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Abstract 
 
Objectives: Making an artificial intelligence (AI) classifier that uses the maternal age and an 
image of the implanted blastocyst to determine the probability of getting a live birth. 
 
Methods: The dataset comprised maternal age data and 407 images of blastocysts which led 
to live births and 246 images of blastocysts which led to aneuploid miscarriages, matched for 
maternal age. An AI system using deep learning was developed for predicting the 
classification and probability of a live birth. 
 
Results: The accuracy, sensitivity, specificity, and positive and negative predictive values of 
the developed AI classifier were 0.75, 0.82, 0.64, 0.79, and 0.68, respectively. The area under 
the curve was 0.73 ± 0.04 (mean ± standard error). 
 
Conclusions: A classifier using AI for a blastocyst image combined with the maternal age 
showed potential in determining the probability of a live birth. 
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1. Introduction 
 
Assuring a live birth without chromosomal abnormality might be the optimal aim in assisted 
reproductive technology. Miscarriage and development failure of embryo are costly and 
result in lost time. Moreover, it is preferable to select euploid embryos from mosaic or 
aneuploid embryos to avoid ongoing aneuploid gestations, if possible. Thus, methods to select 
embryos before embryo transfer have been investigated, including the use of morphological 
features, such as polar body shapes, meiotic spindles, vacuoles or refractile bodies, zonae 
pellucidae, etc. However, no features have been decisively established as prognostic value for 
the further development of oocytes [1]. Furthermore, conventional embryo evaluation using 
morphological features seemed to be limited in identifying embryos of aneuploidy [2-6]. Some 
studies have suggested the use of time-lapse parameters for aneuploidy prediction; however, 
the conclusions are diverging. Generally, researchers concluded that aneuploidy was reflected 
in cell cycle parameters up to the second day of development, as euploid embryos show more 
tightly clustered timings than aneuploid embryos do [2,7-9]. It is well-documented, however, 
that suboptimal embryos may be euploid, and embryos of fine morphological quality might 
be aneuploid [2,10,11]. Thus, the morphological classification of embryo as euploid or 
aneuploid has not been established, and the evidence is still weak to validate the introduction 
of time-lapse assessments in routine conventional clinical settings [2].  
 
Preimplantation genetic testing for aneuploidy [12,13] is an alternative method for 
investigating chromosomal profiles. Because this method is invasive to the embryo, 
considerable ethical arguments arise. Thus, the embryo transfer after biopsy is forbidden in 
some countries. Furthermore, chromosomal profiles might be different at blastocyst sites. The 
chromosomal profile of a biopsied specimen doesn’t always indicate the profile of the rest of 
the embryo due to genetic heterogeneity. Furthermore, a single trophectoderm biopsy may 
not represent the complete trophectoderm, as mosaicism in the trophectoderm has been 
observed [14].  
 
Aneuploidy is known to dramatically increase as women age [15]. Spandorfer (2004) reported 
that the major underlying cause of increased pregnancy loss with advancing maternal age is 
chromosomal aneuploidy [16]. Consequently, it is reasonable to presume that methods to 
predict embryo aneuploidy should incorporate the maternal age. Furthermore, there is 
currently a demand for a noninvasive method to predict the live birth of a euploid embryo. 
For these reasons, we explored whether artificial intelligence (AI) could be used to predict a 
live birth from blastocyst images combined with maternal age data. Deep learning becomes a 
popular machine learning method [17-25] among methods such as naïve Bayes [26], logistic 
regression [27], random forest [28], nearest neighbor [29], and neural networks [30]. Thus, in 
the present pilot study, we had developed an AI classifier using supervised deep learning 
consisted of a convolutional neural network architecture [31], applied to blastocyst images 
combined with maternal age data, in an effort to find a noninvasive solution to the selection 
of embryos that lead to live births. We found that our novel AI classifier using images 
combined with the maternal age could detect information that conventional embryo 
evaluation methods could not [20-22].  
 
Zaninovic et al. (2019) reported AI assessment of embryo morphologic features might lend 
itself to predicting chromosomal integrity [32], but the method was not established for clinical 
use. Fernandez et al. (2020) demonstrated on their review that there were published papers 
regarding with AI for reproductive data but there were no reports in terms of aneuploidy of 
embryos as a desired outcome [33]. Thus, there are no established non-invasive methods to 
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evaluate aneuploidy of embryos to the best of our knowledge [19]. Then we demonstrate the 
potential of deep learning to develop a classifier comprised of a neural network to predicting 
a live birth and an aneuploid miscarriage from the maternal age and an image of the 
implanted blastocyst. 
 
2. Materials and Methods 
 
2.1. Blastocyst images 
 
Fully de-identified data were used in this study that was approved by the Institutional Review 
Board at Okayama Couples’ Clinic (No. 18000128-04). Patients were provided an explanation 
of the study and directed to a website with information and an opt-out option.  
 
After blastocyst was formed, an image of the blastocyst was captured approximately 115 
hours, or approximately 139 hours after insemination if the blastocyst was not yet large 
sufficiently. The image was saved on a storage device in JPEG format, without any data that 
was not able to identify the individual. These de-identified images and maternal age data 
were input to an off-line system for AI.  
 
A total of 1,586 images of blastocysts which led to live births from 2009 to 2017 and 246 images 
of blastocysts which led to aneuploid miscarriages from 2008 to 2019, along with maternal age 
data, were collected. A regression model, with a logistic function applied, was obtained for 
the ratio of the number of live births to the number of live births plus abortions (i.e., %live 
births) as a function of maternal age, in the age range at which abortions were observed. 
Furthermore, because it is well known that maternal age has a strong relationship with 
aneuploidy, the age distributions were matched, as much as possible, between the live birth 
and abortion groups. Thus, the age profiles did not differ and the %live births according to 
maternal age were similar. These matched groups defined the live birth category and abortion 
category, respectively, used to create the AI classifier. In other words, the live birth category 
comprised blastocyst images with maternal age data from blastocysts that resulted in a live 
birth with unknown chromosomal status and the abortion category comprised blastocyst 
images with maternal age data from blastocysts that resulted in abortion related to 
chromosomal abnormalities, confirmed by genetic examination of samples of chorionic villus.  
 
2.2. AI Preparation 
 
De-identified images (100 × 100 pixels), along with maternal age data, were transferred to our 
AI system. Twenty percent of the images were randomly selected as the test dataset. Among 
the remaining images, 80% were selected as the training dataset to train the AI classifier, and 
the rest were the validation dataset. So, these datasets did not overlap. The number of items 
in the training dataset was augmented, which is often observed in computer science, by 
rotating the blastocyst image an arbitrary number of degrees to create a new item that were 
different vector data in the same category. 
 
2.3. AI classifier 
 
We created an original AI classifier using supervised deep learning consisted of a 
convolutional neural network architecture [30,34], catenated with an elementwise function 
(i.e., the regression function), to classify blastocyst images combined with the maternal age as 
either in the abortion category or live birth category, and to acquire the mathematical 
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probability of being in the live birth category (as well as being in the abnormal category) with 
L2 regularization [35,36]. (Figure 1) 
 

 
Figure 1: An AI classifier program using supervised deep learning with a convolutional neural 
network architecture catenated with an elementwise function (the regression function for maternal age) 
was developed to categorize blastocyst images combined with maternal age data as either in the live 
birth or abortion category and obtain the mathematical probability of being in the live birth category. 

 
2.4. Developmental environment  
 
The developmental environment used in the present study was as follows: Intel Core i5 
processor; 32 GB RAM (Santa Clara, California, USA); nVidia GTX 1080 Ti graphics (Santa 
Clara, California, USA); Windows (Redmond, Washington, USA); and Wolfram Language 
12.0.0 (Wolfram Research, Champaign, IL, USA). 
 
2.5. Statistics 
 
Data are presented as the mean ± standard deviation (SD), unless otherwise indicated. 
Statistical analyses were performed using Mathematica 12.0 (Wolfram Research, Champaign, 
IL, USA). T-tests and logistic regression were carried out. In addition, the accuracy, sensitivity, 
specificity, positive predictive value and negative predictive value, Youden’s J index [37], and 
the area under the curve (AUC) was used to evaluate the performance of the AI classifier. 
 
3. Results 
 
3.1. Clinical information 
 
Table 1 provides the %live births according to maternal age. The mothers were younger in the 
live birth group than in the abortion group (33.8 ± 4.25 years versus 37.4 ± 3.96 years, 
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respectively; P = 5.07 × 10-31 by t-test). The age range in the abortion group was 25 to 44 years 
old. The logistic regression model for %live births as a function of the maternal age among 
patients in this age range was as follows: 1/(1 + Exp(β0 + β1x)), with β0 = -11.55 ± 5.36 (P=0.03) 
and β1 = 0.28 ± 0.13 (P=0.04) (estimate coefficient ± standard error). (Figure 2) 
 
The number of cases in the maternal age-matched live birth and abortion categories were 407 
and 246, respectively (Table 2). As expected, the maternal age did not differ between the cases 
in the live birth and abortion categories (37.17 ± 3.74 years versus 37.35 ± 3.96 years; P=0.551). 
The %live births averaged 60.4% ± 5.5%., with %live births ranging from 60% to 64% at most 
of the observed maternal ages (77.8%).  
 
Table 1: Number of abortions and live births, and %live births according to maternal age. The mothers 
were younger in the live birth group than in abortion group (P=5.07×10-31 by t-test). 
 

Maternal age 
(years) 

Abortion, n Live birth, n %Live births 

20 0 1 100.00% 

21 0 0 Not available 

22 0 5 100.00% 

23 0 3 100.00% 

24 0 7 100.00% 

25 1 17 94.40% 

26 1 27 96.40% 

27 4 58 93.50% 

28 5 97 95.10% 

29 2 67 97.10% 

30 0 108 100.00% 

31 8 105 92.90% 

32 7 147 95.50% 

33 8 119 93.70% 

34 14 165 92.20% 

35 17 129 88.40% 

36 26 154 85.60% 

37 26 167 86.50% 

38 22 139 86.30% 

39 24 71 74.70% 

40 25 111 81.60% 

41 25 69 73.40% 

42 15 36 70.60% 

>42 16 31 66.00% 

Total 246 1587 86.60% 
 

 

%live births = live births/(live births + abortions) 
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Figure 2: The logistic regression model for the %live birth as a function of the maternal age: y=1/(1 + 
Exp(β0 + β1x)), with β0 = -11.55 ± 5.36 (P=0.03) and β1 = 0.28 ± 0.13 (P=0.04) (estimate coefficient 
± standard error). 
 
Table 2: The number of cases in the live birth and abortion categories among the cases matched by 
maternal age as best as possible. The matched cases in the live birth and abortion categories were used 
to create the AI classifier. As expected, the mean ± standard deviation (SD) of the maternal age did not 
differ between the cases in the live birth and abortion categories (37.17 ± 3.74 years versus 37.35 ± 3.96 
years, respectively; P=0.551). The mean ± SD of the %live births was 60.4% ± 5.5%. For most maternal 
ages (77.8%) the %live births was between 60% and 64%.  
 

Maternal 
age (years) 

Abortion 
category, n 

Live birth 
category, n 

%Live births 

25 1 1 50.00% 

26 1 1 50.00% 

27 4 7 63.60% 

28 5 8 61.50% 

29 2 3 60.00% 

31 8 14 63.60% 

32 7 12 63.20% 

33 8 14 63.60% 

34 14 24 63.20% 

35 17 29 63.00% 

36 26 45 63.40% 

37 26 45 63.40% 

38 22 38 63.30% 

39 24 42 63.60% 

40 25 44 63.80% 

41 25 44 63.80% 

42 15 21 58.30% 

>42 16 15 46.70% 

Total 246 407 62.30% 
%live births = live births/(live births + abortions) 
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3.2. The Best Performing AI Based Model 
 
The best AI classifier was obtained using 1,660 and 424 training data points and validation 
data points, respectively, and 0.14 as the L2 regularization value. The accuracy, sensitivity, 
specificity, positive predictive value and negative predictive value, Youden’s J index [35], and 
AUC (mean ± standard error (SE)) were 0.750, 0.817, 0.640, 0.788, 0.681, 0.457, and 0.730 ± 
0.043, respectively (Table 3; Figure 3). The optimal cutoff point of the receiver operator 
characteristic curve [38] was 0.623. Classification time by AI was less than 0.20 seconds per 
case. 
 
Table 3: The results of the best AI classifier using blastocyst images combined with maternal age data 
from the test dataset (20% of all data points). 
 

Statistic index AI 

Accuracy 0.75 

Sensitivity 0.817 

Specificity 0.64 

positive predictive value 0.788 

negative predictive value 0.681 

Youden’s J index 0.457 

AUC (mean ± standard error) 0.730 ± 0.043 
   AI: artificial intelligence; AUC: area under the curve 

 

 
Figure 3: The receiver operator characteristic curve of the AI classifier for predicting a live birth. The 
area under the curve (AUC) was 0.730 ± 0.043 (mean ± standard error) and the optimal cutoff point 
was 0.623. 
 
4. Discussion 
 
In the present study, we made an AI classifier using deep learning consisted of both a 
convolutional neural network for blastocyst images and elementwise layers for the maternal 
age. The AI classifier demonstrated an accuracy of 0.750. We previously developed a classifier 
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using the logistic regression method of machine learning with 80 blastocyst images in each 
category (live birth and abortion), without maternal age data, and reported its accuracy, 
sensitivity, specificity, positive predictive value and negative predictive value, Youden’s J 
index and AUC (mean ±SE) in predicting a live birth as 0.650, 0.600, 0.700, 0.669, 0.638, 0.300, 
and 0.659 ± 0.043, respectively [19]. Thus, the AI classifier in the present study is better than 
our previous classifier, not only in terms of accuracy, but in terms of all statistic indices (e.g., 
sensitivity and so on). We speculate the following six reasons for the improved accuracy by 
AI in the present study. First, there were a total of 653 and 160 data points in the present and 
previous studies, respectively. We consider the larger number of data points in the present 
study as important in creating an AI classifier with deep learning. Second, AI can use non-
image data and image data simultaneously; we consider this advantage of AI as important to 
improving accuracy. Third, the method used in this study was deep learning consisted of a 
neural network; in contrast, we used the logistic regression method in our previous study, as 
it had the best performance among six machine learning methods (neural network, naïve 
Bayes, logistic regression, random forest, nearest neighbors, and support vector machine). 
Deep learning seemed to be better for creating an AI classifier for the purpose of selecting 
embryos. Fourth, using a neural network architecture with a batch normalization layer [39] 
might be important. We added a batch normalization layer just after catenating the image and 
maternal age data. The method draws its strength from rendering normalization and 
performing normalization for each training mini-batch. We previously reported that this 
architecture with a batch normalization layer demonstrated good results in classifying 
squamous epithelial lesions of the uterine cervix from colposcopy images combined with 
human papilloma virus (HPV) types [17]. Because the dataset in this previous study 
comprised image and non-image data, it was quite similar to the one in the present study, 
suggesting that the induction of batch normalization might be useful. We consider this 
architecture as the fourth reason for the improved accuracy obtained in this study, from the 
perspective of a neural network architecture with deep learning. Fifth, matching the maternal 
age between the cases in the live birth and abortion categories for AI input seemed to be 
appropriate. Older patients have a higher incidence of embryo aneuploidy; thus, we matched 
the maternal age between the cases in the live birth and abortion categories so that %live births 
did not substantially differ among maternal ages. In other words, the maternal age factor, 
thought to be correlated with aneuploidy of the embryo, was stratified by each age. This 
stratification might be important for data preparation. Sixth, the regression model for the 
%live births as a function of the maternal age showed a good fit, with P<0.05 for both the 
estimate coefficient and constant, as shown in (Figure 2). This regression function converted 
the maternal age values at the elementwise layer in the neural network. We consider it 
important and useful to discover the appropriate regression function and create the 
elementwise layer to incorporate this function into the neural network architecture. 
 
There are several reports regarding the accuracy of AI in reproductive medicine. The accuracy 
for the morphological quality of the blastocyst combined with an evaluation by the 
embryologist has been reported as 0.98 [40]. Embryos with fair-quality images classified as 
poor and good quality were 0.509 and 0.614, respectively, for the likelihood of getting a live 
birth [40]. Furthermore, the accuracy of prediction of a live birth without aneuploidy from a 
blastocyst image alone was 0.65 [19]. The accuracies of prediction of a live birth from a 
blastocyst image were 0.64, 0.71, 0.78, 0.81, and 0.88 for the age categories of <35, 35‐37, 38‐39, 
40‐41, and ≥42 years, and 0.74 for all of ages [20]. The accuracies of AI predicting a live birth 
by combining a conventional embryo evaluation in patients classified by age were 0.647, 0.675, 
0.697, 0.776, and 0.866 for the age categories of <35, 35‐37, 38‐39, 40‐41, and ≥42 years, 
respectively [21]. Some clinical disincentives, such as maternal diseases (e.g., diabetes mellitus 
[41] and immune disorders [42,43]) impair the ability to achieve a live birth. These factors 
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cannot be detected by the AI classifier from the maternal age or a blastocyst image. Therefore, 
statistic indices such as accuracy for a live birth can never reach 1.00. Thus, the accuracy of 
0.750 for predicting a live birth in this study seems to be moderately good result for an 
application of AI in reproductive medicine. 
 
There might be some procedures that could improve the accuracy of AI in predicting embryo 
aneuploidy. First, clinical information, such as body mass index, complications, and familial 
genetic profiles, in addition to the maternal age, and/or morphological features obtained in a 
conventional embryo evaluation, such as inner cell mass grades, might be useful variables for 
AI with a neural network architecture. However, if the number of variables is too large, the 
curse of dimensionality [44] occurs, resulting in an inadequate AI classifier. Thus, it is 
important to select clinical information and/or conventional embryo evaluation variables that 
have no multicollinearity (i.e., strong correlations among the independent variables) for AI 
training [17]. Additionally, it might be useful to apply dimension-reduction methods, such as 
principal component analysis and the variable selection, to reduce dimensionality, if 
necessary [45]. Second, a large number of data points should be collected, because it is 
preferable to have more data, rather than less, when exploring scientific questions [46]. 
Generally, more varied image patterns may be needed, as more than five hundred images 
might be required in each class for image classification with deep learning [47,48]. When we 
preliminarily created an AI with a dataset in which the %live births was 50% for all maternal 
ages (i.e., the numbers of cases in the live birth and abortion categories for each maternal age 
were same), the statistic indices, such as accuracy were reduced compared to that for the final 
classifier (data not shown). Thus, the %live births in the present study was not 50%, but 
averaged about 62.3%, because we tried to use as many images as much as possible, while 
maintaining the %live births at each maternal age as constant as much as possible. With the 
addition of more data, especially for the abortion category, the %live births may be set at 50%, 
which might result in improvements. Third, improvements in the neural network architecture 
may be possible. The architecture consisted of the neural network for image classification has 
been proceeding [49-53], but there is no golden standard for creating the architecture. Fourth, 
the image size is an important issue. The image size for predicting a live birth without 
aneuploidy from a blastocyst image by machine learning was 100×100 pixels in our previous 
report [19]. In a colposcopy AI study using images combined with HPV types [17], the 
accuracy for images of 50×50 pixels were better than one for images of 111×111 or 70×70 pixels. 
However, images of 15×15 pixels were used to detect cervical cancer [54]. The image size in 
the present study was 100×100 pixels, and the investigation of other image sizes might be 
considered. Fifth, regularization values are also one of the important hyperparameters for 
making a good classifier. Selecting the appropriate number of training and validation data 
points is also important. Moreover, a validation dataset and the induction of a dropout layer 
[35], which could prevent overfitting, might be useful in improving the AI classifier. 
 
5. Conclusions 
 
We applied deep learning to develop a classifier comprised of a neural network to predict a 
live birth from the maternal age and an image of the implanted blastocyst. The classifier 
predicted a live birth or abortion because of chromosomal abnormalities with an accuracy of 
0.75. A complete analysis of each case only required <0.2 seconds. The procedures in this study 
would not harm the embryo, which can be transferred after acquiring the probability of the 
prediction. Further study using with more data points and a neural network architecture 
improvement and hyperparameters may be necessary to validate the classifier. However, the 
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present study demonstrated the potential of an AI system that might be feasible for clinical 
practice. 
 
Human rights statements and informed consent 
 
All procedures in this study followed were in accordance with the ethical standards of the 
responsible committee on human experimentation (institutional and national) and with the 
Helsinki Declaration of 1964 and its later amendments.  
 
Informed consent was obtained from all of patients for being included in the study.  
 
Furthermore, additional informed consent was obtained from all patients for whom 
identifying information was included in this article. A website with additional information, 
including an 'opt-out' option, was set up for this study. 
 
Approval by Ethics Committee 
 
The protocol for the research project, which included human subjects, was approved by the 
Institutional Review Board at Okayama Couples’ Clinic (No. 18000128-04). 
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