
 Int J Diabetes Manag Vol 1 No 1 August 2021 3

ISSN 2564-324X

Le YZ.  Diabetic Retinopathy-Brief Overview. 
Int J Diabetes Manag. 2021;1(1):03-10. 

Abstract

Diabetic retinopathy (DR) is a major 
complication of diabetes, which affects 
over 90 million people worldwide. Lifetime 
occurrence of DR is over 90% and 50-60% for 
Type I diabetes mellitus (T1DM) and T2DM, 
respectively. Such a high prevalence makes 
DR a leading cause of blindness in working 

aged people and a major public health issue 
in developed countries. In the inaugural issue, 
this editorial provides a brief overview of the 
salient features of DR, including risk factors, 
diagnosis, pathobiology, molecular and cellular 
mechanisms, and therapeutics. Aspects of DR 
that are critically important, but not commonly 
known, will also be discussed.
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Introduction

Diabetic retinopathy (DR) is a major 
complication of diabetes, which affects over 90 
million people worldwide. Lifetime occurrence 
of DR is over 90% and 50-60% for Type I diabetes 
mellitus (T1DM) and T2DM, respectively [1,2]. 
Such a high prevalence makes DR a leading 
cause of blindness in working aged people 
and a major public health threat in developed 
countries. It is therefore worthwhile to have a 
brief overview on the salient features of DR 
in this inaugural issue, including risk factors, 
diagnosis, pathobiology, molecular and cellular 
mechanisms, and therapeutics.  Discussion will 
also be provided for those critically important, 

but not commonly known, aspects of DR, such 
as the retinal pigment epithelium (RPE) barrier 
function and neuropathy.

Risk factors for DR

Long-term epidemiological studies indicate 
that chronic hyperglycemia is the primary risk 
factor for DM and DR, which is measured by 
glycosylated hemoglobin (HbA1c). HbA1c 
below 6.5% is recommended by the International 
Diabetes Federation and the American College 
of Endocrinology [3]. Hyperglycemia or high 
retinal glucose is the likely inducer for some 
secondary risk factors, such as oxidative 
stress, cytokine, chemokine, and growth 
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factor upregulation, and inflammation, which 
eventually lead to blood-retina barrier (BRB) 
breakdown in DR [4-8]. Other major risk 
factors for DR include hypoxia, hypertension, 
and dyslipidemia (Figure 1) [9-12]. Pregnancy 
is often associated with hypertension and 
proteinuria. Increases in these pathological 
conditions promote an abrupt onset or 
progression of DR [13]. Therefore, pregnant 
women with potential DM and DR risks 
require frequent eye examinations, according 
to American Academy of Ophthalmology. 
As DM and DR are multifactorial disorders, 
it is difficult to pin-point the role of specific 
gene(s) in the development of the diseases. 
With the advancement in genetic methodology, 
such as genome-wide association studies and 
sequencing technologies that permit genetic 
analysis on large biodata banks and aggregation 
of diabetes cohorts, at least 44 single-nucleotide 
polymorphisms for DM and its complications 
have been identified [14], including one 
specifically for DR in both T1DM or T2DM 
[15].

Pathobiology and mechanisms of diabetic 
complication in the eye

BRB abnormalities and diagnosis

Traditionally, DR is regarded as a retinal 
microvascular disorder, as diabetes-induced key 
microvascular abnormalities can be diagnosed 
with fundus imaging and fluorescent angiography. 
These procedures permit the detection of 
microaneurysms, retinal hemorrhages, cotton 
wool spots, lipid exudates, capillary occlusion, 
and retinal neovascularization. The development 
of optical coherence tomography (OCT) and 
OCT angiography made it possible to diagnose 
diabetic macular edema (DME), epiretinal 
membrane formation, retinal thinning, non-

perfusion, vitreomacular adhesion, intraretinal 
cysts, and foveal avascular zone enlargement 
[16]. The imaging modalities discussed above 
are diagnostic tools for BRB pathological 
characteristics in DR patients, which are 
commonly used as to classify non-proliferative 
DR (NPDR), DME, proliferative DR (PDR), 
major subclasses of DR associated with abnormal 
BRBs. Figure 1 is a simplified summary for 
pathogenic mechanisms of BRB breakdown in 
DR. Of note, the traditional description of DR 
as a disorder of (only) retinal microvasculature, 
which appears in most professional publications 
currently, is very misleading for the following 
reason. The endothelial and RPE barriers 
(also called outer BRB) constitute BRBs. It is 
important to point out that approximately 80% 
of retinal blood circulation is achieved through 
the RPE barrier. A critical observation for RPE 
barrier breakdown in diabetes was demonstrated 
40 years ago [17], which was confirmed in our 
hands [18,19]. RPE barrier breakdown can 
now be readily observed in humans with OCT 
technology [20]. In summary, diabetes-induced 
changes in the RPE is a significant contributing 
factor to NDPR, DME, and retinal fibrosis in 
PDR. Developing new methodologies for the 
advancement of RPE barrier research is an 
urgent task for the DR field.

Alteration of retinal neuronal viability and 
function

The developments in basic and clinical research 
and imaging technology for the past few decades 
have led to the gradual recognition of DR as a 
disorder of retinal neurons, in additional to 
BRB abnormalities, which is also referred to 
as diabetic neuropathy. It has been shown that 
alterations in retinal neuronal viability and 
function precede BRB alterations in diabetic 
animals and patients [21-25]. It is now widely 
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accepted that diabetes impairs retinal neuronal 
function, including color discrimination 
[23,24,26]. In experimental animal models 
of DR, increase in apoptosis and thinning of 
all retinal layers can be detected [21,25,27], 
suggesting the degeneration of all types of 
retinal neurons. These observations have 
established a clear consensus that DR induces 
functional alteration and degeneration of retinal 
neurons (Figure 1). However, the mechanisms 
by which DR-induced alteration of neuronal 
functions are largely uninvestigated.

Other diabetic complications in the eye

Although not the subject matter in this editorial, 
it is worth mention that cataract and diabetic 
glaucoma, two major diabetic complications 
in the eye (outside the retina), are also leading 
causes of vision loss. Diabetes-induced 
cloudiness in lens is the major cause of vision 
loss in cataract. The biochemical mechanisms 
of diabetes-induced cataract are similar to 
that in DR [28]. Diabetic glaucoma, which is 
defined by elevated ocular pressures, is caused 
by diabetes-induced iris neovascularization. 
The risk factors, pathogenic mechanisms, and 
therapeutic strategies for iris neovascularization 
are similar to that in retinal neovascularization 
during the development of DR [29].

Pathogenic mechanisms of DR

Hyperglycemia or high retinal glucose 
will elevate oxidative stress which causes 

mitochondrial dysfunction, advanced 
lipoxidation and glycation end-product 
accumulation, cytokine and chemokine 
upregulation, cellular apoptosis, and 
inflammation (Figure 1) [4-8,30-32]. Eventually, 
the retina becomes hypoxic that leads to BRB 
lesions and leakages, neovascularization, and 
fibrosis [7,8,33]. At present, the mechanisms of 
diabetes-induced alteration of retinal neuronal 
functions remain largely unknown, such events 
occur early and independent from major 
vascular lesions. Diabetes-induced apoptosis 
is likely a major cause of retinal neuronal 
degeneration (Figure 1) [27]. Among the critical 
molecular and cellular mechanisms, it is worth 
mention that retinal Müller glia (MG), major 
retinal supporting cells for retinal homeostasis 
and pathological responses, are a key cellular 
entity to coordinate DR responses. MG are a 
major producer for vascular endothelial growth 
factor (VEGF), a cardinal pathogenic factor for 
retinal inflammation, neovascularization, and 
BRB lesions and leakage in the development of 
DR [7,8]. MG are also the site for regulating 
water-balance in the retina [34], a potential 
diabetes-induced physiological or pathological 
response that leads to DME. Our recently 
work suggests that VEGF receptor-2-mediated 
AKT survival pathway in MG plays a critical 
role in neuroprotection through MG viability 
and through the production and action of MG-
derived neurotrophins [27,35], such as brain-
derived neurotrophic factor (BDNF). BDNF 
exerts additional MG viability via AKT and 
ERK, classical survival and proliferation 
mediators. Moreover, MG-derived VEGF and 
neurotrophin(s) may work in a synergistic 
fashion to regulate MG viability in DR and 
hypoxic retinal disorders [36], which in turn, 
makes MG healthier and leads to an elevated 
production of trophic factors for neuroprotection.

Figure 1) Simplified pathogenic mechanisms of DR. 
NPDR: non-proliferative DR; DME: diabetic ma-
cular edema; PDR: proliferative DR; DN: diabetic 
neuropathy.
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Treatment of DR

Treatments of BRB breakdown

Patients with intensive glycemic control has 
shown a 70-80% reduction in the progression 
of DR in clinical trials, compared those under 
normal care [3,37]. Prospective studies suggest 
that intensive blood pressure control will reduce 
the risk of DR by 30% [9,10].  Inflammation-
reducing steroid hormones and dyslipidemia-
controlling fibrates also demonstrate efficacies 
in reducing DR-induced BRB leakage and 
breakdown [38,39]. These strategies are effective 
in treating BRB pathology in DR. For patients 
not responding to pharmacological interventions 
for BRB breakdown in DR, the traditional laser 
photocoagulation can seal specific leaking 
blood vessels and reduce neovascularization in 
the retina [40]. In addition, vitreoretinal surgery 
to remove the jelly-like substance in the vitreous 
at early stage of PDR is effective in restoring 
vision [40]. Finally, combinational approaches 
are not uncommon for treating BRB breakdown 
in DR.  

Anti-VEGF strategy for BRB breakdown

A major accomplishment in the quest for 
effective treatment of BRB breakdown and 
neovascularization in DR and other hypoxic 
retinal vascular disorders is the development 
of VEGF blockade agents. In general, ocular 
injected anti-VEGF drugs are effective in 
reducing BRB pathology and improving visual 
acuity in DR and neovascular age-related 
macular degeneration (nAMD) patients [40-42]. 
Owing to its relatively simple delivery procedure 
and effectiveness, anti-VEGF treatment has 
been suggested as a primary therapeutic strategy 
for a wide range of DR pathologies. However, 
a significant portion of DME patients does 
not respond to anti-VEGF therapies [40]. The 

treatment of BRB breakdown in these patients 
may rely on alternative therapies discussed 
above.  

Neural degeneration and protection in DR

While treatment of DME with anti-VEGF 
strategy demonstrates an improvement in best-
corrected visual acuity (BCVA) initially, such 
an improvement is not sustained after long-
term therapies [43,44]. The reduced BCVA 
may be relevant to the loss of retinal and 
choroidal integrity, as the choroids and retina 
are significantly thin in some patients [45,46]. 
A substantial portion of nAMD patients with 
long-term anti-VEGF therapies appears to have 
similar morphological changes [47,48]. These 
clinical studies, along with the observations of 
anti-VEGF approaches in animal models of DR 
and hypoxia [49,50], suggest that VEGF plays a 
protective role in the retina and adjacent tissues in 
DR and hypoxic ocular disorders. Theoretically, 
VEGF could be used as a neuroprotectant 
to treat retinal neuronal degeneration in DR, 
as discussed earlier [21,25,27]. However, 
VEGF is a cardinal pathogenic factor and a 
major therapeutic target for DR and hypoxic 
retinal vascular disorders. Our work that 
demonstrates VEGF-mediated MG viability 
and neuroprotection through the upregulation of 
BDNF production in MG offers a new avenue 
for neuroprotection and for safer anti-VEGF 
therapies in DR [27,35]. As BDNF has been used 
in clinical trials for neuroprotection in various 
non-DR-related retinal degenerations [51-53], 
its safety profile is undisputable. BDNF has 
also been shown to be effectively in protecting 
retinal ganglion cells in glaucoma [54,55]. 
The use of BDNF in conjunction with other 
neurotrophins or growth factors may be feasible 
for neuroprotection in DR or during anti-VEGF 
treatment [36]. As neuroprotection in DR has 
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not been explored in depth, significant amount 
of efforts in identifying the therapeutic potential 
of neuroprotectant singly or in combination 
may be necessary.

Conclusion

While the prevalence of diabetes and DR has 
been increased significantly for recent decades, 
it is encouraging that the number of severe vison 
loss resulted from DR is actually decreasing 
due to education, preventive measures, and 
new diagnostic technologies and therapies. 
At present, managing DR remains a major 
challenge. Significant progress is needed in 
education, patient care, and in research for the 
genetics and molecular and cellular mechanisms, 
as well as for the development of new diagnosis 
and more effective and safer therapeutics. The 

ultimately goal is to prevent vision loss in DR, a 
major complication of diabetes.
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