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Abstract

Convolutional neural networks (CNNs) have become one of the state-of-the-art

techniques for downscaling climate projections. They are being applied under

Perfect-Prognosis (trained in a historical period with observations) and hybrid

approaches (as Regional Climate Models (RCMs) emulators), with satisfactory

results. Nevertheless, two important aspects have not been, to our knowledge,

properly assessed yet: (1) their performance as emulators for other Earth

System Models (ESMs) different to the one used for training, and (2) their per-

formance under extrapolation, that is, when applied outside of their calibration

range. In this study, we use UNET, a popular CNN, to assess these two aspects

through two pseudo-reality experiments, and we compare it with simpler emu-

lators: an interpolation and a linear regression. The RCA4 regional model,

with 0.11� resolution over a complex domain centered in the Pyrenees, and

driven by the CNRM-CM5 global model is used to train the emulators. Two

frameworks are followed for the training: predictors are taken (1) from the

upscaled RCM and (2) from the ESM. In both frameworks, the performance of

the UNET when applied for other ESMs different to the one used for training

is considerably worse, indicating poor generalization. For the linear method a

similar deterioration is seen, so this limitation does not seem method specific

but inherent to the task. For the second experiment, the emulators are trained

in present and evaluated in future, under extrapolation. While averaged

aspects such as the mean values are well simulated in future, significant biases

(up to 5�C) appear when assessing warm extremes. These biases are larger by

UNET than those produced by the linear method. This limitation suggests that,

for variables such as temperature, with a marked signal of change and a strong

linear relationship with predictors, simple linear methods might be more

appropriate than the sophisticated deep learning techniques.
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1 | INTRODUCTION

There is a growing need for high resolution climate
change projections for impact and adaptation studies.
This need is usually met by increasing the resolution of
global simulations with some sort of downscaling. Two
main approaches are possible: dynamical and statistical
downscaling (SD), and they have been widely reviewed
(Benestad et al., 2008; Charles et al., 2004; Huth et al., 2015;
Jacob et al., 2020; Maraun et al., 2010; Rummukainen,
2010; Trzaska & Schnarr, 2014; Wilby et al., 2004;
Wilby & Wigley, 1997; Zorita & von Storch, 1999).
Dynamical downscaling usually consists in nesting a
high-resolution model, such as a Regional Climate Model
(RCM), within a lower-resolution model, such as an
Earth System Model (ESM), while SD is based on the
existence of statistical relationships between large scale
variables (predictors) and local weather (predictands).
Since dynamical downscaling is based on physical laws,
one of its advantages is the physical consistency among
downscaled variables. Nonetheless, its computational
expense makes it difficult to use this strategy for the gen-
eration of large ensembles (Trzaska & Schnarr, 2014). On
the other hand, SD is less computationally expensive,
allowing exploration of uncertainties through the genera-
tion of large ensembles, but two major drawbacks are the
need for historical observations and the stationarity
assumption it relies on; SD is based on the assumption
that the predictors/predictand relationships are main-
tained under future climate change, which is not granted
and cannot be directly tested due to the lack of observa-
tions for the future (Charles et al., 2004; Trzaska &
Schnarr, 2014; Wilby et al., 2004).

Several strategies have been proposed to indirectly
assess the transferability of SD methods to different cli-
mates though. One possible approach is to use the cold-
est/wettest years of a historical record to train methods,
and then evaluate them over the warmest/driest years
(see Gutiérrez et al., 2013; Olmo & Bettolli, 2022;
San-Martín et al., 2017) for temperature/precipitation.
This approach is limited to the observed variability
though. Another approach is to downscale future simula-
tions and to study the impact of downscaling on the long
term trends. Ideally, downscaling techniques should pre-
serve ESMs trends in the large scale (see Baño-Medina
et al., 2021; Hernanz et al., 2023; Vandal et al., 2019; Xu
et al., 2020). This approach is limited to the analysis of

the spatial scales in which ESMs operate (coarse resolu-
tion), and might hide imperfections both in the spatial
and temporal finer scales. And a third approach is to use
pseudo-observations (RCM outputs) to train and test
(in the present and future, respectively) statistical
methods (see Charles et al., 1999; Gaitan et al., 2014;
Hernanz et al., 2022a). This strategy allows to detect
errors in the finer scales and to explore a wider range of
climate change than the first approach, but the use of
pseudo-observations instead of actual observations intro-
duces an additional source of uncertainty.

Recently a new hybrid approach, RCM emulators
(Doury et al., 2023), has been proposed combining the
advantages of both dynamical and statistical downscal-
ing. This strategy makes use of statistical methods to
emulate the behavior of an RCM. Thus, while tradition-
ally SD methods are trained with observations in a histor-
ical period, emulators are trained using the RCM outputs
as predictands, so their training is not restricted to the
historical climate. This approach presents several advan-
tages over traditional SD and RCMs: (1) the use of future
simulations for the training enables emulators to be
trained with a wider range of climate states than SD
under Perfect Prognosis (where the training is done in a
historical period with observations), avoiding thus poten-
tial problems arising from the stationarity assumption.
And (2), with the use of emulators, large ensembles can
be produced from a reduced set of RCM simulations. A
historical scenario and a high end emission scenario can
be used to train an emulator and then produce future
intermediate scenarios at low computational expense. On
the other hand, the main disadvantage of this approach is
that RCMs biases are maintained and must be adjusted
or taken into account.

Deep learning (DL; see LeCun et al., 2015; Schmidhuber,
2015, for an overview) is a growing field with many appli-
cations, including climate downscaling. Convolutional
Neural Networks (CNNs) can deal with large amounts of
data and they present an important advantage over other
statistical methods; their ability to extract high-level spa-
tial features automatically (LeCun et al., 1998; LeCun &
Bengio, 1995). CNNs have become one of the main state-
of-the-art downscaling techniques, both as Perfect
Prognosis SD methods and as hybrid approaches (see
Baño-Medina et al., 2020, 2021; Höhlein et al., 2020; Liu
et al., 2023; Passarella et al., 2022; Serifi et al., 2021;
Vandal et al., 2017, 2019). The particular implementation
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UNET (Ronneberger et al., 2015) has been widely used
for image recognition with great performance and differ-
ent variations have been also satisfactorily applied to cli-
mate downscaling (Doury et al., 2023; Sha et al., 2020a,
2020b; Sharma & Mitra, 2022).

Doury et al. (2023) proposed an emulator based on
UNET to reproduce an RCM behavior. First, the emula-
tor was trained with a RCM nested on an ESM both in a
historical scenario and in the Representative Concentra-
tion Pathway (RCP) 8.5 (see IPCC, 2013), and then the
emulator was evaluated over an intermediate scenario
(RCP4.5), driven by the same ESM, with good results.
Wang et al. (2021) used a similar emulator for precipita-
tion, also with satisfactory results. Nevertheless, being
the purpose of emulators to produce large ensembles
(multiple scenarios and models) at low computational
cost, their performance over ESMs different to the one
used for calibration should be assessed.

Additionally, to our knowledge, the extrapolation
capability of CNNs has not yet been assessed using
pseudo-observations, so the finer scales can be analyzed.
Hsieh (2009) and Hernanz et al. (2022b) pointed to
important potential problems of neural networks and
other machine learning algorithms when they are applied
beyond their calibration range.

In this study, we expand the emulator proposed by
Doury et al. (2023) to assess its performance driven
by other ESMs different to the one used for training, and
we also analyze the behavior of the deep learning tool
UNET under extrapolation. The document is organized
as follows. First, in Section 2 a description of the datasets,
experiments, methods and evaluation metrics is provided.
In Section 3 evaluation results are shown and commen-
ted on. And finally, discussion and conclusions are pre-
sented in Section 4.

2 | METHODOLOGY

In the following subsections, a description of the datasets
used, the experiments design, the emulator architecture
and the evaluation metrics is provided.

2.1 | Data and experiments design

This study focuses on the downscaling of surface daily
mean temperature over a small but complex domain cen-
tered over the Pyrenees, including part of the Mediterra-
nean and Atlantic coasts of Spain and France, and the
Balearic Islands (see Figure 1). The predictand consists of
2345 land grid points, from a 64 � 64 RCM grid points
domain, over a rotated grid of 0.11�. Predictors cover a

larger region (55.5� N, �9� W, 33� N, 13.5� E) corre-
sponding to a 16 � 16 ESM grid points domain with a
resolution of 1.5� (all ESMs are interpolated to the same
grid using a bilinear interpolation). For this study, the
following datasets have been used (see Table 1).

The RCA4 model (Samuelsson et al., 2011), partici-
pant in EURO-CORDEX (Jacob et al., 2014), is the RCM
to be emulated with statistical methods. RCA4 is driven
by four different ESMs participants in the Coupled
Model Intercomparison Project Phase 5 (CMIP5, Taylor et al.,
2012): CNRM-CM5 (Voldoire et al., 2013), IPSL-CM5A-MR
(Dufresne et al., 2013), HadGEM2-ES (Martin et al., 2011)
and NorESM1-M (Bentsen et al., 2012; Iversen et al., 2013),
all of them corresponding to the r1i1p1 run.

The first experiment tests the generalization of the
emulator to different ESMs. In this experiment the emu-
lator is trained with RCA4 driven by CNRM-CM5 under
RCP8.5, and then it is applied and evaluated for the
four ESMs under the intermediate scenario RCP4.5
(2006–2100). The reason for this choice is that the final
purpose of RCM emulators is to replace some RCM simu-
lations by the emulator. The best strategy for this is to
produce an extreme scenario with the RCM and then
generate intermediate scenarios (avoiding thus potential
problems related with extrapolation) with the emulator.
The relationship between large scale and local variables
for a RCM is stronger if the large scale variables are taken
from the RCM itself and not from the driving ESM (see
Doury et al., 2023). Thus, an additional set of predictors
is used in some cases, and it consists in the RCM
upscaled to the coarse resolution (1.5�) using a conserva-
tive interpolation, what is referred to as Upscaled
Regional Climate Model (UPRCM). Two evaluation
frameworks are explored: (1) the Perfect Model Frame-
work and (2) the Model World Framework (see Doury
et al., 2023). In the Perfect Model Framework, predictors
for training are taken from the UPRCM, and in the
Model World Framework they are taken from the driving
ESM instead. In this study, we have applied and evalu-
ated the emulator for the four ESMs plus the UPRCM,
following both training frameworks. It should be noticed
that evaluating the emulator for the UPRCM does not
represent a realistic practical case, but a theoretical opti-
mum benchmark to compare with.

The second experiment assesses the extrapolation
capability of the emulator. In this experiment, the emula-
tor is trained under the intermediate scenario RCP4.5
and only in the present (2006–2025) and evaluated under
the extreme scenario RCP8.5 in the future (2081–2100).
For this experiment only the UPRCM has been used
(both for training and testing), aiming for the best possi-
ble conditions for the emulator. It should be noticed that
the extrapolation issue is not as crucial for emulators as it
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is for the Perfect Prognosis approach. Being emulators
trained not only with historical data but also with future
projections, the range of the training dataset is wider and
extrapolation problems are not significant. Nevertheless,
this experiment aims at highlighting the extrapolation
problems that UNET can suffer from when applied under
a Perfect Prognosis approach. The reason for assessing
potential weaknesses of the Perfect Prognosis approach
using the hybrid approach is that it allows to evaluate sta-
tistical methods under a larger extrapolation. The vari-
ables used as predictors are: temperature, zonal wind and
meridional wind at 850 hPa and 500 hPa, geopotential
height at 500 hPa, specific humidity at 850 hPa and mean
sea level pressure. The choice of predictors has been

conditioned by availability, prioritizing predictors com-
monly used in statistical downscaling and avoiding vari-
ables strongly dependent on the model parameterizations,
such as cloud cover or radiation, for example. They are
standardized using their mean and standard deviation for
the reference period (2006–2035) over the emission scenario
used for training. Doury et al. (2023) proposed applying pre-
dictors a smoothing filter (averaging values over 3 � 3 grid
boxes) previous to the standardization and the downscaling.
This proceeding was based on Klaver et al. (2020), where
the conclusion that the effective resolution of ESMs is often
larger (about 3 times) than their nominal resolution was
reached. Such a preprocess has been done but similar
results were reached (not shown).

FIGURE 1 Daily RMSE (�C), variance ratio (%), temporal correlation and Wasserstein distance (in columns) by INT, MLR and UNET

(in rows) in the complete period (2006–2100). The models have been trained and evaluated in the Perfect Model Framework (trained with

the UPRCM driven by CNRM-CM5 under RCP8.5 and evaluated with the UPRCM driven by CNRM-CM5 under RCP4.5).
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2.2 | Emulator description

The emulator here used is the same proposed by Doury
et al. (2023) which in turn is an adaptation of the original
UNET (Ronneberger et al., 2015). UNET is a popular
architecture designed for biomedical purposes. It is a
fully convolutional neural network, consisting of a series
of four encoding blocks followed by a series of four
decoding blocks which are, in addition, connected by
bridges. Encoding blocks are formed by three layers: two
of them convolutional (with 3 � 3 kernels) and then a
max pooling (down-sampling operation through the use
of maximum filters) with 2 � 2 filters. Similarly, decod-
ing blocks are inversely formed by a 2 � 2 up-sampling
and two 3 � 3 convolutional layers.

This architecture is usually represented by a
U-shaped network which gives the model its name. In
its original design, UNET was used for image segmen-
tation, which is a classification problem. In this case,
UNET tackles a regression problem, because tempera-
ture is a continuous numerical variable. Thus, the orig-
inal UNET has been modified in two main ways:
(1) the output layer uses a REctified Linear Unit func-
tion (ReLU, more appropriate for regression tasks than
the original sigmoid) and (2) the loss function and met-
ric used are the root mean squared error (instead of the
original binary cross entropy and accuracy, respec-
tively). An Adam optimizer (Kingma & Ba, 2014) with
learning rate of 0.005 has been used, with 100 epochs
and a batch size of 32. Overfitting has been handled by
the use of early stopping (stopping the gradient descent
once no more improvement is found after k iterations
in a validation set, with k typically called patience)
with a patience of 15. For a more detailed description,
see Doury et al. (2023).

This emulator based on UNET is compared to simpler
benchmarks: an emulator consisting on a bilinear inter-
polation (INT) and another one consisting in a multiple
linear regression (MLR). For the MLR, predictors are
taken from the four nearest neighbors and interpolated
to each target point.

2.3 | Evaluation metrics

For the evaluation of the emulators we have followed the
metrics used in Doury et al. (2023). Three different
aspects are evaluated:

1. Daily metrics: the Root Mean Squared Error (RMSE),
the variance ratio (%), the temporal correlation
(through the Pearson's correlation coefficient) and the
1-D Wasserstein distance. The Wasserstein distance is
a metric based on the optimal transport theory
(Villani, 2009) and it measures the similarity of the
statistical distributions.

2. Present climatology: mean temperature and 99th per-
centile in 2006–2025.

3. Climate change signal: the delta changes in the
mean temperature and in the 99th percentile
between the future period (2081–2100) and the pre-
sent period (2006–2025).

These metrics are calculated at grid point scale. When
presented in the form of maps, they are accompanied by
their means (M) and their super-quantiles of order 0.05
(SQ05) and 0.95 (SQ95) in order to summarize the maps
in a few values. The super-quantile α is defined as the
mean of all the values larger (resp. smaller) than
the quantile of order α.

TABLE 1 Regional Climate Model and Earth System Models used. CNRM-CM5 is the ESM used for driving the RCA4 RCM during the

training.

Model type Model name Institution
Resolution
(lon � lat) Reference

RCM RCA4 Rossby Centre, Swedish Meteorological and
Hydrological Institute (SMHI), Sweden

0.11� (rotated grid) Samuelsson et al. (2011)

ESM (training) CNRM-CM5 Centre National de Recherches Météorologiques/
Centre Européen de Recherche et Formation
Avancée en Calcul Scientifique
(CNRM-CERFACS), France

1.4� � 1.4� Voldoire et al. (2013)

ESM IPSL-CM5A-MR Institut Pierre-Simon Laplace (IPSL), France 2.5� � 1.2� Dufresne et al. (2013)

ESM HadGEM2-ES Met Office, UK 1.9� � 1.2� Martin et al. (2011)

ESM NorESM1-M Norwegian Meteorological Institute (MET
Norway)

1.89� � 2.50� Bentsen et al. (2012),
Iversen et al. (2013)
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3 | RESULTS

3.1 | First experiment: RCM emulator
generalization

3.1.1 | Perfect model framework

In the first experiment, the emulator is trained under
RCP8.5 and evaluated in RCP4.5. First, the strengths of
the emulator are to be proven. Figures 1 and 2 show
scores for the emulator UNET compared to the interpola-
tion and the linear method in the Perfect Model
Approach (trained and evaluated for UPRCM). In this
framework, daily scores by UNET are systematically bet-
ter than by the other methods (Figure 1). RMSEs by the
UNET (mean value of 0.92�C) are considerably lower
than those for INT and MLR (3.76�C and 1.73�C, respec-
tively). The variance ratios by UNET (mean value of
93.50%) are closer to 100% than by INT and MLR
(114.21% and 90.22%, respectively). Correlations by
UNET (mean value of 0.99) are higher than for INT and
MLR (0.94 and 0.96, respectively). Wasserstein distances
by UNET (mean value of 0.20) are lower than those by
INT and MLR (2.65 and 0.30, respectively). As for the cli-
matology and delta change (Figure 2), UNET also
improves the other two methods, although for the mean
temperature MLR achieves similar scores. For the
mean temperature in the present period (2006–2025),
UNET and MLR present low biases (mean values of
0.13�C and �0.03�C, respectively) while INT presents
larger biases (mean values of 1.83�C). The delta change
in the mean temperature, though, is well captured by all
methods, with mean biases lower than 0.05�C in absolute
value. It is in the 99th percentile when the improvements
of UNET over MLR become more apparent. For the pre-
sent climatology, UNET presents very low biases (mean
value of �0.47�C), considerably lower than by INT and
MLR (1.67�C and �1.46�C, respectively). And for the
delta changes in the 99th percentile, biases by UNET
(mean value of �0.01�C) are also clearly lower than by
the other two methods (0.54�C and 0.37�C for INT and
MLR, respectively). Only the mean values have been
commented, but the extremes of the spatial distributions
(SQ05 and SQ95) lead to the same conclusions

3.1.2 | Model world framework

Now that the good performance of UNET under the Per-
fect Model Framework has been demonstrated, let us
analyze its performance when applied for other ESMs.
RMSEs by UNET (mostly below 1�C) are considerably
lower than by MLR (around 1.5–2�C) for the UPRCM.

But when UNET is applied for the other ESMs (even for
CNRM-CM5, the one used for driving the RCM in the
training dataset), its RMSEs increase up to around
2–2.5�C, being similar to the ones by MLR (Figure 3).
Thus, it has been proved that despite the good perfor-
mance of UNET when applied for the same ESM that it
has been trained with (UPRCM in this case, but similar
results are reached with CNRM-CM5, not shown), when
applied for other ESMs its performance is considerably
worse

3.2 | Second experiment: Extrapolation

For the second experiment, the one focusing on extrapo-
lation, we present results for the present and future cli-
matologies as well as for the delta changes for the mean
temperature and for the 99th percentile. Figure 4 shows
how the mean climatology and delta change in it is well
captured by UNET and MLR, but as it has been men-
tioned, the analysis only of averaged aspects (either tem-
porary or spatially) can hide imperfections in the finer
scales. When analyzing the 99th percentile, UNET pre-
sents low biases (around �1�C to �0.5�C) in the pre-
sent climatology (inside its calibration range), but for
the future climatology, these extreme values present
significant biases (mostly between �0.5�C and 2�C, but
up to 5�C in some cases), larger than those given by the
linear method (as well as for the delta change as a
consequence).

4 | DISCUSSION AND
CONCLUSIONS

Deep learning methods based on CNNs are state-of-the-
art downscaling methods, being used both for statistical
downscaling under Perfect Prognosis and for hybrid
approaches, such as RCM emulators. In this study, we
have identified two important limitations for both appli-
cations: (1) RCM emulators appear to be ESM dependent
(i.e., their performance is considerably different when
evaluated for ESMs different to the one used during their
calibration) and (2) their performance under extrapola-
tion (values outside of the calibration range) is poor. For
this study we have used the popular UNET, a specific
implementation that has shown great performance in
many fields including climate downscaling.

The first limitation is not exclusive of CNNs, but it is
also seen in linear methods. That indicates that the pre-
dictors/predictand relationships established by the RCM
are different for different driving ESMs. A possible expla-
nation for this finding could be related with some
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FIGURE 2 RCM truth and bias by INT, MLR and UNET (in columns) for the mean temperature (�C, present climatology in

first row and future delta change in second row) and for the 99th percentile (�C, present climatology in third row and future

delta change in fourth row). The present climatology corresponds to 2006–2025 and the future delta change corresponds to

the difference between 2081–2100 and 2006–2025. The models have been trained and evaluated in the Perfect Model

Framework (trained with the UPRCM driven by CNRM-CM5 under RCP8.5 and evaluated with the UPRCM driven by CNRM-CM5

under RCP4.5).
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FIGURE 3 Daily RMSE (�C) for the complete period (2006–2100). The models have been trained in the Perfect Model Framework

(UPRCM driven by CNRM-CM5 under RCP8.5) and evaluated over the UPRCM driven by CNRM-CM5, CNRM-CM5, HadGEM2-ES,

IPSL-CM5A-MR and NorESM1-M (from left to right) under RCP4.5. Each box (MLR in blue and UNET in orange) summarizes the

distribution of the 2345 grid points by the median and the quartiles; whiskers extend to a maximum of 1.5 times the interquartile range.

FIGURE 4 Bias in the mean temperature (�C, first row) and the 99th percentile (�C, second row) in the present climatology (first

column, 2006–2025), the future climatology (second column, 2081–2100) and the delta change (third column, difference between 2081–2100
and 2006–2025). The models have been trained and evaluated in the Perfect Model Framework (UPRCM driven by CNRM-CM5 under

RCP4.5 for training and RCP8.5 for evaluation). Each box (MLR in blue, and UNET in orange) summarizes the distribution of the 2345 grid

points by the median and the quartiles; whiskers extend to a maximum of 1.5 times the interquartile range.
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overfitting by the emulators. Another possible explana-
tion could be that the set of predictors used is not enough
to explain all the predictand variability, and predictors
containing important information might have been missing
(e.g., aerosols, clouds, radiation, surface processes, or other
variables dependent on each ESM parameterizations). In
particular, near surface temperature is also highly depen-
dent on soil water content which in turn is responsible for
the partition of sensible and latent surface heat fluxes affect-
ing near surface temperature and humidity. Both heat
fluxes are the main mechanism to turn back energy into
the atmosphere from the land surface. Consequently, the
Bowen ratio (the ratio of sensible to latent heat flux), not
usually contemplated among the atmospheric predictors,
would help to further explain the temperature variability
(Rodríguez-Camino & Avissar, 1998). Further investigation
in this way might be fruitful in order to build, if possible,
emulators capable of generalizing for different ESMs. These
results point to only a moderate potential benefit on the use
of RCM emulators. Being a large ensemble composed of
multiple emission scenarios (N) and multiple driving ESMs
(M), for a single RCM, the scenario/ESM matrix does not
seem feasible to be filled with emulators from only a few
RCM simulations. Had results been similar for other ESMs,
only 2 RCMs simulations (a historical one and a high-end
one) would be enough to fill the N � M matrix. This way
2 � M RCMs simulations are needed (historical + high-
end, for each driving ESM) for emulators to produce accu-
rate results.

As for the second limitation, being extrapolation a
well-known potential issue for any statistical method,
errors under extrapolation in the fine spatial and tempo-
ral scales are not often assessed when evaluating new
methods. In this study, we have demonstrated how CNNs
trained in the present can reproduce accurately the mean
climatology both in present and under climate change
(averaged aspects), but for extreme temperatures (the tail
of the distribution), important errors emerge in the future
climate (outside of the calibration range). This is rarely
assessed, and such errors can often remain hidden if only
averaged aspects are evaluated. Nonetheless, these errors
can lead to wrong conclusions for impact and adaptation
studies. For variables such as temperature, where the pre-
dictors/predictand relationships are quite linear and the
signal of change is strong (large amount of data projected
outside of the calibration range), simple linear methods
might be more suitable than sophisticated deep learning
techniques.

Needless to say that these experiments have been car-
ried out for a particular RCM and configuration, but an
expansion to other RCMs/configurations would lead to
more robust conclusions. Similarly, these conclusions
have been reached using a particular deep learning

approach and a set of evaluation metrics, but other are
possible and might lead to different conclusions.
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