and parallel 

execution times (ms) of the E-AbdulRazzaq algorithm 

Performance 

comparison 

factors 

400MB data size 

Short Long 

Types of 

databases 
Seq C2 C4 C8 Seq C2 C4 C8 

DNA 2233 1197 601 311 8408 4262 2135 1076 

Protein 1237 677 341 174 743 386 197 104 

English 1263 691 348 177 771 401 205 107 

 

        Parallel time results in better performance than 

sequential time when short and long patterns with 400MB 

data sizes are used. When the number of cores increased, the 

parallel time decreased because the communication time 

increased [34], [35]. Time in DNA data increases when long 

patterns are used because of the small alphabet size and the 

hash function technique, which depends on the repeated 

checking of characters, thus increasing time consumption in 

long patterns [12]. The best sequential results recorded are 

1237 ms in short patterns, and 743 ms in long patterns. The 

worst sequential results are 2233 ms in short patterns with 

400 MB data sizes, and 8408 ms in long patterns. The best 

parallel results when using short patterns with 400 MB data 

size  are respectively presented as follows: two cores,  677 

ms; four cores, 341 ms; eight cores, 174 ms. The best parallel 

results when using long patterns with 400 MB data size  are 

respectively presented as follows: two cores, 386 ms; four 

cores, 197 ms; eight cores, 104 ms. The worst parallel results 

when short patterns with 400 MB data size are used are 

respectively presented as follows: with two cores, 1197 ms ;  

four cores, 601 ms; eight cores, 311 ms. The worst parallel 

results when long patterns with 400 MB data sizes are used 

are respectively presented as follows:: two cores, 4262 ms; 

four cores, 2135 ms; eight cores, 1076 ms (Table 5.). 

       The Protein database obtains the best sequential and 

parallel times when using short and long patterns with 400 

MB data size because the E-AbdulRazzaq technique contains 

efficient functions (bmBc and hash) for dealing with the 

Protein database. The DNA database obtains the worst results 

in sequential and parallel times because of the small alphabet 

size, which require further shifting and time. Parallel time is 

affected by the type of database because the difference in the 

alphabet size used in a database affected its performance [36]. 

 
Table 6. Performance evaluation of the average speedup 

of parallel E-AbdulRazzaq 

 

 

 

 

 

 

  

  

  

 

       The results show a high speed up when using short and 

long patterns in 400 MB data sizes. The E-AbdulRazzaq 

algorithm has high sequential time because it can calculate 

the hashing values for all prime number characters in the first 

step in the searching technique, that is, this algorithm has 

character selectivity, does not depend on the character type 

of databases, and has high consumption of sequential time, 

particularly when long patterns are used. The best speedup 

results in short patterns with 400 MB data size are 

respectively presented as follows: two cores, 1.87; four cores, 

3.72; eight cores, 7.17. The best speedup results in long 

patterns 400 MB data sizes are respectively presented as 

follows: two cores, 1.95; four cores, 3.89; eight cores, 7.72. 

The worst speedup results in short patterns 400 MB data size 

are respectively presented as follows: two cores, 1.84; four 

cores, 3.64; eight cores,  7.15. The worst speedup results in 

long patterns with 400 MB data size are respectively 

presented as follows: two cores, 1.92; four cores, 3.76; eight 

cores, 7.15 (Table 6.). 

          The best speedup results are found in DNA when short 

and long patterns with 400 MB data size are used because 

DNA exhibit the highest rate of improvement in parallel time 

compared with sequential time among the databases. 

Moreover, speedup increases when parallel time is shorter 

than sequential time and vice versa. No specific database 

Length of 

pattern 

Number 

of cores 

Speedup ( Stime / Ptime) 

DNA Protein English 

32  

2 1.89 1.88 1.88 

4 3.74 3.71 3.72 

8 7.42 7.21 7.21 

64 

2 1.92 1.90 1.91 

4 3.82 3.72 3.75 

8 7.58 7.14 7.25 

128  

2 1.97 1.92 1.88 

4 3.92 3.75 3.67 

8 7.78 6.93 6.88 

256 

2 1.97 1.94 1.95 

4 3.92 3.78 3.79 

8 7.80 7.00 7.23 

512 

2 1.98 1.95 1.96 

4 3.96 3.82 3.83 

8 7.84 7.21 7.29 

1024  

2 1.99 1.95 1.96 

4 3.97 3.85 3.78 

8 7.88 7.40 7.24 

Performance 

comparison 

factors 

400MB data size 

Short Long 

Types of 

databases 
C2 C4 C8 C2 C4 C8 

DNA 1.87 3.72 7.17 1.95 3.89 7.72 

Protein 1.84 3.64 7.15 1.92 3.77 7.15 

English 1.84 3.64 7.15 1.92 3.76 7.18 
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obtains the worst data when short and long patterns are used 

because stability is observed in the speedup of most 

databases.  

 

V. CONCLUSION 

 

      The performance of the sequential and parallel algorithm 

will be measured based on the execution time and speed up 

when using short and long patterns with various databases 

and 400MB data size. The parallelization of the E-

AbdulRazzaq algorithm has gotten high execution comes 

about in comparison to consecutive execution when using the 

OpenMP model as a multi-core technology. The Protein and 

DNA databases obtained the best and worst sequential and 

parallel times using enhanced hybrid algorithm, respectively. 

Among the databases studied, DNA obtained the best results 

in terms of speedup when using E-AbdulRazzaq algorithm 

,while no specific database was determined to be the worst. 
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