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Abstract 
 
Photosynthesis means “synthesis with the help of light”, involves the composite functioning 
of various protein complexes. CP47 is a pigment-binding protein of PSII of a molecular mass 
of about 56 kDa. CP47, encoded by the chloroplastic psbB gene, is an integral part of the 
oxygen-evolving complex of PS -II centres. In the present study, analysis of a psbB gene was 
performed from various tree, shrub, vine and herb species of Saurashtra region. The genomic 
DNA was isolated from the 46 samples and psbB gene was amplified using specific primers 
(60R-61F) in PCR. The amplified gene was sequenced from all plant samples and submitted 
to NCBI database. The length of the amplified sequence was ~300 bp, was translated to the 
protein sequence. The obtained sequences were analyzed with the help of CPH and Pyre2 
tools. The Pyre2 tools showed 40 reliable structure prediction out of 46. ProtParam was used 
for carrying out the protein physico-chemical analysis of all the proteins showing variations 
in the protein properties. The number of residues in favored region, as observed in the 
Ramachandran plot analysis, indicates reliability of the protein structure prediction. The 
obtained results for the sequence and structure analyses may help to understand the 
functional application of these proteins.  
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1. Introduction 
 
Photosynthetic O2 production and carbon dioxide assimilation established the composition of 
the biosphere and provide all life forms with essential food and fuel. Basic biochemical studies 
showed that chloroplast thylakoid membranes oxidize H2O, reduce NADP, and synthesize 
ATP. These reactions are catalyzed by two photosystems (Photosystem I (PSI) and 
Photosystem II (PSII)) [1]. PSII is a unique complex that reduces water to molecular oxygen, 
protons, and electrons in the oxygen-evolving complex (OEC) and contains two antenna 
proteins, CP43 and CP47 [2,3]. CP47 encoded by the psbB, are chlorophyll proteins that serve 
as the proximal antennae for PS II, providing a conduit for excitation energy transfer from the 
exterior antennae of the Photosystem to the reaction center core [4]. In addition to their role 
as antennae, these polypeptides may also contribute to the protein environment of the water-
splitting apparatus especially since they have been found to play a role in water oxidation [5].  
 
A protein sequence is a linear hetero polymer made up of one of the 20 different amino acids. 
The 3D structure of proteins can be solved by experimental methods or probable structure 
prediction using bioinformatics tools. Solving through X-ray crystallography produces 
reliable results, but it needs to have pure protein sample which must form relatively flawless 
crystals. Solving through NMR is limited to small soluble proteins. Thus, there is a huge gap 
between the number of known protein sequences and the number of solved structures. Protein 
structure prediction aims at reducing this gap. Protein structure prediction is an important 
area of research in molecular biology, as the generation of enormous nucleotide sequences as 
a result of genome analysis needs adequate assignment of the physiological functions. The 
main focus is a prediction of the three-dimensional structure of a protein when only the 
amino-acid sequence is known. The prediction of protein structure, based primarily on 
sequence and structure homology using homology models has become more accurate and 
their range of applicability has increased. These include profile methods for sequence 
searches, the use of three-dimensional structure information in the sequence alignment, and 
new homology modeling tools, specifically in the prediction of loop and side-chain 
conformations [6]. There have also been important advances in understanding the physico-
chemical basis of protein stability and the corresponding use of physical chemical potential 
functions to identify correctly folded from incorrectly folded protein conformations [7-9]. 
Thus, the researcher's focus on predicting protein structure from sequences remains of great 
importance to molecular biology. The present study was performed using two bioinformatics 
tools for protein 3D structure prediction viz. (a) CPH model and (b) Phyre-2 (Homology 
modeling based). Further, the obtained structures are validated using ANOLEA for energy 
levels and RAMPAGE for structural configuration.  
 
The CASP (critical assessment of structure prediction) competition shows the progress of the 
different prediction methods in the last decade. The most accurate prediction method so far 
is the template, or homology modeling approach, which predicts the structure by comparison 
to a similar sequence. For two-thirds of sequences, a similar sequence can be found and thus 
the structure can be predicted by homology modeling with reliable precision for those with 
less than 300 residues [10]. Homology modeling is based on the fact that if two sequences have 
a high sequence similarity then they have similar 3D structure. But this is not always the case. 
Two sequences that don’t share much sequence similarity may have similar folds. In the 
present study, a total of 46 plant species were studied in and around Rajkot city (Gujarat, 
India) of which 18 are trees, 7 are vines, 12 are shrubs and 9 are herbs (Table 1). They were 
subjected to DNA isolation, and PCR amplification for the CP47 gene followed by sequencing 
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of the PCR product. These nucleotide sequences were submitted to NCBI, and the accession 
numbers obtained are presented in Table 1. These sequences were translated to protein 
sequences for further analysis for its structure prediction.  
 
2. Materials and Methods 
 
2.1. Plant sampling 
 
A total of 46 plants from different genera representing 14 different plant families were selected 
for the present study. The plants were collected from various sites in and around Rajkot, 
Gujarat, India (Table 1). 
 
Table 1: List of plant sample and accession no. of submitted sequence. 
 

No. Plant name T/V/S/H Family Accession No. 

1 Artocarpus heterophyllus Tree Moraceae JQ435804 

2 Bambusa sp.1 Tree Poaceae JQ435805 

3 Mangifera indica Tree Anacardiaceae JQ435806 

4 Borassus flabellifer L. Tree Arecaceae JQ435807 

5 Cassia fistula Tree Fabaceae JQ435808 

6 Tamarindus indica Tree Fabaceae JQ435809 

7 Adina cordifolia Tree Rubiaceae JQ435810 

8 Bambusa sp.2 Tree Poaceae JQ435811 

9 Crataeva nurvula Tree Capparaceae JQ675557 

10 Ficus longifolia Tree Moraceae JX141423 

11 Mimusops elengi Tree Sapotaceae JQ828835 

12 Cassia javanica Tree Fabaceae JX141424 

13 Balanites aegyptiaca Tree Zygophyllaceae JX141425 

14 Trifera sp. Tree Vitaceae JQ828834 

15 Bambusa sp.3 Tree Poaceae JX141427 

16 Aegle marmelos Tree Rutaceae JX141428 

17 Bambusa sp.4 Tree Poaceae JX141429 

18 Mangifera indica Tree Anacardiaceae JQ340479 

19 Abrus sp.2 Vine Fabaceae JQ675556 

20 Cucurbita sp. Vine Cucurbitaceae JQ675558 

21 Abrus sp.1 Vine Fabaceae JQ828836 

22 Vernonia elaeagnifolia Vine Asteraceae JQ675559 

23 Akebia quinata Vine Larbizabalaceae JX141426 

24 Abrus sp.3 Vine Fabaceae JX141430 

25 Coccinia grandis Vine Cucurbitaceae JX141431 

26 Malpighia emarginata Shrub Malphigiaceae JQ422185 

27 Occimum sp.1 Herb Lamiaceae JQ422188 
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28 Occimum sp.3 Herb Lamiaceae JQ422189 

29 Tecoma stans Shrub Bignoniaceae JQ422190 

30 Duranta erecta Shrub Verbenaceae JQ422191 

31 Holarrhena antidysenterica Shrub Apocynaceae JQ422192 

32 Cassia tora Shrub Fabaceae JQ828838 

33 Indigofera coerulea Shrub Fabaceae JX141432 

34 Ixora coccinea Shrub Rubiaceae JQ675553 

35 Ixora sp. Shrub Rubiaceae JQ675554 

36 Cactus sp. Shrub Cactaceae JX141433 

37 Artabotrys hexapetalus Shrub Annonaceae JX141434 

38 Mimosa pudica Shrub Fabaceae JX141435 

39 Occimum sp.2 Shrub Lamiaceae JX141436 

40 Cleome viscosa Herb Capparaceae JQ675551 

41 Striga angustifolia  Herb Scrophulariaceae JQ422186 

42 Eclipta alba Herb Asteraceae JQ422187 

43 Merremia gangetica Herb Convolvulaceae JQ828839 

44 Martynia diandra Herb Martyniaceae JQ675552 

45 Bryophyllum pinnatum Herb Crassulaceae JQ675555 

46 Aerva javanica Herb Amaranthaceae JQ828837 

 
2.2. DNA isolation  
 
Total genomic DNA was isolated from fresh leaves by grinding 200 mg of tissue to powder in 
liquid nitrogen with a mortar and pestle, followed by the extraction protocol of [11]. The 
amount of DNA purity was calculated spectrophotometrically. Then the gel electrophoresis 
was carried out. 
 
2.3. Amplification of psbB gene and DNA sequencing  
 
The extracted DNA was used to amplification psbB gene using primer 60F (5’-ATG GGT TTG 
CCT TGG TAT CGT GTT CAT AC-3’) and 61R (5’-TCC CAA TAY ACC CAA TGC CAG ATA 
G-3’) (Graham and Olmstead 2000). DNA was amplified in a total volume of 25 µl. The 
reaction mixture contained 2.5µl 10X buffer (10mM Tris-HCl pH 9.0, 50mM KCl, 0.1% Trion 
X100), 1.5mM MgCl2, 200µM each deoxynucleoside triphosphate, 10 µM primer and 1U of Taq 
DNA polymerase, 200 ng DNA. PCR reactions were performed using the ViritiTM Thermal 
Cycler with 35 cycles of denaturation at 94ºC temperature for 1 min., annealing 52ºC to 56 ºC 
for 45s, and extension was done at 70ºC for 2 min, and final extension at 72ºC for 7 min. 
Amplified DNA fragments were electrophoresis through a 1.5% agarose gel. The purified PCR 
products were sequenced using a Big Dye Terminator V 3.1 Cycle Sequencing Kit using ABI 
3130 genetic analyzer. The nucleotide sequences determined in this study have been 
submitted to the NCBI GenBank database. 
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2.4. Sequence analysis 
 
The sequences obtained using the ABI 3130 Data Collection Software were further analyzed 
using ABI Sequencing Analysis Software v5.1. Sequence editing was performed using Bioedit. 
Nucleotide sequence converts to amino acid sequence using Bioedit. The amino acid 
composition of this sequence was commutated using the ExPASy’s ProtParam tool. All 46 
protein sequences were analyzed in different structure prediction software. The 3-D structure 
of the protein was predicted by the following CPH models and Phyre2 [12]. 
 
2.4.1. CPHmodels-3.0 server 
 
The CPH model-3.0 server is used for the protein structure prediction for all plant species 
studied. It is based on a homology modelling algorithm. This includes a PsiBlast search 
against a reduced non-redundant protein sequence database (nr), profile-profile alignment 
including predicted local structure information obtained from NetSurfP [13], and a double-
sided Z-score evaluation. Once the appropriate template has been found, Ca-atom coordinates 
are extracted according to the sequence alignment and used as a starting point for the 
homology-modeling process. The modelling methodology uses an optimized alignment 
scoring function that beyond secondary structure includes predicted relative surface 
accessibility. It employs a double-sided Z-score to rank individual template hits. This Z-score 
ranking attempts to reduce the bias imposed by the composition and length of the query and 
template database sequences on the alignment score, significantly improving the overall 
prediction accuracy. A Z-score threshold value is 3.8. Z-score is above 3.8 which means the 
protein model is ‘reliable’ and Z-score is below 3.8 which means the protein model is ‘not-
reliable’. 
 
2.4.2. Phyre2 
 
The second online software is phyre2 which also uses a homology modeling algorithm [14]. 
However, the Phyre server uses a library of SCOP (structure classification of protein) database 
and is augmented with newer depositions in the Protein Data Bank (PDB). The sequence of 
each of these structures is scanned against a nonredundant sequence database and a profile is 
constructed and deposited in the ‘fold library’. The known and predicted secondary structure 
of these proteins is also stored in the fold library. A user-submitted sequence, henceforth 
known as the ‘query’, is similarly scanned against the non-redundant sequence database, and 
a profile is constructed. 
 
Following profile construction, the query secondary structure is predicted. Three independent 
secondary structure prediction programs are used in Phyre: Psi-Pred13, SSPro14, and JNet15. 
Each of these three programs provides a confidence value at each position of the query for 
each of the three secondary structure states. These confidence values are averaged and a final, 
consensus prediction is calculated and displayed beneath the individual predictions. In 
addition, the program Disopred16 is run to calculate a two-state prediction of which regions 
of the query are most likely to be structurally ordered (o) and which are disordered (d). 
Usually, a high sequence identity will be indicative of a high-accuracy model.  
 
Validations of these models were done by Ramachandran plot [15]. The protein energy level 
was calculated using ANOLEA.  
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2.4.3. ANOLEA (Atomic Non-Local Environment Assessment) server 
(http://melolab.org/anolea) 
 
ANOLEA is a program used to calculate the NL profile of a protein structure containing one 
or more chains. The energy of each pairwise interaction in this non-local environment is taken 
from a distance-dependent knowledge based mean force potential that has been derived from 
a database of 147 non-redundant protein chains with a sequence identity below 25% and 
solved by X-Ray crystallography with a resolution lower than 3 Å. The method uses a very 
sensitive and accurate atomic mean force potential (AMFP) to calculate the non-local energy 
profile (NL-profile) of the structure of a protein. The AMFP-derived energy profiles can 
correlate high scores with point errors and misalignments in the models. Point errors are 
frequently found in loops or regions of structural differences between the template and the 
target protein. The misalignments are detected with very high scores. The performance of the 
method was also tested for the assessment of X-ray-solved protein structures. First, the NL 
profile of a protein structure refined in the incorrect space group has very high scores in 
several regions. One region has already been described to be out-of-register with the density 
map of the structure. The NL profile of the re-refined structure with the correct space group 
is vastly improved. In the second case, the method can accurately point out disordered 
residues, even if the atoms of these residues do not violate the sum of the van der Waals. 
ANOLEA calculates the energy level of the protein chain. This software is based on the color 
in the protein sequence, where if most of the part is red indicates that the protein structure 
level is reliable and if a large yellow portion exists, it indicates that the protein structure level 
is not reliable.  
 
2.5. Analysis of physicochemical parameters  
 
The different physicochemical properties of all the 46 psbB protein sequences were computed 
using the ExPASy’s ProtParam tool. The ProtParam includes the following computed 
parameters: Molecular weight (M. Wt), theoretical pI, instability index (II), aliphatic index 
(AI), and grand average of hydropathicity (GRAVY). The computed isoelectric point (pI) will 
be useful for developing buffer systems for purification by the isoelectric focusing method 
[16]. The instability index provides an estimate of the stability of our protein. A protein whose 
instability index is smaller than 40 is predicted as stable; a value above 40 predicts that the 
protein may be unstable [17]. The aliphatic index of a protein is defined as the relative volume 
occupied by aliphatic side chains (alanine, valine, isoleucine, and leucine). It may be regarded 
as a positive factor for the increase of the thermostability of globular proteins [18]. 
 
3. Results and Discussion 
 
It is interesting to note that there is no protein structure for CP47 for these studied higher 
plants available in PDB (protein database). Therefore, an attempt is made to predict protein 
structure for 46 plants in this study.  
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3.1. Protein structure prediction using homology modelling tools 
 
3.1.1. CPH model 

 
In the present study, 46 plant species which includes 18 trees, 7 vines, 12 shrubs, and 9 herbs 
are preceded in CPH software and the respective Z scores according to the software are 
recorded in Table 2. Out of 18 tree species 10 tree species have above 3.8 Z-score and the 
remaining 8 had below this. In the 10 tree species highest Z-score was observed in Balanites 
aegyptiaca (7.2) followed by Artocarpus heterophyllus (5.2), Bambusa sp. (5.5), Borassus flabellifer 
L. (4.3), Cassia fistula (4.5), Ficus longifolia (4), Mimusops elengi (6.6), Cassia javanica (6), Trifera 
sp. (4.2) and Bambusa sp.3 (4.1). The significant Z-score for these tree species indicated that 
their protein structures are good or predicted properly. 
 
From 7 vine species, 5 showed a significant Z-score while 2 species were non-significant. In 5 
species the highest score was observed in Abrus sp.2 (5.1) followed by Cucurbita sp. (3.9), Abrus 
sp.1 (4.4), Vernonia elaeagnifolia (4.6) and Akebia quinata (4.2) and hence indicates that they are 
good protein models. 
 
Table 2: Protein structure prediction using CPH model (the threshold value of Z-score >3.8 indicate 
an appropriate 3-D structure). 
 

Plant name AA Template 

found 

Z-score Alignment 

length 

ID Coverage Model 

Mw 

Artocarpus heterophyllus  83 2DXR.C 5.2 38 34.2 34.9 2902 

Bambusa sp.1 89 2EP8.A 5.5 52 21.2 58.4 6090 

Mangifera indica 84 1D0B.A 3.5 61 14.8 72.6 6833 

Borassus flabellifer L. 90 1JJD.A 4.3 35 37.1 32.2 3066 

Cassia fistula 82 1MTP.B 4.5 22 31.8 26.8 2418 

Tamarindus indica 66 1S5L.B - - 30 89.4 6251 

Adina cordifolia 78 1CHL.A 3.3 15 46.7 19.2 1577 

Bambusa sp.2 83 3BZ1.B - - 56.7 79.5 7317 

Crataeva nurvula 90 1EM8.D 3.3 39 20.5 43.3 4444 

Ficus longifolia 50 2GW4.A 4 46 21.7 92 5287 

Mimusops elengi 52 1EYF.A 6.6 38 26.3 73.1 4763 

Cassia javanica 86 1BL8.A 6 36 11.1 41.9 3945 

Balanites aegyptiaca 71 1DLO.A 7.2 37 24.3 52.1 3984 

Trifera sp. 87 2YTE.A 4.2 42 28.6 47.1 4774 

Bambusa sp.3 40 2AXT.Z 4.1 31 19.4 77.5 3324 

Aegle marmelos 39 1NJ3.A 3.1 21 28.6 53.8 2448 

Bambusa sp.4 49 2FOT.C 3.1 21 23.8 42.9 2573 

Mangifera indica 52 1W1H.A 3.3 21 33.3 40.4 2532 

Abrus sp.2 63 2CRC.A 5.1 58 19 90.5 6085 

Cucurbita sp. 76 1WVE.C 3.9 40 22.5 52.6 4318 

Abrus sp.1 77 2JX1.A 4.4 27 33.3 32.5 2622 
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Vernonia elaeagnifolia 57 1EBU.A 4.6 31 6.5 54.4 3576 

Akebia quinata 75 1UB4.A 4.2 80 13.8 96 8287 

Abrus sp.3 52 1MMO.A 3.4 11 45.5 21.2 1273 

Coccinia grandis 85 2DJ6.A 3.1 60 15 70.6 6761 

Malpighia emarginata 69 2F6A.E 5.1 34 29.4 37.7 2825 

Occimum sp.1 69 2F6A.E 5.1 34 29.4 37.7 2825 

Occimum sp.3 91 15SL.B - - 48 54.9 5313 

Tecoma stans 87 1Y96.B 3.5 57 24.6 58.6 5744 

Duranta erecta 64 2AXT.1 3.7 23 30.4 35.9 2432 

Holarrhena antidysenterica 90 1EMA.D 3.3 39 20.5 43.3 4444 

Cassia tora 57 2IYB.E 4.2 24 25 38.6 2640 

Indigofera coerulea 52 1W1H.A 3.3 21 33.3 40.4 2532 

Ixora coccinea 90 1PM7.A 3.7 77 19.5 83.3 8259 

Ixora sp. 87 2J00.N 4 36 27.8 40.2 3736 

Cactus sp. 70 1BMR.A 5 37 - - - 

Artabotrys hexapetalus 46 1LQB.D 3.4 8 37.5 15.2 773 

Mimosa pudica 63 2F49.C 3.9 7 14.3 11.1 761 

Occimum sp.2 39 2I3S.B 3 32 18.8 82.1 3860 

Cleome viscosa 85 ZZ3R.T 3.6 54 14.8 63.5 5827 

Striga angustifolia  63 2A49.C 3.9 7 14.3 11.1 761 

Eclipta alba 91 155L.B - - 48 54.9 5312 

Merremia gangetica 59 1IGL.A 4.7 39 10.3 64.4 4191 

Martynia diandra 58 1S5L.B - - 56.2 81 5219 

Bryophyllum pinnatum 71 2HFG.R 3.5 4 50 5.6 473 

Aerva javanica 65 1QFW.B 4 40 25 61.5 4095 

 
Out of 12 shrub species, 5 shrub species showed above a 3.8 Z-score which indicates that these 
all species have a reliable protein model. The remaining 7 species have a below 3.8 Z-score 
and thus are poor protein models. Highest Z-scores were observed in Malpighia emarginata 
(5.1) and have higher score than other protein models. The other 4 shrubs also have relatively 
less value for the protein models are Cassia tora (4.2), Ixora sp. (4), Cactus sp. (5) and Mimosa 
pudica (3.9). From 9 herb species 5 species have significant Z-score value. Amongst the 3 
species highest Z-score was observed in Occimum sp.1 (5.1), Merremia gangetica (4.7) followed 
by Striga angustifolia (3.9) and Aerva javanica (4) and hence indicated that the protein models 
are of good quality.  
 
Thus, a total of 24 plants out of 46 showed reliable protein prediction. 
 
3.1.2. Phyre 2 
 
In the present study, out of 18 tree species only 1 tree species i.e., Borassus flabellifer L. has a 
poor protein model because of a low sequence identity (25%). The other parameters of the 
same model are: confidence score is 57.3%, coverage is 18%, the disorder is 20%, alpha helix 
is 21%, beta strand is 14%. Among the 7 vine species only one, i.e., Coccinia grandis has a poor 
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model. This species has a sequence identity of 25%, Confidence score-12. 8%, coverage-28%, 
disorder-22%, alpha helix-79%, and beta strand-9% (Table 3). 
 
Table 3: Protein structure prediction using phyre 2 (the threshold value of sequence identifies >20 % 
indicates an appropriate 3-D structure). 
 

Plant name Confidence Coverage Disordered alpa helix beta strand %ID 

Artocarpus heterophyllus  18.4 19 18 16 24 38 

Bambusa sp.1 9.1 7 33 47 13 86 

Mangifera indica 20.6 18 15 8 50 60 

Borassus flabellifer L. 57.3 18 20 21 28 25 

Cassia fistula 99.9 98 20 46 14 43 

Tamarindus indica 99.6 68 20 20 36 40 

Adina cordifolia 9.2 19 24 62 0 27 

Bambusa sp.2 100 92 14 45 14 49 

Crataeva nurvula 17.4 0 36 24 24 44 

Ficus longifolia 34.2 52 20 0 66 27 

Mimusops elengi 20.3 19 23 33 19 80 

Cassia javanica 11 19 23 56 10 56 

Balanites aegyptiaca 79.8 39 18 24 34 32 

Trifera sp. 11.8 21 29 33 44 44 

Bambusa sp.3 17.8 28 38 82 0 45 

Aegle marmelos 10.5 15 36 0 49 83 

Bambusa sp.4 24.7 29 12 90 0 50 

Mangifera indica 38.6 15 38 56 0 63 

Abrus sp.2 10.8 16 35 6 22 60 

Cucurbita sp. 36.6 8 30 14 24 100 

Abrus sp.1 22.6 40 44 55 8 32 

Vernonia elaeagnifolia 46.8 32 14 49 16 56 

Akebia quinata 17.5 31 13 43 24 35 

Abrus sp.3 14.9 44 38 60 12 26 

Coccinia grandis 12.8 28 22 79 9 25 

Malpighia emarginata 17.4 10 36 24 24 44 

Occimum sp.1 35.3 46 23 23 23 25 

Occimum sp.3 99.7 55 16 43 10 48 

Tecoma stans 26.6 52 25 31 32 33 

Duranta erecta 14.5 52 12 56 27 18 

Holarrhena antidysenterica 17.4 10 36 24 24 44 

Cassia tora 25 25 14 7 48 15 

Indigofera coerulea 64.4 16 10 16 43 36 

Ixora coccinea 38.6 15 38 56 0 63 
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Ixora sp. 23.5 11 33 56 21 60 

Cactus sp. 20.7 27 31 11 47 26 

Artabotrys hexapetalus 24.9 72 24 0 78 24 

Mimosa pudica 20.8 14 30 24 21 44 

Occimum sp.2 18.3 21 23 21 54 63 

Cleome viscosa 25 25 14 7 48 23 

Striga angustifolia  20.8 14 20 24 21 44 

Eclipta alba 99.7 55 16 43 10 48 

Merremia gangetica 19.5 25 24 24 31 53 

Martynia diandra 99.7 83 22 0 47 56 

Bryophyllum pinnatum 15.1 25 31 38 18 50 

Aerva javanica 30.4 20 20 22 54 54 

 
Among the shrubs out of 12 species, three have a poor-quality protein model. These species 
are, Duranta erecta, Cassia tora, and Cleome viscosa. In Duranta erecta the parameters sequence 
identity-18%, confidence score-14.5%, coverage-52%, disorder-12%, alpha helix-56% and beta 
strand-27%. In Cassia tora sequence identity-15%, confidence score-25%, coverage-25%, 
disorder-14%, alpha helix-7%, and beta strand-48%. In Cleome viscosa the different parameters 
sequence identity-23%, confidence score-25%, coverage-25%, disorder-14%, alpha helix-7%, 
and beta strand-48% (Table 3). 
 
Out of 9 herb species, 8 species have a good protein model which means all species have <20% 
sequence identity except Occimum sp.1. For Occimum sp.1 the different parameters are 
sequence identity-25%, confidence score-35.3%, coverage-46%, disorder-23%, alpha helix-23% 
and beta strand-23%.  
 
Thus, a total of 40 plants out of 46 showed reliable protein prediction. 
 
3.2. Protein physico-chemical analysis using ProtParam 
 
3.2.1. Amino acid composition 
 
The amino acids percentage in the psbB of 46 different plant samples was found by using the 
ProtParam Tool from the Expasy Proteomic Server (Figure 1). Among all different amino acids 
the maximum percentage was observed in Leucine (L) (3-17%), Proline (P) (0-16%), Glycine 
(G) (0-10%) and the minimum percentage in Methionine (M) (0-5%), Asparagine (N) (0-6%), 
Aspartic acid (D) (0-6%), The percentage of amino acids observed in each of the organisms is 
as follows: 
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Figure 1: BOX plot showing the amino acid frequency (%) information for the 46 psbB protein 
sequences of plants all taken together. 
 
Alanine (A) was found to be highest in Abrus sp.3 (8%) and lowest in Bambusa sp.1, Ficus 
longifolia, Malpighia emarginata, Occimum sp.1, Tecoma stans, Cleome viscosa, and Bambusa sp.4 
(1%). Arginine (R) was found to be highest in Cactus sp. (11%) and lowest in Abrus sp.2, 
Balanites aegyptiaca, Striga angustifolia, and Aegle marmelos (1%). Asparagine (N) was found to 
be highest in Bambusa sp.1 (6%) and lowest in Artocarpus heterophyllus, Mimusops elengi, 
Duranta erecta, Bryophyllum pinnatum, Coccinia grandis, Bambusa sp.3 and Aegle marmelos (1%). 
Aspartic acid (D) was found to be highest in Cassia fistula (6%) and lowest in Mangifera indica, 
Tamarindus indica, Mangifera indica, Crataeva nurvula, Malpighia emarginata, Occimum sp.1, 
Tecoma stans, Holarrhena antidysenterica, Ixora coccinea, Mimosa pudica, Occimum sp.2, Martynia 
diandra, Aerva javanica, Ficus longifolia, Balanites aegyptiaca, Cucurbita sp. and Akebia quinata 
(1%). Cysteine (C) was found to be highest in Balanites aegyptiaca (8%) and lowest in Ficus 
longifolia, Tecoma stans, Mimosa pudica, Cleome viscosa, Martynia diandra, Bryophyllum pinnatum, 
Aegle marmelos and Bambusa sp.4 (1%). Glutamine (Q) was found to be highest in Borassus 
flabellifer (6%) and lowest in Mangifera indica, Cassia fistula, Tamarindus indica, Bambusa sp.2, 
Abrus sp.2, Crataeva nurvula, Cassia javanica, Vernonia elaeagnifolia, Malpighia emarginata, 
Occimum sp.1, Duranta erecta, Cassia tora, Aerva javanica, Cleome viscosa, Aegle marmelos and 
Bambusa sp.4 (1%).Glutamic (E) was found to be highest in Trifera sp. (8%) and lowest in 
Artocarpus heterophyllus, Borassus flabellifer L., Malpighia emarginata, Occimum sp.1, Merremia 
gangetica, Aerva javanica, Occimum sp. 2, Tamarindus indica, Balanites aegyptiaca, Abrus sp.1 and 
Abrus sp.3 (1%). Glycine (G) was found to be highest in Ixora sp. (13%) and lowest in Mangifera 
indica, Ixora coccinea, Cleome viscosa, Mimusops elengi and Akebia quinata (1%). Histidine (H) was 
found to be highest in Borassus flabellifer (8%) and lowest in Tamarindus indica, Haldina 
cordifolia, in Cassia tora, Ixora sp., Aerva javanica, Jobra, Mimosa pudica, Cleome viscosa, Bambusa 
sp.2, Ficus longifolia, Abrus sp.1, Vernonia elaeagnifolia, Bambusa sp.3 and Bambusa sp.4 (1%). 
Isoleucine (I) was found to be highest in Artocarpus heterophyllu and Coccinia grandis (9%) and 
lowest in Cassia tora, Duranta erecta, Ixora coccinea, Cactus sp., Artabotrys hexapetalus and Akebia 
quinata (1%). Leucine (L) was found to be highest in Cassia javanica (17%) and lowest in 
Tamarindus indica, Abrus sp.2, Mimusops elengi, Bambusa sp.3, Mangifera indica, Merremia 
gangetica, Martynia diandra, Ixora coccinea, Bambusa sp.4 and Akebia quinata (3%). Lysine (K) was 
found to be highest in Ixora sp. (9%) and lowest in Bambusa sp.2, Striga angustifolia, Duranta 
erecta, Indigofera coerulea, Aerva javanica, Trifera sp. and Abrus sp.3 (1%). Methionine (M) was 
found to be highest in Bambusa sp.2 (5%) and lowest in Borassus flabellifer, Abrus sp.2, Striga 
angustifolia, Indigofera coerulea, Martynia diandra, Cactus sp., Jobra, Occimum sp.2, Cleome viscosa, 
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Mimusops elengi and Aegle marmelos (1%). Phenylalanine (F) was found to be highest in Ixora 
sp. (9%) and lowest in Haldina cordifolia, Ficus longifolia, Striga angustifolia, Tecoma stans, 
Martynia diandra, Coccinia grandis, Balanites aegyptiaca, Cucurbita sp. and Vernonia elaeagnifolia 
(1%). Proline (P) was found to be highest in Artocarpus heterophyllus (16%) and lowest in Trifera 
sp., Bambusa sp.3 and Bambusa sp.4 (1%). Serine (S) was found to be highest in Eclipta alba and 
Occimum sp.3 (13%) and lowest in Cleome viscosa (1%). Threonine (T) was found to be highest 
in Cassia fistula, Mangifera indica, Tecoma stans, Martynia diandra, Ixora coccinea, Coccinia grandis, 
and Akebia quinata (8%) and lowest in Indigofera coerulea, Ficus longifolia (1%). Tryptophan (W) 
was found to be highest in Eclipta alba and Occimum sp.3, (7%) and lowest in Artocarpus 
heterophyllus, Mangifera indica, Haldina cordifolia, Crataeva nurvula, Mimusops elengi, Coccinia 
grandis, Duranta erecta, Holarrhena antidysenterica, Ixora sp., Bryophyllum pinnatum, Occimum sp. 
2, Trifera sp., Cucurbita sp., Abrus sp.1 and Bambusa sp.4 (1%). Tyrosine (Y) was found to be 
highest in Borassus flabellifer, Mimusops elengi, Cassia javanica (5%) and lowest in Artocarpus 
heterophyllus, Mangifera indica, Striga angustifolia, Eclipta alba, Occimum sp.3, Duranta erecta, 
Ixora sp., Cleome viscosa, Bambusa sp.3, Aegle marmelos and Akebia quinata (1%). Valine (V) was 
found to be highest in Duranta erecta (9%) and lowest in Cucurbita sp. Merremia gangetica and 
Aegle marmelos (1%) (Figure 1). 
 
3.2.2. pI value 
 
pI values vary from 11.53 (Ixora sp.) to 3.91 (Bambusa sp.) (Figure 2). In 39 plants pI values 
ranged 7.11 to 11.52 and remains plants pI value was less than 7 and the minimum value was 
3.91 (Figure 2). This variation in the pI values may be the result of changes in amino acid 
composition in their proteins (Figure 2). 
 

 
Figure 2: pI value of 46 psbB protein sequence of selected plants.  
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3.2.3. Aliphatic index 
 
The aliphatic index in 46 different plant samples was found to be in the range of 45-137.44. In 
tree aliphatic index ranged from 45-116.74. The highest value was observed in Cassia javanica 
and the lowest in Mimusops elengi. In vine aliphatic index ranged from 58.08-114.27. The 
highest value was observed in Vernonia elaeagnifolia and the lowest in Akebia quinata. In the 
shrub aliphatic index ranged from 58.08-137.44. The highest value was observed in Cleome 
viscosa and the lowest in Ixora coccinea. In herb, aliphatic index ranged from 64.58-112.86 
(Figure 3). The highest value was observed in Striga angustifolia and the lowest in Merremia 
gangetica. The aliphatic index (AI) which is defined as the relative volume of a protein 
occupied by aliphatic side chains is regarded as a positive factor for the increase of thermal 
stability of globular proteins. The very high aliphatic index of all sequences indicates it may 
be stable for a wide temperature range. 

 
Figure 3: Instability index and aliphatic index of psbB proteins sequences. 
 
3.2.4. Instability index 
 
The instability index from all 46 different plants was found to be between 107.39 (unstable) to 
13.16 (stable). The instability index value above 40 confirms the instability nature but the value 
of less than 40 reveals the stability nature of the overall 3D structure of the protein [11]. In 
tree, instability index was found from 23.34 to 107.39. The highest value was observed in 
Mimusops elengi and the lowest in Mangifera indica. In vine species instability index was found 
from 23.34 to 90.33. The highest value was observed in Cucurbita sp. and the lowest in Akebia 
quinata. In shrub instability index was found from 23.34 to 66.87. The highest value was 
observed in Artabotrys hexapetalus and the lowest in Ixora coccinea. In herb instability index was 
found from 13.16 to 66.14. The highest value was observed in Eclipta alba and the lowest in 
Martynia diandra (Figure 3).  
 
3.2.5. Grand average of hydropathicity (GRAVY) 
 
The Grand average of hydropathicity (GRAVY) in 46 plant samples was found to be in the 
range of -0.073-0.858. In tree, GRAVY ranged from -0.767 to 0.728. The highest value was 
observed in Bambusa sp.3 and the lowest in Mangifera indica. In vine, GRAVY ranged from -
0.073 to 0.133. The highest value was observed in Abrus sp.1 and the lowest in Vernonia 
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elaeagnifolia. In shrub GRAVY ranged from -0.767 to 0.858. The highest value was observed in 
Duranta erecta and the lowest in Ixora coccinea. In herb, GRAVY ranged from -0.504 to 0.638 
(Figure 4). The highest value was observed in Aerava javanica and the lowest in Bryophyllum 
pinnatum. The low value indicates the possibility of better interaction with water [10]. 
 

 
Figure 4: Grand Average of Hydropathicity (GRAVY) of psbB proteins sequences. 
 
3.3. Ramachandran plot analysis using rampage 
 
The Ramachandran plot indicates the acceptable quality of a protein model (Table 4). 
Ramachandran created two-dimensional (2D) scatter plots of Ø and Ψ pairs, comparing them 
to a predicted distribution. These scatter plots are now commonly known as Ramachandran 
plots [9]. Simple polymer physics models can be used to make a predicted distribution of pairs 
of Ø and Ψ angles using a volume exclusion model: no two non-bonded atoms can overlap. 
Results of such calculations show considerable conformational freedom in the two torsion 
angles but with many clear restrictions. Deviations from the expected distribution for a new 
protein structure can now be used to judge the quality of that structure. Rampage derives 
Phi/Psi plots for Gly, Pro, Pre-Pro, and other residues and the plot is divided into three 
regions that are favored, allowed, and outlier regions. The number of residues in the favored 
region (>90%) is the measure of the good quality of a model.  
 
Table 4: Ramachandran plot value obtained through RAMPAGE (the threshold value of favorured 
region >90 % indicate appropriate 3-D structure). 
  

Plant Name 
No. of residues in 

favoured region 

No. of residues in 

allowed region 

No. of residues in 

outliner region 

Artocarpus heterophyllus 86.4 % 6.2 % 7.4 % 

Bambusa sp.1 88.5 % 4.6 % 6.9 % 

Mangifera indica 76.8 % 11 % 12.2 % 

Borassus flabellifer L. 78.4 % 9.1 % 12.5 % 

Cassia fistula 80 % 12.5 % 7.5 % 

Tamarindus indica 90.6% 3.1 % 6.2 %  
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Haldina cordifolia 85.5 % 14.5 % 0% 

Bambusa sp.2 84.7% 8.6 % 3.7 % 

Crataeva nurvula 81.8% 12.5 % 5.7 % 

Ficus longifolia 85.3 % 10.4 % 6.2 % 

Mimusops elengi 84 % 10 % 6 % 

Cassia javanica 79.8 % 7.1 % 13.1 % 

Balanites aegyptiaca 85.5 % 10.1 %  4.3 % 

Trifera sp. 88.2 % 8.2% 5.9 % 

Bambusa sp.3 100 % 0 % 0 % 

Aegle marmelos 78.4 % 13.5 % 8.1 % 

Bambusa sp.4 97.9 % 2.1% 0 % 

Mangifera indica 84 % 8 % 8 % 

Abrus sp.2 68.9 % 18 % 13.1 % 

Coccinia grandis 95.2 % 3.6 %  1.2 % 

Cucurbita sp. 68.9 % 13.5 % 17.6 % 

Abrus sp.1 94.7 % 4 % 1.3 % 

Vernonia elaeagnifolia 83.6 % 10.9 % 5.5 % 

Akebia quinata 84.9 % 12.3 % 2.7 % 

Abrus sp.3 77 % 13.1 % 9.8 % 

Malpighia emarginata 77.6 % 13.4 % 9 % 

Occimum sp.1 77.6 % 13.4 % 9 % 

Occimum sp.3 88.8 % 10.1 % 1.1 %  

Tecoma stans 88.2 % 10.6 % 1.2 % 

Durantaerecta 88.7 % 6.5 % 4.8 % 

Holarrhena antidysenterica 88.6 % 4.5 % 6.8 % 

Indigofera coerulea 84 % 8 % 8 % 

Ixora coccinea 81.8 % 11.4 % 6.8 % 

Ixora sp. 85.9 % 8.2 % 5.9 % 

Cactus sp. 77.9 % 10.3 % 11.8 % 

Artabotrys hexapetalus 79.5 % 13.6 % 6.8 % 

Mimosa pudica 77 % 11.5 % 11.5 % 

Occimum sp.2 94.6 % 2.7 % 2.7 % 

Cleome viscose 73.5 % 12 % 14.5 % 

Cassia tora 87.3 % 7.3 % 5.5 % 

Striga angustifolia 77 % 13.1 % 9.8 % 

Eclipta alba 88.8 % 10.1 % 1.1 % 

Merremia gangetica 91.2 % 3.5 % 5.3 % 

Martynia diandra 76.8 % 16.1 % 7.1 % 

Bryophyllum pinnatum 82 % 5 % 13.5 % 

Aerva javanica 76.2 % 14.3 % 9.5 % 
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In the present study, in the trees, from a total of 18 species, only 3 showed a significant value. 
Species that have a significant value are Tamarindus indica (90.60%), Bambusa sp.3 (100%), and 
Bambusa sp.4 (97.90%). Other species Artocarpus heterophyllus (86.40%), Bambusa sp.1 (88.50%), 
Adina cordifolia (85.50%), Bambusa sp.2 (87.70%), Crataeva nurvula (81.80%), Ficus longifolia 
(83.30%), Mimusops elengi (84%), Balanites aegyptiaca (85.50%), Trifera sp. (88.20%) and 
Mangifera indica (84%) have a favored region value and are near the threshold value. 
 
Of the 7 vine species, 2 showed a significant favored region. From these two vine species, the 
highest favored region was observed in Coccinia grandis (95.20%) and Abrus sp.1 (94.70%) and 
2 species had a favored region value near the threshold value like Vernonia elaeagnifolia 
(83.60%) and Akebia quinata (84.90%). 
 
Out of 12 shrub species, only 1 species showed a significant favored region and hence 
concluded that the protein model is good which was observed in Occimum sp.2 (94.60%). 
Other species Occimum sp.3 (88.80%), Tecoma stans (88.20%), Duranta erecta (88.70%), 
Holarrhena antidysenterica (88.60%), Cassia tora (87.30%), Indigofera coerulea (84%), Ixora coccinea 
(81.80%) and Ixora sp. (85.90%) had a favored region value are near the threshold value. 
 
Out of 9 herb species, 1 showed a significant value in Merremia gangetica (91.20%) then Eclipta 
alba (88.80%) and Bryophyllum pinnatum (82%) had near the significant favored region. 
 
3.4. Calculation of protein energy level using Anolea 
 
In the present study, out of 18 tree species, 14 species have a good protein structure level all 
species are Artocarpus heterophyllus (60), Bambusa sp.1 (69), Mangifera indica (65), Borassus 
flabellifer L. (57), Cassia fistula (67), Tamarindus indica (42), Adina cordifolia (45), Bambusa sp.2 
(61), Crataeva nurvula (67), Ficus longifolia (45), Mimusops elengi (41), Cassia javanica (52), 
Balanites aegyptiaca (40) and Trifera sp. (66). Same as above, out 7 vine species all have a good 
protein structure level viz. Abrus sp.2 (47), Cucurbita sp. (52), Abrus sp. (43), Vernonia 
elaeagnifolia (38), Akebia quinata (47), Abrus sp.3 (28) and Coccinia grandis (47) (Figure 5). 
 
Out of 12 shrub species, 10 species have a good protein structure level which is Malpighia 
emarginata (59), Tecoma stans (48), Holarrhena antidysenterica (56), Cassia tora (46), Ixora coccinea 
(67), Ixora sp. (46), Cactus sp. (48), Artabotrys hexapetalus (41), Mimosa pudica (35) and Cleome 
viscosa (66). Out of 6 herb species, 4 species have a good protein structure level all species are 
Eclipta alba (62), Martynia diandra (37), Bryophyllum pinnatum (38), and Aerva javanica (57). 
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Figure 5: Calculate the energy level of the protein chain using Anolea. 
 
The protein structure prediction by using two different algorithms; Pyre2 showed more 
numbers of the sequences prediction and its confirmation using Rampage than that of CPM. 
The predicted structures are given in Figure 6. psbB gene is a key molecule of water splitting 
process of photosynthesis and thus understanding its structural and function aspects may 
play a decisive role in future of renewable energy [19]. In this study, structural variations in 
the predicted proteins are observed irrespective of their habitat i.e., tree, vine, shrub or herb. 
The protein folding mechanism involves very complex dynamics [20] and unknown energy 
factors [21-23]. The homology modeling approach of protein structure prediction in this study 
offers similarity index with the known protein(s); and hence to evaluate functional ability and 
mutation or any other variations for biological performance. Further, the basic properties of 
these proteins vary in all habitats e. g. its composition, instability index, suggesting that the 
turnover rate of this protein may vary in these plants (Figures 1-4). The observed changes in 
the protein psbB help design and comprehension of protein function.  
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Figure 6: Protein structure prediction using Pyre2 online bioinformatics tool for the 46 plants studied 
from semi-arid region of western India. 
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4. Conclusion 
 
Although it is an approach for the computational protein structure prediction energy levels 
evaluated using ANOLEA showed the majority of the proteins with better structure 
configuration; however, it should need to be verified biologically prior to their usage as 
references or standards. It is important to note that structure similarity studies revealed that 
there is no influence of plant habit (tree/herb/shrub/vine) on protein structure and any two-
group way has more relatedness in the psbB proteins. Further from the above study, it is clear 
that protein Pyre2 methods showed more numbers of reliable protein structure for the plant 
species studied. In general, it is important to evaluate protein properties and structure for the 
functional assignment at the physiological level. The availability of various tools with a range 
of threshold values helps researchers to understand and predict protein fold. Validation of 
these models using the Ramachandran plot helps in the understanding of predicted protein 
structure. 
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