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Abstract 
 
Glioma is one of the most common tumors of the brain. The detection and grading of glioma 
at an early stage are very critical for increasing the survival rate of the patients. Computer-
aided detection (CADe) and computer-aided diagnosis (CADx) systems are essential and vital 
tools that allow for more accurate and systematic results to speed up the decision-making 
process of clinicians. By utilizing various deep learning models (e.g., CNN) and transfer 
learning strategy (e.g., fine-tuning), performance results for image classification have 
increased accuracy and improved effectiveness especially for novel large-scale data sets that 
share similarities. In this paper, we introduce a novel method consisting of combined 
variations of machine, deep, and transfer learning approaches for the effective brain tumor 
(i.e., glioma) segmentation and grading on the multimodal brain tumor segmentation 
(BRATS) 2020 dataset. We apply popular and efficient 3D U-Net architecture for the brain 
tumor segmentation phase. We also utilize 23 different combinations of deep feature sets and 
machine learning/fine-tuned deep learning CNN models based on Xception, IncResNetv2, 
and EfficientNet by using 4 different feature sets and 6 learning models for the tumor grading 
phase. The experimental results demonstrate that the proposed method achieves a 99.5% 
accuracy rate for slice-based tumor grading on BraTS 2020 dataset. Moreover, our approach 
results in competitive performance with similar recent works. 
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Abbreviations 
 
ACC: Accuracy Rate; AFPNet: Atrous-convolution Feature Pyramid Network; AUC: Area 
Under the Receiver Operating Characteristics Curve; BraTS: Brain Tumor Segmentation 
Challenge; CADe: Computer-Aided Detection; CADx: Computer-Aided Diagnosis; CNN: 
Convolutional Neural Network CNS - Central Nervous System; CRF: Conditional Random 
Fields; DSC: Dice Coefficient; FC: Fully Connected; FCNN: Fully Convolutional Neural 
Network; FLAIR: Fluid-Attenuated Inversion Recovery; FN: False Negative; FP: False 
Positive; F1: F-(Measure) Score; GBM: Glioblastoma Multiforme; GPU: Graphics Processing 
Unit; HGG: High-Grade Glioma; ISLES: Ischemic Stroke Lesion Segmentation; KNN: K 
Nearest Neighbors; MLP: Multi-Layer Perceptron; MRI: Magnetic Resonance Imaging; NB: 
Naive Bayes; LGG: Low-Grade Glioma; LR: Logistic Regression; PRE: Precision; RAM: 
Random Access Memory; REC: Recall; RF: Random Forest; ROC: Receiver Operating 
Characteristics; SGDM: Stochastic Gradient Descent with Momentum; SPEC: Specificity; STD: 
Standard Deviation; SVM: Support Vector Machine; TN: True Negative; TP: True Positive; T1-
CE: Postcontrast Enhanced T1 Weighted; 3D: Three Dimensional 

 
1. Introduction 
 
The term "brain tumor" often refers to a collection of intracranial neoplasms [1], representing 
an uncontrolled growth of abnormal cells in the brain [2]. According to Cancer.net, brain and 
other nervous system cancers are the 10th leading cause of death for men and women [3]. In 
2021, an estimated 18,600 adults (10,500 men and 8,100 women) will die from a primary 
cancerous brain tumor (i.e., primary brain tumor arising in the brain) and central nervous 
system (CNS) tumors [3]. 
 
Glioma is a common brain tumor originating from glial cells [4]. Brain lesions are named based 
on the type of brain cell that transforms to generate the lesion. Examples include 
astrocytes/astrocytoma or glial cells/glioblastoma, oligodendrocytes/oligodendrogliomas, 
and ependymal/ependymomas [4,5]. Gliomas originating from glial cells comprise 
approximately 30% of all brain and CNS tumors and 80% of all malignant brain tumors [6]. 
According to the World Health Organization classification guidelines, gliomas can be 
grouped into four grades: I, II, III, and IV, based on histopathological analysis. Grades II and 
III represent low-grade gliomas (LGGs), whereas grade IV, also identified as glioblastoma 
multiforme (GBM), is a high-grade glioma. GBM is the most common glioma, responsible for 
approximately 15% of all primary brain and CNS tumors and 55% of all gliomas [6]. 
 
Glioma detection and grading are essential in cancer diagnosis and management, including 
radiation therapy planning and the assessment and prediction of outcomes [7,8]. Traditionally 
diagnosis is arrived at by utilizing invasive methods such as obtaining tissue diagnosis for 
pathological examination (e.g., resection), which carries the risk of pain, hemorrhage, and 
infection, or employing non-invasive methods automatically by using various medical 
imaging techniques. 
 
The most important and commonly employed test/medical imaging technique involved in 
diagnosing and following glioma patients is Magnetic Resonance Imaging (MRI) since it 
accurately provides details on the size, type, and position of the investigated tumor region 
[1,9]. Furthermore, MRIs are capable of high soft-tissue resolution and are more sensitive in 
visualizing and detecting subtle changes in tissue density related to the tumor [9]. MRIs are 
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acquired without ionizing radiation; hence patients are not exposed to harmful effects of 
ionizing radiation [10]. MRI modalities consisting of T1-weighted (T1), post-contrast 
enhanced T1-weighted (T1-Gd, T1-CE), T2-weighted and T2-FLAIR (Fluid-attenuated 
inversion recovery) images are used for brain tumor diagnosis tasks (Figure 1).  
 
With the advance and development of information technology and artificial intelligence (e.g., 
machine learning, deep learning, and pattern recognition) techniques, computer-aided 
detection (CADe) and computer-aided diagnosis (CADx) systems are growing in efficacy and 
significance to the medical field. With transfer learning, we focus on transferring the 
knowledge (e.g., pre-trained CNN models) obtained from one problem (e.g., source dataset) 
to the learning process of a related new task [11]. Transfer learning strategies yield generalized 
problem-solving ability for similar domain/problems. They are also crucial due to providing 
resource efficiency and more accurate results without needing large-scale data sets, to train a 
model from scratch. 
 
These techniques can help theoretically improve outcomes for patients by decreasing the time 
and resources needed for the decision-making of clinicians/expert radiologists by automating 
tasks. Accordingly, brain tumor detection and grading are essential tasks to improve patient 
cases and allow clinicians to overcome existing drawbacks (e.g., the need for tissue diagnosis 
and waiting for the clinical decision-making process). 
 

 
Figure 1: Sample MRI slice images with different modalities from BraTS2020 dataset [12]. (i) T1 (ii) 
T1-CE (iii) T2 (iv) T2-FLAIR. 
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In this study, we introduce a deep learning-based segmentation of glioma that combines 
machine and deep learning-based approaches to obtain effective tumor grading results on 
MRI images. Additionally, we compute the mean performance values for six evaluation 
metrics (accuracy rate (%) (ACC) and AUC (Area Under ROC Curve), precision (PRE), recall 
(REC), specificity (SPEC), and F-score (F1)) on different train-test sets. Finally, we examine all 
computational results to determine the most optimal methods for improved glioma detection 
and grading performance. 
 
The significant contributions of this manuscript are summarized as follows: 

 To our knowledge, our study consists of the first method that uses both variations of 
deep learning and machine learning models to evaluate deep feature sets for brain 
tumor grading. 

 Our study provides a novel contribution by showcasing a method that allows for both 
glioma segmentation and tumor grading using deep learning and transfer learning-
based methods and five commonly used machine learning models. 

 We focus on combining the advantages of the machine learning, deep learning, 
transfer learning, and ensemble learning methods. 

 In addition to 3D tumor segmentation, we also extracted deep features from three 
efficient fine-tuned CNN models, and the extensive effects of the features are analyzed 
on different learning models for the tumor grading phase. 

 We also observe the effects of the ensemble of extracted deep features on the 
commonly used multimodal brain tumor image dataset (i.e., BraTS). 

 We aim to figure out the best model with a related deep feature set to obtain more 
accurate and reliable results for tumor grading purposes. 

 The performances of the learning models are measured with six performance metrics: 
accuracy, Area under the ROC curve (AUC), precision, recall, specificity, and F-score 
by using various seed values in detail. 

 
The organization of this paper is structured as follows. In Section 1, we present general 
background information and statistics associated with brain tumors. We briefly discuss 
related studies and the methods employed to address this problem in Section 2. In Section 3, 
we describe our methodology and provide details on the proposed work, while Section 4 
provides details on the experimental analysis and presented results. We also offer a 
comprehensive performance analysis of the proposed methodology. Finally, Section 5 
concludes this paper with future directions. 
 

 
 
Image segmentation and classification are crucial for many medical applications such as 
CADe and CADx. Manual, semi-automatic, fully automatic, or hybrid approaches can be 
performed for brain tumor segmentation studies. In the manual method of segmentation, 
boundaries of regions can be extracted by medical experts (e.g., radiologists, radiation 
oncologists) by manually delineating tumors (i.e., time-consuming, tedious, and laborious 
process), whereas, in fully automatic segmentation, boundaries are identified automatically 
with the help of computational methods, such as traditional or deep learning-based 
approaches [13]. For brain tumor/medical image classification studies, the extraction and 
selection of handcrafted and/or deep features are carried out, followed by machine learning 
methods such as Naïve Bayes (NB) classifier, support vector machines (SVM), and K-nearest 
neighbors (K-NN), ensemble learning methods such as bagging (e.g., Random Forest), 
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boosting, and deep learning methods such as convolutional neural networks (CNNs) [11,14–
17] are utilized. 
 
In this section, we present the summary information about recent developments and studies 
in brain tumor segmentation and classification as follows (Table 1): 
 
 
Table 1: Summary information about recent studies in brain tumor segmentation and classification. 
 

Study Year Method Dataset Type of 

Abnormality 

[18] 2021 Salient and Convolutional Features BraTS (2015, 2018) LGG, HGG 

[19] 2021 Handcrafted + Deep Features BraTS (2017) LGG, HGG 

[7] 2020 3DUNet+Mask R-CNN+ConvNet BraTS (2018) LGG, HGG 

[20] 2018 CNN + CRF-RNN BraTS (2013, 2015, 2016) LGG, HGG 

[21] 2020 AFPNET BraTS (2013, 2015, 2018) LGG, HGG 

[22] 2018 Incremental CNN BraTS (2017) LGG, HGG 

[23] 2020 Stacked Autoencoders BraTS (2012-2015) LGG, HGG 

[24] 2019 Score Level Fusion with TL BraTS (2013-2016) LGG, HGG 

[25] 2019 CNN with Texture Feature BraTS (2015) LGG, HGG 

[26] 2018 Statistical and Wavelet Features BraTS (2015) LGG, HGG 

[27] 2019 DRRNet BraTS (2015) LGG, HGG 

 
 
Takacs et al. [18] proposed a fusion of the saliency-based model and CNN features for brain 
tumor segmentation on Multimodal Brain Tumor Image Segmentation Challenge (BraTS)2015 
and BraTS2018 datasets consisting of MRI scans of patients with high-grade glioma (HGG), 
and low-grade glioma (LGG). Al-qazzaz et al. [19] presented a method that combines 
histogram-based (e.g., handcrafted) features with CNN-based features from the CIFAR 
network for image classification-based brain tumor segmentation. Their approach was input 
into a decision tree classifier, and it is evaluated on the BraTS 2017 dataset. Zhuge et al. [7] 
introduced two novel approaches, including the popular 3D U-Net model for brain tumor 
segmentation and 2D Mask R-CNN and 3D ConvNet for improving segmentation and tumor 
grading. They evaluated their fully automated proposed schemes on the BraTS 2018 dataset 
for survival predictions without requiring surgical biopsy. 
 
Zhao et al. [20] integrated Conditional Random Fields (CRFs) and Fully Convolutional Neural 
Networks (FCNNs) in a combined framework to get the segmentation results accurately with 
spatial and appearance consistency on BraTS2013, BraTS2015, and BraTS2016 datasets. Their 
method segments brain images slice-by-slice faster than image patches. Zhou et al. [21] 
proposed a 3D fully connected CNN with atrous-convolution feature pyramid (AFPNet) to 
segment MRI images with brain tumors on BraTS2013, BraTS2015, and BraTS2018 datasets. 
Paoli et al. [22] introduced three end-to-end Incremental Deep Convolutional Neural 
Networks models (namely, 2CNet, 3CNet, and EnsembleNet) to obtain more accurate 
segmentation results. Their proposed models do not use any guided method for acquiring 
suitable hyper-parameters. 
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Amin et al. [23] constructed a stacked sparse autoencoders-based deep learning model to 
predict input slices as a tumor or non-tumor. They employed high-pass and median filters to 
preprocess slices. Then, seed growing algorithms are supplied to segment images. The model 
was then tested on the BraTS 2012-2015 datasets. Amin et al. [24] proposed score level fusion 
using transfer learning with AlexNet and GoogleNet CNNs for brain tumor detection and 
classification. The score vectors were given into multiple classifiers using softmax layer. They 
analyzed their method on BraTS 2013-2016 and ischemic stroke lesion segmentation (ISLES) 
2018 datasets, respectively. 
 
Deng et al. [25] presented an improved Fully Convolutional Neural Network (FCNN) and 
non-quantifiable texture feature to segment brain tumors with appearance and spatial 
consistency on the BraTS 2015 dataset. Latif et al. [26] extracted hybrid first-order, and second-
order statistical features with discrete wavelet transform features (i.e., 152 features) for glioma 
MRI image classification. These features are provided to multi-layer perceptron (MLP) 
classifier for machine learning purposes. They also compared their results with other crucial 
predictors such as Random Forest, NB, and SVM on a partial BraTS 2015 dataset. Their 
proposed feature set produced relatively better results (i.e., 96.72% accuracy for high-grade 
glioma and 96.04% for low-grade glioma) than the existing studies. In another study, Sun et 
al. [27] designed an automatic 3D CNN architecture based on U-Net and replaced the simple 
skip connection with encoder adaptation blocks for brain tumor segmentation. They also used 
densely connected fusion block in the decoder part to improve the performance and reduce 
the computational time. Their method achieved results comparable to the state-of-the-art 
results on the BraTS 2015 dataset. 
 
As stated in related works, there are many variations and applications of CNNs and their 
derivatives for brain tumor segmentation. However, to the best of our knowledge, limited 
published studies address both brain tumor segmentation and tumor grading/classification. 

 

 
In this section, we describe the methods used in this study in detail. Firstly, a general overview 
of the proposed methods is given. Then, image preprocessing approaches, including image 
standardization and masking, brain tumor segmentation (namely, 3D U-Net), and tumor 
grading methods (namely, fine-tuned CNNs and deep feature extraction substages), are 
explained in the following subsections. 
 
3.1. The overview of the proposed method 
 
The flowchart of the proposed methods for glioma segmentation and grading is illustrated in 
Figure 2. As shown in Figure 2, the proposed methods consist of two stages: (i) brain tumor 
segmentation phase based on the 3D U-Net convolutional neural networks (CNN) model; (ii) 
brain tumor grading phase based on fine-tuning of three CNN models (namely, Xception, 
IncResNetv2, and EfficientNet) and/or deep feature extraction from these models with 
utilizing traditional machine learning classifiers (namely, Random Forest (RF), K-Nearest 
Neighbors (K-NN), Support Vector Machine (SVM), Naïve Bayes Classifier (NB), and Logistic 
Regression (LR)). 
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Figure 2: The flowchart of the proposed methods for glioma segmentation and grading. 
 
Firstly, a multimodal brain tumor image segmentation dataset (BraTS) is obtained, and image 
preprocessing approaches (namely, image standardization and masking) are applied for the 
following stage (i.e., glioma segmentation). Then, multimodal image volumes are segmented 
with the popular 3D U- Net CNN model. Furthermore, the deep learning model construction 
stage is carried out using fine-tuning 3 popular and efficient CNN models (namely, Xception, 
IncResNetv2, and EfficientNet). Afterward, diverse deep features are extracted from deep 
learning models constructed. Finally, they are classified into high-grade glioma or low-grade 
glioma based on their characteristics and the learning models employed. Each substage is 
explained in the following subsections in detail. 
 
3.2. Image processing 
 
Image preprocessing is the step that aims to improve the shape and quality of an image, 
reduce noises, and make the following stages, such as segmentation and classification easier. 
In this study, the brain region is determined, masked and the intensity of each image is 
standardized by subtracting the mean and dividing by the standard deviation of the cropped 
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brain region to efficiently preprocess the MRI brain tumor data with the segmentation model 
applied (i.e., 3D U-Net) [28] for glioma detection and grading. 
 
3.3. Brain tumor segmentation 
 
Brain tumor segmentation/detection is related to the set of operations that partition 
corresponding images as tumor and non-tumor regions. Our study employs a popular and 
efficient, patch-based, and pre-trained 3D U-Net segmentation model for glioma 
segmentation that allows for adaptation to GPU memory and RAM limitations. The overview 
of the 3D U-Net model is illustrated in Figure 3. The input and output patch sizes of the 
network model are 132-by- 132-by-132, and 44-by-44-by-44 voxels, respectively. 
  
3D U-Net architecture includes an encoder and decoder subnetworks connected by a bridge 
section. These subnetworks in the 3D U-Net model consist of multiple stages. Each encoder 
stage comprises two sets of batch normalization, convolutional, and ReLU layers [29,30]. The 
name U-Net comes from the letter U since the network can be modeled with this symmetric 
shape. 
 

 
Figure 3: The overview of the 3D U-Net model for glioma segmentation [28]. 
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3.4. Brain tumor grading 
 
Brain tumor grading is a classification of the degree of malignancy of tumor image in the brain into 
low-grade glioma or high-grade glioma. In this study, binary classification models consisting of 
traditional machine learning models and three fine-tuned CNN models (namely, Xception, 
IncResNetv2, and EfficientNet) constructed from pre-trained CNNs are employed. Deep features are 
extracted from related CNN models separately for machine learning models, and they are given into 
classifiers for grading. These models are explained in detail in the following subsections as follows: 

 
3.4.1. Pre-trained CNN models 
 
A pre-trained CNN model is a model that is trained on other problems and can be used for 
similar problems without training from scratch. This approach represents a type of transfer 
learning technique. This model is particularly advantageous when data samples are limited 
or lacking as it assists with network generalization and can accelerate the convergence of the 
system [31]. 
 
To construct fine-tuned CNN models, we used three popular and commonly employed pre-
trained CNN models, including Xception, IncResNetv2, and EfficientNet. These pre-trained 
CNN models have been trained on the large-scale ImageNet datasets (i.e., more than a million 
images) for image recognition purposes. Xception and IncResNetv2 networks have an image 
input size of 299- by-299, whereas the EfficientNet network has an image input size of 224-by-
224. Xception and IncResNetv2 networks are 71 and 164 layers deep, respectively [32]. 
 
3.4.2. Fine-tuning 
 
Fine-tuning is one of the most common approaches to transfer learning and improves the 
ability to generalize the selected model by applying backpropagation operation to the weights 
of the related pre-trained CNN models [16,33]. Fine-tuning a pre-trained CNN model is often 
much easier and faster than training a CNN model from scratch with randomly initialized 
weights [34]. 
 
For the fine-tuning process, we remove the last fully connected (FC) layer of corresponding 
pre-trained CNN models and change them with our new FC layer as a primary approach (i.e., 
the number of classes is equal to the size for classification in our new dataset) [16]. In this 
paper, we set the number of classes as 2 since we have two output categories, HGG and LGG. 
 
3.4.3 Feature Extraction 
 
The feature extraction stage is responsible for obtaining informative and discriminative data 
from images. This study extracts deep (learned) features from the last pooling layers of fine-
tuned CNNs. The total number of features extracted from Xception, IncResNetv2, and 
EfficientNet are 2048, 1536, and 1280, respectively. These features are provided to five 
machine learning models used for training and testing tumor grading performance. 
 
3.4.4 Classification 
 
The classification phase assigns the related categories to the patterns regarding labeled data 
by employing supervised learning. In this study, five different supervised models are utilized 
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such as Random Forest, K-Nearest Neighbors, Support Vector Machine, Naïve Bayes 
Classifier, and Logistic Regression. 
 
Random Forest: The Random Forest proposed by Leo Breiman is a bagging (i.e., bootstrap 
aggregation) ensemble learning method that consists of three combinations growing in 
randomly selected data subspaces [35–37]. It is considered one of the most popular, powerful, 
and accurate general-purpose learning techniques for dealing with a vast number of input 
variables without overfitting [37]. 
 
K-Nearest Neighbors: K-Nearest Neighbors is one of the most popular non-parametric 
classification and lazy learning algorithms that groups test instances into the category of the 
closest instances for distance measure and the number of neighbors. In other words, the 
instance is assigned to the class most common among its k nearest neighbors. 
 
Support Vector Machine: Support Vector Machine, based on statistical learning theory, is a 
supervised learning algorithm proposed by Vapnik et al. [38,39] in 1992. SVM model explores 
and finds a hyperplane such that the margin (i.e., the width of the gap between the two 
groups) is maximized. SVM is thus beneficial and effective for two-class (i.e., binary) and non-
linear classification problems on medical datasets. 
 
Naïve Bayes Classifier: Naïve Bayes classifier, based on Bayes’ theorem, is a probabilistic, 
simple, highly scalable, and extremely fast classifier that makes strong assumption conditional 
independency between all features given the scope of the class. This model assigns the most 
likely class to a given instance described by its pattern/feature vector [40]. 
 
Logistic Regression: Logistic Regression is one of the simplest and most used statistical 
models for binary classification, wherein probability is positive or negative depending on a 
linear measure of the instances [41]. 
 
4. Experimental Work 
 
This section explains the experimental processes, brain tumor image dataset, and evaluation 
measures. Afterward, we give comprehensive computational results regarding the 
performance metrics of segmentation and classification/grading in the following subsections 
in detail. 
 
4.1. Experimental process 
 
All the experiments were conducted on a system running Windows 10 based on Matlab 
R2021a software and a desktop computer with the hardware configuration of Intel Core i7 
8700K processor operating at 3.70 GHz with 64 GB RAM and 8 GB NVIDIA GeForce GTX 1080 
GPU Memory. The train-test ratio is set to 80-20 for all the experiments (namely, fine-tuning, 
and deep feature extraction methods). We adjust the CPU random number generator seed to 
1 for fine-tuning all CNN models to get the same computational results with the same seed 
value on the dataset used. We also utilized 5 different seeds (i.e., from 1 to 5) to evaluate the 
mean predictive performance for train-test splits. 
 
In this study, the implementation of 3D brain tumor segmentation in MATLAB has been 
utilized for glioma detection [28]. We set the number of trees to 50 for the Random Forest 
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classifier and adjusted default parameters for the five machine learning models used. We 
analyzed every fine-tuned CNN individually to assess deep learning model performance. We 
also evaluated the performance of each machine learning classifier for each deep feature sets 
extracted from CNN models. 
 
We used T1-CE, T2, and T2-FLAIR modalities of images for tumor grading because pre-
trained CNN models can handle 3 channels. We also considered only slices that include the 
tumor region after the segmentation phase by counting white pixel intensities on each image 
separately. We employed stochastic gradient descent with a momentum (SGDM) optimizer 
for fine-tuning the networks. To accommodate GPU memory limitations, we identified the 
minibatch size as 16 for Xception, IncResnetv2, and EfficientNet CNNs. The maximum 
number of epochs is adjusted to 30 for all selected CNN models. The default values are 
assigned to the corresponding parameter values for other training options. 
 
4.2. Image dataset 
 
To analyze the effectiveness of the proposed methods, we employed the most used and 
recognized MRI dataset for this task named MICCAI brain tumor image segmentation (BraTS) 
2020[12,42,43]. BraTS2020 dataset consists of 293 multimodal MRI scans of glioblastoma 
(GBM/HGG) and 76 lower-grade gliomas (LGG) image volumes in training test with labels 
and segmented annotations. Each image volume has 152 slices and an image size of 240*240 
pixels approximately. This brain tumor dataset has been segmented manually by one to four 
raters, and their annotations were approved by experienced neuro-radiologists [12,42,43]. 
 
After brain tumor segmentation, we convert multimodal 3D brain tumor images into 2D 
tumor images for tumor grading purposes. To this end, we obtained total 22287 images 
consisting of 17806 HGG and 4481 LGG images for learning model construction and testing 
for each modality. 
 
4.3. Evaluation metrics 
 
To evaluate the tumor grading performance of the proposed method, we have utilized 6 
different evaluation metrics consisting of classification accuracy (ACC), Area Under the ROC 
Curve (AUC), precision, sensitivity, specificity, and F-Measure [44]. We have also computed 
the Dice coefficient of images for the brain tumor segmentation task. 
 
Dice coefficient (DSC), known as Sørensen–Dice index, is used to measure the similarity 
coefficient of two image samples. It is described as twice the number of elements 
(cardinalities) common to both image sets divided by the sum of the number of elements in 
each set. The equation of DSC is defined in Equation 1. 
 

𝐷𝑖𝑐𝑒 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 =  
2 | 𝑋 ∩  𝑌 |

|𝑋| + |𝑌|
 [1] 

 
Classification accuracy is calculated by dividing the total number of true positives and true 
negatives by the total number of instances (i.e., the total number of true positives, false 
positives, false negatives, and true negatives). The equation is defined in Equation 2. 
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𝐴𝐶𝐶 =  
𝑇𝑁 + 𝑇𝑃

𝑇𝑁 + 𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃
 [2] 

 
where TP, TN, FP, and FN denote the number of true positives, true negatives, false positives, 
and false negatives, respectively. 
 
AUC, the Area under the Receiver Operating Characteristic (ROC) curve, is constructed by 
plotting the true positive rate against the false-positive rate for the performance of the binary 
classifier model. An Area of 1 (i.e., maximum AUC value) indicates a perfect test, whereas an 
Area of 0 (i.e., minimum AUC value) indicates that the predictive model miscategorizes all 
instances. 
 
Precision means the positive predictive value. It is computed by dividing the number of true 
positives by the total number of false positives and true positives. The equation is shown in 
Equation 3. 
  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 [3] 

 
Sensitivity is the true positive rate/hit rate or recall. It is computed by dividing the number of 
true positives by the total number of false negatives and true positives. The equation is defined 
in Equation 4. 
 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝐹𝑁 + 𝑇𝑃
 [4] 

 
Specificity is expressed as true negative rate. It is calculated by dividing the number of true 
negatives by the total number of false positives and true negatives. The equation of specificity 
is defined in Equation 5. 
 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝐹𝑃 + 𝑇𝑁
 [5] 

 
F-Measure is the harmonic mean of precision and recall. It is represented in Equation 6. 
 

𝐹 − 𝑀𝑒𝑎𝑠𝑢𝑟𝑒 =  
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 [6] 

 
4.4. Computational results 
 
This subsection presents the comprehensive results for brain tumor segmentation and grading 
purposes. Testing a typical image volume takes only around 1 minute for the brain tumor 
segmentation. We obtained 0.99784, and 0.74518 mean Dice coefficient values using 3D patch-
based U-Net for semantic segmentation of brain tumor images on non-tumor and tumor 
region of training tests, respectively. Fine-tuning time of CNN models is shown in Table 2. 
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Table 2: Fine-tuning time of CNN models. 
 

CNN Model Fine-Tuning Time 

Xception 6 hours 33 mins 

IncResNetv2 16 hours 26 mins 

EfficientNet 6 hours 33 mins 

  
As preliminary testing, we aimed to elicit the most efficacious combination of methods by 
selecting the three best fine-tuned CNN models with the five common most popular 
supervised learning models. To accomplish this, we employed AlexNet, VGGNet, GoogleNet, 
Xception, IncResNetv2 and EfficientNet CNN models in diverse combinations on the same 
dataset to assess accuracy rate. Xception, IncResNetv2, and EfficientNet were chosen given 
that they represent the best three fine-tuned CNN models. The selected CNN models contain 
more deep layers, provide more speed, and better accuracy secondary to their architectural 
designs. RF, KNN, SVM, NB, and LR (given their popularity as classification/learning 
algorithms tools in the pertinent literature) were then employed for the problem at hand and 
are supported based their performance based on our results (i.e., accuracy rate) [16]. To further 
improve the results, we carried out additional analysis constructing different combination 
schemes to determine the most appropriate combination including analysis of the 
performance of various combinations on the tumor grading phase. Firstly, we analyzed the 
effects of five supervised learning models by utilizing three different deep features from fine-
tuned CNN models for slice-based tumor grading performance. The results are reported in 
Table 3. Bold values indicate the highest-valued results. As shown in Table 3, mean tumor 
grading performance results of models with standard deviations according to BraTS 2020 
datasets with respect to five seed values show that the best accuracy value of 99.2% is obtained 
from deep features from fine-tuned EfficientNet by using the Random Forest model. The best 
AUC value of 0.998 is obtained from deep features from fine-tuned EfficientNet by using the 
Logistic Regression model. The highest precision value of 0.995 is obtained from deep features 
from fine-tuned EfficientNet by using the K-Nearest neighbors classifier. The highest recall 
value of 0.998 is obtained from deep features from fine-tuned EfficientNet by using the 
Random Forest model. The highest specificity value of 0.979 is acquired from deep features 
from fine-tuned EfficientNet by using the K-Nearest neighbors classifier. The highest F-score 
value of 0.995 is obtained from fine-tuned EfficientNet by using the Random Forest model. 
 
After analyzing deep features individually on the learning models, we observed the effects of 
the ensemble of deep features on these five classifiers. It is presented in Table 4. According to 
Table 4, the best accuracy and AUC values are obtained from the Logistic Regression model 
as 99.5% and 0.999, respectively. The highest precision value of 0.996, recall value of 0.999, 
specificity value of 0.983, and F-score value of 0.997 are obtained from K- Nearest neighbors, 
Naive Bayes, K-Nearest Neighbors, Logistic Regression, respectively. 
 
Tables 3 and 4 show that the best ACC and AUC values result from the ensemble of deep 
features from three fine-tuned CNNs using the Logistic Regression classifier. The fusion of 
these features contributes to improving the tumor grading performance. The overview of the 
ensemble of deep features on the tumor grading scheme is illustrated in Figure 4. 
 
In addition to slice-based image results, we also performed the patient-based results. To this 
end, we randomly selected (i.e., the seed value as 1) 20 GBM patients and 10 LGG patients for 
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evaluation using the patient- based image results. These slice images of patients were not used 
in fine-tuned CNN models and supervised machine learning model construction. We then 
obtained the experimental results in detail. In the training set, 20540 slices were obtained for 
each modality, with 1747 in the test set, and a total number of slices of 22287 for each modality. 
The computational results are illustrated in Tables 5 and 6. As can be seen from the results in 
Tables 5 and 6, the best accuracy value is obtained from the IncResNetv2 CNN model with a 
74.9% accuracy value. The difference between patient-based and section-based performance 
results is due to learning from similar cross-sectional images, the small number of LGG 
samples, and the image differences between patients. Our method resulted in excellent slice-
based results with some significant distinguishing features as compared to similar work in 
this space e.g. Amin et al. [24], including notably: 1) the goal of advancing the tumor grading 
task as compared to classifying benign vs. malignant; 2) multistep classification via 3D U-net 
(segmentation) + fine-tuned CNN as compared to the use of Alex and Google networks for 
classification and 3) the use of a guided method for feature extraction in transfer learning vs 
generated score vectors [24].  
 
Table 3: Mean tumor grading performance results of models with standard deviations according to 
BraTS 2020 datasets with respect to five seed values. 
 

Fine-tuned 

CNN 

Classifier 

Model 
ACC std AUC std PRE std REC std SPEC std F1 std 

 

Xception 

RF 0.989 0.009 0.995 0.008 0.991 0.007 0.995 0.003 0.965 0.029 0.993 0.005 

KNN 0.988 0.008 0.981 0.013 0.993 0.006 0.992 0.004 0.971 0.022 0.992 0.005 

SVM 0.990 0.009 0.998 0.003 0.992 0.006 0.995 0.005 0.970 0.025 0.994 0.005 

NB 0.988 0.009 0.975 0.020 0.988 0.010 0.996 0.001 0.954 0.040 0.992 0.005 

LR 0.987 0.008 0.998 0.003 0.991 0.007 0.993 0.003 0.964 0.028 0.992 0.005 

CNN 0.987 0.008 0.997 0.004 0.991 0.006 0.993 0.003 0.963 0.025 0.992 0.005 

 

IncResNet

v2 

RF 0.988 0.010 0.994 0.008 0.991 0.006 0.994 0.006 0.966 0.025 0.993 0.006 

KNN 0.987 0.009 0.980 0.012 0.992 0.004 0.992 0.007 0.967 0.017 0.992 0.006 

SVM 0.990 0.009 0.998 0.002 0.993 0.006 0.994 0.005 0.973 0.024 0.994 0.006 

NB 0.982 0.009 0.978 0.017 0.992 0.008 0.985 0.004 0.967 0.030 0.988 0.006 

LR 0.987 0.010 0.998 0.003 0.990 0.007 0.994 0.005 0.962 0.029 0.992 0.006 

CNN 0.986 0.009 0.997 0.003 0.986 0.008 0.997 0.004 0.945 0.031 0.991 0.006 

 

 

EfficientN

et 

RF 0.992 0.008 0.997 0.004 0.992 0.007 0.998 0.003 0.968 0.029 0.995 0.005 

KNN 0.991 0.006 0.987 0.010 0.995 0.005 0.994 0.003 0.979 0.018 0.994 0.004 

SVM 0.991 0.007 0.998 0.002 0.994 0.006 0.995 0.003 0.975 0.024 0.994 0.004 

NB 0.991 0.007 0.986 0.015 0.993 0.007 0.996 0.002 0.972 0.029 0.994 0.005 

LR 0.991 0.008 0.998 0.002 0.994 0.006 0.995 0.004 0.976 0.023 0.995 0.005 

CNN 0.991 0.008 0.998 0.002 0.994 0.006 0.994 0.005 0.977 0.022 0.994 0.005 
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Table 4: Mean tumor grading performance results of models with standard deviations according to 
BraTS 2020 datasets for five seed values using ensemble of deep features from three fine-tuned CNN 
models. 
 

Classifier 

Model 
ACC std AUC std PRE std REC std SPEC std F1 std 

RF 0.993 0.007 0.996 0.005 0.995 0.005 0.997 0.003 0.978 0.022 0.996 0.004 

KNN 0.994 0.006 0.990 0.010 0.996 0.004 0.997 0.003 0.983 0.017 0.996 0.004 

SVM 0.994 0.005 0.999 0.002 0.995 0.005 0.997 0.002 0.980 0.020 0.996 0.003 

NB 0.991 0.008 0.979 0.020 0.990 0.010 0.999 0.000 0.959 0.040 0.994 0.005 

LR 0.995 0.005 0.999 0.001 0.995 0.005 0.998 0.002 0.981 0.018 0.997 0.003 

 
 
Table 5: Patient-based tumor grading performance results of models according to BraTS 2020 datasets. 
 

Fine-tuned 

CNN 

Classifier 

Model 
ACC AUC PRE REC SPEC F1 

 
Xception 

RF 0.700 0.699 0.696 0.955 0.227 0.805 

KNN 0.710 0.607 0.705 0.952 0.263 0.810 

SVM 0.718 0.793 0.711 0.956 0.278 0.815 

NB 0.669 0.540 0.669 0.971 0.108 0.792 

LR 0.726 0.780 0.716 0.959 0.294 0.820 

CNN 0.709 0.768 0.705 0.950 0.261 0.809 

 
IncResNetv2 

RF 0.709 0.729 0.708 0.939 0.283 0.808 

KNN 0.718 0.625 0.717 0.935 0.315 0.811 

SVM 0.715 0.822 0.710 0.948 0.283 0.812 

NB 0.697 0.595 0.699 0.938 0.250 0.801 

LR 0.733 0.836 0.728 0.941 0.346 0.821 

CNN 0.749 0.823 0.745 0.933 0.407 0.828 

 
EfficientNet 

RF 0.716 0.758 0.708 0.959 0.265 0.815 

KNN 0.737 0.649 0.731 0.943 0.356 0.823 

SVM 0.725 0.781 0.715 0.960 0.289 0.820 

NB 0.709 0.623 0.718 0.911 0.335 0.803 

LR 0.736 0.797 0.729 0.944 0.348 0.823 

CNN 0.744 0.783 0.757 0.893 0.467 0.819 
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Table 6: Patient-based tumor grading performance results of models according to BraTS 2020 datasets 
using an ensemble of deep features from three fine-tuned CNN models. 
  

Classifier 

Model 
ACC AUC PRE REC SPEC F1 

RF 0.699 0.719 0.694 0.962 0.212 0.806 

KNN 0.748 0.661 0.737 0.952 0.371 0.831 

SVM 0.738 0.829 0.729 0.950 0.346 0.825 

NB 0.663 0.529 0.664 0.977 0.082 0.790 

LR 0.744 0.842 0.734 0.949 0.363 0.828 

 
 

 
 Figure 4: The overview of the ensemble of deep features on machine learning models for tumor grading. 
 
5. Conclusion 
 
This study introduces the variations of the machine, deep, and transfer learning approaches 
for the effective brain tumor (i.e., glioma) segmentation and grading. Proposed methods are 
based on 23 different combinations of deep feature sets and classification models on brain 
tumor grading. We also observed the extensive effects of these combination sets in terms of 
six different performance metrics. 
 
From a clinical and biological standpoint, glioma grading is a crucial aspect of clinical decision 
making and treatment selection. From a technical standpoint grading is difficult due to 
significant data volumes and tumor and data heterogeneity, compounded by GPU and 
memory limitations. Developing effective CADe and CADx applications will play an essential 
role in selecting optimal treatment options, reducing biopsy, and providing suitable guidance 
to expert radiologists and clinicians. Future directions of this research include examining 
additional MRI sequence types with other data types and constructing user-defined datasets 
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based on large-scale data sets allowing for the proposed methods in this study to be efficiently 
tested and validated on additional datasets. 
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