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Abstract. The paper considers a single-line retrial queueing (RQ) sys-
tem with an unreliable server controlled by a dynamic random multiple
access protocol. A study of the prelimit probability distribution of the
number of applications in orbit has been carried out. To study this sys-
tem, the method of generating functions is used.
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1 Introduction

When designing or upgrading a data transmission network, it often becomes
necessary to quantify network characteristics, such as the intensity of data flows
over network communication lines, delays that occur at various stages of process-
ing and transmitting packets. At the moment, such a network research tool is a
protocol analyzer. But it does not give the opportunity to obtain probabilistic-
temporal characteristics. Therefore, to study such systems, the apparatus of the
theory of queuing is used, which makes it possible to build mathematical models
of the data transmission network and find the main characteristics of the system.

A large number of works are devoted to the study of models of data trans-
mission networks with various access protocols [1–8]. Various modifications of
access protocols are proposed to solve the problems of repetitive applications.
In [9–14], the authors investigate models with adaptive access protocols. The
papers [15–23] consider the study of queuing systems with a dynamic access
protocol. In this paper, we study a single-channel RQ system with an unreliable
server controlled by a dynamic access protocol. The server is considered unre-
liable if it fails from time to time and requires restoration (repair). Only after
that, the server resumes servicing new requests.

2 Description of the Mathematical Model

A prerequisite in data transmission networks over a communication line is the
availability of a common resource. Any subscriber station, having generated
requests, sends them to a common resource (server).
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If the server is free, then the customer is serviced. If the server fails during
the service of the customer, then it is sent for repair, and the customer goes into
orbit. To study such systems, consider a single-line RQ system with an unreliable
server controlled by a dynamic access protocol.

Let’s consider a single-server retrial queueing system with an unreliable server
and the stationary Poisson flow of customers with parameter λ. A customer is
serviced during random time distributed exponentially with parameter μ1. We
assume that the server is unreliable. An unreliable server may be in the following
states: idle, busy or under repair. If the server is idle, and customer arrives, then
the servicing immediately begins. If the server is busy at an arrival moment,
then the customer goes into the orbit and waits for the opportunity to occupy
the server at the next attempt. After a random time interval, a customer with
intensity σ/i again tries to occupy the server for service, where i is the number
of customers in orbit at time t (see Fig. 1). The working time is distributed
exponentially with parameter γ1, if server is idle and with parameter γ2, if the
server is busy. As soon as a breakdown occurs, the server is sent to repair and the
servicing customer goes into the orbit. During repairing, all incoming customers
go into the orbit. The recovery time is distributed exponentially with parameter
μ2. The goal of the research is to study such a system, as well as to determine
its main characteristics and to find a stationary probability distribution of the
number of customers in the orbit.

Fig. 1. Model of dynamic retrial queueing system M/M/1 with unreliable server

Let i(t) be the number of customers in the orbit at time t and k (t) determine
the state of the server as follows:

k(t) =

⎧
⎪⎨

⎪⎩

0, if the server is idle,
1, if the server is busy,
2, if the server is under repair.

3 Method of Generating Functions

Denote P {i(t) = i, k(t) = k} = P (k, i, t) the probability that at time t the server
is in state k and there are i customers in the orbit.
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The probability distribution P (k, i, t) satisfies the following system of
equations:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

P (0, i, t + Δt) = (1 − λΔt)(1 − σΔt)(1 − γ1Δt)P (0, i, t)+
+ μ1ΔtP (1, i, t) + μ2ΔtP (2, i, t) + o(Δt),
P (1, i, t + Δt) = (1 − λΔt)(1 − μ1Δt)(1 − γ2Δt)P (1, i, t)+
+ λΔtP (0, i, t) + σΔtP (0, i + 1, t) + λΔtP (1, i − 1, t) + o(Δt),
P (2, i, t + Δt) = (1 − λΔt)(1 − μ2Δt)P (2, i, t) + γ1ΔtP (0, i, t) +
+ γ2ΔtP (1, i − 1, t) + λΔtP (2, i − 1, t) + o(Δt).

Let us compose a system of Kolmogorov differential equations for i ≥ 1:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂P (0, i, t)
∂t

= − (λ + σ + γ1) P (0, i, t) + μ1P (1, i, t)+

+ μ2P (2, i, t) ,

∂P (1, i, t)
∂t

= − (λ + μ1 + γ2) P (1, i, t) + λP (0, i, t) +

+ σP (0, i + 1, t) + λP (1, i − 1, t) ,

∂P (2, i, t)
∂t

= − (λ + μ2) P (2, i, t) + γ1P (0, i, t) +

+ γ2P (1, i − 1, t) + λP (2, i − 1, t) .

(1)

We assume that the system operates in the steady-state regime, i.e.

P (k, i, t) ≡ P (k, t).

Then we can rewrite System in the following form
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− (λ + γ1) P (0, 0) + μ1P (1, 0) + μ2P (2, 0) = 0, i = 0,

− (λ + μ1 + γ2) P (1, 0) + λP (0, 0) + σP (0, 1) = 0, i = 0,

− (λ + μ2) P (2, 0) + γ1P (0, 0) = 0, i = 0,

− (λ + σ + γ1)P (0, i) + μ1P (1, i) + μ2P (2, i) = 0, i ≥ 1,

− (λ + μ1 + γ2) P (1, i) + λP (0, i) + σP (0, i + 1) +
+ λP (0, i − 1) = 0, i ≥ 1,

− (λ + μ2) P (2, i) + γ1P (0, i) + γ2P (1, i − 1) +
+ λP (2, i − 1) = 0, i ≥ 1.

(2)

To find a solution of System (2), it is necessary to define the generating
functions:

G (k, x) =
∞∑

i=0

xiP (k, i) .
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Partial generating function

G (k, x) =
∞∑

i=0

xiP (k, i) �= Mxi,

but
G (k, x) = Mxi,

therefore
G(x) = {G(0, x), G(1, x), G(2, x)}

is a generating function, and we introduce its components G (k, x) as partial
generating functions.

Then we get the following system of equations
⎧
⎪⎪⎨

⎪⎪⎩

− (λ + σ + γ1) G (0, x) + μ1G (1, x) + μ2G (2, x) = −σP (0, 0) ,
(
λ +

σ

x

)
G (0, x) + (λx − λ − μ1 − γ2) G (1, x) =

σ

x
P (0, 0) ,

γ1G (0, x) + γ2xG (1, x) + (λx − λ − μ2) G (2, x) = 0.

(3)

Let us multiply the second equation of System (3) by x.
Then we have the following system of equation

⎧
⎪⎨

⎪⎩

− (λ + σ + γ1) G (0, x) + μ1G (1, x) + μ2G (2, x) = −σP (0, 0) ,

(λx + σ)G (0, x) +
(
λx2 − λx − μ1x − γ2x

)
G (1, x) = σP (0, 0) ,

γ1G (0, x) + γ2xG (1, x) + (λx − λ − μ2) G (2, x) = 0.

(4)

We will find a solution of System (4) by denoting

G (x) = G (0, x) + G (1, x) + G (2, x) .

Then we have the following system of equation

G(x) = P (0, 0)σ((x − 1)λ − γ1 − μ2)((x − 1)λ − γ2 − μ1)/((x2 − x)∗
∗ λ3 + x((σ + γ1)x − σ − γ1 − γ2 − μ2)λ2 + (((−γ2 − μ1 − μ2)σ−
− γ1(γ2 + μ1))x + σμ1)λ + σμ2(γ2 + μ1)).

(5)

Taking into account the normalization condition, where

G (1) = 1,

we obtain an expression for P (0, 0) :

P (0, 0) =
(−γ2 − μ2)λ2 − (σμ2 + (σ + γ1)γ2 + γ1μ1)λ + σμ2(γ2 + μ1)

σ(γ1 + μ2)(γ2 + μ1)
.
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By substituting P (0, 0) into the Eq. (5), we obtain the expression for the
generating function:

G(x) = ((−γ2 − μ2)λ2 − ((γ2 + μ2)σ + γ1(γ2 + μ1))λ + σμ2(γ2 + μ1))∗
∗ ((x − 1)λ − γ1 − μ2)((x − 1)λ − γ2 − μ1)/((γ1 + μ2)((x2 − x)λ3+

+ x((σ + γ1)x − σ − γ1 − γ2 − μ2)λ2 + (((−γ2 − μ1 − μ2)σ−
− γ1(γ2 + μ1))x + σμ1)λ + σμ2(γ2 + μ1))(γ2 + μ1)).

The values of the stationary distribution of server states Rk will look like
this:

R0 = G(0, 1) =
(−λ + γ2 + μ1)μ2 − λγ2

(γ2 + μ1)(γ1 + μ2)
,

R1 = G(1, 1) =
λ

γ2 + μ1
,

R2 = G(2, 1) =
(−λ + γ2 + μ1)γ1 + λγ2

(γ2 + μ1)(γ1 + μ2)
.

In case of the probabilities P (0, 0) must be positive, the following inequalities
must be true:

λ

μ1
≤ σμ2(γ2 + μ1)

(λ + σ)(γ2μ1 + μ2μ1) + γ1μ1(γ2 + μ1)
= S, (6)

where S is the throughput of the system under consideration.

Definition. Throughput is the upper limit of those load values ρ = λ
μ1

, for
which there is the steady-state regime.

The inequality (6) determines the condition for the existence of a steady-state
regime for the considered dynamical system.

4 Method of Characteristic Functions

Introducing the partial characteristic function

H (k, u) =
∞∑

i=0

ejuiP (k, i) ,

where j =
√−1, System (2) can be rewritten as

⎧
⎪⎪⎨

⎪⎪⎩

− (λ + σ + γ1) H (0, u) + μ1H (1, u) + μ2H (2, u) = −σP (0, 0) ,
(
λ +

σ

eju

)
H (0, u) +

(
λeju − λ − μ1 − γ2

)
H (1, u) =

σ

eju
P (0, 0) ,

γ1H (0, u) + γ2e
juH (1, u) +

(
λeju − λ − μ2

)
H (2, u) = 0.

(7)

We will find a solution of System (7) by denoting

H (u) = H (0, u) + H (1, u) + H (2, u) .
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Then we have the following system of equation

H(u) = P (0, 0)σ((eju − 1)λ − γ1 − μ2)((eju − 1)λ − γ2 − μ1)/((eju2−
eju) ∗ λ3 + eju((σ + γ1)eju − σ − γ1 − γ2 − μ2)λ2 + (((−γ2 − μ1 − μ2)σ−
− γ1(γ2 + μ1))eju + σμ1)λ + σμ2(γ2 + μ1)).

(8)

By substituting P (0, 0) into the Eq. (8), we obtain

H(u) = ((−γ2 − μ2)λ2 − ((γ2 + μ2)σ + γ1(γ2 + μ1))λ + σμ2(γ2 + μ1))∗
∗ ((eju − 1)λ − γ1 − μ2)((eju − 1)λ − γ2 − μ1)/((γ1 + μ2)((eju2 − eju)λ3+

+ eju((σ + γ1)eju − σ − γ1 − γ2 − μ2)λ2 + (((−γ2 − μ1 − μ2)σ−
− γ1(γ2 + μ1))eju + σμ1)λ + σμ2(γ2 + μ1))(γ2 + μ1)).

5 Asymptotic Analysis

Let us denoting

H (k, u) =
∞∑

i=0

ejuiP (k, i) ,

where j =
√−1 is the imaginary unit.

Thus System (2) can be rewritten as
⎧
⎪⎪⎨

⎪⎪⎩

− (λ + σ + γ1) H (0, u) + μ1H (1, u) + μ2H (2, u) = −σP (0, 0) ,
(
λ +

σ

eju

)
H (0, u) +

(
λeju − λ − μ1 − γ2

)
H (1, u) =

σ

eju
P (0, 0) ,

γ1H (0, u) + γ2e
juH (1, u) +

(
λeju − λ − μ2

)
H (2, u) = 0.

(9)

We introduce a parameter

ρ =
λ

μ1
,

that characterizes the system load.
Dividing all equations of System (9) by μ1, we obtain the following system

of equations
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−
(

ρ +
σ

μ1
+

γ1
μ1

)

H (0, u) + H (1, u) +
μ2

μ1
H (2, u) =

σ

μ1
P (0, 0) ,

(

ρ +
σ

μ1
e−ju

)

H (0, u) +
(

ρeju − ρ − 1 − γ2
μ1

)

H (1, u) =

=
σ

μ1
e−juP (0, 0) ,

γ1
μ1

H (0, u) +
γ2
μ1

ejuH (1, u) +
(

ρeju − ρ − μ2

μ1

)

H (2, u) = 0,

(10)
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Denoting three-dimensional vectors

H(u) = {H(0, u), H(1, u), H(2, u)} ,

P (0) = {P (0, 0), P (1, 0), P (2, 0)}
and matrices

A(ju, ρ) =

⎡

⎢
⎢
⎢
⎣

−
(
ρ + σ

μ1
+ γ1

μ1

) (
ρ + σ

μ1
e−ju

)
γ1
μ1

1
(
ρeju − ρ − 1 − γ2

μ1

)
γ2
μ1

eju

μ2
μ1

0
(
ρeju − ρ − μ2

μ1

)

⎤

⎥
⎥
⎥
⎦

,

B(ju) =

⎡

⎣
− σ

μ1

σ
μ1

e−ju 0
0 0 0
0 0 0

⎤

⎦ ,

we rewrite the System (10) in the form

H(u) A(ju, ρ) + P (0) B(ju) = 0. (11)

To find the value of the throughput S, we will solve the Eq. (11) by the
method of asymptotic analysis in the condition of a large load, denoting ε = S−ρ
and setting that ε → 0.

Let us introduce the following substitutions

ρ = S − ε, u = εw, H(u) = F (w, ε), P (0) = εΠ, (12)

we get
F (w, ε)A(jεw, S − ε) + εΠB(jεw) = 0, (13)

where

A(jεw, S − ε) =
∞∑

n=0

(jεw)n

n!
An(S) − ε

∞∑

n=0

(jεw)n

n!
A′

n(S). (14)

Theorem 1. The value S of throughput is equal to the value of the root of the
equation

R(S)A1(S)E = 0, (15)

where the vector R is determined by the equation R(S)A0(S) = 0 and the nor-
malization condition RE = 1, and equality A0(S) = A(0, S).

The characteristic function of the normalized number of customers in the
server has the form

Φ(w) = lim
ε→0

{F (w, ε)E} =
κ

κ − jw
, (16)

where

κ =
R(S)A′

1(S)E + f2A1(S)E
f1A1(S)E + 1

2R(S)A2(S)E
. (17)
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Proof. Let us denote

lim
ε→0

A(jεw, S − ε) = A(0, S) = A0(S),

where A0(S) is determined from the Eq. (14). Then by performing the limit
transition in Eq. (13), we obtain

F (w)A0(S) = 0. (18)

It follows from the form of the matrix A0(S) that its properties are similar
to those of the matrix of infinitesimal characteristics, so the solution of the
homogeneous System (13) can be written as

F (w) = Φ(w)R(S),

where R(S) is the probability distribution of chain values determined by the
equation

R(S)A0(S) = 0

and the normalization condition RE = 1.
Using matrix decomposition

A(jεw, S − ε) = A0(S) + jεwA1(S) − εA′
0(S) + O(ε2),

B(jεw) = B0 + O(ε2),

we write the Eq. (13) in the following form

F (w, ε)(A0(S) + jεwA1(S) − εA′
0(S)) + εΠB0. (19)

The solution of this equation is written in the form of decomposition

F (w, ε) = Φ(w)R(S) + εf(w) + O(ε2), (20)

Substitute the decomposition in the Eq. (19), we get

(Φ(w)R(S) + εf(w))(A0(S) + jεwA1(S) − εA′
0(S)) + εΠB0 =

= Φ(w)R(S)(A0(S) + jεwA1(S) − εA′
0(S)) + εf(w)A0(S) + εΠB0 = O(ε2).

Considering that R(S)A0(S) = 0, then for the function f(w) at ε → 0 we
can write the equation

f(w)A0(S) + jwΦ(w)R(S)A1(S) − Φ(w)R(S)A′
0(S) + ΠB0,

This equation is an inhomogeneous system of linear algebraic equations, so
the solution of f(w) can be written as

f(w) = Φ(w)(jwf1 − f2) + f3, (21)
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where vectors f1, f2, f3 are solutions of systems:

f1A0(S) + R(S)A1(S) = 0, (22)

f2A0(S) + R(S)A′
0(S) = 0, (23)

f3A0(S) + ΠB0 = 0.

The solution of the System (23) has the form

f2 = R′(S).

To find the solution of System (22), the Eq. (15) must be satisfied. Thus, the
Eq. (21) can be written as

f(w) = Φ(w)(jwf1 − R′(S)) + f3, (24)

So the Eq. (20) can be written as follows:

F (w, ε) = Φ(w)R(S) + εΦ(w)(jwf1 − R′(S)) + εf3 + O(ε2). (25)

To find the function Φ(w), we sum over k all the equations of System (13),
then we obtain

F (w, ε)A(jεw, S − ε)E + εΠB(jεw)E = 0. (26)

For matrices A and B from this equation we write the decompositions

A(jεw, S − ε) = A0(S) + jεwA1(S) +
(jεw)2

2
A2(S) − εA′

0(S)+

+
ε2

2
A′′

0(S) − jε2wA′
1(S) + O(ε2),

B(jεw) = B0 + jεwB1 + O(ε2).

It follows from the form of matrices A(ju) and B(ju) that

A′′
0(S) = 0, A0(S)E = 0, A′

0(S)E = 0, B0E = 0,

therefore

A(jεw, S − ε)E = jεwA1(S)E +
(jεw)2

2
A2(S)E − jε2wA′

1(S) + O(ε2),

B(jεw)E = jεwB1 + O(ε2),

Then the Eq. (26) will take the form

F (w, ε)(A1(S) +
jwε

2
A2(S) − εA′

1(S))E + εΠB1E = O(ε2).
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Substituting the Eq. (25), we get the following form

(Φ(w)R(S) + εΦ(w)(jwf1 − R′(S)) + εf3)×
× (A1(S)E +

jwε

2
A2(S)E − εA′

1(S)E) + εΠB1E + O(ε2) =

= Φ(w)R(S) [jwε A1(S)E +
(jwε)2

2
A2(S)E − jε2wA′

1(S)E
]
+

+ ε(Φ(w)(jwf1 − R′(S)) + εf3)jwεA1(S)E + εΠjεwB1 + O(ε2).

Since the condition R(S)A1(S)E = 0 is satisfied then at ε → 0, we obtain

Φ(w) [jw (f1A1(S)E +
1
2
R(S)A′

2(S)E) − (R(S)A′
1(S)E+

+ f2A1(S)E)] + f3A1(S)E + ΠB1E = 0.

Then

Φ(w) =
f3A1(S)E + ΠB1E

R(S)A′
1(S)E + f2A1(S)E − jw(f1A1(S)E + 1

2R(S)A′
2(S)E)

.

Taking into account that Φ(0) = 1, we get

κ =
R(S)A′

1(S)E + f2A1(S)E
f1A1(S)E + 1

2R(S)A2(S)E
.

So Theorem 1 is proved.

6 Numerical Example

In order to find the probability distribution P (i), it suffices to apply the inverse
Fourier transform to the characteristic function.

P (i) =
1
2π

π∫

−π

e−juiH(u)du,.

where H(u) = G(eju), j =
√−1.

In a numerical example, we take

μ1 = 5, μ2 = 2, γ1 = 0.03, γ2 = 0.03, λ = 1, σ = 1.

The value of throughput for given parameters of a given RQ system S = 0, 34.
Table 1 and Fig. 2 show the distribution of the number of customers in orbit

for this system.
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Table 1. The probability distribution of the number of customers in orbit, i=0, 1, 2,...

i 0 1 2 3 4 5

P (i) 0,48213 0,19421 0,12012 0,07523 0,04734 0,02985

i 6 7 8 9 10 11

P (i) 0,01883 0,01188 0,00750 0,00473 0,00299 0,00189

i 12 13 14 15 16 ...

P (i) 0,00119 0,00075 0,00047 0,00030 0,00019

Fig. 2. The probability distribution of the number of customers

The values of the stationary distribution of server states Rk are:

R0 =
(−λ + γ2 + μ1)μ2 − λγ2

(γ2 + μ1)(γ1 + μ2)
= 0, 68,

R1 =
λ

γ2 + μ1
= 0, 19,

R2 =
(−λ + γ2 + μ1)γ1 + λγ2

(γ2 + μ1)(γ1 + μ2)
= 0, 13.

Table 2. Variation of S at different values σ

σ 1 5 10 50 100 500

S 0,342 0,689 0,788 0,891 0,906 0,919

Table 2 shows as the σ increases, the throughput S increases.
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7 Conclusion

In this paper, we study the dynamic RQ-system M/M/1 with an unreliable
server. As a result of the study, the generating and characteristic functions for
the probability distribution of the number of applications in orbit are obtained.
Further, the study was carried out by the method of asymptotic analysis under
the condition of a large system load. The main characteristics of the system, the
stationary distribution of server states, and the throughput of the system under
consideration are found.
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