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ABSTRACT This work presents a general framework for developing a multi-parameter 1-D chaotic system
for uniform and robust chaotic operation across the parameter space. This is important for diverse practical
applications where parameter disturbance may cause degradation or even complete disappearance of chaotic
properties. The wide uninterrupted chaotic range and improved chaotic properties are demonstrated with
the aid of stability analysis, bifurcation diagram, Lyapunov exponent (LE), Kolmogorov entropy, Shannon
entropy, and correlation coefficient. We also demonstrate the proposed system’s amenability to cascading for
further performance improvement. We introduce an efficient Field-Programmable Gate Array (FPGA)-based
implementation and validate its chaotic properties using comparison between simulation and experimental
results. Cascaded NLCS exhibits ALE (Average LE), CR (chaotic ratio), and CPS(chaotic parameter space) of
1.364, 100%, and 1.1×1012, respectively for 10-bit parameter values. We provide a thorough comparison of our
system with prior works both in terms of performance and hardware cost. We also introduce a simple extension
scheme to build 2-D robust, hyperchaotic NLCS maps. We present a novel reconfigurable multi-parameter
Pseudo Random Number Generator (PRNG) and validate its randomness using two standard statistical tests,
namely, NIST SP 800-22 and FIPS PUB 140-2. . Finally, we outline six potential applications where NLCS will
be useful.

INDEX TERMS Chaos, chaotic map, robust chaos, encryption, reconfigurable random number generator,
Lyapunov exponent, FPGA, security.

I. INTRODUCTION

Chaos can be defined as a phenomenon that occurs when
the temporal evolution of a deterministic nonlinear dynamic
system becomes aperiodic and highly sensitive to its initial
state. In the chaotic region, two initial states, starting
infinitesimally close to each other, will eventually follow
two drastically different time trajectories which will never
repeat themselves. Starting with Lorenz’s seminal work in
1963 [1], chaos has attracted a lot of attention in the last
60 years in different disciplines such as physics, biology,
chemistry, and engineering [2]. In recent years, researchers
have leveraged the dual properties of chaotic systems,
namely, ‘deterministic aperiodicity’ and ‘acute susceptibility
to initial state perturbation’ for diverse applications such
as random number generation [3], [4], [5], [6], data
encryption [7], [8], [9], reconfigurable logic [10], [11],
Physical Unclonable Function (PUF) [12], side channel
attack mitigation [13], secure communication [14], [15],

[16], modeling of astronomical phenomenon [17], logic
obfuscation [18] and so on.

Based on the number of state variables or dimension,
chaotic systems can be broadly divided into two groups:
(i) one-dimensional (1-D) and (ii) multi-dimensional (multi-
D) systems. Based on the nature of time evolution, chaotic
systems can be classified into two groups: (i) continuous-time
and (ii) discrete-time. It has been shown that a continuous-
time nonlinear dynamic system has to have at least three state
variables to show chaotic behavior whereas for discrete-time
system there is no such restriction [2]. Familiar examples of
1-D discrete-time maps are sine map, tent map, logistic map,
and so on. On the other hand, Henon map (discrete-time) and
Lorenz system (continuous-time) are examples of multi-D
chaotic systems.

A 1-D discrete-time chaotic system consists of a non-
linear block, called a chaotic map, which defines one or
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multiple control parameter-dependent evolution of a single
state variable in discrete-time steps. Conventionally, these
1-D systems have been studied using classic mathematical
functions such as logistic map, tent map, sine map, etc. These
traditional 1-D maps are useful as they offer simplicity in
implementations. However, the chaotic region of these 1-
D maps is limited. Moreover, a good chaotic entropy is
not promised over the whole range of that limited chaotic
window. As a result, any change in the operating condition
or parameter value may degrade the chaotic properties or
even deflect the system from the desired chaotic region
to an undesired non-chaotic (fixed point or periodic orbit)
region. Researchers have been exploring various schemes
for an improved chaotic map by manipulating multiple
existing 1-D maps (henceforth referred to as seed maps).
The schemes include dynamic reconfiguration of control
parameter [19], [20], cascading of multiple seed maps
[21], [6], use of discrete wheel-switching technique [22],
averaging of multiple seed maps [23], sine transformation
of a combination of multiple maps [24], modulation and
coupling [25], exponential chaotic model [15] and so on.
Recently, a new paradigm of designing hyperchaotic maps
based on discrete memristor model has attracted the interest
of the research community. Memristor was postulated as the
fourth fundamental circuit element by Leon O. Chua in 1971
[26] and experimentally demonstrated in 2008 by HP Labs
[27]. By coupling existing 1-D maps with discrete memristor
model, researchers have reported 2-D [28], [29] and 3-D
[30] hyperchaotic maps with complex dynamics along with
their potential usage in secure communication [29] and image
encryption [30]. All of the aforementioned techniques result
in an improved chaotic performance by widening the chaotic
window and/or increasing the chaotic entropy at the cost of
increased overhead.

In this work, we propose a general framework of
a multi-parameter 1-D robust chaotic system called the
Normalized Linearly-combined Chaotic System (NLCS)
where the output of n number of 1-D seed maps are linearly
combined with arbitrary coefficients and then normalized
using a simple algorithm to produce the final output. We
use stability analysis using Jacobian at equilibrium points
along with the bifurcation plot to demonstrate the wide
chaotic region across the entire parameter space. Then the
excellent chaotic properties are illustrated with the aid of
established entropy metrics. The performance analysis shows
that NLCS provides an uninterrupted chaotic window, along
with uniformly high entropy, over the entire parameter
space. We also show an efficient hardware implementation
in field-programmable gate array (FPGA) and validate the
experimental results against the simulation results from
MATLAB. We introduce a simple extension scheme to
build 2-D maps with robust, hyperchaotic and uniformly
excellent properties across the parameter space. Finally,
we propose a new reconfigurable multi-parameter Pseudo
Random Number Generator (PRNG) and outline six potential
applications for the proposed system.

In summary, our main contributions in this work are as
follows:

1) We present a general framework named NLCS for
developing arbitrary number of new multi-parameter 1-D
chaotic system.

2) We demonstrate the uniformly excellent chaotic
operation of four new NLCS maps across the parameter
space using stability analysis, bifurcation diagram, Lyapunov
exponent, Kolmogorov entropy, Shannon entropy, and
correlation coefficient. We also show the proposed system’s
amenability to further improvement in chaotic performance
and parameter space using cascading.

3) We develop an efficient design for Field-Programmable
Gate Array (FPGA)-based hardware implementation and
present a thorough comparison against prior works in terms
of chaotic performance and implementation metrics.

4) We introduce a simple extension scheme to build 2-D
hyperchaotic maps with uniformly excellent properties and
demonstrate it using three representative examples.

5) We present a new reconfigurable multi-parameter
PRNG and validate its excellent randomness property using
two standard statistical test suites. We also outline six
application scenarios where the particular attributes of the
proposed system will be useful.

The remainder of the paper is organized as follows: Three
seed maps used in this work are introduced in section-
II. The proposed scheme, NLCS is presented in section-
III along with the derivation of five representative NLCS
systems. Section-IV evaluates the chaotic performance
with Lyapunov exponent, Kolmogorov entropy, Shannon
entropy, and correlation coefficient. Section-V presents an
extension of the proposed system for further performance
enhancement. An efficient hardware implementation in
FPGA along with its validation against simulation results is
discussed in section-VI. Section-VII introduces some global
metrics to compare the proposed system with previous works.
Section-IX presents a new reconfigurable PRNG using NLCS
along with performance evaluation using statistical tests.
Section-X outlines six promising applications and finally,
section-XI gives concluding remarks.

II. TRADITIONAL SEED MAPS
This section reviews three existing 1-D chaotic maps namely,
logistic, tent, and sine maps as background. They will be used
as seed maps to generate new chaotic maps in Section IV. For
ease of comparison, we are using the normalized versions of
these seed maps such that their domain, range, and parameter
values are within [0, 1].

Logistic map can be mathematically defined as,

xi+1 = L(xi) = 4CLxi(1− xi) (1)

where CL is the control parameter and CL ∈ [0, 1].
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(a) Logistic (b) Tent (c) Sine

FIGURE 1: Transfer curve (first row), Bifurcation diagram (second row), and Lyapunov exponent (third row) of three seed
maps; (a) Logistic (L), (b) Tent (T ) and (c) Sine(S).

Tent map can be mathematically defined as,

xi+1 = T (xi) =

{
2CTxi when, xi < 0.5

2CT (1− xi) when, xi ≥ 0.5
(2)

where CT is the control parameter and CT ∈ [0, 1].

Sine map can be mathematically defined as,

xi+1 = S(xi) = CSsin(πxi) (3)

where CS is the control parameter and CS ∈ [0, 1].
The effect of a control parameter on a dynamical system

can be visualized with a bifurcation diagram where for
each parameter value, a long sequence of steady-state
output values is plotted. The chaotic property in the output
is evaluated with a widely used metric called Lyapunov
exponent (LE). A positive LE demonstrates the existence
of chaotic behavior [2]. Fig. 1 plots the transfer curves,
bifurcation diagrams and LEs of the logistic, sine, and tent
maps with the change of their control parameters. As can
be observed, the logistic, sine, and tent maps have chaotic
behaviors when CL ∈ [0.89, 1], CS ∈ [0.87, 1], and CT ∈
(0.5, 1), respectively. It should be noted that the logistic and
sine maps do not have robust chaos as periodic windows exist

in their chaotic ranges, but the tent map has robust chaos
when CT ∈ (0.5, 1).

III. PROPOSED CHAOTIC SYSTEM
Fig. 2 shows the block diagram of the proposed Normalized
Linearly-combined Chaotic System (NLCS). The output of
the map function, NLCM (Normalized Linearly-combined
Chaotic Map) is fed back to the input after each iteration.
Inside NLCM, the output of the seed maps are linearly
combined and then normalized to produce the final output.
Given, n seed maps, f1(C1, xi), f2(C2, xi), ..., fn(Cn, xi),
the output of the linear combination block, LC is,

LC =

n∑
j=1

ajfj(xi) (4)

Here, a1, a2, ..., an are the coefficients of the linear
combination of seed maps f1, f2, ..., fn, respectively. The
functionality of the normalization block, N(LC), can be
expressed as,

N =
LC − L

H − L
(5)

Here, H = max(LC) and L = min(LC) over the range of
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FIGURE 2: The schematic of the NLCS scheme. Here,
fn and Cn denote the nth mapping function and the
corresponding control parameter, respectively. xi is the ith

iteration value of the state variable.

xi from 0 to 1. Both L and H are functions of the parameters
of the seed maps and coefficients of the linear combination.

The fundamental insight behind this framework can be
conveyed using the the transfer curves three NLCS systems
developed using different combinations of the seed maps. As
shown first row of Fig. 3, all the transfer curves cover the
entire output range ([0,1]) while retaining high slope across
the parameter space for each value of the state variable.
This is in stark contrast to the constituent seed maps as
shown in the first row of Fig. 1 where the slope and output
range vary significantly with the change in parameter value.
Since the chaotic performance has a strong dependence of
the average slope of the trajectory, we expect our system
to have uniformly excellent entropic properties across the
parameter space as will be demonstrated later in section- IV
using LE, KE and SE. Moreover, we expect that the slight
change of the transfer curve as a result of any parameter
variation is sufficient for generating completely uncorrelated
long-term sequence for different parameter values since a
chaotic system is extremely susceptible to tiniest perturbation
in initial condition or parameter value (popularly known as
the ’butterfly effect’). This hypothesis will be proved with
the help of correlation coefficient in section- IV and we
will leverage this to build a novel reconfigurable PRNG in
section-IX.

The proposed NLCS can be formed with any number
of seed maps with different values of coefficients for the
linear combination. In subsection III-A, we will explore
three such maps with two constituent seed maps and unity
coefficients. Then in subsection III-B, we will consider the
case of three seed maps with unity coefficients. In the final
subsection III-C, we’ll consider the case of two seed maps
with coefficients other than 1.

A. TWO SEED MAPS WITH UNITY COEFFICIENTS
First, we’ll consider three combinations of two seed maps
while keeping the coefficients a1 = a2 = 1.

1) Logistic-Tent (LT )
If the two constituent seed maps are logistic and tent maps,
then for a1 = a2 = 1, LC = L(xi)+T (xi), H = CL+CT ,

and L = 0. The final expression for Logistic-Tent (LT ) map
can be written as,

xi+1 =

{
xi(4CL(1− xi) + 2CT )/(CL + CT ); xi < 0.5

(1− xi)(4CLxi + 2CT )/(CL + CT ); xi ≥ 0.5
(6)

The equilibrium points of the LT map are the roots of the
following equation:

x̃ =

{
x̃(4CL(1− x̃) + 2CT )/(CL + CT ); x̃ < 0.5

(1− x̃)(4CLx̃+ 2CT )/(CL + CT ); x̃ ≥ 0.5
(7)

Solving (7), we can find that there are two equilibrium points
over the range [0, 1]. The equilibrium point of a dynamic
system can be either stable or unstable. A stable point implies
a fixed point whereas an unstable point implies a periodic
or chaotic oscillation. The stability of a fixed point can
be determined by the magnitude of the eigenvalues of the
Jacobian matrix (a derivative of the map function with respect
to the state variable) at that equilibrium point. If at least one
eigenvalue has a magnitude greater than 1 then the system
is unstable. For a 1-D system, the eigenvalue can be simply
determined by the value of the Jacobian at the equilibrium
point. The Jacobian for LT map can be expressed as:

J(x) =

{
(4CL(1− 2x) + 2CT )/(CL + CT ); x < 0.5

(4CL(1− 2x)− 2CT )/(CL + CT ); x ≥ 0.5
(8)

The second and third subplot of Fig. 3a show the
two equilibrium points and their corresponding Jacobian
values, respectively. The magnitudes of the Jacobian at both
equilibrium points are greater than 1 clearly indicating an
unstable state. The fourth subplot shows the corresponding
bifurcation diagram which illustrates chaotic operation
across the entire 2-D parameter space. This is consistent with
the instability of equilibrium points indicating robust chaos
for all possible combinations of parameter values.

2) Logistic-Sine (LS)
If the two constituent seed maps are logistic and sine maps,
then for a1 = a2 = 1, LC = L(xi) + S(xi), H = CL +CS

and L = 0. The final expression for Logistic-Sine (LS) map
can be written as,

xi+1 = (4CLxi(1− xi) + CSsin(πxi))/(CL + CS) (9)

Here, CL and CS are two parameters of the system and
CL, CS ∈ [0, 1]. For a particular combination of parameters,
there are two equilibrium points which can be determined by
solving for the roots of the following equation:

x̃ = (4CLx̃(1− x̃) + CSsin(πx̃))/(CL + CS) (10)

The Jacobian for LS map can be expressed as:

J(x) = (4CL(1− 2x) + πCScos(πxi))/(CL + CS) (11)
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(a) (b) (c)

FIGURE 3: Transfer curves (first row), equilibrium points (second row), corresponding Jacobian (third row) and Bifurcation
diagrams (fourth row) of three NLCS maps; (a) Logistic-Tent (LT ), (b) Logistic-Sine (LS) and (c) Sine-Tent (ST ).

The second and third subplot of Fig. 3b show the two
equilibrium points and their corresponding Jacobian values.
The magnitudes of the Jacobian at both equilibrium points
are greater than 1 clearly indicating an unstable state. The
fourth subplot shows the corresponding bifurcation diagram
which shows that the outputs are chaotic across the entire 2-
D parameter space. This is consistent with the instability of
equilibrium points and demonstrates wide robust chaos for
all possible combinations of parameter values.

3) Sine-Tent (ST )

If the two constituent seed maps are sine and tent maps, then
for a1 = a2 = 1, LC = S(xi) + T (xi), H = CS +CT , and
L = 0. The final expression for Sine-Tent (ST ) map can be

written as,

xi+1 =

{
(CSsin(πxi) + 2CTxi)/(CS + CT ); xi < 0.5

(CSsin(πxi) + 2CT (1− xi))/(CS + CT ); xi ≥ 0.5
(12)

Here, CL and CS are two parameters of the system and
CL, CS ∈ [0, 1]. For a particular combination of parameters,
there are two equilibrium points that can be determined by
solving for the roots of the following equation:

x̃ =

{
(CSsin(πx̃) + 2CT x̃)/(CS + CT ); x̃ < 0.5

(CSsin(πx̃) + 2CT (1− x̃))/(CS + CT ); x̃ ≥ 0.5
(13)

The Jacobian for ST map can be expressed as:

J(x) =

{
(πCScos(πx) + 2CT )/(CS + CT ); x < 0.5

(πCScos(πx)− 2CT )/(CS + CT ); x ≥ 0.5
(14)
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The second and third subplot of Fig. 3c show the
two equilibrium points and their corresponding Jacobian
values, respectively. The magnitudes of the Jacobian at both
equilibrium points are greater than 1 clearly indicating an
unstable state. The fourth subplot shows the corresponding
bifurcation diagram demonstrating chaos across the entire 2-
D parameter space. This is consistent with the instability of
equilibrium points indicating wide robust chaos across the
entire parameter space.

B. THREE SEED MAPS WITH UNITY COEFFICIENTS
Here, we consider an NLCS system consisting of three seed
maps with unity coefficients i.e. a1 = a2 = a3 = 1,
and name it Logistic-Tent-Sine (LT S) map. Here, LC =
L(xi) + T (xi) + S(xi), H = CL + CT + CS , and L = 0.
The final expression for LT S map can be written as,

xi+1 =


4CLxi(1−xi)+2CT xi+CSsin(πxi)

CL+CT+CS
; xi < 0.5

(4CLxi(1−xi)+2CT (1−xi)+CSsin(πxi)
CL+CT+CS

; xi ≥ 0.5
(15)

The two equilibrium points can be determined by solving for
the roots of the following equation:

x̃ =


4CLx̃(1−x̃)+2CT x̃+CSsin(πx̃)

CL+CT+CS
; x̃ < 0.5

(4CLx̃(1−x̃)+2CT (1−x̃)+CSsin(πx̃)
CL+CT+CS

; x̃ ≥ 0.5
(16)

The Jacobian for LT S map can be expressed as:

J(x) =


4CL(1−2x)+2CT+πCScos(πx)

CL+CT+CS
; x < 0.5

4CL(1−2x)−2CT+πCScos(πx)
CL+CT+CS

; x ≥ 0.5
(17)

The first two rows of Fig. 4 show the two equilibrium points
and their corresponding Jacobian values while varying two
parameters and keeping the third one fixed. In all cases,
the magnitudes of the Jacobian at both equilibrium points
are greater than 1 clearly indicating an unstable state. The
third row shows the corresponding bifurcation diagrams
which show that the generated sequences are chaotic across
the entire 3-D parameter space. This is consistent with the
instability of equilibrium points indicating wide robust chaos
for all possible combinations of parameter values.

C. TWO SEED MAPS WITH NON-UNITY COEFFICIENTS
Previous subsections explored the linear combination of seed
maps with unity coefficients. Here, for brevity, we consider
one example with non-unity coefficients, but we have verified
that similar results can be obtained for other combinations
as well. For non-unity coefficients, we use superscript to
indicate the coefficients in an ordered pair e.g. NLCS(a1,a2).
Let us consider the logistic-tent map with a1 = 2 and a2 = 3.
Then, LC = 2L(xi)+3T (xi), H = 2CL+3CT and L = 0.
The final expression for LT (2,3) map can be written as,

xi+1 =

xi(8CL(1− xi) + 6CT )/(2CL + 3CT ); xi < 0.5

(1− xi)(8CLxi + 6CT )/(2CL + 3CT ); xi ≥ 0.5

(18)

The equilibrium points of this system are the roots of the
following equation:

x̃ =

{
x̃(8CL(1− x̃) + 6CT )/(2CL + 3CT ); x̃ < 0.5

(1− x̃)(8CLx̃+ 6CT )/(2CL + 3CT ); x̃ ≥ 0.5
(19)

The Jacobian for this map can be expressed as:

J(x) =

(8CL(1− 2x) + 6CT )/(2CL + 3CT ); x < 0.5

(8CL(1− 2x)− 6CT )/(2CL + 3CT ); x ≥ 0.5
(20)

Fig. 5a and Fig. 5b show the two equilibrium points and
their corresponding Jacobian values. The magnitudes of the
jacobian at both equilibrium points are greater than 1 clearly
indicating an unstable state. Fig. 3c shows the corresponding
bifurcation diagram which demonstrates chaos across the
entire 2-D parameter space. This is consistent with the
instability of equilibrium points and clearly illustrates robust
chaos across the entire 2-D parameter space for non-unity
coefficients.

IV. PERFORMANCE ANALYSIS
A. LYAPUNOV EXPONENT
The sensitive dependence on the initial condition is a
defining characteristic of a chaotic system. Two neighboring
trajectories of a chaotic sequence, starting from slightly
different initial conditions, diverge exponentially fast, on
average. The most widely-used metric to quantify that
sensitive dependence on initial conditions is Lyapunov
Exponent (LE). For a discrete-time chaotic system, LE is
defined as shown in Eq. (21).

LE = lim
n→∞

1

n

n−1∑
i=0

ln|f ′(xi)| (21)

The value of LE is negative for fixed points and periodic
orbits whereas for chaotic attractors, its value is positive [2].
Fig. 6 shows the results for four NLCS systems. The LE
of each map is calculated with 14,000 steady-state iterations
(after discarding first 1000 points) for each control parameter
value. The first row presents a comparison of LE values
between NLCS and its constituent seed maps with one or
more control parameters fixed to a constant value while the
other one is varied along the x-axis. It is clear from these 2-
D plots that in the NLCS systems, LE value remains almost
steadily close to the maximum LE achievable by the seed
maps over the whole operational range. The second row in
Fig. 6 shows 3-D LE plots for four NLCS systems where we
can observe a uniformly high LE across the entire parameter
space.

B. KOLMOGOROV ENTROPY
Kolmogorov entropy (KE) captures the generation rate of
new information. In this work, we follow the estimation
method by Grassberger et al. in [31] which partitions the
phase space of a F dimensional dynamic system into ϵF-
sized boxes. We are measuring the state of a trajectory,
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(a) (b) (c)

FIGURE 4: Equilibrium points (first row), corresponding Jacobian (second row) and bifurcation diagrams (third row) of LT S
maps while keeping one parameter fixed at 0.5 and varying the other two parameters; (a) CL − CT , (b) CT − CS and (c)
CL − CS .

(a) (b) (c)

FIGURE 5: LT map with a1 = 2 and a2 = 3; (a) Equilibrium points, (b) Jacobian and (c) Bifurcation diagram.

X⃗(t), at intervals of time, τ . There is a probability measure,
p(i1, i2, ..., id), that defines the joint probability of X⃗(t)
being in the box i1 at t = τ , in i2 at t = 2τ , and so on.
Then the KE is defined as shown in Eq. (22).

KE = − lim
τ→∞

lim
ϵ→∞

lim
d→∞

1

n

∑
i1,..,id

p(i1, i2, ...., id)×

ln(p(i1, i2, ...., id)) (22)

KE is 0 for an ordered sequence, ∞ for a random sequence,
and a positive nonzero constant for a chaotic sequence where
the higher positive value of KE indicates better chaotic
performance [32]. Fig. 7 shows a uniformly high KE across
the entire parameter space for all NLCS schemes, whereas

the constituent seed maps show a non-uniform distribution
of positive nonzero value in a very narrow region. The KE of
each map is calculated with 14,000 steady-state iterations for
each parameter value.

C. SHANNON ENTROPY

Shannon Entropy (SE) is a widely used metric to measure
the amount of uncertainty in a random process. If the range
of values of signal X is divided into n equally spaced bins,
then the Shannon Entropy can be written as,

SE = −
n∑

i=1

Pr(xi)log2Pr(xi) (23)
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(a) Logistic-Tent (LT ) (b) Logistic-Sine (LS) (c) Sine-Tent (ST ) (d) Logistic-Tent-Sine (LT S)

FIGURE 6: Lyapunov Exponent (LE) plot of four NLCS maps.

(a) Logistic-Tent (LT ) (b) Logistic-Sine (LS) (c) Sine-Tent (ST ) (d) Logistic-Tent-Sine (LT S)

FIGURE 7: Kolmogorov Entropy (KE) plot of four NLCS maps.

Here, Pr(xi) is defined as the probability of signal value
located in the ith bin. SE can be used to check the
randomness of a discrete-time sequence. We set n = 210 =
1024 and used Eq. (23) to calculate the SE for each control
parameter with 14,000 steady-state iterations. The theoretical
maximum value is log2n = log21024 = 10, which occurs
when the sequence values are uniformly distributed across
the whole range ([0,1]). The value of SE increases with the
amount of ergodicity involved in the sequence. Fig. 8 shows
the SE values of NLCS and corresponding seed maps. It is
clear from the SE plots that NLCS offers a very high SE value
over the whole operational range.

D. CORRELATION COEFFICIENT

A defining feature of a chaotic system is its extreme
sensitivity to slight perturbation in the initial state i.e. initial
condition or parameter values. This sensitive dependence

on the initial state can be measured using a well-known
metric called correlation coefficient (CC). Eq. (24) shows
the expression of Pearson’s correlation coefficient that can
be used to determine the correlation between two sequences,
X and Y.

Co =
E[(X − µX)(Y − µY )]

σXσY
(24)

Here, ’E[.]’ indicates the expectation operator while µ
and σ represent the mean value and standard deviation,
respectively. The value of the CC is close to +1/-1 if X and
Y are highly correlated whereas, a close to 0 CC indicates
an extremely low correlation between the data sequences. To
measure the initial state dependence using the CC, two sets
of steady-state discrete-time data sequences are generated
from the same chaotic oscillator with a particular control
parameter but with two slightly different initial states. Then
CC is calculated using Eq. (24). If the system is chaotic for
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(a) Logistic-Tent (LT ) (b) Logistic-Sine (LS) (c) Sine-Tent (ST ) (d) Logistic-Tent-Sine (LT S)

FIGURE 8: Shannon Entropy (SE) plot of four NLCS maps.

that particular control parameter then the tiniest variation in
the initial state will result in two very different sequences and
as a result, we will get a CC close to 0. On the other hand,
if the operating point is non-chaotic then the two steady-state
sequences will be very similar and result in a CC close to
+1/-1.

Fig. 9 shows the plots of calculated CC for four
NLCS systems demonstrating acute sensitivity to initial
value perturbation since the CC value is very close to
0 across the entire parameter space. We did a similar
experiment to measure the system’s susceptibility to
parameter perturbation. In this case, we have generated two
long sequences with identical initial conditions while slightly
varying the parameter value. Fig. 10 shows the parameter
sensitivity results for the four NLCS systems demonstrating
high susceptibility to tiniest parameter perturbation across
the entire parameter space. Therefore, NLCS can be used
as a reconfigurable chaotic oscillator since each parameter
configuration will generate a completely unique sequence
(Fig. 10) with excellent entropic properties as demonstrated
in Fig. 6, Fig. 7, and Fig. 8. Later, in section-IX, this attribute
will be leveraged to build a new reconfigurable PRNG.

V. PERFORMANCE IMPROVEMENT WITH CASCADING
It was shown in [21] that cascading multiple 1-D maps can
significantly improve chaotic properties. Later, it was shown
that this is true under certain constraints and not all maps
are amenable to performance improvement via cascading [6]
. As it turns out, cascading is particularly suitable for all
combinations of NLCS maps. Cascading of two maps with
independent parameter exponentially expands the parameter
space while uniformly improving entropy metrics across the
extended space. The schematic of the Cascaded Normalized
Linearly-combined Chaotic System (CNLCS) is presented
in Fig. 11. The performance improvement in CNLCS is
illustrated using two entropy measures, LE and KE for

the cascaded connection of two NLCM’s. The constituent
NLCMs can be identical or different. Fig. 12 and Fig. 13
present a comparison between NLCS and CNLCS based
on the LE and KE values, respectively. The plots show
that CNLCS with two NLCMs increase both LE and KE
by almost a factor of two. Similarly, it can be shown
that cascading n number of maps improves these entropy
measures by almost a factor of n. In addition, each new
cascaded map increases the number of parameters and
exponentially extends the chaotic space.

VI. HARDWARE IMPLEMENTATION USING FPGA
Recently, FPGA has gained popularity for implementing
different types of chaotic systems [33], [34]. WE have chosen
a Nexys A7 FPGA board as our hardware platform due to
their affordability, reconfigurability and high-performance.
We have implemented four types of NLCS system, namely,
LT , LS , ST , and LT S in Nexys A7 FPGA board. An
external device (e.g. our PC) communicates with the FPGA
with UART (Universal Asynchronous Receiver-Transmitter)
protocol which is used for data collection for post-processing
and visualization in our computer. Fig. 14 shows our
experimental setup. The hardware architecture and the FPGA
implementation result are discussed below. Here, we have
used LT as a specific example to explain some of the details
but the principles are applicable for any NLCS.

A. NUMBER REPRESENTATION
Since we are dealing with real numbers exclusively in the
range [0, 1], we have decided to develop our own fixed-point
number representation system with n + 1 binary bits (n : 0)
under the assumption of binary point after the nth bit. If
we consider the n + 1 bits as a binary integer, then the
binary number 0 and 2n correspond to the real numbers 0
and 1, respectively. The following results are obtained for
n = 64 which gives us a uniform high resolution (1/264)
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(a) Logistic-Tent (LT ) (b) Logistic-Sine (LS) (c) Sine-Tent (ST ) (d) Logistic-Tent-Sine (LT S)

FIGURE 9: Correlation Coefficient (CCinitial) plot demonstrating initial value sensitivity of four NLCS maps.

(a) Logistic-Tent (LT ) (b) Logistic-Sine (LS) (c) Sine-Tent (ST ) (d) Logistic-Tent-Sine (LT S)

FIGURE 10: Correlation Coefficient (CCparameter) plot demonstrating parameter sensitivity of four NLCS maps.

FIGURE 11: CNLCS scheme.

across the entire range with less overhead compared to
standard 64-bit IEEE-754 floating-point representation [35]
which is meant to represent a much wider range of numbers
i.e. [−2 × 21023,+2 × 21023] and consequently, can give
the highest resolution of (1/252) due to its 52-bit mantissa.
Moreover, the finite precision of a digital system implies that
it will never be possible to obtain an ideal infinitely aperiodic
sequence since the system is bound to reach a previous state
after a finite number of iterations which dictates a periodic

(a) LT -LT (b) LT -LS (c) LT -ST

FIGURE 12: LE plots of different NLCS and CNLCS
systems.

repetition due to the system’s deterministic nature. Hence, in
practice, we strive to obtain the highest possible period out of
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(a) LT -LT (b) LT -LS (c) LT -ST

FIGURE 13: KE plots of different NLCS and CNLCS
systems.

FIGURE 14: Experimental Setup for FPGA implementation

a chaotic system. Due to our number representation scheme,
the highest period achievable by our system is 263 compared
to 252 in 64-bit IEEE-754 floating-point representation.

B. HARDWARE ARCHITECTURE

FIGURE 15: Schematic of the FPGA Implementation.

The proposed chaotic oscillators are designed in Verilog
Hardware Description Language (HDL) and implemented
in Nexys A7 FPGA board. As shown in the block diagram
of Fig. 15, it has input and output communication modules
to communicate with external devices. The circuit has four
input ports and one output port as described below:

• CLK: Provides the clock input for the digital circuits.
• Data_In: An UART Protocol enabled input pin which

accepts data from external devices.
• Stop: A control input to stop all processes in the FPGA.
• Reset: A control input to reset the system.
• Data_Out: An output port uses UART protocol to

communicate individual data produced by the chaotic
oscillator with external devices.

The system has three distinct parts as described below:

1. Data_Input: This input processing module accepts
information from an external device using UART protocol
and outputs the initial condition for the chaotic map. External
device can run the algorithm shown in Fig. 16. This sends 3×
n+24 bits of data under the UART protocol. The Data_Input
module receives the data and outputs the initial condition and
parameters for the chaotic map (x0, CL, and CT ) which are
all n + 1 bits in size. It also outputs a completion trigger bit
to notify the next module in the pipeline to accept the initial
condition and parameters.

FIGURE 16: Algorithm for communication between the
external device and Data_Input module.

FIGURE 17: Schematic of the Data_Process module.

2. Data_Process: This data processing module is built as
a finite state machine to implement the proposed scheme
as shown in Fig. 17. It accepts the initial condition and
parameters and outputs the iterated sequence according to
the chaotic map. The normalization step in the proposed
scheme requires division which is slow compared to other
operations. However, we observe that the normalizing factor
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does not change throughout iterations, and consequently, we
need to do this only once before the iteration starts which
does not reduce the running throughput of the system. It
still has a higher latency for the first output but that is
less significant compared to throughput for iterated maps
since we usually use these systems to generate a very long
sequence of outputs. We elaborate this mechanism using LT
map function as an example. The transfer function of LT
map from Eq. 6 can be rewritten as,

xi+1 = C1 ×M1(xi) + C2 ×M2(xi) (25)

Here, C1 = CL

CL+CT
, C2 = CT

CL+CT
, M1(xi) = L(xi) for

CL = 1 and M2(xi) = T (xi) for CT = 1. C1 is calculated
using the highly efficient division algorithm shown in Fig.
18. C2 is calculated by subtracting C1 from 1. The inputs CL

and CT and the outputs C1 and C2 from the Division sub-
module are all ∈ [0,1] which satisfy the original assumption
behind our chosen number representation. The circuit ignores
calculation for CL, CT > 1. This saves n-bit register and
n clock cycles in the operations performed by the circuit.
The Reg sub-module stores the current state of the chaotic
system i.e xi and the NLCM sub-module calculates the next
state based on the current state from Reg module and pre-
calculated C1 and C2 from the Division sub-module using
Eq. 25.

FIGURE 18: Division algorithm for NLCM.

3. Data_Output: This module outputs the value produced
by each iteration of the chaotic map. It is triggered by the
Data_Process module to send each new output of the iterated
map. It appends the n + 1-bit data with leading zeros and
converts it to n + 8- bit data. This n + 8- bit data is
sent via UART protocol to the external device. The highly
optimized hardware implementation ensures a throughput
which is almost the same as the constituent seed maps (only
fractionally lower due to an extra addition operation) while
providing much better chaotic properties as shown in the next
subsection.

FIGURE 19: Comparison between MATLAB and FPGA
implementation results for LT map (x0 = 0.75, CL = 0.90, CT =
0.25).

C. FPGA IMPLEMENTATION RESULT
Fig. 19 shows a comparison between MATLAB simulation
and FPGA implementation results of LT map for an
initial condition x0 = 0.75 and parameter values, CL =
0.90 and CT = 0.25. The series diverges after 50
iterations. This is due to our choice of a fixed-point number
representation system for FPGA implementation (subection-
VI-A) which is different from the 64-bit IEEE-754 floating-
point representation used in MATLAB simulation. We chose
this representation to achieve a higher resolution in the
desired range and modified arithmetic modules for efficient
implementation. The tiny fluctuations resulting from this
difference are amplified by the high susceptibility of the
chaotic system to the slightest perturbation which leads to the
eventual divergence of these two sequences. This divergence
is not significant since, theoretically speaking, neither of the
two implementations is more correct than the other one.
In fact, our FPGA implementation has higher resolution in
the desired range as pointed out in Section VI-A compared
to MATLAB. The more important question for practical
application is whether chaotic entropy values are similar
in both implementations. To explore this, we have created
two sets of discrete-time sequences with each sequence
consisting of 14,000 steady-state values, one with MATLAB
simulation and the other one with FPGA. Each set contains
chaotic sequences for different parameter values. We have
calculated the LE, KE, and SE values from the generated
sequences for both cases, and this entire process is repeated
for four NLCS maps, namely, LT , LS, ST and (LT S). Fig.
20 clearly shows an almost identical match between results
from MATLAB and FPGA, thereby validating the potential
of this efficient hardware implementation for diverse security
applications.

VII. COMPARISON WITH PRIOR WORKS
The first advantage of the proposed design is its much
wider chaotic region i.e. increase in the quantity of chaotic
design space. The second advantage is the almost uniform
high chaotic properties across the entire chaotic range i.e.
improvement of quality of chaotic operation. If a system
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(a) Logistic-Tent (LT ) (b) Logistic-Sine (LS) (c) Sine-Tent (ST ) (d) Logistic-Tent-Sine (LT S)

FIGURE 20: Comparison of entropy metrics between MATLAB simulation and FPGA implementation.

TABLE 1: Comparison of chaotic performance

Design/metrics ALE MLE AKE MKE ASE MSE ACCinit mCCinit ACCpar mCCpar CPS(N = 210) CR(%) ANDR(%)

Logistic 0.388 0.694 0.397 0.693 8.93 9.69 0.244 1.1 × 10−4 0.247 4.14 × 10−5 101.27 9.89 76.25
Tent 0.393 0.693 0.334 0.67 7.63 9.95 0.391 1.47 × 10−5 0.387 4.4 × 10−5 502.28 49.05 42.29
Sine 0.408 0.689 0.417 0.681 8.96 9.7 0.195 4.55 × 10−5 0.193 3.12 × 10−6 121.73 11.89 75.09

ZBC(LT) [7] 0.684 0.71 0.658 0.693 9.88 9.95 0.0072 4.55 × 10−5 0.0068 1.32 × 10−6 1024 100 99.89
DPCCS(LT) [19] 0.45 0.683 0.464 0.964 8.94 9.91 0.272 2.05 × 10−5 0.272 5.05 × 10−5 1024 100 59.74

ECM(LT) [15] 0.676 0.695 0.653 0.695 9.68 9.74 0.007 3.32 × 10−5 0.0064 4.46 × 10−5 1.05 × 106 100 99.99
CNLCS(LT-LT) 1.364 1.387 1.304 1.329 9.91 9.95 0.007 3.97×10−6 0.0067 7.55×10−6 1.1×1012 100 99.99

TABLE 2: Comparison of hardware implementation metrics in Artix 7 FPGA with 100 MHz clock

Design LUT FF DSP BUFG LUTRAM Power(mW) Speed(cycle/iteration)
Logistic 1005 316 48 3 - 190 2

Tent 319 316 16 3 - 128 2
Sine 2055 316 176 3 - 406 2

ZBC(LT) [7] 1408 387 64 3 - 211 2
DPCCS(LT) [19] 1354 518 64 3 - 203 2

ECM(LT) [15] 9904 14564 127 4 1646 511 141
CNLCS(LT-LT) 2941 791 128 3 - 350 2

has p parameters and each parameter can have N distinct
values, then the entire parameter space (EPS) can be defined
as EPS = Np [36]. A subset of this space is chaotic which
we call chaotic parameter space (CPS). We use a metric [36]
named chaotic ratio (CR) which is defined as the ratio of CPS
to EPS.

CR(%) =
CPS

EPS
× 100 (26)

For quality assessment, we are averaging LE, SE, KE, and
the absolute value of CC across the chaotic region to come
up with a single global metric for each entropy measure.
Higher average LE (ALE), average KE (AKE), and average

SE (ASE) imply better entropic properties. Similarly, a lower
average CC magnitude (ACC) closer to zero implies more
initial state sensitivity i.e. better chaotic quality. We also
report the maximum value of LE, KE, and SE (MLE, MKE,
and MSE) and the minimum absolute value of two types
of CC (mCC). In addition, the dynamic swing range of the
steady-state output inside the chaotic region should be as
close to the highest output range(R) as possible to ensure
the maximum unpredictability. For capturing this aspect of
chaotic operation, we use a metric [36] named average
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normalized dynamic range (ANDR) defined as ,

ANDR(%) = (
1

CPS

∑
i∈CPS

V i
max − V i

min

R
)× 100 (27)

Table 1 compares our proposed design, CNLCS (in bold)
with the three basic seed maps as well as three previous
works, namely ZBC [7], DPCCS [19] and ECM [15]
using the above-mentioned metrics and it shows significant
improvement considering all aspects of the chaotic operation.

In addition, we have implemented the prior works
along with our proposed system in the Nexys A7 FPGA
board and compared the hardware implementation metrics
such as resources, power consumption and speed (clock
cycle/iteration) of our system against 6 prior works as shown
in Table 2. Table 1 and Table 2 show that our proposed system
provides significantly superior chaotic performance with
moderate hardware cost. For example, techniques such as
ECM [15] achieves uniformly robust chaos using logarithms
and exponentiation which are computationally much more
expensive compared to NLCS. In addition, unlike these prior
works, two NLCM maps can be easily combined without any
additional hardware to form a multi-parameter 2-D robust,
hyperchaotic system as will be shown in Section VIII.

VIII. EXTENSION TO ROBUST AND HYPERCHAOTIC 2D
MAPS
A dynamical system is hyperchaotic when it has more
than one positive lyapunov exponent i.e. its trajectories will
diverge in several directions. Since this dynamic behavior
is more complex than chaotic behavior, it has attracted the
attention of researchers in recent times [37], [38]. In this
section we propose a simple cross-coupling technique to
design a 2D robust, hyperchaotic system with uniformly
excellently chaotic properties. As shown in Fig. 21, two
NLCM maps, NLCM-I and NLCM-II are cross-coupled
where the the state variable of one map is connected to the
second parameter of the other map. The resulting 2D map has
two independent parameters and two state variables xi and yi.
The method is general and we can choose any NLCM maps
as map I and II. For example, a 2D map LT -LS implies that
LT and LS are used as NLCM-I and NLCM-II, respectively
(Fig. 21).

Fig. 22 shows the LE values for three different 2D maps,
namely LT -LS , LT -ST , and LS-ST , generated using the
above scheme. A 2D maps has two LE values (λ1 and
λ2) and as shown in Fig. 22, both LE values for our 2D
NLCS systems are positive across the entire parameter space
with uniformly high LE values exhibiting both robust and
hyperchaotic behavior.

Similar to 1D NLCS, the performance and parameter
space of this 2D extension can also be improved via
a simple cascading scheme as shown in Fig. 23. We
have kept same parameter for two maps in cascade to
keep the analysis simple, but in general there can be
four independent parameters and the configuration space
increases exponentially with the number of parameters. The

FIGURE 21: Schematic of 2-D NLCS.

doubling of both LE values across the entire parameter space
due to this cascading mechanism for all three 2D systems are
shown in Fig. 24.

IX. NOVEL RECONFIGURABLE PRNG USING NLCS
PRNGs are used as critical security primitives in
cryptographic application and information security [39],
[40]. The defining properties of chaotic systems, namely
deterministic aperiodicity and acute susceptibility to any
perturbation in initial condition render them ideal candidates
for building PRNGs [41], [3], [42]. Here, we present a new
reconfigurable multi-parameter PRNG leveraging the robust
chaotic operation, uniformly high entropy, and availability of
multiple independent parameters in NLCS.

The schematic of the proposed PRNG is shown in Fig. 25.
We have two parallel chaotic oscillators, one using NLCS
and the other one using CNLCS. We are using the LT map
as the NLCS in the construction of this PRNG. At every
iteration, we extract 8 bits (13:30) from the 64-bit output and
XOR them to produce the final 8-bit output i.e. a throughput
of 8 bits/iteration. NLCS provides two parameters(r1 and
r2) whereas CNLCS provides four additinal parameters (r3,
r4, r5, and r6). Due to the uniform chaotic properties of
NLCS and CNLCS, this PRNG is reconfigurable across the
entirety of its six dimensional parameter space. To illustrate
the reconfigurability, we have chosen six different parameter
configurations which are shown in Table 3 and for each
configuration, the excellent randomness of the proposed
PRNG has been verified using two statistical randomness
tests, namely NIST and FIPS.

1) NIST SP 800-22
This test suite from the National Institute of Standards and
Technology (NIST) offers 15 statistical sub-tests to measure
the randomness in a sequence [43]. For each one of the six
configurations, we ran the test with 100 bit-streams generated
from 100 different initial condition with each bit-stream
having a length of 1 million bits. The significance level
was set to 0.01. Hence, a sequence with 100 million bits
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(a) LT -LS (b) LT -ST (c) LS-ST

FIGURE 22: LE (lyapunov exponent) plots of different 2D-NLCS systems.

FIGURE 23: Cascaded 2DNLCS scheme.

TABLE 3: Six different parameter configurations for the
proposed PRNG

PRNG r1 r2 r3 r4 r5 r6

1 0.25 1 0.25 1 0.25 1

2 0.8 0.4 0.02 0.6 0.15 0.95

3 0.01 0.07 0.2 0.15 0.15 1

4 0.9 0.25 0.02 0.7 0.01 0.5

5 0.05 1 0.9 0.2 0.3 0.1

6 0.04 0.3 0.8 0.6 0.1 0.5

(containing 100 bit-streams) will pass a particular test if at
least 96 out of the 100 bit-streams generate a p-values greater

than 0.01. The test suite allocates each of the 100 generated
p-values in 10 sub-intervals from 0 to 1 and evaluates the
uniformity in the distribution with χ2-test. The sequence
under test can be considered uniform if the p-value generated
from the χ2-test (refers to p−valueT ) is greater than or equal
to 0.0001. Table 4 shows that the proposed reconfigurable
PRNG passes all requirements of 15 sub-tests for six different
parameter configurations.

2) FIPS PUB 140-2

The Federal Information Processing Standards Publications
FIPS PUB 140-2 test suite was developed by NIST [44]. FIPS
tests the randomness of a binary sequence by dividing the
sequence into 20,000-bit blocks. Hence, for a test sequence
with 100 million bits, there will be 5000 blocks in total. The
blocks are subjected to 4 sub-tests namely, Monobit, Poker,
Runs, and Long run. The Monobit test counts the number of
1’s in each 20,000-bit block. To pass the test, this number
must be within the range of [9725, 10275]. The Poker test
divides each 20,000-bit block into 5,000 successive 4-bit
segments. The 4-bit segment can have 16 possible values.
The occurrences of 16 values are counted and stored. This
sub-test examines the uniformity of the 4-bit segment. Runs
test counts and stores the maximum sequence of consecutive
1’s or 0’s in a 20,000-bit block. A run of 26 or more of
either 1’s or 0’s is defined as a Long run. The total number
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(a) LT -LS (b) LT -ST (c) LS-ST

FIGURE 24: LE (lyapunov exponent) plots of three different cascaded 2D-NLCS systems.

TABLE 4: NIST results (1 to 6 are six different configurations; *shows average of multiple tests)

NIST TEST Pass rate(%) P − valueT
1 2 3 4 5 6 1 2 3 4 5 6

Frequency 99 98 99 100 98 99 0.046 0.367 0.898 0.575 0.172 0.289
Block frequency 97 98 98 100 99 99 0.006 0.834 0.456 0.202 0.637 0.367

Cumulative sums* 99 98 99 100 98.5 99 0.938 0.208 0.692 0.468 0.305 0.679
Runs 96 100 99 99 99 99 0.514 0.964 0.575 0.071 0.936 0.249

Longest runs of ones 100 100 100 100 100 100 0.637 0.76 0.834 0.514 0.956 0.456
Rank 98 99 99 99 99 100 0.35 0.115 0.534 0.554 0.946 0.74
FFT 100 99 99 97 99 97 0.74 0.817 0.616 0.898 0.097 0.35

Non-overlapping template* 99.03 99.04 99.02 99.98 99.06 99.02 0.504 0.5 0.483 0.501 0.515 0.469
Overlapping template 97 99 99 98 100 97 0.213 0.817 0.401 0.991 0.419 0.29

Universal 99 100 98 99 97 99 0.063 0.596 0.172 0.658 0.72 0.109
Approximate entropy 99 100 99 100 98 99 0.304 0.163 0.911 0.575 0.401 0.335
Random excursion* 98.68 99.77 98.8 98.38 99.78 99.08 0.276 0.451 0.548 0.42 0.232 0.504

Random excursion variant* 99.81 100 98.93 98.83 99.9 99.26 0.289 0.464 0.531 0.644 0.286 0.275
Serial* 99.5 100 100 99.5 98.5 100 0.554 0.385 0.673 0.408 0.658 0.787

Linear complexity 100 97 99 98 99 100 0.514 0.29 0.384 0.437 0.991 0.456

FIGURE 25: Schematic of the proposed PRNG.

of Long runs in a 20,000-bit block is counted as the total
failure. TABLE 5 shows the FIPS test result for each one of
the six configurations of the proposed PRNG. The second
column (from the left) of TABLE 5 shows the total number
of blocks passing the test out of the total 5000 blocks and the
last four columns show the number of failed blocks under
corresponding sub-tests. The results show close to 100%
success implying great randomness.
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TABLE 5: FIPS test results

PRNG Total success Monobit Poker Runs Long run

1 4998 - - 1 1

2 4997 1 - 1 1

3 4997 - 1 1 1

4 4998 - 1 - 1

5 4997 1 1 1 -

6 4997 - 1 1 1

X. APPLICATIONS
We outline six application scenarios where the particular
attributes of the proposed NLCS system will be useful:

1. Reconfigurable random number generator: Random
number generator are used in many applications including
but not limited to Monte Carlo simulations, test pattern
generation, scientific experiments, cryptography, and
telecommunication systems [42], [45]–[48]. Due to their
excellent ergodic properties, chaotic maps have been
extensively used in designing PRNG [4], [30], [49] Many
chaotic random number generators are designed for a fixed
parameter i.e. for the same seed, it always generates the
same sequence which makes them vulnerable to adversarial
attacks [3], [6]. As shown in section IX, NLCS can be used
to build reconfigurable PRNG with excellent randomness
across a very large design space. For a specific seed, a run-
time change in configuration by even a single bit of any
of the six control parameters will produce a completely
uncorrelated yet equally good random sequence which gives
this design a significant immunity against adversarial attacks
[50]. Besides, the uniformly high chaotic entropy across
parameter space makes NLCS-based PRNG immune against
performance degradation due to parameter disturbance.
Moreover, the hardware implementation metrics of NLCS
(Table 2) along with the simplicity of the proposed PRNG
makes it suitable for resource-constrained edge computing
in IoT (internet of things) in contrast to some prior works
requiring much higher computational resources [30], [49].

2. Secure communication: During the last three decades,
many researchers have leveraged chaotic dynamics for
developing secure communication systems [15], [29], [49],
[51]. As shown in [15], a discrete-time chaotic system with
uniformly robust chaotic dynamics (ECM) can be a perfect
candidate for improving the system’s immunity against
channel noise. As shown in Table 1 and 2, NLCS is superior
to ECM both interms of chaotic performance and hardware
cost and as such, it will be a even better building block for
developing such secure communication systems.

3. Image encryption: Since digital image has a lot
of information redundancy, tradiational stream/block cipher
based well-known encryption methods such as Digital
Encryption Standard (DES) [52], Advanced Encryption
Standard (AES) [53] etc. may not be the optimum choice
for such data. To circumvent this issue, there has been a
significant body of research on developing image encryption

algorithms based on choatic maps [30], [42], [54]. Usually, a
secure key is used as the intital condition and/or parameter
value of chaotic maps to generate a long sequence of
unpredictable values which are then used to encrypt the input
image using a particular algorithm [21], [25], [54]–[56]. The
success of any such algorithm depends on a large part on
the entropic quality of the chaotic map. Given the excellent
entropic properties of NLCS across the entire parameter
range with low hardware cost, it can be easily integrated with
any such algorithm for image encryption application.

4. Reconfigurable computing: Starting from the seminal
1998 paper [57], researchers have been exploring how
the chaotic dynamics can be utilized to build flexible
and reconfigurable computing blocks sometimes called
‘chaogates’ [11], [58]. The aperidoic iteration inside chaotic
region means that we can extract a large number of functions
from a single chaotic system [59], [60]. As shown in
[36], [61] the chaotic parameter space plays a key role in
expanding the reconfigurabity of such system. This can be
leveraged for logic locking [18] to prevent IC (integrated
circuit) counterfeiting, and reverse engineering which have
become a serious threat in the current IC supply chain. Since
multi-parameter robust NLCS offers chaotic operation across
a large parameter space, it can be a perfect candidate for
building chaos-based reconfigurable computing platforms.

5. Side-channel attack mitigation: Starting with the
seminal work of Kocher [62], Side-channel attack has
emerged as a serious threat to computer security in recent
years where information leaked through side-channels such
as power consumption, electromagnetic emanation, timing
information, keystroke behavior etc. have been used by
adversary to extract valuable secret information [63]–[66].
Obfuscation via Chaos based reconfigurable logic has been
proposed and explored as a mitigation technique in several
recent works [13], [67], [68]. However, for this mitigation
technique to be successful, we need a wide chaotic region
with good entropic properties [13] which makes NLCS a
suitable candidate for such applications.

6. Multidimensional and multi-parameter hyperchaotic
system: It has been shown that 1D choatic systems with their
relatively simpler orbit can be susceptible to signal estimation
attack [69] and dynamic degradation in a digitized platform
[70], [71]. This is a hindrance towards their adoption in
cryptographic applications where high level of security
is required [72]. The state space of a a chaotic system
increases exponentially with the number of dimensions and
a multidimensional chaotic system becomes hyperchaotic
when it has more than one positive lyapunov exponent
[49], [73], [74]. This gives rise to a significantly more
complex trajectory compared to 1D chaotic system [49],
[56] and can find use in different applications [29], [30],
[49], [75]. Oftentimes, simpler 1D maps are chosen instead
of these hyperchaotic maps due to their prohibitively
higher cost of hardware implementation. As shown in
section VIII, NLCS can be easily extended to a 2D
hyperchaotic map with uniformly high and robust entropic
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properties across an exponentially larger parameter space
and state space at the same throughput while incurring
only twice the hardware cost of its 1D counterpart. The
same design principle can be easily extended to build
even higher dimensional hyperchaotic NLCS systems.
These multidimensional NLCS maps can a promising low-
cost robust hyperchaotic alternative for diverse security
applications [30], [49].

XI. CONCLUSION
A general framework called NLCS for developing arbitrary
number of new multi-parameter 1-D and 2-D chaotic system
from existing seed maps is presented in this work. The
chaotic performance is analyzed using stability analysis and
bifurcation diagram along with four established metrics,
namely, Lyapunov exponent, Kolmogorov entropy, Shannon
entropy, and correlation coefficient. Unlike the seed maps, the
entropy values in NLCS remain uniformly high across the
whole range and the value is always close to the maximum
achievable value from the constituent seed maps. The chaotic
parameter space and ergodic properties are further enhanced
by cascading multiple maps. We have shown an efficient
FPGA-based hardware implementation.The comparison of
performance and hardware cost with seed maps and prior
literature shows the superior properties of NLCS. Moreover,
we introduced a simple extension scheme to build 2- D
maps with robust, hyperchaotic and uniformly excellent
properties across the parameter space. We presented a
new reconfigurable multiparameter PRNG and validated its
excellent randomness property using two standard statistical
tests, namely, NIST SP 800-22 and FIPS PUB 140-2. Finally,
we outlined six application scenarios where the particular
attributes of the proposed system will be useful.
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