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1. Introduction
Solid oxide fuel cells (SOFCs) 

are an electrochemical device that 
have been consistently developed 
due to their high efficiency, mini-
mum impact on the environment, 
and ability to employ a range of 
fuels to produce power [1]. The 
device is widely used for future 
commercial implementation, 
making it simple to implement 
in a wide range of applications. 
This technology has been devel-
oped for both energy efficiency 
and building. [2], and a favourable 
economic evaluation of residential 
power systems [3]. Furthermore, 
it has been supported for fuel cell 
electric vehicles as a power plant 
with a 20 % increase in efficien-
cy in SOFC-reforms by reducing 
energy destruction [4]. SOFC, 
on the other hand, is currently 
operating at high temperatures 
(800–1000 °C) [5]. Its temperature 
restricts the material options for 
cells and auxiliary components, 
accelerates the degradation of cell 
performance and interconnecting 
elements between components, 
and makes sealing more difficult. 
Some critical technical issues, 
particularly those related to re-
liability and durability, must be 
resolved before technology can be 
commercialized.

MIEC is widely promoted in 
intermediate temperature solid ox-
ide fuel cells (IT-SOFCs) made of 
perovskite type oxides, which are 
represented by ABO3-δ [6]. They 
can be used as electro-catalysts 
for solid oxide fuel cells (SOFCs), 
oxygen-permeable membranes, 
and oxygen absorbers, among oth-
er things. In some experiments, 
MIEC cathode has been shown 
to have good performance elec-
tro-catalytic activities, excellent 
oxygen transport and surface ex-
change properties, and thus high 
electrochemical activities [7, 8]. 
However, due to the high thermal 
expansion of the electrolyte, these 
cobalt-based MIECs have poor stability in practice for long-term 
applications, which has hampered the development of cathode 
IT-SOFCs [9]. Another factor to consider for successful use is the 
high cost of cobalt (Co) in comparison to other rare metals [10]. 
The analysis is required to discover a novel composite structure 
of free-cobalt cathode material for intermediate-temperature solid 
oxide fuel cells to address the numerous limitations mentioned 
above (IT-SOFCs). 

There has been a lot of research into the free Co-based cathode 
to overcome the problems in the implementation of IT-SOFCs 

up to this point [11]. As a result, 
the continuous development of 
a new cobalt-free cathode model 
was carried out [12]. Because of 
the strong electronic structure of 
Fe ions, the MIEC model with 
Fe in the B side on the composite 
structure of the cathode system 
as Fe-based composite oxides is 
expected to be low cost and more 
durable under SOFC operation 
conditions (500 to 800 °C and 
air atmosphere) [13, 14]. To date, 
the composite model in A side-
based perovskite oxides has been 
constantly evolving to achieve 
excellent cathode performance. 
The use of the metal transition to 
strengthen the A-side perovskite 
structure has received a lot of at-
tention [15, 16]. Barium (Ba) is a 
well-known element that is used in 
the A-side of composite structures 
as the BLF system for the cath-
ode element [17, 18]. The excellent 
structure of the electro-catalytic 
activities for oxygen reduction, as 
well as the good operational stabil-
ity. Furthermore, the substitution 
of samarium (Sm), Ba, and sa-
marium (Sr) elements in the A-site 
demonstrates cathode elements’ 
superior performance [9, 19, 20]. 
Unfortunately, the development of 
its composite, which uses Fe ions 
in the B-site, has not been com-
pleted. It was unusual to investi-
gate the structure of a cobalt-free 
cathode using Ba combined with 
Sm and Sr in the A-site and Fe 
ions in the B-side of a composite 
structure.

The study aims to design a 
solid oxide structure on the com-
posite cathode for IT-SOFC. This 
would make it possible to deter-
mine the calcination temperature 
related to weight loss and con-
structing the perovskite structure. 
To achieve this aim, the following 
objectives are accomplished by 
analysis the thermal gravimetry of 
the composite metallic oxide and 
characterization the structure of 
the composite model.

2. Materials and Methods
This study investigated the structure of a cobalt-free cath-

ode of Ba0.5Sr0.5FeO3-δ (BSF) and Ba0.5Sr0.5Fe0.8Cu0.2O3-δ (BSFC) 
and Ba0.5Sr0.5Fe0.8Zn0.2O3-δ (BSFZ) composite materials as a 
possible cathode element for IT-SOFCs. The solid-state reaction 
method was used to modify the perovskite structure by incor-
porating a composite of Ba, Sr, Fe, Cu and Zn elements material. 
The characterizations will also be performed to learn more 
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about the cathode model’s structure properties. Metallic oxide 
compounds, such as BaO, SrCO3, Fe2O3, CuO and ZnO are used 
as raw materials in composites. The traditional solid-state re-
action method is used to create BSF, BSFC and BSFZ cathodes. 
The method was used to prepare and synthesis the cathode 
material, which has previously been reported in our group’s 
published papers [21–23]. For 12 hours, a stoichiometric volume 
of metallic oxide compound was mixed with zirconia balls in 
the presence of 96 % ethanol in solution. The powder mixture 
was then dried in an oven at 80 degrees Celsius for 24 hours. The 
powders were tested for thermal gravimetric analysis (TG). The 
temperature was increased to 1000 °C at a rate of 10 °C min-1 
before being cooled to room temperature. Further, the model 
precursor powders were calcined at 900 °C for 3 hours in an 
air atmosphere with a heating rate of 3 °C min-1 and normal 
cooling in the furnace. After grinding with an agate mortar, the 
calcination powder was sieved through 200 mesh. The crystal 

structure of the cathode powder was also determined using 
XRD characterization.

3. Results
Fig. 1 shows the thermal gravimetric analysis and differential 

thermal analysis (DTA) of BSFB composite oxide powders. The 
blue curve is related to the TG value of BSF, BSFC and BSFZ system 
composite, while the black curve is according to thermal behaviour 
during the calcination process. The thermal gravimetric was used 
to monitor the weight loss of the material due to either evaporation 
or decomposition reaction. This method can be employed to deter-
mine the next step of calcination and sintering temperature used.

Fig. 2 shows the XRD pattern of BSF, BSFC, and BSFZ com-
posite structure respectively, calcined at 900 °C for 3 hours. The 
pattern has nine peaks with both sharpness and narrowness. 
The peaks in scale of 60 degrees in 2-theta present around 22°, 
32°, 39°, 46°, 52°, 57°, 67°, 72°, and 76°, respectively.

Fig. 1. Thermal gravimetric analysis (TG) and differential thermal analysis (DTA) of composite oxide powders:  
a – Ba0.5Sr0.5FeO3-δ (BSF), b – Ba0.5Sr0.5Fe0.8Cu0.2O3-δ (BSFC), c – Ba0.5Sr0.5Fe0.8Zn0.2O3-δ (BSFZ)

a b

c

Fig. 2. XRD pattern of BSF, BSFC and BSFZ composite oxide powders
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4. Discussion and scope of application
Based on the curve in Fig. 1, a for the BSF composite 

system, the decreasing blue line occurs linearly from room 
temperature to 120 °C due to both evaporation from H2O 
and some impurities of the materials. While the drastic drop 
in curve related to decrease of weight loss occurred at 650 
to 750 °C, suggesting that it was affected by generating the 
compound decomposition reaction from some elements of the 
system. Additionally, there are two steep valleys on the black 
curve at 60 °C, and 790 °C associated endothermic reaction on 
the sample. While two peaks of 235 °C and 950 °C are related 
to exothermic reactions from the sample as well. In the same 
way, the TG curve was formed, the decreasing curve was also 
created in the same spot. For BSFC and BSFZ composite sys-
tem in Fig. 1, b, c, the DTA and TG results are similar to BSF 
system which is only small peak at 235 °C of SSFC related to 
exothermic reaction and no peak of SSFBZ. It indicates that 
the main degradation of weight loss of the composite system is 
because of decomposition reaction from material compound 
initiating between 650 to 750 °C. 

According to the pattern displayed in Fig. 2, XRD pattern 
has nine peaks. Those peaks are like the perovskite structure as 
references for model composite in lanthanum ferrite (LaFeO3). 
The single phase with different intensities at various theta posi-
tions is related to the crystalline perovskite structure from three 
samples which is constructed on the composite model system. 
The perovskite-phase was evident in crystalline form on the 
composite model framework. The arrangement of the phase is 
also similar to that of a nearly cubic LaFeO3 structure [10, 15], 
implying that the single perovskite-phase crystalline structure 
built on the system cathode. The Ba and Sr component of the 
model system was used in the A-side of the model system, which 
was configured for the BA cathode materials in the perovskite 
phase. While Fe component doped with Cu and Zn played in 
the B-side. According to the XRD pattern, the stoichiometric 
of composite metal oxide for SSBF cathode materials could 
be developed as a crystalline structure with the single per-
ovskite-phase using the solid-state reaction process. 

To obtain more structural information, the crystal structure 
of the BSF, BSFC and BSFZ composite materials are further ana-
lyzed by Rietveld refinement (Rr) in this study, with the profiles 
shown in Fig. 2. It is seen that all model composite structures 
have a cubic structure with a space group Pm-3m. They have 
a lattice parameter (a=3.919 Å), (a=3.939 Å), (a=3.987 Å) and a 
unit cell volume of 60.203 Å3, (61.136 Å3), (63.394 Å3), respec-
tively. The profile R-value (Rp), weighted-profile R-value (Rwp), 

and the Durbin–Watson parameter of the refined structure 
parameters were 6.3 %, 8.5 % and 1.58, serially, indicating that 
the refinement results are acceptable. Based on Rr value, the 
BSFZ sample shows the largest unit cell volume, which may be 
attributed to the synchronous effect of the Zn atom in the B-side 
system.

5. Conclusions
The BSF and BSFB composite model system was success-

fully synthesized using solid-state reaction. The main weight 
loss on the model in TG analysis was dominated by the decom-
position elements process during the solid-state reaction. The 
reaction process led to the construction of the new structure 
of crystalline phase in the free-cobalt system. The single-phase 
associated with the perovskite structure was built on the model 
which is demonstrated in detail by the XRD results. The stoi-
chiometric structure of composite metal oxide for BSF and BSFB 
cathode materials could be obtained as a crystalline structure 
with the single perovskite-phase. The cubic structure with a 
space group of Pm-3m was detected by Rietveld refinement 
from GSAS analysis.
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