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Abstract

Schizophrenia is often characterized by delusions, hallucinations, and other cognitive difficulties;
affects approximately seventy million adults globally. This study presents a cost-sensitive pruned
Decision Tree J48 model for fast and accurate diagnosis of Schizophrenia. The model implements
supervised  learning  procedures  with  10-fold  cross-validation  resampling  method  and  utilizes
unstructured filter to replace missing values in the data with the modal values of corresponding
features. Features are selected using Pearson’s correlation on hot-coded data to detect redundancy
in data. Cost matrix is designed to minimize the tendencies of the J48 algorithm to predict false
negative  outcomes.  This  consequently  reduces  the  error  of  the  model  in  diagnosing  a
Schizophrenia candidate as free from the disease. The model is found to significantly diagnose
Schizophrenia with 78% accuracy, 89.7% sensitivity, 57.4% specificity and Area under the Receiver
Operator  Characteristic  (ROC)  curve  of  0.895.  The  ROC  curve  is  also  seen  to  distinguish
Schizophrenia from other conditions with similar symptoms. These results show the potential of
machine-learning models for quick, effective diagnosis of schizophrenia.
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1. Introduction

Schizophrenia,  often characterized by delusions,  hallucinations, and other cognitive difficulties,
affects about 1 per cent of the global population [1]. The diagnosis is complex, and it takes several
processes to arrive at the right decision. Psychiatrists have to watch that the observed symptoms
are persistent for at least a month as contained in DSM-V classification details  and that  those
symptoms are not  as  a result  of  other related diseases nor a behavioural  activity (e.g.  alcohol
consumption) nor a result of a pharmacological side effects. These requirements have made the
process of diagnosis lengthy and complex. Psychiatrists need a quicker, effective, and knowledge-
based technique to diagnose Schizophrenia for early detection, prompt treatment and effective
management of the disease.

Data mining is a discipline which is driven majorly by the growth of large databases that contain
large information which are concealed within a mass of  uninteresting data but the interesting
salient features can be revealed. In other words, it is the discovery of knowledge from data and
consists  of data cleaning, integration,  selection, transformation, mining,  pattern evaluation and
knowledge presentation [2]. The subject can be described as knowledge discovery from data and is
closely  allied  to  exploratory  data  analysis.  Many  tools  are  used  in  data  mining.  Some  recent
examples in pattern recognition and detection include tools for characterizing, identifying, and
locating  patterns  in  multivariate  response  data  as  well  as  tools  for  detecting  and  identifying
patterns  in  two-dimensional  displays.  Examples  of  important  tools  in  model  building  in  data
mining include recursive partitioning, cluster analysis, regression modeling, segmentation of time
series  into  a  small  number  of  segment  types,  techniques  for  condensing  huge  data  sets  into
manageable summaries, and collaborative filtering, in which transactions are processed as they
arrive so that future transactions may be treated in a more appropriate manner [3].

Important  information  can  be  obtained  from health  records  of  individuals  using  data  mining
techniques [4] and can be used to predict the likelihood that a person will suffer Schizophrenia.
This  kind  of  systems  can  serve  as  an  adjunct  tool  for  psychiatrists  and  medical  students  to
diagnose  patients  with  Schizophrenia.  Data  mining  involves  the  use  of  algorithms  to  find
relationships  among  features  defining  a  dataset.  These  algorithms  transform  information  into
actionable  intelligence.  Examples  of  such  algorithms  include  Decision  Trees,  Bayesians,
Regressions,  Neural  Networks,  Support  Vector  Machines  (SVM),  KNN,  etc.  Many  of  these
algorithms are available in data mining software such as R, Python, Java, WEKA, etc. 

The cost-sensitive J48 model has been used for a number of predictive and analytical studies and in
various applications such as prediction of soil fertility [5], assessment of solar potential of western
Himalayan Indian state of Himachal Pradesh [6], intrusion detection system [7] and for predicting
the incidence of diabetes [8] amongst other applications. In one study [9], the model was used to
predict the incidence of myocardial infarction in humans. The study conducted in Iran involved
750 patients  (455 healthy and 295 myocardial  cases)  and utilized 92 regular  features  (such as
demographics,  blood pressure,  body mass  index,  etc.)  and 1  label  feature.  The data  was  pre-
processed and 90% of the data was used for training the model and 10% was used for testing. The
model achieved 86.67% sensitivity, 80% F-measure and 82.67% accuracy. 

In  another  study  [10],  researchers  extracted  EEG  signals  with  21  gold  cup  electrodes  placed
according  to  the  10-20  international  system  while  monitoring  the  horizontal  and  vertical  eye
movements of participants. Some software such as MATLAB and EEG Lab toolboxes were used in
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the  signal  preprocessing  and  five  frequency  bands  were  selected  for  analysis.  The  receiver
operating curve (ROC) was done to differentiate between normal and schizophrenia patients. It
was reported that  the delta power had the highest classification accuracy of  62.2%. The study
further researched EEG recordings on 50 participants  using 64 electrodes.  The electrodes were
placed above and beneath the right eye and laterally concerning the right and left eyes to monitor
horizontal and vertical movements, respectively. The extracted features were used to represent
normal  and  schizophrenia  patients.  This  produced  a  better  classification  accuracy  with  five
different electrodes having a prediction accuracy ranging from 92.0% and 93.9%. 

In another study [11], Schizophrenia was classified using MR imaging data in two fields (3- and 7-
T). Gray matters and White matters were used as inputs into a Support Vector Machine (SVM).
The 7-Tesla classifiers outperformed the 3-T classifiers by as much as 77% compared to 66.6%
accuracy for the 3-T classifier. The study in [1] proposed a SVM model for diagnostic classification
of schizophrenia patients on the basis of Regional Reward-related fMRI signal patterns. The study
investigated whether  the  predictive  accuracy  for  the  diagnostic  classification  of  schizophrenia
patients vs. healthy controls could be improved using multivariate pattern analysis (MVPA) of
regional functional magnetic resonance imaging (fMRI) activation patterns for the anticipation of
monetary reward. The results show that MVPA can be used to substantially improve the accuracy
of diagnostic classification on the basis of task-related fMRI signal patterns in a regionally specific
way.

In [12], a neural network model was developed to predict the likelihood of developing number of
psychological  conditions  such  as  anxiety,  behavioral  disorders,  depression,  and  posttraumatic
stress disorder. The study tested the effectiveness of the model against a dataset of 89,840 patients.
The results show that the model is capable of achieving accuracies ranging from 73% to 95% for
each of  the clinical  conditions under consideration,  with an overall  accuracy of  82.35% for  all
conditions. 

The study [13]  involved a machine-learning-based diagnosis  of  Schizophrenia  using combined
sensor-level  and source-level  EEG levels.  Sensor-level  and source-level  features were extracted
from EEG signals recorded during an auditory oddball task for the classification of patients with
schizophrenia and healthy subjects. The selected sensor-level features were mostly found in the
frontal area, and the selected source-level features were mostly extracted from the temporal area,
which coincide well with the well-known pathological region of cognitive processing in patients
with schizophrenia. In [14], deep-learning method for recognition of early-onset schizophrenia was
deployed.  A three-stage deep-learning network was used to deduce dimension reduction,  and
feed-forward  back  propagation  neural  networks  were  used  as  classifiers.  The  classification
accuracy reached 79.3% with 87.4% sensitivity and 82.2% for specificity. The study showed that
resting-state connectivity presented good potential classification capacity and can be used as a
biomarker  of  clinical  diagnosis  of  schizophrenia.  The  monotonous  nature  of  schizophrenia
diagnosis coupled with the similarity of symptoms with those of other conditions make diagnosis
difficult and time-consuming for psychiatrists. A recent study [15] made electroencephalography
recordings of schizophrenia patients and controls viewing natural scenes. They were able to use a
rule-based classifier to discriminate schizophrenia patients from controls and obtained an accuracy
of 71%; specificity of 81% and sensitivity of 59% (Table 1).
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Table 1:
Summary of results from reviewed studies.

Study Results as reported

[9] The model achieved 86.67% sensitivity, 80% F-measure and 82.67% accuracy

[10] An 88.53% accuracy and F1 score of 91.22% was obtained

[11] 77% compared to 66.6% accuracy for 3-T and 7-T classifiers

[12] overall accuracy of 82.35%

[14] Accuracy reached 79.3% with 87.4% sensitivity and 82.2% for specificity

[15] An accuracy of 71%; specificity of 81% and sensitivity of 59%

This paper aims to develop a machine learning algorithm for the quick diagnosis of schizophrenia.
The main contribution of this study is a novel cost-sensitive pruned decision tree J48 model that
automates  diagnosis  of  Schizophrenia.  The  model  also  minimizes,  by penalizing  through cost
matrix design,  the error  of  making costlier  decision errors  that  can result  in diagnosing other
diseases  instead  of  Schizophrenia.  This  work  also  contributes  an  optimal  treatment  regime
workflow that can assist psychiatrists in effective decision making in the management process of
Schizophrenia.

2. Methodology

2.1. Data Acquisition and Preparation

Data used for the present study were collected from the Psychiatric Clinic of the Lagos University
Teaching Hospital,  Lagos,  Nigeria.  Dataset  consists  of  151  health  records  of  patients  reported
between years  2013 and 2018 inclusive.  105 records  are of  positively diagnosed Schizophrenia
patients, and 46 are of those diagnosed otherwise, to serve as controls in the study. Thirty-three
(33)  attributes  based  on  Diagnostic  and  Statistical  Manual  of  Mental  Disorders  (DSM-5)
specifications for definition of Schizophrenia were used in model building with CLASS as labels
excluding Year of Patient  Report,  Age,  Sex,  and Diagnosis.  This  is  shown in Appendix 1.  The
unstructured file record dataset was converted into electronic structured data using Ms Excel and
saved as  ‘.csv’  file  acceptable  in  Waikato  Environment  for  Knowledge  Analysis  (WEKA)  API
software [16].  The data was loaded on Python environment for observation and visualization.
Missing values were replaced with modal values of the corresponding features. The flowchart for
the development of the model is shown in Figure 1.

2.2. Cost Sensitive Pruned J48 Classifier

Decision trees are learned from training data. Each data item consists of a set of features describing
an object and the class of the object. Decision trees are recursively built beginning with the topmost
node by:

i Computing the best test for the current node according to some splitting criterion.
ii Creating a sub-node for each possible outcome of the test.
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iii Recursively expanding each sub-node in the same way until a given  stopping criterion is
satisfied. 

Figure 1: Flowchart of the Methodology.

Usually, the decision tree is afterwards simplified (pruned) in order to avoid over-fitting of the
training data. The test of the topmost node divides the training data into two subsets. One subset
contains the elements which pass the test; the other contains the elements which fail the test. In
order  to  avoid  over-fitting,  most  decision  tree  learning  algorithms  add  another  step  which
simplifies the decision tree with  pruning. Pruning identifies irrelevant feature tests and replaces
the corresponding non-terminal nodes with terminal nodes.

Cost  sensitive: Model’s  prediction  is  optimized  by  making  mistakes  costlier  than  others.
Diagnosing a patient negative when actually the patient is positive can be an expensive mistake.
One solution is to minimize the number of false negatives predictions. J48 algorithm allows us to
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assign different penalty to different types of errors, in order to discourage a tree from making
more costly mistakes. The penalty is designated in a cost matrix, which specifies how much costlier
each error is relative to any other predictions. In this work, it assumes that false negative diagnosis
costs the patient two times as much as false positive diagnosis. The algorithm awards no cost when
an instance is classified correctly, but a false negative prediction attracts a penalty cost of 2 versus
a false positive’s cost of 1. For an ordinary decision tree model, no such penalty is levied on the
false predictions.

Splitting  criterion: The  best  test  for  a  node is  selected  according to  the  splitting  criterion.  A
frequently used splitting criterion is the information gain. It is the difference between the entropy
of the data set at the current node and the entropy in the two subsets induced by the test. The
entropy of a data set measures to which degree the data is scattered over several classes. If a data
set is pure, i.e., if all elements belong to the same class, the entropy is 0. If half of the data belongs
to class A and half of the data to class B, the entropy is 1. The entropy is defined by Equation (1):

H ( p )=−∑
c∈ C

p (c ) log2 p (c ) (1)

where p(c) is the relative frequency (empirical probability) of class c∈ C  in the data set, i.e., the

frequency of class c divided by the size of the data set. The information gain is defined by Equation

(2):

G=H ( p) –w1 H ( p1)– w2 H ( p2) (2)

where  p is  the relative frequency of class  c in the current data set,  p1 and  p2 are the relative
frequencies of class c in the two subsets, and w1 and w2 are the proportions of data in the first and
second subset.

Stopping criterion: The recursive expansion of the decision tree is  stopped if  either the data
subset is pure or if all data items have the same feature representation. The latter case occurs when
the  data  contains  objects  with  identical  feature  values,  but  different  classes.  When  such
contradictory class assignments exist,  there is no decision tree which correctly classifies all the
training  data.  Sometimes  these  stopping  criteria  are  augmented  by  other  criteria  which  may
terminate the induction process earlier, such as: 

(i) The size of the data set being below a certain threshold
(ii) The value of the splitting criterion for the best test being below a threshold

Pruning: Decision trees which are grown to their maximal size as described tend to over-fit the
training data. Overfitting occurs when the classification of the decision tree depends on accidental
properties of the training data. Overfitting is a problem because it leads to errors on new data. In
order  to  avoid  overfitting,  most  decision  tree  learning  algorithms  add  another  step  which
simplifies the decision tree with pruning. Pruning identifies irrelevant features and replaces the
corresponding non-terminal nodes with terminal nodes. The pruned trees are evaluated on test
data by computing the classification accuracy, which is the proportion of correctly classified test
items. The tree with the highest accuracy is selected. It is important that the data used for this
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evaluation is fresh data which was not used to induce the tree. Otherwise, the tree will not be
pruned because the full tree achieves the highest accuracy on the training data.

2.3. ZeroR Classifier

A baseline classification uses a naive classification rule such as:

(i) Base Rate: Accuracy of trivially predicting the most frequent class. ZeroR classifier in WEKA
always classify to the largest class i.e. according to the prior.

(ii) Random Rate: Accuracy of making a random class assignment. It might apply prior knowledge
to assign random distribution.

(iii) Naive Rate: Accuracy of some simple default or pre-existing model.

ZeroR gives a baseline accuracy that  must be always checked before choosing a sophisticated
classifier. Its Accuracy is also known as null rate.

2.4. Naive Bayes Classifier

It is a classifier that works based on Bayes Theorem represented by equation (3).

P (A|B )=
P (B|A )P(A)

P(B)
(3)

Naive Bayes classifier calculates the probabilities for every factor and then it selects the outcome
with highest probability. The classifier assumes the features are independent and hence the word
Naive. It is a powerful algorithm used for many classification problems including medical disease
diagnosis.

3. Data Preparation and Models Development

The unstructured file record dataset is converted into electronic structured data using Ms Excel
and saved as .csv file acceptable in Waikato Environment for Knowledge Analysis (WEKA) API
software.  The data  was loaded on Python environment for  observation and visualization.  The
description of the cleaned dataset is given in Table 2. It is seen clearly that there are missing values
in the data as number of entries against some of the features is less than 151.

Figure 2 shows the heatmap of missing value positions in white stripes in dataset. These missing
values have been replaced the mean values in corresponding features. This is necessary in order
not to miss a lot of information from the data. 
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Table 2: 
Dataset Description.

RangeIndex: 151 entries, 0 to 150

Data columns (total 34 columns):

OCCUP 145 non-null object
MAR_STA 149 non-null object
DUR_EPIS 148 non-null float64
P_PSY_HX 134 non-null object
P_MED_HX 121 non-null object
FAM_P_HX 130 non-null object
P_SOC_HX 138 non-null object
P_SEX_HX 123 non-null object
FOR_HX 131 non-null object
PREMOBD_HX 123 non-null object
MSE 151 non-null object
SPEECH 144 non-null object
MOOD 143 non-null object
AFFECT 141 non-null object
TH_FORM 108 non-null object
TH_STRM 112 non-null object
TH_CONTENT 124 non-null object
TH_POSS 93 non-null object
PERCEP 112 non-null object
ORIENT 120 non-null object
ATTEN 126 non-null object
CONC 126 non-null object
MEM_IR 116 non-null object
MEM_ST 116 non-null object
MEM_LT 116 non-null object
INT_GFK 89 non-null object
INT_S_A_D 87 non-null object
INT_CAL 84 non-null object
INT_PROV 84 non-null object
JUDGMT 120 non-null object
INSIGHT 131 non-null object
PSE 147 non-null object
EEG 151 non-null object
CLASS 151 non-null object

dtypes: float64(1), object(33 )
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Figure 2: Heatmap showing missing value positions in white stripes.

3.1. Feature Selection

In order to clean the dataset of redundant attributes, the dataset was hot-coded and converted to
numerical representation. Pearson’s correlation was applied to the data to identify fully correlated
features.  Pearson's correlation coefficient  is  the covariance of  the two variables divided by the
product of their standard deviations. The form of the definition involves a "product moment", that
is,  the mean (the first  moment about the origin)  of  the product  of  the mean-adjusted random
variables; hence the modifier product-moment in the name. The coefficient of correlation when
applied to two variables X and Y is given by Equation (4):

R x y=
∑
i=1

n

(xi−x)( y i− y )

√∑
i=1

n

(xi−x)2 √∑
i=1

n

( yi− y )2

(4)

where x i is instant value of X; x is mean value; y i is instant value of Y; and y is mean value of Y.
Correlation  coefficient  between two features  has  value  ranges  from -1  to  +1.  The  value  of  -1
represent  full  negative  correlation,  0  means  no  correlation  and  +1  stands  for  full  positive
correlation.
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Figure 3 shows the heatmap of the Pearson’s correlation values. From the figure, it is clear that full
correlations exist between ATTEN and CONC, among MEM_IR, MEM_ST, MEM_LT, and among INT_GFK,
INT_S_A_D,  INT_CAL,  and  INT_PROV.  Consequently  'ATTEN',  'MEM_ST',  'MEM_LT',  'INT_S_A_D',
'INT_CAL', 'INT_PROV' features were  dropped  from  the  dataset  to  prevent  over-fitting  and  for
effective model performance.

Figure 3: Pearson’s correlation values between each pair of attributes.

3.2. Models Development

The development of the models involves the following steps:

(i) Data Resampling: Data was divided into training and test datasets. The data was divided into
10  folds.  The  training  data  was  made  90  per  cent  of  the  whole  dataset,  while  the  test  data
constitutes remaining 10 per cent, and training was done repeatedly using cross-validation. This is
to estimate the performance of a machine learning algorithm with less variance than a single train-
test set split. It works by splitting the dataset into k-parts (e.g. k= 5 or k=10). Each split of the data
is called a fold. The algorithm is trained on k−1 folds with one held back and tested on the held
back fold. This is repeated so that each fold of the dataset is given a chance to be the held back test
set.  After  running  cross-validation,  k  different  performance  scores  are  obtained  that  can  be
summarized using mean and standard deviation. The obtained result is a more reliable estimate of
the  performance  of  the  algorithm  on new data.  This  is  because  the  algorithm  is  trained and
evaluated multiple  times  on  different  data.  The  choice  of  k  must  allow  the  size  of  each  test
partition to be large enough to be a reasonable sample of the problem, whilst allowing enough
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repetitions of the train-test evaluation of the algorithm to provide a fair estimate of the algorithms
performance on unseen data. For modest sized datasets in the thousands or tens of thousands of
records, k values of 3, 5 and 10 are common. 

(ii)  Model Building: The  cost-sensitive  pruned J48  algorithm is  trained using  10-fold  cross-
validation techniques. Here, we have built the decision-tree models using cost-sensitive pruned J48
algorithm  and  ordinary  J48  algorithm  with  prune-only  functionality.  The  trained  models  are
shown in Appendix 2 and Appendix 3, respectively. The resulting decision-tree built using the
cost-sensitive pruned J48 algorithm has a size of 36 trees and 30 leaves while the decision-tree built
using the ordinary J48 algorithm has a size of 41 trees and 33 leaves. A Dell Inspiron 11 3000, 8 GB
RAM, 500 GB Hard Disk Laptop Computer was used for the development. The implementation of
the  proposed framework was  performed in  Python distributed open source  by the  Anaconda
Integrated Development Environment and included the use of in-built packages such as Keras,
Theano, Scikilearn, Matplotlib, Seaborn, Numpy.

(iii) Model Evaluation: The test data folds are used to evaluate the predictive performance of the
model. 

(iv)  Optimization  of  Model’s  Prediction: Model’s  prediction  was  optimized  by  making

mistakes  costlier  than  others.  Diagnosing  a  patient  negative  when  he  is  positive  can  be  an

expensive mistake. One solution is to minimize the number of False Negatives predictions. J48

algorithm allows us to assign different penalty to different types of errors, in order to discourage a

tree  from making more  costly  mistakes.  The  penalties  are  designated in  a  cost  matrix,  which

specifies how much costlier each error is relative to any other predictions. It was assumed that

false negative diagnosis costs the patient two times as much as false positive diagnosis. Algorithm

awards no cost when an instance is classified correctly, but a false negative prediction attracts a

penalty cost of 2 versus a false positive’s cost of 1. 

(v)  Building Baseline Model,  ZeroR: The  same datasets  i.e.,  training  and test-are  used to
develop the baseline model ZeroR. ZeroR is the most rudiment of classifiers. It simply predicts the
majority if data is nominal, and the mean value if data is numeric. It may overfits depending on
skewness of the dataset.  However,  it  is  commonly used to validate the performances of other
complex classification algorithms on a given dataset, especially if the dataset is skewed. The model
predicted 97 instances accurately and 54 wrongly and as a result had an accuracy of 64 per cent.
This  is  a  reflection  of  skewness  in  dataset  used;  the  dataset  has  97  SCHIZ instances  and  54
OTHERS instances. 

(vi) Building Naive Bayes Model: Naive Bayes classifier predicts the instance X belongs to the

class C i if and only if: 

                  P(Ci∨X )>P(C j∨X ) for 1≤ j≤m , j≠i

where P (Ci|X )=
P(X∨C i)P(Ci)

P(X )
 .The Naive Bayes algorithm has been applied to the dataset and

had an accuracy of 82 per cent. When cost matrix was added the accuracy improved to 83 percent.

Int J Auto AI Mach Learn, Vol 1, Issue 1, October 30, 2020 27



ISSN 2563-7568

The  resulting  trained  model  template  is  shown  in  the  Appendix  4.  The  posterior  probability

P(Ci∨X ) has been computed for each attribute using the Bayes theorem.

(vii) Models Validation: ZeroR is a baseline algorithm commonly used in validating machine
learning model performance.  Naive Bayes algorithm is a classifier reportedly used by medical
scientists  in  classification  problems.  Its  performances  have  been  adjudged  in  literatures  as
reasonable. The two algorithms (ZeroR and Naive Bayes) were also trained on the project datasets.
Performance  of  cost-sensitive  J48  in  classifying  the  instances  into  appropriate  classes  was
compared with performances of the two validation classifiers to establish the reliance of CS J48 in
diagnosis of Schizophrenia. The comparison of the Baseliner Classifier, ZeroR, ordinary J48, Naive
Bayes, and CS J48 classifiers are done on the basis of Receiver Operating Characteristics (ROC)
curve, area under ROC, confusion matrices, sensitivity, specificity, and diagnostic odds ratio.

3.3. Performance Statistic Metrics

Confusion matrix: The confusion matrix of a classifier shows the instances of true positives (TP),

false negatives (FN), false positives (FP) and true negatives (TN) in an array. Associated with the

confusion matrix is the accuracy which is given by

Accuracy= TP+TN
TP+TN+FP+FN

Sensitivity: This measures the proportion of positives that are correctly identified as such. This is  an important

metric in medical diagnostics and perfect predictor is 100 % sensitive.

Sensitivity= TP
TP+FN

Specificity: This measures ability of classifier to correctly identify those without Schizophrenia

from a dataset. Best specificity is 1 whereas the worst is 0.

Specificity= TN
TN +FP

Diagnostic Odds Ratio: In medical testing, is a measure of effectiveness of a diagnostic test. It is

defined as the ratio of the odds of the test being positive if the subject has a disease relative to the

odds  of  the  test  being  positive  if  the  subject  does  not  have  the  disease.  The  rational  for  the

Diagnostic Odds Ratio is that it is a single indicator of test performance (like accuracy) but which is

independent of prevalence (unlike accuracy) and is presented as an odds ratio, which is familiar to

medical practitioners. Mathematically, Diagnostic Odds Ratio (DOR) is defined as:
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DOR=

TP
FP
FN
TN

= TP
FP

∙ TN
FN

DOR value ranges from zero to infinity, although for useful test it is greater than one, and hvigher
diagnostic odds ratios are indicative of better test performance.

ROC  Curves: In  a  Receiver  Operating  Characteristic  (ROC)  curve  the  true  positive  rate
(Sensitivity) is plotted in function of the false positive rate (100-Specificity) for different cut-off
points. Each point on the ROC curve represents a sensitivity/specificity pair corresponding to a
particular  decision  threshold.  A  test  with  perfect  discrimination  (no  overlap  in  the  two
distributions) has a ROC curve that passes through the upper left corner (100% sensitivity, 100%
specificity). The closer the ROC curve is to the upper left corner, the higher the overall accuracy of
the test.

Area under ROC Curve (AUC): This is a performance metric for binary classification problems.
The AUC represents a model’s ability to discriminate between positive and negative classes. An
area of 1.0 represents a model that made all  predictions perfectly.  An area of 0.5 represents a
model that is as good as random.

4. Results and Analysis

The training implemented 10-fold cross-validation train and test mode to eliminate bias due to
random sampling. The results for the J48 model returned an area under ROC 0.943, and accuracy
of 86%. The Confusion matrix is shown in Table 3. 

Table 3: 
Confusion matrix of pruned J48 model.

.

ACTUAL CLASS
PREDICTED CLASS

SCHIZ OTHERS
SCHIZ 81 16

OTHERS 4 50

The result in Table 3 implies that the J48 model is able to predict 81 cases accurately. The number
of patients predicted to have the disease but in actual case do not have it is 4. Those who have
schizophrenia but are predicted not to have it are 16 and 50 patients do not have schizophrenia
and are so predicted. This interpretation applies to all the confusion matrices in the other tables.
CS-J48 gave accuracy of 78% and ROC area 0.895. The confusion matrix of CS-J48 model is shown
in Table 4. It can be seen that the resulted confusion matrix shows less FN predictions although
accuracy has been traded off.
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Table 4: 
Confusion matrix of cost-sensitive J48 pruned (CS-J48) model.

ACTUAL CLASS PREDICTED CLASS
SCHIZ OTHERS

SCHIZ 87 10
OTHERS 23 31

The ZeroR model is developed using the same dataset and training procedures in Section 3. The
area under ROC curve is computed to be 0.467 with accuracy of 64%. The Confusion matrix is
shown in Table 5.

Table 5: 
Confusion matrix of ZeroR model.

ACTUAL CLASS PREDICTED CLASS
SCHIZ OTHERS

SCHIZ 97 0
OTHERS 54 0

A Naive Bayes model is developed using the same dataset and using the training procedures as
described  in  Section  3.  The  area  under  ROC  curve  is  0.917  and  with  accuracy  of  82%.  The
Confusion matrix is shown in Table 6.

Table 6: 
Confusion matrix of Naive Bayes model.

ACTUAL CLASS PREDICTED CLASS
SCHIZ OTHERS

SCHIZ 80 17
OTHERS 10 44

4.1. Validation of Model

The  cost-sensitive  J48  model  developed  for  quick  diagnosis  of  Schizophrenia  was  internally
validated by Cross-Validation test mode. The external validation was done by comparing its (CS
J48’s) performance against performances of J48, Naive Bayes and ZeroR models developed on the
same  dataset  used  in  building  CS-J48  model  for  Schizophrenia  diagnosis.  Table  6  shows  the
comparisons are carried out on the basis of Area of Receiver Operating Characteristics curve (Area
of ROC), accuracy, sensitivity, selectivity, and diagnostic odd ratio. Table 7 and Figures 4 (a-d)
show the results of the performance metrics and the ROC curves for each model.
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Table 7:
Performance metrics of models.

MODEL
ACCURACY

(%)
SENSITIVITY SPECIFICITY DOR

ROC
AREA

CS-J48 78 0.897 0.574 21 0.895

J48 86 0.835 0.926 63 0.943

NAIVE
BAYES

82 0.825 0.814 21 0.917

ZeroR 64 1.000 0 Undefined 0.467

Sensitivity refers to the number of subjects who have schizophrenia and were so predicted. The
two best models under sensitivity metric are given by ZeroR and CS-J48. Specificity refers to the
number of persons who do not have the condition and were so predicted. The two best models
under specificity metric are given by J48 and Naive Bayes. The area under the ROC is indicative of
the diagnostic ability of the classifiers. Under this metric, all the three models CS-J48, J488 and
Naive Bayes perform much better than the baseline ZeroR. This is also reflected in the accuracy
metric where J48 has the highest score, followed by Naive Bayes and CS-J48. In terms of DOR, J48
has the highest value and this is followed equally by CS-J48 and Naive Bayes. The efficiency of a
classifier will therefore be a function of all these parameters. 

(a) (b)

(c) (d)
Figure 4: ROC curves of the models. (a) CS J48 model, (b) J48 model, (c) Naive Bayes model, (d) ZeroR model.
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4.2. Discussion

Performance parameters of the cost-sensitive J48 (CS-J48) model, J48, ZeroR, and Naive Bayes have
been compared to  establish the  effectiveness of  CS-J48  model  in  Schizophrenia  diagnosis.  The
results show the CS-J48 model performed reasonably well as a disease outcome predictor. The CS
J48 model’s accuracy is encouraging at 78% and can be reliably used to determine whether a new
instance of similar features has Schizophrenia or not. The CS-J48 had better sensitivity than Naive
Bayes and J48. It means its probability of predicting positive instances as positive is higher than
that of Naive Bayes. However, both cannot be used to rule in presence of Schizophrenia as their
sensitivities  are  high.  The  specificity  of  CS-J48  is  much  lower  than  that  of  Naive  Bayes;  this
indicates CS-J48 is a predictor that can be used to rule out Schizophrenia anytime the outcome is
negative.  Also,  area  under  Receiver  Operating  Characteristics  (ROC)  curve  determines  the
discriminant power of a model. As shown, the areas under the ROC curve for the J48 and Naive
Bayes curve are comparable (0.895 and 0.917 respectively). This means that the two models can
discriminate almost equally between positive and negative class instances. The Diagnostic Odd
Ratio value is also another performance parameter used in medical field to measure performance
of diagnostic tests. It is defined as the ratio of the odds of the test being positive if the subject has a
disease relative to the odds of the test being positive if the subject does not have the disease. Good
DOR value is greater than 1 and the greater the better. In the present study, CS J48, Naive Bayes
and J48 have DOR greater than 1, making CS-J48 a good diagnostic model. For ZeroR, DOR is
undefined indicating that it is a biased predictor. The ROC curve shows discriminating power of a
model and the ROC curve of the CS-J48 model show discrimination of the two classes SCHIZ and
OTHERS and with good accuracy. 

It is noted that when comparing the models in terms of the sensitivity metric, CS-J48 comes out as
the top in the list with a score close to 0.9. This is not surprising because the cost matrix has been
added to the optimization procedure. The CS-J48 model is specially trained to penalize the false
negative error twice more heavily than the false positive. Thus, it is much more sensitive to false
negative error. On the other hand, J48 model treats both the false negative and false positive with
the same importance as true detection (i.e., true positive and true negative). The model awards no
additional penalty when an instance is classified incorrectly.  Hence,  J48 model has a relatively
uniform  performance  in  terms  of  sensitivity  and  specificity.  The  CS-J48  model  minimizes
prediction  of  false  negative  with  the  cost  matrix  defined for  the  algorithm.  As  shown in  the
confusion matrices in Tables 3 and 4, the error is more shifted to false positive than false negative
in CS-J48 model when compared with ordinary J48 model. Similarly, the ROC curve of CS-J48
ROC shows a clear discrimination of the two classes SCHIZ and OTHERS and with good level of
accuracy. Thus, if the diagnostic tool is designed with an aim of reducing miss detection i.e., false
negative,  then  the  CS-J48  model  will  render  a  better  performance  than  J48  and  Naïve  Bayes
models.

In terms of medical applications, the CS-J48 model can be used as a diagnosis model for optimal
treatment of first episode Schizophrenia. The model can be adapted for optimization of existing
treatment for Schizophrenia designed through European Union sponsored European Union First
Episode Schizophrenia Trial  [17].  The model may serve as  a guide to psychiatrists in decision
making while  design treatment plans  for  patients,  especially  first  episode patients.  Quick and
accurate  detection  of  Schizophrenia  ensures  favorable  treatment  and management  outcome as
duration of psychotic episode is a factor in efficacy of antipsychotics. In addition, such model can
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be embedded into wearable watch [18,19] for non-intrusive monitoring of mental health status
beyond clinical settings [20-23], or mobile application for public use [24-26].

5. Conclusion

This study presents the development and investigation of a cost-sensitive pruned Decision Tree J48
model that can be used for quick diagnosis of Schizophrenia. The model has been trained using
supervised learning regime. Baseline classifier ZeroR and Naive Bayes classifier have been also
built using the same dataset. The performance parameters of these classifiers have been used for
external validation of cost-sensitive J48 model, and metrics such as sensitivity, specificity, receiver
operating  characteristic  curves,  and  Diagnostic  Odd  Ratio  are  used  for  analyzing  the
performances.  The  cost-sensitive  J48  model  developed  in  this  study  has  performed  at  78%
accuracy, with specificity 57.4%, sensitivity 89.7% and area under ROC 0.895. The model has low
specificity thus it is not appropriate to rule in other diseases; however, its high sensitivity could
reduce  miss  detection  in  Schizophrenia.  Thus  CS-J48  model  can  therefore  be  relied  on,  as  an
ensemble, to classify Schizophrenia diagnosis. Recommendations are suggested for future work on
this study which include using larger number of records to train the model better in the future for
higher accuracy, developing the model for mobile application for public use, and exploring other
data mining algorithms such as deep learning neural network.
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Appendix 1: Representation of features, description, and values

No FEATURE DESCRIPTION VALUES

1 Y_O_REP Year patient reported in Hospital Year e.g. 2017
2 AGE Age of patient Age e.g. 32, 23
3 SEX Sex of patient MALE, FEMALE
4 OCCUP_HX Occupation History unemployed, occupation
5 MAR_STA Marital status married,single, divorced, widow

6 DUR_EPIS
Episode  Duration  (length  of  time  the
patient has suffered the symptoms

time in months

7 P_PXY_HX Past Psychiatric History e.g rape, mental illness, etc
8 P_MED_HX Past Medical History No, disease suffered in past (eg diabetes)
9 FAM_P_HX Family Psychiatric History Yes, No
10 P_SOC_HX Past Social History Yes, No

11 P_SEX_HX Past Sexual History
normal,  experience  (e.g  masturbate,
gonorrhea,etc)

12 FOR_HX Forensic History No, Yes
13 PREMOB_HX Pre-morbid History Normal, introvert, extrovert, melancholic

14 MSE Mental State Examination Kempt, unkempt, poor eye contact, restless

15 SPEECH Speech Status
Normal,  reduced  volume,  mute,  slurred,
decreased tone, irrelevant, incoherent

16 MOOD Mood of the patient at the time of report
Euthemic,  neutral,  happy,  relaxed,  fine/ok,
worried, sad, irritable

17 AFFECT Affect of the patient at time of report
Depressed,  reactive,  blunt,  restricted,
congruent, abnormal

18 TH_FORM Thought Form at time of report Logical, abnormal
19 TH_STRM Thought Stream at time of report Reduced, normal, increased

20 TH_CONTENT Thought content at time of report
Persecutory  delusion,  auditory  hallucination,
normal, obsession, grandiose delusion, disorder

21
TH_POSSESSIO
N

Thought Possession at Impaired,
time of report Normal

22 PERCEP Perception at time of report
No,  Auditory  Hallucination,  visual
hallucination,  tactile  hallucination,  olfactory
hallucination, preoccupation

23 ORIENT
Time,  Place  and  Position  Orientation  at
time of report

Oriented in TPP, no

24 ATTEN Attention status at time of report Rousable, poor
25 CONC Concentration status at time of report Good, reduced, poor
26 MEM_IR Immediate Recall status at time report Good, fair, poor
27 MEM_ST Short-term Memory status at time report Good, fair, poor
28 MEM_LT Long-Term Memory status at time report Good, fair, poor

29 INT_GFK
Intelligence  Test  of  General  Fund  of
Knowledge

Good, fair, poor

30 INT_S_A_D
Intelligence  Test  of  Similarity  and
Difference

Good, fair, poor

31 INT_CAL Intelligence Test of Arithmetic Good, fair, poor
32 INT_PROV  Intelligence Test of Proverbs Good, fair, poor

33 JUDGMT
Intellectual  Judgment  status  at  time  of
report

Good, poor

34 INSIGHT Insight status at time of report Good, partial, poor
35 PSE Physical State Examination status Good, normal, pale

36 EEG
Electroencephalogram  (to  exclude  brain
tumor possibility status).

Normal, altered

37 DIAGN Result of diagnosis Diagnosis Result e.g. Bipolar disorder
38 CLASS Classes of instances SCHIZ, OTHERS
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Appendix 2: Resulting decision-tree using the Cost-Sensitive Pruned J48 
algorithm

PSE = GOOD: SCHIZ (59.14)
PSE = NORMAL
|   PREMOBD_HX = NORMAL
|   |   P_MED_HX = HYPTENSIVE: SCHIZ (0.0)
|   |   P_MED_HX = SHORT-SIGHT: SCHIZ (0.0)
|   |   P_MED_HX = NO
|   |   |   MEM_IR = GOOD: SCHIZ (22.07/3.37)
|   |   |   MEM_IR = FAIR: SCHIZ (3.33/0.1)
|   |   |   MEM_IR = POOR: OTHERS (5.0/1.2)
|   |   P_MED_HX = DIABETES: SCHIZ (5.18/0.3)
|   |   P_MED_HX = SIEZURE: OTHERS (1.94)
|   |   P_MED_HX = MALARIA: SCHIZ (0.0)
|   |   P_MED_HX = HADE: SCHIZ (0.0)
|   |   P_MED_HX = SHADE
|   |   |   CONC = GOOD: OTHERS (6.76/0.75)
|   |   |   CONC = POOR: SCHIZ (4.25/0.13)
|   |   |   CONC = REDUCED: OTHERS (0.0)
|   |   P_MED_HX = BLOOD TRANS: SCHIZ (2.59/0.15)
|   |   P_MED_HX = ALLEGIES: SCHIZ (0.0)
|   |   P_MED_HX = HbSS: OTHERS (3.25/1.23)
|   |   P_MED_HX = STROKE: SCHIZ (0.0)
|   |   P_MED_HX = HDASP: OTHERS (1.94)
|   |   P_MED_HX = IMMUNE DISORDER: SCHIZ (0.0)
|   |   P_MED_HX = ASPHYXIA: OTHERS (1.94)
|   |   P_MED_HX = JAUNDICE: OTHERS (1.94)
|   |   P_MED_HX = GLAUCOMA: SCHIZ (0.0)
|   |   P_MED_HX = ASTHMA: OTHERS (1.94)
|   PREMOBD_HX = INTROVERT: SCHIZ (9.74)
|   PREMOBD_HX = MOODY: SCHIZ (0.0)
|   PREMOBD_HX = ASTHMA: SCHIZ (2.44)
|   PREMOBD_HX = MELANCHOLIC: OTHERS (1.83)
PSE = PALE
|   INT_GFK = FAIR: SCHIZ (4.49/0.52)
|   INT_GFK = GOOD: OTHERS (6.74/2.31)
|   INT_GFK = POOR: SCHIZ (4.49/0.52)

Number of Leaves: 30
Size of the tree: 36
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Appendix 3: Resulting decision-tree using the J48 algorithm

PSE = GOOD: SCHIZ (48.28)
PSE = NORMAL
|   PREMOBD_HX = NORMAL
|   |   TH_FORM = LOGICAL
|   |   |   P_MED_HX = HYPTENSIVE: OTHERS (0.0)
|   |   |   P_MED_HX = SHORT-SIGHT: OTHERS (0.0)
|   |   |   P_MED_HX = NO
|   |   |   |   CONC = GOOD
|   |   |   |   |   TH_POSS = IMPAIRED: OTHERS (3.13)
|   |   |   |   |   TH_POSS = NORMAL: SCHIZ (13.72/1.72)
|   |   |   |   CONC = POOR: OTHERS (6.26)
|   |   |   |   CONC = REDUCED: SCHIZ (0.0)
|   |   |   P_MED_HX = DIABETES: SCHIZ (2.2/0.2)
|   |   |   P_MED_HX = SIEZURE: OTHERS (3.3)
|   |   |   P_MED_HX = MALARIA: OTHERS (0.0)
|   |   |   P_MED_HX = HADE: OTHERS (0.0)
|   |   |   P_MED_HX = SHADE
|   |   |   |   CONC = GOOD: OTHERS (11.04/0.86)
|   |   |   |   CONC = POOR: SCHIZ (3.41/0.14)
|   |   |   |   CONC = REDUCED: OTHERS (0.0)
|   |   |   P_MED_HX = BLOOD TRANS: SCHIZ (1.84/0.17)
|   |   |   P_MED_HX = ALLEGIES: OTHERS (0.0)
|   |   |   P_MED_HX = HbSS: OTHERS (3.3)
|   |   |   P_MED_HX = STROKE: OTHERS (0.0)
|   |   |   P_MED_HX = HDASP: OTHERS (3.3)
|   |   |   P_MED_HX = IMMUNE DISORDER: OTHERS (0.0)
|   |   |   P_MED_HX = ASPHYXIA: OTHERS (2.76)
|   |   |   P_MED_HX = JAUNDICE: OTHERS (2.76)
|   |   |   P_MED_HX = GLAUCOMA: OTHERS (0.0)
|   |   |   P_MED_HX = ASTHMA: OTHERS (3.3)
|   |   TH_FORM = ABNORMAL: SCHIZ (10.77/1.34)
|   |   TH_FORM = NFTD: SCHIZ (1.18/0.15)
|   PREMOBD_HX = INTROVERT: SCHIZ (8.0)
|   PREMOBD_HX = MOODY: OTHERS (0.0)
|   PREMOBD_HX = ASTHMA: SCHIZ (2.0)
|   PREMOBD_HX = MELANCHOLIC: OTHERS (3.0)
PSE = PALE
|   INT_GFK = FAIR: SCHIZ (3.49/0.6)
|   INT_GFK = GOOD: OTHERS (10.48/2.68)
|   INT_GFK = POOR: SCHIZ (3.49/0.6)

Number of Leaves: 33
Size of the tree: 41
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Appendix 4: Naive Bayes Model

                                    Class
Attribute                       SCHIZ   OTHERS
                                (0.64)  (0.36)
=============================================
OCCUP
  NURSE                           4.0     1.0
  UNEMPLOYED                     29.0    10.0
  STUDENT                        27.0    22.0
  CLEANER                         4.0     1.0
  SEA MISTRESS                    4.0     1.0
  TEACHING                        4.0     1.0
  TEACHER                         3.0     1.0
  SALESWOMAN                      3.0     1.0
  TRADER                          9.0    10.0
  GRADUATE                        3.0     1.0
  PHYSIOTHERAPIST                 3.0     1.0
  ARCHITECT                       3.0     1.0
  GUARD                           3.0     1.0
  ASSISTANT                       3.0     1.0
  RETIRED                         4.0     1.0
  ENGINEER                        1.0     4.0
  WRITER                          1.0     4.0
  COBBLER                         1.0     4.0
  AUDITOR                         1.0     4.0
  LAWYER                          1.0     4.0
  [total]                       111.0    74.0

MAR_STA
  WIDOW                           9.0     1.0
  MARRIED                        24.0    16.0
  SINGLE                         62.0    37.0
  DIVORCED                        4.0     4.0
  [total]                        99.0    58.0

DUR_EPIS
  mean                        51.2503 75.5045
  std. dev.                   80.8657115.2294
  weight sum                       95      53
  precision                   16.6739 16.6739

P_PSY_HX
  RAPE                            4.0     1.0
  NO                             35.0    10.0
  SUSPISION                       4.0     1.0
  MENTAL ILLNESS                 42.0    40.0
  IRRITABILITY                    3.0     1.0
  GRIEF                           1.0     4.0
  [total]                        89.0    57.0

P_MED_HX
  HYPTENSIVE                      4.0     1.0
  SHORT-SIGHT                     4.0     1.0
  NO                             35.0    13.0
  DIABETES                       11.0     1.0
  SIEZURE                         3.0     4.0
  MALARIA                         3.0     1.0
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  HADE                            3.0     1.0
  SHADE                           6.0    10.0
  BLOOD TRANS                     3.0     1.0
  ALLEGIES                        3.0     1.0
  HbSS                            5.0     4.0
  STROKE                          3.0     4.0
  HDASP                           3.0     4.0
  IMMUNE DISORDER                 1.0     4.0
  ASPHYXIA                        1.0     4.0
  JAUNDICE                        1.0     4.0
  GLAUCOMA                        1.0     4.0
  ASTHMA                          1.0     4.0
  [total]                        91.0    66.0

FAM_P_HX
  NO                             61.0    36.0
  YES                            20.0    17.0
  [total]                        81.0    53.0

P_SOC_HX
  YES                            34.0    18.0
  NO                             52.0    38.0
  [total]                        86.0    56.0

P_SEX_HX
  NORMAL                         73.0    46.0
  MASTURBATE                      1.0     4.0
  GORNORREA                       1.0     4.0
  [total]                        75.0    54.0

FOR_HX
  NO                             72.0    51.0
  YES                            10.0     2.0
  [total]                        82.0    53.0

PREMOBD_HX
  NORMAL                         54.0    49.0
  INTROVERT                      16.0     1.0
  MOODY                           3.0     1.0
  ASTHMA                          3.0     1.0
  MELANCHOLIC                     1.0     4.0
  [total]                        77.0    56.0

MSE
  KEMPT                          75.0    42.0
  POOR EYE CONTACT               13.0     7.0
  UNKEMPT                        10.0     5.0
  RESTLESS                        3.0     4.0
  [total]                       101.0    58.0

SPEECH
  NORMAL                         62.0    38.0
  REDUCED VOL                     4.0     1.0
  IRRELEVANT                      9.0     1.0
  INCOHERENT                      3.0     1.0
  DECREASED TONE                 15.0     7.0
  MUTE                            3.0     6.0
  SLURRED                         1.0     4.0
  INCREASED TONE                  1.0     4.0
  [total]                        98.0    62.0

MOOD
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  NEUTRAL                         8.0     7.0
  HAPPY                          32.0    19.0
  RELAXED                         4.0     1.0
  FINE                           14.0     7.0
  OK                             21.0     7.0
  WORRIED                         5.0     1.0
  SAD                             9.0    10.0
  EUTHYMIC                        5.0     7.0
  IRRITABLE                       3.0     1.0
  [total]                       101.0    60.0
AFFECT
  DEPRESSED                       6.0     7.0
  REACTIVE                       35.0    22.0
  BLUNT                          23.0     4.0
  RESTRICTED                     18.0     4.0
  ABNORMAL                        4.0     2.0
  IRRITABLE                       5.0     4.0
  FEARFUL                         3.0     1.0
  CONGRUENT                       7.0    10.0
  SUSPICIOUS                      3.0     1.0
  [total]                       104.0    55.0
TH_FORM
  LOGICAL                        46.0    43.0
  ABNORMAL                       21.0     1.0
  NFTD                            2.0     1.0
  [total]                        69.0    45.0
TH_STRM
  REDUCED                        18.0     1.0
  NO                              4.0     1.0
  NORMAL                         45.0    37.0
  INCREASED                       7.0     7.0
  [total]                        74.0    46.0
TH_CONTENT
  PERSECUTORY DELUSION           40.0    13.0
  NORMAL                         25.0    22.0
  OBSESSION                       6.0     4.0
  AUDITORY HALLUCINATION          4.0     1.0
  DELUSION                        6.0     1.0
  DELUSION OF REFERENCE           3.0     1.0
  GRANDIOSE DELUSION              3.0     1.0
  AUDI TORY DELUSION              3.0     1.0
  DISORDER                        1.0     4.0
  GRANDEUR DELUSION               1.0     4.0
  [total]                        92.0    52.0
TH_POSS
  IMPAIRED                        8.0     7.0
  NORMAL                         45.0    37.0
  [total]                        53.0    44.0
PERCEP
  AUDITORY HALLUCINATION         35.0     7.0
  FUNCTIONAL HALLUCINATION        4.0     1.0
  SOMATIC HALLUCINATION           6.0     1.0
  TACTILE HALLUCINATION           5.0     4.0
  OLFACTOTY HALLUCINATION         3.0     1.0
  HALLUCINATION                   7.0     1.0
  VISUAL HALLUCINATION            7.0     4.0
  PREOCCUPATION                   3.0     1.0
  NO                             12.0    28.0
  [total]                        82.0    48.0
ORIENT
  ORIENTED IN TPP                77.0    43.0
  IMPAIRED                        3.0     1.0
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  [total]                        80.0    44.0
CONC
  GOOD                           63.0    37.0
  POOR                           16.0     7.0
  REDUCED                         8.0     1.0
  [total]                        87.0    45.0
MEM_IR
  GOOD                           68.0    37.0
  FAIR                            6.0     1.0
  POOR                            3.0     7.0
  [total]                        77.0    45.0

INT_GFK
  FAIR                           12.0     1.0
  GOOD                           34.0    34.0
  POOR                            7.0     7.0
  [total]                        53.0    42.0

JUDGMT
  POOR                           42.0    25.0
  GOOD                           35.0    22.0
  [total]                        77.0    47.0

INSIGHT
  PARTIAL                        27.0    22.0
  POOR                           41.0    13.0
  PERSISTENT                      4.0     1.0
  GOOD                           18.0    13.0
  [total]                        90.0    49.0

PSE
  GOOD                           48.0     1.0
  NORMAL                         39.0    46.0
  PALE                            9.0    10.0
  [total]                        96.0    57.0

EEG
  NORMAL                         98.0    49.0
  ALTERED                         1.0     7.0
  [total]                        99.0    56.0
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