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ABSTRACT In this paper, we have proposed the design of an analog two-dimensional (2D) discrete-
time chaotic oscillator. 2D chaotic systems are studied because of their more complex chaotic behavior
compared to one-dimensional (1D) chaotic systems. The already published works on 2D chaotic systems
are mainly focused either on the complex analytical combinations of familiar 1D chaotic maps such as
Sine map, Logistic map, Tent map, and so on, or off-the-shelf component-based analog circuits. Due to
complex hardware requirements, neither of them is feasible for hardware-efficient integrated circuit (IC)
implementations. To the best of our knowledge, this proposed work is the first-ever report of an analog
2D discrete-time chaotic oscillator design that is suitable for hardware-constrained IC implementations.
The chaotic performance of the proposed design is analyzed with bifurcation plots, the transient response,
2D Lyapunov exponent, and correlation coefficient measurements. It is demonstrated that the proposed
design exhibits promising chaotic behavior with low hardware cost. The real-world application of the
proposed 2D chaotic oscillator is presented in a random number generator (RNG) design. The applicability
of the RNG in cryptography is verified by passing the generated random sequence through four standard
statistical tests namely, NIST, FIPS, TestU01, and Diehard.

INDEX TERMS Discrete-time chaos, chaotic IC, chaotic oscillator, 2D chaotic system, random number
generator.

I. INTRODUCTION

THE BEHAVIOR of a non-linear dynamic system is
referred to as chaotic when the system responds aperiod-

ically and shows extreme sensitivity to even an infinitesimal
change in the initial state [1]. Unlike the random aperiodicity
of stochastic systems, the aperiodicity of chaotic systems is
deterministic, implying that, given the same system param-
eters, an identical aperiodic sequence is reproducible. The
extreme sensitivity of a chaotic system to the initial state is
also known as the butterfly effect, signifying the fact that,
two initial states, even if they are very close, will result in a
drastic difference in the response of a chaotic system. Thanks
to this deterministic aperiodicity and initial state sensitivity,
chaotic systems have attracted the attention of the security
research for applications such as chaos-based logic genera-
tor [2], random number generation [3], physically unclonable
systems [4], cryptography [5], and so on.

According to the nature of time evolution, chaotic systems
are divided into two classes: (i) continuous-time, where the

governing function contains the time derivative terms and
time steps of the trajectory are continuous, (ii) discrete-
time, where the trajectory evolves in discrete time steps and
at every time step, a non-linear function, called a chaotic
map, generates the next state output by using the output
of the previous state as the input. In this paper, we will
be limiting our discussion to discrete-time chaotic systems.
The number of state variables involved in a chaotic system
dictates the dimension of that system. An n-dimensional
discrete-time chaotic system consists of n mutually depen-
dent chaotic maps that define the discrete-time dynamics of
n state variables. In a one-dimensional (1D) chaotic system,
one mapping function, for example, Logistic map, Sine map,
or Tent map, defines the dynamic behavior of one state
variable. The structure of 1D chaotic systems are simple,
and hence, they are easier to implement. However, some
recent chaos-based hardware security research publications
have proposed two-dimensional (2D) chaotic systems argu-
ing that the chaotic orbits of 1D chaotic systems can be
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too simple to ensure security against modern signal esti-
mation techniques [5], [6], [7], [8]. All of the proposed
multi-dimensional (2D or higher) chaotic systems, until
now, can be divided into two groups. The first group con-
sists of the systems that are generated from some kinds of
analytical manipulation of traditional mathematical function-
based chaotic maps such as Sine map, Logistic map, Tent
map, and so on. These analytical function-based 2D chaotic
systems are limited to either software-based encryption algo-
rithms [9], or hardware implementations in a purely digital
Field Programmable Gate Array (FPGA) domain [8], [10].
Because of the large area and high power demand, the dig-
ital hardware implementations of the chaotic systems are
not suitable for Complementary Metal Oxide Semiconductor
(CMOS)-based integrated (IC) implementations with critical
chip area and power constraints. One example of this type of
applications with a low area and power budget is hardware-
based security protocol for edge devices like the Internet
of Things (IoT). The analog CMOS-based implementations
of classical chaotic maps including Logistic map [11], Sine
map [12], and Tent map [13], have been reported. However,
in the analog CMOS implementations as well, the circuits
turned out to be too complex and hardware-hungry to be
used in hardware-constrained IC applications. The second
group of the proposed multi-dimensional chaotic circuits
includes, the mathematical model of a memristor-based 5th

dimensional Chua’s circuit [14], microcontroller-based digi-
tal realization of discrete memristor-based 2D maps [15],
analog circuits using off-the-shelf components such as,
operational amplifiers, multipliers, and so on [16], [17],
[18], [19], [20]. Since these aforementioned circuits con-
tain either analog or digital off-the-shelf components, they
are not suitable to be used in area and power-constrained IC
designs.
In this paper, we are introducing a novel CMOS-based

design of an analog discrete-time 2D chaotic oscillator.
The proposed 2D chaotic oscillator comprises CMOS-based
chaotic maps and analog voltage transformation circuits.
Both the chaotic maps and transformation circuits are
designed with significantly low transistor-count circuits that
have made our proposed 2D chaotic system suitable for
hardware-efficient IC applications. We have demonstrated
the application of the proposed 2D analog oscillator in a
chaos-based random number generator (RNG) circuit and
verified its cryptographic applicability with four standard
statistical tests.
In the remaining portion of the paper, Section II

presents the general design framework of the proposed
2D chaotic oscillator, the details of the oscillator design
in a 45 nm CMOS process is discussed in Section III,
Section IV presents the chaotic performance analysis of
the proposed 2D chaotic oscillator, Section V demon-
strates an application of the proposed scheme in a chaos-
based RNG, Section VI presents some directions for
future development, and Section VII gives the concluding
remarks.

FIGURE 1. General framework of the 2D chaotic oscillator.

II. DESIGN FRAMEWORK
Equations (1) and (2) describe the scheme of the proposed
2D system. Here, there are two state variables, X and Y,
involved. The functions, fX and fY , denote two 1D non-linear
mapping operations that depend on the control parameters,
V ′cX and V ′cY , and the state variable value from the previous
iteration, Xn and Yn, respectively. The functions, fTX and fTY ,
define two non-linear transformation operations that trans-
form a global control variable, Vc, and the state variable of
the second map (Yn and Xn, respectively) to two new con-
trol variables, V ′cX and V ′cY , which are used in fX and fY ,
respectively.

Xn+1 = fX
(
Xn,V

′
cX

);V ′cX = fTX (Vc,Yn) (1)

Yn+1 = fY
(
Yn,V

′
cY

);V ′cY = fTY (Vc,Xn) (2)

The schematic of Figure 1 illustrates the general frame-
work of the proposed 2D chaotic system. In the schematic,
Seedmap−X and Seedmap−Y are two 1D chaotic map cir-
cuits with non-linear transfer characteristics. Seedmap − X
and Seedmap−Y correspond to fX and fY , respectively. Each
chaotic map is a three-terminal circuit block containing an
input terminal (Xn or Yn), a control terminal (V ′cX or V ′cY),
and the output terminal (Xn+1 or Yn+1). The voltage in
the control terminal modulates the input versus output non-
linearity of the 1D map circuit. The output of a 1D chaotic
map is fed back to the same map’s input to form a 1D chaotic
oscillator. Here, the control parameter determines the chaotic
property of the oscillator. As shown in Figure 1, the oscillat-
ing voltage of one 1D chaotic oscillator, for example, Xn, is
passed through the transformation block (fTX ) before being
used as the control input, V ′cY , of the second 1D chaotic
oscillator. Similarly, Yn is transformed to generate V ′cX . The
global control parameter, Vc, goes into both transformation
blocks. Each transformation block couples both seed maps
and ensures that both V ′cX and V ′cY are in a range of control
input values for which the corresponding 1D chaotic oscil-
lators are in the chaotic range. Consequently, the combined
2D oscillator also operates in the chaotic region across the
whole range of Vc, resulting in a robust chaotic system.

III. DESIGN IMPLEMENTATION
A. 1D CHAOTIC OSCILLATOR
We have discussed in the previous section that a 2D chaotic
oscillator consists of two 1D chaotic oscillators and the trans-
formation blocks. In our design, we have implemented a 1D
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FIGURE 2. Schematic of a 1D chaotic oscillator.

chaotic oscillator as shown in Figure 2. According to the
schematic, a switch, φ0, is used to feed the initial state,
X0, to the system. At each iteration, an analog voltage, Xn,
passes through the forward path containing a seed map, Seed
map−1, and we get the next state output, Xn+1. Generally, in
the feedback path of a discrete-time oscillator, the voltage
is sampled with switches, and the hold operation is per-
formed with capacitors. We perform the sampling with two
switches, φ1 and φ2, which are run by two non-overlapping
clock pulses. To reduce the hardware cost in our design, the
hold operation is performed with the parasitic capacitance
of the transistors of a second seed map, Seed map− 2. An
iteration loop completes when the feedback path’s output,
Xn+2, is fed back to the forward path as the input for the
next iteration. It is to be noted that, both Seed map − 1
and Seed map − 2 are implemented with two identical 1D
chaotic maps. At each iteration, we sample out two analog
voltages, Xn+1, and Xn+2. The discrete-time analog voltages
are recorded for 15000 iteration loops. Then we get the
steady-state output by discarding the first 1000 iterations.
The steady-state discrete-time values are used for analyzing
the chaotic performance.

B. 1D SEED MAP
Figure 3 (a-c) shows the schematics of three chaotic maps
that we have used as 1D seed maps (SM) to demonstrate the
results of this paper. The seed maps perform the non-linear
mapping operation of fX and fY , as shown in (1) and (2).
The 45 nm Cadence designs of the chaotic maps are done
according to the topologies proposed in [1]. Figure 3 (d-f)
shows the transfer characteristics of three seed maps at dif-
ferent control voltage (Vc) values. Two identical maps (for
example, two SM−I) are used to form a 1D chaotic oscillator
of Figure 2. Running the oscillator for 15000 iteration loops
and discarding the first 1000, we get 14000 steady-state ana-
log voltages (Xn), each time with different Vc. Figure 4(a-c)
shows the plots of steady-state Xn with respect to corre-
sponding Vc. These plots are called the bifurcation plots as
they show how the chaotic behavior of an oscillator changes
with the control voltage or bifurcation parameter, Vc. For
example, Figure 4(a) corresponds to the 1D chaotic oscil-
lator made with SM − I which shows that the oscillator is
chaotic for 0 V < Vc < 0.25 V and then becomes periodic.
On the other hand, Figure 4(c) enters into the chaotic region
after Vc ≈ 0.6 V and Figure 4(b) is chaotic at the middle
portion of the Vc range.

C. 2D CHAOTIC OSCILLATOR
The 2D chaotic oscillator of Figure 5 contains two 1D oscil-
lators and four transformation blocks denoted with TX and
TY . The clocks are set up in a way so that the oscillating
voltages of two 1D oscillators, Xn+1, Xn+2, Yn+1, and Yn+2
are dynamically transformed during run-time by TX and TY
to generate the transformed control voltages (V ′cX or V ′cY)
for each oscillator. The transformation blocks are designed
in a way so that they can transform any combination of the
oscillating voltages and the global control voltage, Vc, into
a desirable range. The desirable range depends on a partic-
ular 1D chaotic oscillator; a range of control voltage across
which the 1D oscillator is always chaotic. For example, the
transformation block for SM− I transforms any combination
of Vc and Xn into 0 V to 0.25 V as, according to Figure 4(a),
this is the chaotic region for SM − I.

D. TRANSFORMATION BLOCK
Figure 6(a-c) shows three topologies of transformation cir-
cuits. The design of a particular topology depends on the
position of the chaotic region in the bifurcation plot of a
1D chaotic oscillator. For example, T − I is suitable for
transforming the output of a 1D chaotic oscillator where
the chaotic region is positioned left to the middle (such as
Figure 4(a)). Hence, each of the three transformation blocks
corresponds to a particular seed map of our design: T − I is
for SM− I, T− II is for SM− II, and T− III is for SM− III.
In the schematics of the transformation circuits, the input On
denotes the oscillating voltage from the second 1D oscillator
of the 2D chaotic oscillator, which can be Xn or Yn, depend-
ing on which output is being transformed. We have kept two
design variables for each circuit: the bias voltage, Vb, and
the sizing parameter, W. The design variable W denotes the
width of the Vb-gated transistor. We simulate for a range of
Vb and W combinations to find for which combinations the
transformed output (V ′cX or V ′cY) is in the chaotic range of a
particular 1D chaotic oscillator. The green-marked regions of
the plots of Figure 6(d-f) correspond to the desired combi-
nations of Vb and W (denoted by the solution space, S). For
example, as we can see in Figure 6(e), which corresponds
to S − II, the coordinate point W = 90 nm and Vb = 0 V
lies in the green solution space, and hence, we are using
this values in our design. It is to mention that, although all
the points in the green-marked regions are potential design
choices, some combinations of Vb and W will result in more
efficient designs than others. For example, Vb = 1 V or Vb
= 0 V are particularly convenient design choices as we may
directly use the supply voltage or the ground, respectively,
which will save us from the need for an extra voltage regula-
tor. In the case of choosingW, the closer the ratio,W/(90 nm)
(the x-axis of Figure 6(d-f)), is to 1 the better as it will result
in a more area-efficient design. The selected design choices
are listed in the caption of Figure 6. Figure 6(g-i) shows the
transfer characteristics of the transformation blocks for the
selected design parameter values mentioned in the caption.
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FIGURE 3. (a-c) Schematics and (d-f) transfer curves of 1D seed maps.

FIGURE 4. Bifurcation plots of: (a-c) 1D seed map oscillators, (d-f) X and (g-i) Y outputs of 2D oscillators.

IV. PERFORMANCE ANALYSIS
According to the above-mentioned design methodology in
Section III, we have designed three 2D chaotic oscillators by

combining two 1D chaotic oscillators each time from a pool
of three: 2D − I is formed by combining SM − III&SM −
I, 2D − II is formed by combining SM − III&SM − II,

266 VOLUME 3, 2022



FIGURE 5. Schematic of 2D chaotic oscillator.

and 2D − III is formed by combining SM − II&SM − I.
The chip area of 2D − I, 2D − II, and 2D − III are 1.27
μm2, 1.15 μm2, and 0.74 μm2, respectively. The chaotic
performance of the 2D oscillators is analyzed based on the
bifurcation plot, transient response, and two chaotic entropy
metrics, Lyapunov Exponent and Correlation-coefficient.

A. BIFURCATION PLOT
Figure 4(d-i) presents the bifurcation plots of both voltage
signals, Xn and Yn, of the three 2D chaotic oscillators. As
we can see, the chaotic regions of our 2D chaotic oscillators
cover a wider range compared to the 1D chaotic oscilla-
tors. As a result, we are getting nearly uninterrupted chaotic
regions across the whole design space from Vc = 0 V to
Vc = 1 V, which is referred to as robust chaos [21]. Robust
chaotic behavior is a desirable criterion of a chaotic system
for multiple applications, including robust random number
generation, chaos-based logic, and so on.

B. TRANSIENT BEHAVIOR
The transient behavior is an important aspect of chaotic oscil-
lator design. To get a good throughput from the system we
need to make sure that the time delay through each com-
ponent is such that for a reasonable clock frequency the
voltage at each node can be settled within the on-time of
the clock period. Figure 7(a,c,e) shows the worst-case delay
of the 2D oscillators for different Vc values. The maximum
worst-case delay among all three delay profiles is close to
9 ns. Hence, we set the on-time of our clock pulse as 9 ns.
Figure 8 shows the phases of the three clocks that are used

Algorithm 1 Algorithm for 2D LE Calculation
sum← 0

Q0 ←
[

1 0
0 1

]

for i = 1 −→ iterationcount do

J←
⎡

⎣
d
dX (fX) d

dY (fX)

d
dX (fY)

d
dY (fY)

⎤

⎦

F← J ∗ Q0
[Q R] ← QRdecomposition(F)

if i ≥ Truncationamount then
Q0 ← Q
sum← sum+ log|diagonalelements(R)|

else

Q0 ←
[

1 0
0 1

]

end if
end for
LE1 ← max(Average(sum))

LE2 ← min(Average(sum))

to operate three types of switches on the oscillator, φ0, φ1,
and φ2. The clock period is 20 ns and the non-overlapping
window between the switches, φ1 and φ2, is 1 ns. Figure 9
shows the transient responses of three 2D chaotic oscilla-
tors at Vc = 0.6 V. Each plot shows three traces for three
very close initial states (denoted by X0). We can see that
initially, three traces follow each other until they diverge as
a result of the initial state sensitivity or the butterfly effect.
Figure 7(b,d,f) shows the power profile of three 2D chaotic
oscillators. The power profile is generated by averaging the
total power of 50 iteration cycles at different Vc values.

C. LYAPUNOV EXPONENT
To quantify the initial state sensitivity of a chaotic system, the
most widely accepted metric is the Lyapunov Exponent (LE).
LE defines the average separation rate of two trajectories
starting from two very close initial states where a positive LE
value indicates chaotic behavior [22]. If a dynamical system
has more than one positive LE, its trajectories will separate
in several directions making the system hyperchaotic. The
hyperchaotic behavior is more complex (hence, more secure)
than the chaotic behavior [8], [15]. The analytical expression
for LE of a 1D system is shown in (3) [23].

LE = lim
N→∞

1

N

N−1∑

i=0

ln

∣
∣∣∣
df1D(Xn,Vc)

dX
|Xi

∣
∣∣∣ (3)

Here, f1D(Xn,Vc) denotes the transfer function of a 1D map
and N is the total iteration count. The LE of the 1D seed
chaotic oscillators are calculated with 14000 steady-state
discrete-time voltage values for each Vc and then plotted
as shown in Figure 10(a-c).
To calculate LE for the 2D oscillator we have followed

the algorithm presented in the MATLAB LE toolbox [24].
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FIGURE 6. Transformation block (a-c) schematics, (d-f) plots of solution spaces, and (g-i) transfer curves. Corresponding design parameter values: T − I : W = 200 nm, Vb = 1
V, (b) T − II : W = 90 nm, Vb = 0 V; T − III : W = 90 nm, Vb = 0 V.

The MATLAB algorithm is developed for nonlinear map-
ping functions that can be expressed analytically. However,
since our nonlinear mapping is done by three-transistor
MOS circuits (as shown in Figure 3(a-c)), we do not have
analytical expressions for the transfer function. Hence, we
generated a very high-resolution look-up table by using
Cadence simulation so that we can interpolate a trans-
fer function for any given Vc. We have used this look-up
table-based data set to calculate the 2D LE based on
Algorithm 1.
Figure 10 (d-f) shows both LE values (LE1 and LE2) of

the 2D chaotic oscillators where we can see there exists
hyperchaotic behavior in all three oscillators.

D. CORRELATION-COEFFICIENT
The sensitive dependence on the initial state can be veri-
fied by correlation coefficient measurement, as well [25].
Equations (4) and (5) analytically express two schemes of
our correlation coefficient measurements. In the equations,
the operator ‘E[.]’ denotes the expectation function, μ and
σ are the mean value and standard deviation, respectively.
For each measurement, we generated two sets (X and X′ in

one scheme, while Y and Y ′ in the other one) of steady-state
sequences by starting with two very close initial states which
are only 1 nV apart. We varied the initial state (X0) of only
one 1D chaotic oscillator among the two in the 2D system.
That means, starting with X0, we generated X and Y , while
starting with X0+1 nV we get X′ and Y ′. Then we calculate
the correlation coefficients between X and X′ to get CCXX0
while the correlation coefficient between Y and Y ′ gives us
CCYX0. We repeated the same calculation at different Vc val-
ues and plotted as shown in Figure 11. The chaotic behavior
results in significant divergence between the two sequences
which results in the correlation coefficient values close to 0.
To measure CCYX0, as we are varying the initial state in one
1D oscillator and measuring the correlation from the other
1D oscillator’s output, this experiment shows the strength of
coupling between the two 1D oscillators in the 2D system,
as well.

CCXXo =
E
[
(X − μX)

(
X′ − μX′

)]

σXσX′
(4)

CCYXo =
E
[
(Y − μY)

(
Y ′ − μY ′

)]

σYσY ′
(5)
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FIGURE 7. (a,c,e) The worst-case delay and (b,d,f) power profile of 2D oscillators.

V. APPLICATION
The proposed 2D chaotic oscillators show promising chaotic
behavior including, hyper-chaos and wide chaotic window
while offering a low area and power overhead with a reason-
ably small delay. Hence, this chaotic system can be useful
in a number of hardware-based security protocols in the
IC domain including, chaos-based logic generators for side-
channel attack mitigation, physically unclonable systems,
chaotic random number generation, and so on. In this paper,
we are demonstrating the application of our proposed 2D
system in a random number generator (RNG) circuit.

A. RNG STRUCTURE
Figure 12 shows the schematic of the RNG. The core archi-
tecture of this RNG was presented in [1]. Each of the four
comparators in the RNG architecture compares between the
outputs from two 2D chaotic oscillators. For example, X− I

comes from 2D−I and CX−I comes from another 2D−I that
is configured in a cascaded way, as shown in Figure 13. In
the cascaded configuration, two copies of the same seed map
are connected in series to harvest more chaotic entropy [1].
In the RNG architecture, Y − I and CY − I come from the
Y-output of the same 2D− I and cascaded 2D− I, respec-
tively. Similarly, X − II, CX − II, Y − II, and CY − II uses
the 2D− II topology. Since the cascaded configuration has
more delay compared to the regular one, we doubled the time
period of the clocks shown in Figure 8 to run the RNG. Vc
values of the four 2D oscillators used in RNG are set to the
maximum LE1 point for respective oscillators. The chip area
of the RNG circuit combining all four 2D chaotic oscilla-
tors and the 4-input XOR gate is 449.5 μm2. The average
power consumption is 552.7 uW. We used 100 unique ini-
tial states and generated 1 million random bits (1s and 0s)
for each state. The data set with that 100 million bits was
used to perform four standard statistical tests to verify the
randomness of the generated sequence. We have presented
the results from each test as follows.

B. NIST
NIST SP 800-22 Test Suite from the National Institute of
Standards and Technology (NIST) offers 15 statistical sub-
tests to measure the randomness in a sequence [26]. We
performed the test with a bit-stream length of 1 million
and a significance level of 0.01. Hence, a sequence with
100 bit-streams (each bit-stream consists of 1 million binary
bits) will pass a particular test if at least 96 out of the
100 bit-streams generate p-values greater than 0.01. The test
suite allocates each one of the 100 generated p-values in
10 sub-intervals from 0 to 1 and evaluates the uniformity
in the distribution with χ2-test. The sequence under test is
considered uniform if the p-value generated from the χ2-
test (refers to p− valueT ) is greater than or equal to 0.0001.
NIST results are presented in Figure 14. The result shows
that the generated sequence passes both the 96% threshold
of the pass rate and 0.0001 p− valueT threshold for all the
15 sub-tests.

C. FIPS
NIST developed the Federal Information Processing
Standards Publications (FIPS PUB) 140-2 test suite [27].
FIPS verifies the randomness of a binary sequence by divid-
ing the sequence into 20,000-bit blocks. As a result, for a
test sequence with 100 million bits, there are 5,000 blocks in
total. Each block is subjected to 4 sub-tests namely, Monobit,
Poker, Runs, and Long run. The Monobit test counts the
number of 1 in each 20,000-bit block. The number must
be within the range of [9725, 10275] to pass the test. The
Poker test is performed by dividing each 20,000-bit block
into 5,000 successive 4-bit segments. Each 4-bit segment can
have one of 16 possible values. This sub-test examines the
uniformity of the 4-bit segment by counting and storing the
occurrences of 16 values. In the Runs test, the maximum
sequence of consecutive 1s or 0s in a 20,000-bit block are
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FIGURE 8. Phases of the three switches used in the oscillator.

FIGURE 9. Transient response from 2D chaotic oscillators at Vc= 0.6 V.

TABLE 1. FIPS test results.

counted and stored. In the Long run test, a run of 26 or
more of either 1s or 0s is defined as a Long run where the
total number of Long runs in a 20,000-bit block is counted
as the total failure. Table 1 shows the FIPS test result for
the generated sequence. The first column (from the left) of
Table 1 shows the total number of blocks passing the test
and the last four columns show the number of failed blocks
under each sub-test.

D. TESTU01
TestU01 comes as a software library generated in ANSI C
language that offers a collection of utilities for empirical sta-
tistical testing [28]. We performed three test batteries namely,

TABLE 2. TestU01 results.

Rabbit, Alphabit, and BlockAlphabit. The test sequence for
this test contains 220 binary bits that was generated with
one initial condition. Given this sequence size, the Rabbit
test consists of 38 sub-tests whereas, Alphabit consists of
17 sub-tests and BlockAlphabit consists of 6 blocks of the
same 17 sub-tests (102 tests in total). The sequence passes a
sub-test only if the generated p-value remains between 0.001
and 0.999. Table 2 presents the ratio between the number of
passed test and the total number of sub-tests in each case.

E. DIEHARD
Diehard statistical test suite was developed by
Marsaglia [29]. The suite generates 219 p-values under
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FIGURE 10. LE plots of the 1D oscillators (a-c) and the 2D oscillators (d-f).

FIGURE 11. Correlation coefficient measurements for 2D oscillators.

15 sub-tests. A sequence is considered to be random if the
generated p-values remain in the range [0,1). Conversely,
if there are six or more (out of 219) p-values of either
0 or 1 then the sequence fails. Our test sequence contain
100,000,032 binary bits (a padding of 32 1s at the begin-
ning). Figure 15 shows the plots of p-values, organized in
ascending order. The linear fit in the plot shows a close
conformity with the generated p-value trend, indicating the
desirable randomness in the generated sequence.

VI. SCOPES FOR FUTURE RESEARCH
The proposed 2D chaotic oscillator scheme is very simple
in the sense that the circuits, including the chaotic oscilla-
tor and non-linear transformation architecture, use very low
transistor-count topologies. Moreover, the scheme is general

as it can be adopted in a wide range of analog chaotic
systems. In this paper, we are focusing on introducing the
core concept of an IC-implementable 2D analog discrete-
time chaotic oscillator and its applicability in real-world
hardware security applications such as random number gen-
eration. The core idea demonstrated in this paper has opened
up a wide window of scope for future research and devel-
opment in the area of higher-dimensional chaotic system
design. This scheme can be adopted to develop a 3D or even
higher dimensional chaotic systems where there will be more
than two chaotic oscillators and their transformation cir-
cuitry involved. The three-transistor 1D chaotic maps shown
in this work can be further optimized or replaced by other
topologies of 1D chaotic maps for achieving a higher chaotic
complexity out of the 2D system. A library of improved 1D
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FIGURE 12. Schematic of the proposed RNG.

FIGURE 13. Cascaded configuration of the 2D chaotic oscillator.

FIGURE 14. NIST results.

chaotic maps with a better chaotic entropy may lead to a
more robust 2D (or higher dimensional) chaotic oscillator
with a wider hyperchaotic window, higher LE, and as a

FIGURE 15. Diehard result.

result, a more area-efficient RNG or other hardware-security
applications.

VII. CONCLUSION
We have introduced the design of an analog 2D chaotic
oscillator which is suitable for hardware-constrained IC
implementation. The proposed 2D chaotic system comprises
very low transistor-count 1D chaotic maps and transfor-
mation blocks, yet shows promising chaotic behavior. The
proposed design framework of the 2D chaotic oscillator is
general in the sense that it is applicable to a wide vari-
ety of 1D chaotic map circuits. The hyperchaotic behavior
from this 2D chaotic oscillator and almost uninterrupted
chaotic region across the whole design space can be very use-
ful for designing robust and hard-to-break hardware-security
applications. The applicability of the proposed 2D chaotic
system is demonstrated in a RNG design. The random-
ness of the generated sequence from the RNG is verified
through four established statistical tests. The sequence passes
all of the tests justifying RNG’s applicability in real-world
hardware-based cryptographic applications. Future research
scopes are discussed to point out the general adaptability of
the proposed 2D scheme for a wide range of performance
improvement explorations.
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