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ABSTRACT 

Pharmacokinetic-pharmacodynamic (PKPD) modeling and simulation have emerged as 

pivotal tools in drug development and usage. Such models characterize typical trends in data and 

quantify the variability in relationships among dose, concentration, and desired effects. For 

antibacterial applications, models characterizing bacterial growth and antibiotic-induced bacterial 

killing offer insight into interactions between antibiotics, bacteria, and the host. Simulations from 

these models predict outcomes for untested scenarios, refine study designs, and optimize dosing 

regimens. 

Enterococcus faecalis, a significant opportunistic bacterial pathogen with increasing 

clinical relevance, is commonly found in the gastrointestinal tract but can lead to severe infection, 

such as endocarditis. Treatments for E. faecalis endocarditis involves combination antibiotic 

therapy, such as beta-lactam antibiotics and aminoglycosides. However, due to the toxicity of 

aminoglycosides, the primary treatment is typically double beta-lactam therapy—ampicillin and 

ceftriaxone. Eradicating an E. faecalis infection typically requires a lengthy six-week course of 

antibiotic treatment. However, keeping patients in hospitals for such an extended duration is 

impractical. Therefore, the objective of this thesis project is to explore the extension of double 

beta-lactam therapy to outpatient antibiotic treatment (OPAT). This approach is gaining 

importance due to the rising risks of hospital-acquired infections and escalating healthcare 

expenses. Leveraging the stability of penicillin G, which can be stored at room temperature for 

extended periods, makes it a promising candidate for OPAT, offering potential benefits in terms 

of both efficacy and cost-effectiveness. Despite limited evidence for penicillin G plus ceftriaxone, 

this research successfully bridges the gap through in-vitro time-kill assays and the subsequent 
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development of a semi-mechanistic model for this antibiotic combination against E. faecalis 

isolates. 

This dissertation research evaluated 21 clinical strains of E. faecalis isolated from infected 

patients' blood, sourced from Mount Sinai Health System and a hospital in Detroit as part of Dr. 

Jaclyn Cusumano’s American Association of Pharmacists (AACP) new investigator award 

research project. The first aim was to conduct susceptibility testing on these isolates. This testing 

played a pivotal role in guiding antibiotic therapy by determining a drug's minimum inhibitory 

concentration (MIC) for a specific bacterial strain, offering insight into its effectiveness. The 

project highlights the importance of knowing a patient's strain susceptibility since it influences the 

dosing regimen or treatment strategy. After susceptibility testing using broth microdilution 

techniques, strains were categorized as highly susceptible (MIC ≤ 2 µg/ml) or less susceptible 

(MIC = 4 µg/ml) to penicillin G. 

The next phase of the project involved in-vitro time-kill assays—a gold standard method 

for testing antibiotic concentrations and synergy in combination therapies. All 21 patient isolates 

were tested with penicillin G monotherapy and in combination with ceftriaxone, along with testing 

ampicillin and ceftriaxone combination therapies for comparison. It was noted that both 

combinations showed efficacy for strains highly susceptible to penicillin G (MIC ≤ 2 µg/ml), 

exhibiting bactericidal and synergistic activity. However, both treatments demonstrated poor 

performance for the less susceptible strains (MIC = 4 µg/ml). This observation focuses on the 

importance of in-vitro pharmacodynamic studies in understanding antibiotic action dynamics, 

forming the basis for the semi-mechanistic model. These 24-hour time-kill assays strongly 

suggested further investigation into the penicillin G and ceftriaxone combination, while 
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considering the differential effects of the combination on more and less susceptible strains. Semi-

mechanistic models were created for two out of the twenty-one tested strains, one with high 

susceptibility and another with lower susceptibility, with the goal of understanding the bacterial 

growth and drug kill effect in greater detail along with testing different dosing regimens. 

Following the typical progression of constructing a semi-mechanistic PK-PD model, a 

bacterial sub-model was created by employing intensive sampling during time-kill assays. This 

approach enabled the comprehension of the complete bacterial growth dynamics for both strains. 

By employing non-linear least squares regression within RStudio, the predictive model was 

effectively fitted to the observed data, providing estimates of essential bacterial growth parameters. 

The utilization of the Gompertz growth model yielded a remarkably close match between predicted 

and observed data, giving confidence in the accuracy of the estimated growth parameters. 

Subsequently, the focus shifted to obtaining the most suitable pharmacodynamic (PD) 

parameters to accurately encapsulate the drug's antibacterial effects. This necessitated the use of a 

mathematical model. A widely employed model for this purpose is the Sigmoidal Emax model—

an empirical model that is widely published. This model emerged as a valuable tool for formalizing 

the interpretation of experimental data and understanding the influence of altering penicillin G 

concentrations, both individually and in conjunction with ceftriaxone. 

Leveraging the data analysis capacity of RStudio, nonlinear least squares regression 

analysis was used to intricately fit the sigmoidal Emax equation to the observed data. This led to 

obtaining vital parameters, including Emax (maximum effect), EC50 (half-maximal effective 

concentration), and the sigmoidicity factor. Subsequent evaluation of goodness of fit based visual 
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predictive checks and low standard errors in estimated parameters confirmed the favorable 

alignment between the predicted model and observed data. 

Physiologically based pharmacokinetic (PBPK) modeling and simulation stands as a well-

established approach that bridges insights from preclinical studies to clinical outcomes. By 

combining drug-specific information with a comprehensive understanding of physiological and 

biological processes at the organism level, PBPK models mechanistically depict the behavior of 

drugs within biological systems. This enables the a priori simulation of drug concentration-time 

profiles. What distinguishes PBPK modeling is its unique capability to account for physiological 

variations within specific populations, offering predictive insights into pharmacokinetics tailored 

to those groups. This thesis project ventured into two vital applications of PBPK models: 

extrapolating novel clinical scenarios and exploring pharmacokinetics in special populations, 

particularly the geriatric demographic. 

With the aim of comprehending the pharmacokinetics of penicillin G and ceftriaxone, the 

project leveraged the Simcyp® Simulator, a modeling and simulation tool that is widely used in 

drug development. This platform pools the anatomical, physiological, drug-related, and trial design 

parameters to generate plasma drug concentration profiles. The simulated concentrations were 

compared against published data, with the fold error—a ratio of simulated to observed values—

serving as a benchmark for model accuracy. Typically, predictions within a fold error range of 0.5 

to 2 are deemed acceptable. 

Upon verification within the healthy population, the models were extended to geriatric 

subjects utilizing the Simcyp® population library. The same fold error criteria were applied, and 

the models adeptly predicted concentrations across both young and elderly populations. 
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Remarkable differences in pharmacokinetics were seen in the geriatric cohort compared to a young 

adult population. Notably, for penicillin G, the AUC increased by 46% in the elderly due to an 

almost 47% decline in total clearance, stemming from a 49% reduction in glomerular filtration rate 

(GFR). 

Further expanding the PBPK model for penicillin G, the inclusion of a pharmacodynamic 

(PD) component led to the final goal of this project. Lua scripting in Simcyp® was utilized to build 

the PD model. This model used an equation that combined the bacterial growth model with the 

drug's inhibitory effect via the Emax model. The impacts of monotherapy and combination were 

explored through the modulation of PD parameters. Consequently, when co-administered with 

ceftriaxone, kill rates for penicillin G increased, and IC50 values decreased, indicative of 

ceftriaxone's augmentative effect. The free (unbound) plasma concentration-time profile from the 

developed PBPK model was linked as input to the PD model, facilitating testing and simulation of 

diverse penicillin G dosing regimens. 

Notably, penicillin G, a time-dependent beta-lactam antibiotic, exhibited a strong 

correlation with the PK/PD index %fT>MIC (% of the dosing interval with a free concentration 

above MIC). This was especially pertinent for high-susceptibility strains, wherein continuous 

infusion of penicillin G led to the most significant reduction in bacterial density, irrespective of 

combination therapy or monotherapy. However, for low-susceptibility strains, the scenario 

differed, revealing that reliance on a single PK/PD index is not all-encompassing. 

For the geriatric population, the PBPK-PD model aligned with literature-backed dosing 

modifications for penicillin G. For highly susceptible strains, increasing the dosing interval or 

reducing the dose resulted in comparable reductions in bacterial density. Conversely, in low-
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susceptibility strains, even an increase in AUC within the geriatric demographic failed to eradicate 

the bacteria.  

In summary, this comprehensive thesis journey navigates through the in-vitro bacterial 

studies and pharmacokinetic-pharmacodynamic (PKPD) modeling and simulation. This project 

sheds light on the ability to integrate in-vitro data with PBPK models which not only predict 

untested scenarios but also help dosing strategies. Overall, by addressing the clinical challenge of 

E. faecalis infections, the project showcased the extension of double beta-lactam therapy to 

penicillin G and ceftriaxone combination through a stepwise development of semi-mechanistic 

PK/PD model. 
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1.1 Introduction to Infective Endocarditis 

This thesis project revolves around the assessment of beta-lactam combinations against the 

bacteria responsible for infective endocarditis, specifically Enterococcus faecalis. This assessment 

is carried out through a combination of in-vitro experimentation and by application of semi-

mechanistic Physiologically-based Pharmacokinetic and Pharmacodynamic (PBPK-PD) modeling 

and simulation. 

Endocarditis refers to the inflammation of the heart's inner lining, known as the 

endocardium, and is commonly caused by bacterial infection. When inflammation results from an 

infection, it is referred to as infective Endocarditis (IE). It is a severely devastating disease, with 

in-hospital mortality ranging from 17% to 30% [1]. It has an annual incidence of up to 10 per 

100,000 of the general population. Healthcare-related infections now account for 25–30% of newly 

reported cases of endocarditis. The normal valvular endothelium is impervious to bacterial 

colonization, but alteration of the cardiac valve surface allows for bacterial attachment and 

colonization if bacteria are present in the bloodstream (i.e., bacteremia) [2]. 

The pathogenesis of infective endocarditis has been illustrated in Figure 1 and involves 

several crucial steps.  Firstly, pathogens gain transient access to the bloodstream, often through 

medical procedures or dental pathways. Subsequently, these circulating pathogens can rapidly 

adhere to a mechanically injured or inflamed valve surface, facilitated by platelet fibrin deposition, 

leading to the formation of what is known as 'nonbacterial thrombotic endocarditis'. Once adhered 

to the valve surface, the pathogen species penetrate the valve endothelium, further fueling 

inflammation and causing aggressive tissue destruction. The proliferation of the pathogens on and 

within the endothelium results in the maturation of vegetation on the valve. Consequently, 
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embolization of vegetation particles may occur, leading to systemic hematogenous spreading of 

the pathogens [3].  

Infective endocarditis is diagnosed through blood culture tests and echocardiographic 

findings. All patients with IE receive antimicrobial therapy, while a subset of cases may require 

cardiovascular surgical intervention. Among the causative agents, E. faecalis, a type of 

enterococcus, is responsible for 5%-20% of IE cases. Notably, a significant portion of enterococcal 

endocarditis cases (almost 93% in one reported study) can be attributed to E. faecalis [4]. 

Understanding the pathogenesis and causative agents of infective endocarditis is crucial 

for timely diagnosis, appropriate treatment, and effective management of this potentially serious 

condition affecting the heart's inner lining. 

 

Figure 1: Pathogenesis of infective endocarditis [3] 
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1.2 Introduction to Enterococcus faecalis infections 

Enterococci has emerged as a significant nosocomial pathogen, ranking second only to 

Staphylococci, which is the primary cause of nosocomial infections globally. Enterococci are 

significant contributors to nosocomial infections, accounting for up to 10% of all infections among 

hospitalized patients. In these cases, approximately 60% of the infections are caused by E. faecalis, 

while Enterococcus faecium accounts for the remainder [5]. E. faecalis, formerly classified as part 

of the group D Streptococcus system, is a gram-positive bacterium and a core member of the 

commensal microbiota residing in the human gastrointestinal tract. Within this nutrient-rich, 

oxygen-depleted environment of the intestinal tract, E. faecalis is commonly isolated. Normally, 

it exists harmlessly in the intestines; however, if it breaches the intestinal barrier and disseminates 

to other parts of the body, it can cause severe infections [6]. 

Infections involving E. faecalis can spread to various sites, leading to serious conditions 

such as sepsis, endocarditis, urinary tract infection and meningitis. While generally innocuous in 

healthy individuals, people with underlying health conditions or weakened immune systems are 

more susceptible to falling ill. Although invasive infections with E. faecalis are infrequent, there 

has been a steady increase, particularly among elderly or immunocompromised patients, and in 

healthcare-associated settings. One concerning aspect is the potential for these strains to develop 

resistance to all clinically available antibiotics. Moreover, some E. faecalis strains can produce 

cytolysin, intensifying the toxicity of infections and significantly elevating the risk of death in 

nosocomial bacteremia [7]. 
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The increasing prevalence of E. faecalis infections, coupled with its antibiotic resistance 

potential, emphasizes the importance of vigilant infection control measures and judicious use of 

antibiotics in healthcare settings. 

1.3 Beta-lactam Antibiotics and their Mechanism of Action 

One of the primary treatments for E. faecalis infections involves the use of beta-lactam 

antibiotics. Beta-lactam antibiotics are one of the most prescribed and safest anti-infective classes 

available with numerous clinical indications. Modification of the structure of the naturally 

occurring penicillin (penicillin G & V) resulted in the development of both synthetic penicillin 

analogs, as well as new families of beta-lactams (beginning with the cephalosporins) that have 

distinctly different side rings and side chains with different antibacterial spectrums of 

activity, greater stability to beta-lactamases, and different pharmacokinetic properties [8,9]. This 

research will focus on two of the four beta-lactam categories: penicillins and cephalosporins. 

All beta-lactam antibiotics contain the same core 4-member “beta-lactam” ring. This ring 

mimics the shape of the terminal D-Ala-D-Ala peptide sequence that serves as the substrate for 

cell wall transpeptidases that form covalent bonds between different peptidoglycan chains during 

periods of cell growth. Peptidoglycan is a structural component found in the bacterial cell wall. It 

consists of a mesh-like polymer made of sugars and amino acids, providing rigidity and protection 

to the bacterial cell. The 4-ring structure and associated side groups result in tight binding to the 

active site of transpeptidases (also known as penicillin binding proteins or PBPs). PBPs are 

transpeptidases, carboxypeptidases, and endopeptidases that synthesize new, and remodel existing, 

peptidoglycan. Tight binding inhibits enzyme activity and consequent cell wall formation. In 

Figure 2, at the top shows a scenario in the absence of a drug, transpeptidase enzymes in the cell 
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wall catalyze cross-links between adjacent glycan chains, which involves the removal of a terminal 

D-alanine residue from one of the peptidoglycan precursors (highlighted by the broken oval). 

Glycosyltransferases (GT), which exist as either separate subunits or tightly associated with 

transpeptidases (e.g., as is the case for PBP-2) create covalent bonds between adjacent sugar 

molecules NAM & NAG. The net result of covalent bonds between both the peptide and sugar 

chains creates a rigid cell wall that protects the bacterial cell from osmotic forces that would 

otherwise result in cell rupture. At the bottom shows a scenario in presence of beta-lactam 

antibiotics, which include penicillin (Pen), cephalosporins (Ceph), monobactams (Mono), and 

carbapenems (Carba), that bear a structural resemblance to the natural D-Ala-D-Ala substrate for 

the transpeptidase and exert their inhibitory effects on cell wall synthesis by tightly binding to the 

active site of the transpeptidase (PBP) [8,9,10]. 

The “double beta-lactam” therapy is thought to work through complementary saturation of 

PBPs and is being actively used to treat E. faecalis infections. The synergy of the 

ampicillin/penicillin and ceftriaxone combination is thought to be due to complete PBP saturation. 

Ceftriaxone binds to PBP 2 and 3 while ampicillin/penicillin binds to PBP 4 and 5, inhibiting cell 

wall synthesis and providing total saturation of PBPs [11].  
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Figure 2:Mechanism of Beta-lactam antibiotics [8] 

1.4 Role of Translational Modeling in Antimicrobial Pharmacodynamics 

This thesis project attempts to utilize in-vitro pharmacodynamic data and subsequently 

connect it with a physiologically-based pharmacokinetic (PBPK) model. In doing so, it aims to 

bridge the divide between observations made in the laboratory and the practical applications in 

real-world clinical scenarios. 

Antimicrobial pharmacodynamics is the discipline that integrates microbiology and 

pharmacology, with the aim of linking a measure of drug exposure, relative to a measure of drug 

potency for the pathogen in question, to the microbiological or clinical effect achieved. The 

delineation of such relationships allows the drug dose to be chosen rationally so that a large 

proportion of the intended patient population can achieve the desired effect (for example, the 

maximal bactericidal effect). Ultimately, any anti-infective therapy aims to administer a dose of 

the drug that has an acceptably high probability of achieving the desired therapeutic effect balanced 

with an acceptably low probability of toxicity. Appropriate use of the latest pharmacodynamic 
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modeling approaches can minimize the emergence of resistance and optimize the outcome for 

patients [12,13]. 

Translational PK/PD modeling has emerged as a critical technique for quantitative analysis 

of the relationship between dose, exposure, and response of antibiotics. It is part of translational 

pharmacology which is the science of transitioning (or translating) knowledge gained at the bench 

to advance innovation into practice in a clinical setting. By combining model components for 

pharmacokinetics, bacterial growth kinetics, and concentration-dependent drug effects, these 

models can quantitatively capture and simulate the complex interplay between an antibiotic, 

bacterium, and host organism. Fine-tuning these basic model structures allows to further account 

for complicating factors such as resistance development, combination therapy, or host responses. 

With this tool set at hand, mechanism-based PK/PD modeling and simulation allow the 

development of optimal dosing regimens for novel and established antibiotics for maximum 

efficacy and minimal resistance development [13]. 

The two most important factors that determine how effective a treatment will be for a given 

patient are (i) the free and available antibiotic concentration at the infection site (i.e., 

pharmacokinetics (PK)), and (ii) the susceptibility of the bacteria (i.e., pharmacodynamics (PD)). 

Understanding antibiotic PK-PD is crucial to optimize a dosing regimen and maximize the killing 

within safety constraints. The semi-mechanistic PK-PD models in the field of antibiotics capture 

the broad general characteristics of bacterial growth and drug effects, as well as the development 

of bacterial resistance. These models consider the systemic concentration-time profiles and their 

interaction on full-time courses of bacterial growth and killing and are invaluable tools to explore 

suitable dosing regimens of antibiotic combinations. As the data available rarely allow for a 
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detailed mechanistic description of bacterial growth and how the antibiotic(s) acts on the bacteria, 

the model is termed “semi-mechanistic” [14]. Several publications have described the use of semi-

mechanistic PK-PD model(s) in in vitro time-kill antibiotic combination experiments in which the 

antibacterial effect of the combination and at least one of the drugs in monotherapy was repeatedly 

measured following treatment [15-19]. Studies have repeatedly proved that mechanism-based PK-

PD models can identify dosing strategies for antibiotics in drug development and clinical 

application. 

1.5 Constructing a Semi-Mechanistic PK/PD Model 

Mechanism-based PK/PD models take into consideration the time course of bacterial count 

based on in vitro, in vivo, and clinical information. The development of translational PK/PD 

models for antibiotics is usually established in a stepwise fashion, in which the different model 

components are individually developed and integrated (Figure 3). The typical steps include firstly 

the development of a pharmacokinetic model in the studied population (animal models or humans), 

that captures the time course of free, pharmacologically active concentrations of the antibiotic, 

preferably in the relevant target tissue. Secondly the development of a bacterial growth model that 

captures the bacterial growth kinetics and potential host response effects. And lastly the integration 

of the bacterial growth model and the pharmacokinetic model component with a pharmacodynamic 

model component that links the dynamics of drug concentrations to bacterial turnover [13,16].  
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Figure 3: Steps involved in the development and application of a translational PK/PD model for antibiotics [13,16]. 

 

1.5.1 Introduction to Physiologically Based Pharmacokinetic Modeling   

While constructing a semi-mechanistic model within the scope of this thesis project, a 

fundamental step was to comprehend the pharmacokinetics of penicillin G and ceftriaxone. This 

is significant in refining dosing strategies and ultimately obtaining favorable therapeutic outcomes. 

Of the various pharmacokinetic modeling approaches available, PBPK modeling was employed 

for the purpose of understanding the behavior of the drug in the body. 

Pharmacokinetic-pharmacodynamic modeling and simulation have made significant 

progress since the 1960s. Over the past six decades, PK/PD has evolved from the basic concept of 

the dose-response relationship to sophisticated models enabling the understanding of the 

underlying mechanism of drug action. This shift has primarily resulted from improved analytical 

methodologies, including advances in computer hardware and software. Mathematical models are 

frequently used to help understand the PK of drugs following intravenous (IV) and oral dosing in 
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animals and humans. PBPK modeling and simulation is an approach that was first introduced by 

Teorell and is also built using a mathematical framework. PBPK models can be used to estimate 

the pharmacokinetic profile of a compound based on preclinical absorption, distribution, 

metabolism, and excretion (ADME) data, and can be used to assess drug exposure in a target organ 

after administration by considering the rate of absorption and disposition in that organ, as well as 

metabolism within that organ, if applicable. A major advantage of PBPK modeling is the 

availability of a comprehensive structural representation of the physiology of an organism. The 

various parameters in the model are either obtained from compilations of prior knowledge or may 

be calculated from specific and carefully validated formulas. The main goals of PBPK modeling 

include generating and assessing a mechanistic understanding of the physiological processes that 

govern an observed drug behavior; translating the understanding to novel settings (e.g., to a 

different population); identifying an ideal therapeutic regimen; and optimizing risk–benefit ratios. 

Any deviation between the model simulation and the data can provide insights into the mechanisms 

of the underlying processes that may not yet be reflected in the existing model [20, 21]. 

1.5.2 Building Blocks of the PBPK Model 

PBPK models consist of compartments corresponding to different tissues in the body, 

connected by the circulating blood system. A whole-body PBPK model (Figure 4) contains an 

explicit representation of the organs that are most relevant to the absorption, distribution, 

metabolism, and excretion (ADME) of the drug due to their physiological/pharmacological 

function or their volume [24]. These are typically the heart, lung, brain, stomach, pancreas, gut, 

liver, kidney, adipose tissue, muscle, bone, and skin. The tissues are linked by the arterial and 

venous blood compartments, and each one of them is characterized by an associated blood-flow 
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rate (Q), volume, tissue-partition coefficient, and permeability. These different physiological 

compartments are connected using a series of differential equations that are parameterized with 

known physiological variables and represent a quantitative mechanistic framework by which the 

ADME of new drugs can be described [20,21].  

 

Figure 4: General structure of a PBPK model [24] 

 

The PBPK models are composed of different types of information combined during model 

building and can be used to generate simulations of different treatment scenarios. Such building 

blocks of information included in the model can be divided into organism properties, drug 

properties, and administration protocol and formulation properties, as shown in Figure 5. The 

organism parameters are usually used as direct input in the model, representing the knowledge 

available a priori on anatomy and physiology. Organism properties are, for instance, organ 

volumes, organ composition, blood flows, surface areas, and enzyme expression levels. Such 
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properties are dependent on the species or population considered. By contrast to organism 

parameters, the drug parameters in the model are related to the compound partition coefficient and 

permeability across biological membranes. In some cases, such parameters can be measured in 

vivo or in vitro, but most often they are estimated from the physicochemical properties of the drug. 

Drug properties include all parameters specific to the compounds under study. Notably, 

physicochemical properties such as compound lipophilicity, solubility, molecular weight (MW), 

and pKa values of a drug are fully independent of organism physiology. Drug-biological properties 

(such as fraction of drug unbound, or tissue-plasma partition coefficient) on the other hand, are 

drug-specific but also defined by the interaction between the drug and the biological system itself, 

so they are dependent on both the drug and the organism’s properties. Finally, information on the 

administration protocol and formulation properties is needed to define a PBPK simulation 

[21,22,24]. When dedicated software packages are used, such information is usually contained in 

the database of the PBPK software available. Various modeling and simulation tools can be used 

by researchers such as GastroplusTM, Simcyp®, and PK-Sim® to perform PBPK modeling. 

Over the past decade, the number of publications involving PBPK modeling has increased 

significantly, demonstrating the widespread use of this approach across the scientific community. 

As a result of this, there has been growing interest in the application of PBPK modeling by the 

pharmaceutical industry. In this research, the Simcyp® Simulator (Version 21, Simcyp®, 

Sheffield, UK; http://www.simcyp.com) was used to perform simulations and to develop and test 

substrate specific PBPK models. The Simcyp® Simulator has in-built modules that help build drug 

specific PBPK models. 
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Figure 5:Building Blocks of a PBPK model. 

 

1.5.3 Overview and Framework of The Simcyp® Simulator 

The Simcyp® Simulator is a software platform for population PBPK-PD modeling and 

simulation. It links in vitro data to in-vivo absorption, distribution, metabolism, excretion, and 

pharmacokinetic/pharmacodynamic outcomes to explore clinical scenarios and support drug 

development decisions, including regulatory submissions and drug labels. The Simcyp® 

Population-based ADME Simulator is a platform and database for mechanistic modeling and 

simulation of the processes of oral absorption, tissue distribution, metabolism, and excretion of 

drugs and drug candidates in healthy and disease populations (categorized by age, disease, and 

race), and for predicting the extent of metabolically-based drug–drug interactions. In the context 

of systems PK, the Simulator combines experimental data generated routinely during preclinical 

drug discovery and development from in vitro enzyme and cellular systems and relevant 

physicochemical attributes of compound and dosage form with demographic, physiological, and 
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genetic information on different patient populations to predict in vivo PK parameters and profile 

[23,25]. 

The Simcyp® Simulator uses mechanisms benefiting from both “bottom-up” and “top-

down” paradigms, called by some the “middle out approach”. Like the bottom-up approach, the 

construction of the model is done by integrating the anatomical and physiological parameters. 

While model parameters are refined and adjusted using the top-down approach to ensure 

predictions align with observed pharmacokinetic data [24]. The Simcyp® Simulator is divided into 

three main-frame modules; 1. Population, 2. Substrate, 3. Trial Design. 

1.5.3.1 Population Module 

Drug ADME properties and pharmacodynamic (PD) activity are strongly related to 

individuals' genotypic and phenotypic status within a population. Population average and extreme 

values can also vary according to the nature of a population, i.e., a general ethnic population, a 

healthy trial population, or a variety of disease populations. The physical and physiological 

characteristics of the simulated population are described by the parameter values stored in the 

Simcyp® population libraries. 

To simulate diverse populations accurately, the Simcyp® population libraries encapsulate 

comprehensive parameter values, drawing from reputable health databases, including the US 

NHANES database and census data from UK and Japanese government bodies. These libraries 

encompass essential physiological variables impacting drug disposition, including gender, age, 

body size, ethnicity, and genetic variations in drug-handling enzymes and transporters. 

Additionally, environmental factors such as dietary habits and smoking status are considered. 
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By incorporating demographics from healthy and disease populations, such as those with 

renal disease or liver cirrhosis, Simcyp® enables simulations that more closely reflect the patient 

population relevant to specific drugs. Generating a trial population with inter-individual 

differences involves randomized (Monte Carlo) statistical sampling from a user-specified 

population library, such as Healthy Volunteers, General North European Caucasians (GNEC), or 

Renally Impaired individuals. Age, height, weight, and body surface area (BSA) are closely linked 

in the simulated population using correlated Monte Carlo methods. A virtual population is then 

created in Simcyp®, where each member possesses individual characteristics (collectively referred 

to as demographics) like body weight, height, and age. These individual characteristics have 

distinct ranges and distributions defined within Simcyp®, encompassing normal, uniform, or 

Weibull probability distributions. 

During population creation, Simcyp® assigns specific characteristics (e.g., weight, age, 

etc.) to each virtual population member by randomly selecting values from the appropriate 

distribution. This approach allows for the simulation of diverse virtual populations, capturing the 

variability present in real-world patient populations, and facilitating more informed drug 

development and personalized medicine. Additionally, Simcyp® allows the user the flexibility to 

develop customized populations based on the underlying physiology of individual organs. As 

shown in Figure 6, population specific parameters for different organs can be changed to create a 

new patient population. 
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Figure 6: Simcyp ®Population-specific screen representing different organs and tissues. 

 

1.5.3.2 Substrate Module 

The substrate screens enable the user to view or enter drug-specific data associated with a 

particular drug, defined as a substrate in Simcyp®, which will be used in a Simcyp® simulation. 

Different sections of the substrate profile are shown in Figure 7, which represents essential ADME 

parameter inputs for the associated drug. Each of the sections explained below contains appropriate 

parameters to be input for better prediction of ADME processes. 

The Absorption tab has the ADAM (Advanced Dissolution and Absorption Module) and 

the M-ADAM (Modified Advanced Dissolution and Absorption Module) models, which enable 

the simulation of the absorption of drugs from solid dosage forms, in addition to solution and 

solution with precipitation, including immediate release (IR), sustained release (SR), and modified 

release (MR) dosage forms. 
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The Distribution tab has two physiologically based pharmacokinetic (PBPK) models 

available within the Simulator. The first model is a minimal PBPK model, while the second is a 

full physiologically based model simulating the concentrations in different organ compartments. 

The minimal PBPK model (mPBPK) can be described as a 'lumped' PBPK model which, in its 

simplest form, has only four compartments, predicting only the systemic, portal vein, and liver 

concentration. The mPBPK model can be used where the volume of distribution is low (around 

0.5 L/kg or less) and thus the plasma (blood) concentration is like that of remaining tissues 

(excluding the liver and portal vein which are explicitly handled). Equation 1 is used to predict 

Vss when using the minimal PBPK model where V is the fractional body volume (L/kg) of a tissue 

(t), erythrocyte (e), or plasma (p), E:P is the erythrocyte: plasma ratio and Pt:p is the partition 

coefficient for non-adipose and adipose components. The Full PBPK distribution model makes 

use of several time-based differential equations to simulate the concentrations in various organ 

compartments: the blood (plasma), adipose, bone, brain, gut, heart, kidney, liver, lung, muscle, 

pancreas, skin, and spleen [23]. 

Equation 1 

 𝑉𝑠𝑠 = (𝛴𝑉𝑡  × 𝑃𝑡:𝑝) + (𝑉𝑒  × 𝐸: 𝑃) +  𝑉𝑝 

In the Elimination screen tab, Simcyp® Simulator enables the prediction of both the central 

tendency and population variability in drug clearance via both metabolic and non-metabolic, 

including renal, routes. Simcyp® uses a model based on serum creatinine (SCr) levels for the 

prediction of glomerular filtration rate (GFR). Serum creatinine levels are linked to age in a 

statistically significant manner with separate relationships for males and females and different age 

ranges. The individualized SCr values are then used to estimate GFR via either the Cockcroft-
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Gault (CG) equation (Equation 2) which is the FDA-recommended approach and the default 

setting in Simcyp® – or the 'modification of diet in renal disease' (MDRD) equation (Equation 3). 

Equation 2   

GFR (ml /min /1.73 m2) = 
(140−𝐴𝑔𝑒 )×𝑤𝑒𝑖𝑔ℎ𝑡

0.814 ×𝑠𝑒𝑟𝑢𝑚 𝑐𝑟𝑒𝑎𝑡𝑖𝑛𝑒
 ×

1.73

𝐵𝑆𝐴
 [ × 0.85 𝑖𝑓 𝐹𝑒𝑚𝑎𝑙𝑒] 

Equation 3 

GFR (ml /min /1.73 m2) = 175.  (
𝑆𝑐𝑟

88.42
 )−1.154 . (𝑎𝑔𝑒)−0.203. [ 0.742 𝑖𝑓 𝑓𝑒𝑚𝑎𝑙𝑒] 

 

Figure 7: Simcyp® substrate profile setup screen and different sections of ADME. 

 

1.5.3.3 Trial Module 

The Trial Design screen (Figure 8) is the screen where the user specifies details of trials, 

demographic parameters, fasted/fed status, trial duration, and substrate/inhibitor delivery dosage 
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details as required. There are four distinct screens available. The Trials tab contains details of trial 

size, demographics and study duration, and fasted/fed status. The Dosing tab has IV. infusion, 

dermal, inhalation, intravaginal, rectal, synovial joint, and other site routes of administration are 

also available, as well as the custom dosing option. Sampling Site tab allows the definition of a 

peripheral sampling site. This option allows the correction of early distribution differences 

between the sampling site venous compartment and the central venous compartment (often 

reported by PBPK models) which are observed following intravenous administration. Lastly, the 

Preview tab can be used to visualize the study schedule used within the simulation. 

 

Figure 8:Trial design screen of Simcyp® 

 

1.6 Introduction to Penicillin G Pharmacokinetics 

The best-known chance discovery in science is the 1928 discovery of penicillin G by 

Scottish bacteriologist Alexander Fleming which became one of the most significant discoveries 
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in medicine [58]. This pioneering antibiotic has since transformed the treatment of bacterial 

infections, saving countless lives and inspiring generations of researchers to delve deeper into the 

world of antibiotics. It is a narrow-spectrum antibiotic and is bactericidal against the most 

susceptible microorganisms during the stage of active multiplication. It acts by inhibiting the 

biosynthesis of cell wall mucopeptide. 

Benzylpenicillin is a natural antibiotic derived from the fungus Penicillium chrysogenum 

through fermentation. It belongs to the family of narrow-spectrum antibiotics and is highly 

effective in treating infections caused by susceptible bacteria. Its chemical structure, (2S,5R,6R)-

3,3-dimethyl-7-oxo-6-[(2-phenylacetyl) amino]-4-thia-1-azabicyclo [3.2.0] heptane-2-carboxylic 

acid (Figure 9). Its molecular formula is C16H18N2O4S and has a molecular weight of 334.4. It is 

available commercially as penicillin G potassium or penicillin G sodium powders for injection. 

The salt form is crystalline and freely soluble in water, isotonic sodium chloride solutions, and 

dextrose solutions [60,61]. 

 

Figure 9:Molecular structure of Penicillin G [61]. 
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1.6.1 Distribution of Penicillin G 

While benzylpenicillin exhibits exceptional antibacterial properties, its stability at low pH 

makes oral administration ineffective due to rapid inactivation by gastric juices. As a result, it is 

primarily administered through intravenous injections. Penicillin G is distributed to the lungs, 

liver, kidney, and muscle. With an apparent volume of distribution (Vd) of 0.30-0.5 L/kg, 

benzylpenicillin is approximately 45 to 68% bound to serum protein albumin.  

In the presence of inflammation, levels of penicillin in abscesses, middle ear, pleural, 

peritoneal, and synovial fluids are sufficient to inhibit the most susceptible bacteria. Penetration 

into the eye, brain, cerebrospinal fluid (CSF), or prostate is poor in the absence of inflammation. 

With inflamed meninges, the penetration of penicillin G into the CSF improves [59].  

After an intravenous infusion of penicillin G, peak serum concentrations are attained 

immediately after completion of the infusion. In one clinical study, five healthy adults were 

administered one million units of penicillin G intravenously, either as a bolus over 4 minutes or as 

an infusion over 60 minutes. The mean serum concentration eight minutes after completion of the 

bolus was 40 mcg/mL and eight minutes after completion of the infusion was 14.4 mcg/mL. The 

mean β-phase serum half-life of penicillin G administered by the intravenous route in ten patients 

with normal renal function was 42 minutes, with a range of 31-50 minutes. Following an 

intravenous injection of 600,000 units injection, high serum levels of up to 6 to 8 µg/mL are 

achieved within 30 minutes, indicating rapid distribution in the body. This pharmacokinetic profile 

allows for rapid achievement of high serum concentrations; however, the short half-life of 

approximately 30 minutes necessitates frequent redosing every 4-6 hours [59,60].  
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1.6.2 Metabolism and Elimination of Penicillin G 

Metabolism of the drug to penicilloic acid, an inactive metabolite, accounts for about 16-

30% of an intramuscular dose. Additionally, a small percentage undergoes hydroxylation, yielding 

one or more active metabolites like 6-aminopenicillanic acid that are also excreted through urine 

[60]. 

The clearance of penicillin G in healthy individuals is predominantly via the kidney. The 

renal clearance, which is extremely rapid, is the result of glomerular filtration and active tubular 

transport, with the latter route predominating. Urinary recovery is reported to be 58-85% of the 

administered dose. Renal clearance of penicillin is delayed in premature infants, neonates, and in 

the elderly due to decreased renal function. The serum half-life of penicillin G correlates inversely 

with age and clearance of creatinine and ranges from 3.2 hours in infants 0 to 6 days of age to 1.4 

hours in infants 14 days of age or older. Nonrenal clearance includes hepatic metabolism and, to a 

lesser extent, biliary excretion. The latter routes become more important with renal impairment 

[59,61]. 

1.7 Introduction to Ceftriaxone Pharmacokinetics 

Cephalosporins are produced by structural modification in the laboratory. These antibiotics 

contain a six-member dihydrothiazine ring fused to the beta-lactam portion. The substituents at 

C3, C4, and C7 are key factors for their antimicrobial activity. These antibiotic agents are grouped 

into different generations, first through fifth. Ceftriaxone is a third-generation drug of this class 

having 2-(2-amino-1,3-thiazol-4-yl)-2-(methoxyimino) acetylamino and [(2-methyl-5,6-dioxo-

1,2,5,6-tetrahydro-1,2,4-triazin-3-yl) sulfanyl] methyl side-groups (Figure 10). The third-
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generation class of cephalosporins is the most prescribed group. They are semisynthetic analogs 

with different chemical substitutions on the C7 acylamido chain. Its molecular formula is 
C18H18N8O7S3. It is available as ceftriaxone sodium is a white to yellowish crystalline powder 

which is readily soluble in water, sparingly soluble in methanol, and very slightly soluble in 

ethanol. Intravenous ceftriaxone solution is stable at room temperature (25°C) for 24 hours making 

it suitable for OPAT treatment [68,69]. 

Ceftriaxone is a bactericidal agent that acts by inhibition of bacterial cell wall synthesis. 

They are broad-spectrum antimicrobial agents with activity against both gram-negative and gram-

positive organisms. The usual adult daily dose is 1 to 2 grams given once a day (or in equally 

divided doses twice a day) [69]. 

 

Figure 10:Molecular structure of Ceftriaxone [68]. 

 

1.7.1 Distribution of Ceftriaxone  

Ceftriaxone is poorly absorbed in the gastrointestinal tract and is administered only 

intramuscularly or intravenously. It has a very long half-life of 5.8 to 8.7 hours compared to other 

beta-lactam antibiotics, allowing for once-daily dosing. The apparent volume of distribution for 

ceftriaxone is low compared with that for other cephalosporins. It was found to be 8.5 liters. It is 

primarily distributed into vascular fluids, highly vascular organs, and some extravascular fluids. It 
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can be administered intravenously or intramuscularly with a similar area under the serum 

concentration-time curves obtained with both routes. In serum, it is about 95% plasma protein 

(albumin) bound. Despite the low apparent volume of distribution, the half-life of ceftriaxone is 

long relative to that of other cephalosporins. Mean terminal half-lives of 8.2 h (from intramuscular 

dose) and 8.1 h (from intravenous dose) h have been reported. It is completely absorbed following 

IM administration with mean maximum plasma concentrations occurring between 2- and 3-hours 

post-dose. Multiple IV or IM doses ranging from 0.5 to 2 gm at 12- to 24-hour intervals result in 

15% to 36% accumulation of ceftriaxone above single dose values [72,73]. 

1.7.2 Metabolism and Elimination of Ceftriaxone 

The pharmacokinetics of ceftriaxone in man, appear to be non-linear when based on total 

drug concentration and linear when based on the free drug concentration. Ceftriaxone is excreted 

via both biliary and renal excretion. The calculated mean renal clearance concerning free 

ceftriaxone was 160 ml/min, slightly more than the average glomerular filtration rate in humans. 

Mean plasma ceftriaxone t1/2 is not influenced by dose and averaged 8 hours. Renal elimination 

is exclusively due to glomerular filtration. It is reported to be 50 to 67% eliminated by the renal 

route and the rest is biliary excretion. Therefore, patients with renal failure normally require no 

adjustment in dosage when usual doses of ceftriaxone are administered. Dosage adjustments are 

not necessary in patients with hepatic dysfunction; however, in patients with both hepatic 

dysfunction and significant renal disease, caution should be exercised, and the ceftriaxone dosage 

should not exceed 2 gm daily [69,71]. 
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1.8 Age-Related Increased Susceptibility to Bacterial Infections in the Elderly 

   In the later stages of this thesis project, one of the key objectives is to examine and 

propose an appropriate dosing regimen for penicillin G tailored specifically for the elderly 

population. Therefore, this section is significant as it investigates the heightened vulnerability of 

this demographic to bacterial infections.   

The elderly population is increasing worldwide and by 2050 it’s expected that over 2 billion 

will be aged 60 years and older. The elderly may be at increased risk of bacterial infections in 

comparison with younger adults, in relation not only to aging per se but also to multiple underlying 

predisposing diseases. Despite being the population group that receives the largest number of drug 

prescriptions annually, older patients are generally not included in Phase 1 clinical trials during 

drug development [26]. 

     Two hospital point-prevalence surveys carried out in 2008 and 2009 by the European 

Surveillance of Antimicrobial Consumption (ESAC) study group showed that antimicrobial 

prescribing was significantly higher among patients aged 75 years or more than among a reference 

age group of adults (18-64 years) [27]. Concerning this research project, an important aspect of 

evolving epidemiology of IE has been an upswing in the average age of patients with this disease. 

A 2010 research paper highlights a study aimed to analyze the influence of increasing age on the 

risk of IE. The study included a total of 600 episodes of left-sided endocarditis consecutively 

diagnosed in 3 tertiary centers which were stratified into age-specific quartiles (i.e.,15-50, 50-65, 

65-75, >75). Patients were consecutively included in 3 tertiary hospitals with similar 

characteristics, and uniform criteria were applied relative to the definition of endocarditis and its 
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complications. It was observed that there were a higher number of patients with IE in the last two 

quartiles as shown in Figure 11 (i.e., >65) [28].  

The susceptibility of the elderly to bacterial infections stresses on the significance of 

preventive measures, timely vaccination, and appropriate antimicrobial therapies. Understanding 

the complex interplay between age-related physiological changes and susceptibility to bacterial 

infections is crucial for designing effective strategies to protect and promote the health of older 

individuals. 

 

Figure 11:Patient distribution by age-specific quartiles (Q) [28] 

 

1.9 Impact of Aging on Pharmacokinetics 

Drug dose regimens used in older patients are frequently determined by trial and error or 

extrapolated from doses relevant to young adults. Such extrapolations may not be appropriate since 

the scaling factors like age and weight that are used for extrapolation may not be linearly related 

to the PK variability associated with the older patient. Considerable variability in drug response 

exists in the older patient, making dose selection very complex. In the absence of well-designed 
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and appropriate clinical trials focused on older patients, modeling and simulation offer a good tool 

to understand PK and PD variability and their impact on drug doses in this population [29]. 

Aging brings about significant changes in body composition and a progressive decline in 

organ functions. Notably, total fat mass increases while muscle mass decreases, giving rise to 

sarcopenia, a condition that poses challenges for the elderly. Moreover, the kidney and liver 

experience age-related alterations, leading to a decline in renal and hepatic function. These 

physiological changes have profound implications for the pharmacokinetics of antimicrobial drugs 

in the elderly, making them differ significantly from young adults. As a result, there is a critical 

need for action to address this gap and seek pharmacokinetic and pharmacodynamic signals to 

determine appropriate dosing adaptations for the elderly. In optimizing the net benefit of 

antibiotics for this vulnerable patient population, several key aspects demand attention. 

Understanding the pharmacokinetic profiles is crucial for maximizing efficacy while minimizing 

the risk of adverse events [26,29].  

PBPK models covering the geriatric population have been published previously [31,32] 

and were reported to predict PK parameters for a variety of drugs used in the elderly with 

reasonable accuracy. Many of the system's parameters, which form an important part of PBPK 

models, change with age. These changes have been integrated into Simcyp®'s inherent PBPK 

Geriatric population, providing a comprehensive framework for studying drug dynamics within 

this demographic. This library file serves as an extension of the General North European Caucasian 

(GNEC) population and characterizes a predominantly healthy geriatric group ranging from 65 to 

98 years of age.  
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Table 1 provides key ADME (Absorption, Distribution, Metabolism, and Excretion) 

system parameters for two distinct populations: Simcyp®'s young population, aged 20 to 50 years, 

and Simcyp®'s geriatric population, aged 65 to 95 years. In the young population, the cardiac 

output is notably higher compared to the geriatric population, representing a 22% reduction. A 

similar pattern is observed in liver and kidney weights, with a 20% and 14.1% reduction in geriatric 

population respectively. The most significant change is observed in Glomerular Filtration Rate 

(GFR), a critical indicator of kidney function. In the young population, GFR is 142.24 ml/min/1.73 

m2, while in the geriatric population, it declines substantially to 73.42 ml/min/1.73 m2, marking 

a significant 48.3% reduction.  

1.9.1. Impact of Aging on Demographics 

The typical age distribution seen in the elderly population is shown in Figure 12. This can 

be incorporated into PBPK using a Weibull function in Simcyp®. There is a trend for reduced 

height with age with the rate of reduction in height increased in older age bands. Like height, body 

weight also tends to decline in the older population with more rapid decline in older age bands 

[107]. 
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Figure 12:The age distribution of a North European Geriatric population (black = male, white = female) [107]. 

1.7.2 Impact of Aging on Absorption  

For oral absorption, there is conflicting evidence on changes in gastric emptying (GE) and 

intestinal transit times (ITT) in the elderly, with studies showing both longer and shorter GE and 

ITT in this age group compared to a young adult group. Consequently, these parameters are left 

unchanged in the geriatric PBPK population. 

1.7.3 Impact of Aging on Distribution  

There are many organ systems where there is a decline in organ size with age. Within a 

PBPK model, changes to organ blood flow are related to the decline in cardiac output with age. A 

marked increase in the adipose tissue to lean tissue ratio is associated with aging, especially among 

females. Figure 13 shows ‘Systems’ data for cardiac output against age used in the geriatric PBPK 

model shows values generated by the model against measured values from the literature [107].  
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Figure 13:Change in cardiac output with age [107]. 

1.7.4 Impact of Aging on Metabolism 

There is good evidence that liver size decreases with increasing age in the adult population 

with the decrease becoming more pronounced after 60 years of age [107]. The reduced effective 

liver mass results in a reduced capacity for drug elimination. Liver blood flow is defined in the 

geriatric PBPK model as a fixed percentage of cardiac output and hence is reduced with age; this 

agrees with observed data. The reduction in liver blood flow may result in reduced clearance for 

particularly intermediate and high extraction drugs in the elderly. 

1.7.5 Impact of Aging on Protein binding 

There appears to be very little change in plasma albumin concentrations with older age 

based on observed data. This agrees with the algorithms already used in the geriatric PBPK model 

which calculates albumin based on BMI and age [31,107]. 

1.7.6 Impact of Aging on Renal Excretion 
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The age-related decline in renal function is well known [32,33,107]. The age-related 

changes in glomerular filtration rate (GFR) in the geriatric PBPK model are calculated using age 

related plasma creatinine data derived from the NHANES database using either the Cockcroft-

Gault (Equation 2) or modified diet in renal disease equation (Equation 3). Figure 14 shows 

‘Systems’ data for GFR against age used in the geriatric PBPK model shows values generated by 

the model against measured values from the literature. 

 

Figure 14:Change in GFR with age [107] 

 

Table 1:Summary of changes to system parameters within a geriatric PBPK model within Simcyp® 

 

ADME systems 

parameter 

Simcyp®’s young 

population (20 to 

50 y) 

Simcyp®'s geriatric 

population (65 to 

95y) 

 

% 

Reduction 

Cardiac Output (l/hr) 334.94 261.03 22 % 

Liver weight (g) 1570.96 1261.28 20% 

Kidney weight (g) 314 269.69 14.1% 

GFR (ml/min/1.73 m2) 142.24 73.42 48.3% 
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CHAPTER 2: STUDY RATIONALE AND SPECIFIC AIMS 
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2.1 STUDY RATIONALE  

The emergence of outpatient parenteral antibiotic therapy (OPAT) as a dynamic alternative 

to inpatient care for various infectious diseases has garnered substantial attention. OPAT permits 

early discharge from hospitals or even bypasses hospital admission entirely for certain infections, 

offering direct access to treatment. This approach not only holds clinical cost-effectiveness but is 

also preferred by patients.  

In 2004, the Infectious Diseases Society of America (IDSA) endorsed OPAT as suitable 

for patients with uncomplicated endocarditis, while suggesting inpatient treatment for those at 

higher risk of complications. However, recent case series have cast doubt on the necessity of such 

stringent criteria. In the context of Enterococcus faecalis, the third most frequent causative agent 

of infective endocarditis (IE), successful treatment necessitates a two-drug combination due to the 

suboptimal efficacy of beta-lactam monotherapy against this pathogen. Traditionally, dual therapy 

with ampicillin plus an aminoglycoside or penicillin G plus an aminoglycoside has been the 

standard approach. Yet, concerns about aminoglycoside-associated nephrotoxicity and ototoxicity 

have raised substantial patient risks.  

Double beta-lactam therapy, involving the combination of ampicillin and ceftriaxone (AC), 

has emerged as a viable and effective alternative. This approach offers comparable effectiveness 

with fewer side effects, positioning it as a first-line therapy for ampicillin-susceptible E. faecalis 

IE. The synergy between ampicillin and ceftriaxone hinges on their complementary effects on 

penicillin-binding proteins (PBPs), vital for cell wall synthesis. While AC therapy presents a 

promising solution, practical hurdles persist while considering OPAT. The instability of ampicillin 

in solution at room temperature renders it unsuitable for continuous infusions and multiple dosing. 
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Ampicillin needs to be administered up to six times a day for patients with normal kidney function. 

Additionally, the physical incompatibility between ceftriaxone and ampicillin prevents their 

mixing in the same dosing solution, resulting in the requirement of eight daily doses of antibiotics 

which complicates the execution of this regimen for OPAT [34,35]. Prolonged hospital stays 

during AC therapy heighten the risk of morbidity and mortality due to other nosocomial infections, 

leading to increased direct healthcare-related costs and the indirect societal costs of infections. In 

the literature, there is a shortage of studies examining alternative regimens for ampicillin-

susceptible E. faecalis infective endocarditis (IE).  

Although the minimal inhibitory concentration (MIC) of penicillin G is one- to three-fold 

higher than that of ampicillin, substituting ampicillin with penicillin G is an attractive option due 

to its superior aqueous stability at room temperature. A published study examining the stability of 

penicillin G and ampicillin in elastomeric infuser pumps for OPAT treatment demonstrated that 

the penicillin G solution remained stable for 24 hours at temperatures of 25 and 31.1 °C. 

Additionally, the penicillin G solution did not adsorb onto the elastomeric infusion pump after 24 

hours at 31.1°C. On the other hand, the ampicillin solution proved to be unstable in all infusion 

solutions and at all temperatures within an elastomeric pump [36,37]. 

However, there exists very limited clinical experience concerning the efficacy and 

appropriate dosing regimen for the penicillin G and ceftriaxone (PC) combination. A case series 

involving four patients showed no recurrence of infection at 6 months, and another involving three 

patients demonstrated no recurrence at 90 days. Additionally, a case series involving 41 patients, 

comparing penicillin and gentamicin (n=20) versus penicillin and ceftriaxone (n=21), found no 

difference in recurrence rates between the two treatment approaches [36,38,39]. The unique 
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stability of penicillin G in continuous infuser pumps opens doors to the prospect of administering 

it as a continuous infusion. Administering penicillin G through continuous infusion daily, 

combined with ceftriaxone given once or twice daily, proves to be more conducive and feasible 

for OPAT by reducing the frequency of injections from eight to three. 

This thesis project endeavors to bridge these gaps by undertaking a rigorous investigation 

of two primary aspects. Firstly, it aims to thoroughly assess the efficacy and synergy of the PC 

combination against clinical isolates obtained from patients with E. faecalis infections. This 

assessment was conducted in parallel with a comparative analysis against AC treatment. 

Furthermore, this thesis project aimed to construct a comprehensive and stepwise semi-

mechanistic pharmacokinetic-pharmacodynamic (PK-PD) modeling approach. This approach 

considers antibacterial pharmacodynamics, encompassing factors such as the drug's effect on 

bacterial growth.  

Utilizing the modeling and simulation tool Simcyp®, this thesis project aims to incorporate 

in-vitro data to establish the pharmacodynamic component. This component was integrated with 

the pharmacokinetic aspect, enabling the exploration of varied dosing regimens for penicillin G. 

The primary objective of this research is to investigate the results of introducing ceftriaxone to 

penicillin G and their combined impact on bacterial eradication. Moreover, this investigation seeks 

to determine the most effective dosing regimen for penicillin G by subjecting different regimens 

to the developed PBPK-PD model within the Simcyp® environment. 

By integrating these intricate factors, the research seeks to achieve a more nuanced 

understanding of the complex interplay between drug properties and microbial response integrated 
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with the PBPK modeling software Simcyp®, and aims to develop models characterizing the drug 

behavior, particularly in the geriatric population – a vulnerable cohort for endocarditis. 

The ultimate goal of this research is to evaluate the hypothesis that leveraging modeling 

tools can determine optimal dosing regimens, thus preventing therapeutic failure and maintaining 

drug concentrations within the desired range. This study aims to better understand how different 

combinations of antibiotics work against E. faecalis infective endocarditis. It also looks at how 

these combinations behave when dealing with vulnerable demographic group. The goal is to 

provide important information that can help improve treatment approaches for this difficult 

medical situation. 
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2.2 SPECIFIC AIMS 

2.2.1 Specific Aim 1 

To assess the activity of penicillin G and ceftriaxone distinctly and in combination 

against Enterococcus faecalis isolates through in-vitro time-kill experiments.  

In-vitro time-kill assays were performed against 21 patient isolates of E. faecalis obtained 

from the blood of patients affected by E. faecalis bacterial infection. The strains were acquired 

from the Mount Sinai health system and a hospital in Detroit as part of Dr. Jaclyn Cusumano’s 

American Association of Pharmacists (AACP) new investigator award research project. Out of the 

21 patient strains, two strains had a confirmed source of patients suffering from E. faecalis 

infective endocarditis. All the strains along with a wild-type strain (JH2-2) were first tested for 

their susceptibilities using broth microdilutions to obtain their minimum inhibitory concentrations 

(MIC). In-vitro time-kill experiments were performed on the isolates for the drugs separately and 

then in combination. The experimental data obtained from these treatments provided preliminary 

insights into the combined efficacy against the strains. Subsequently, among the 21 strains, the 

two strains that were conclusively linked to infective endocarditis patients were chosen for 

constructing a comprehensive PBPK-PD model. 

2.2.2 Specific Aim 2 

To develop and verify a physiologically based pharmacokinetic model (PBPK) for 

penicillin G and ceftriaxone in a healthy population and extend it to geriatric population.  

Physiologically based pharmacokinetic models were developed and validated for the 

investigated drugs penicillin G and ceftriaxone in healthy volunteers. A PBPK model was 
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developed in Simcyp Population-Based Simulator ® for each drug by incorporating the 

physiochemical, absorption, distribution, metabolism, and elimination properties obtained from 

the literature. The PBPK models were verified and modified, when necessary, by comparing the 

simulated drug disposition profiles in healthy volunteers with observed data from the literature. 

The healthy population PBPK model was then extended to the geriatric population. Advanced age 

is accompanied by many physiologic alterations that may have secondary effects on the absorption, 

distribution, metabolism, and excretion of drugs. Published studies have highlighted the efficiency 

and accuracy of Simcyp® in simulating and predicting the changes in drug disposition in the 

elderly population. The goal of this aspect of the research was to simulate and predict the drug 

exposure changes in elderly population (>65 years). 

2.2.3 Specific Aim 3  

To extract critical bacterial growth parameters and Emax drug kill parameters for 

distinct E. faecalis strains by utilizing RStudio, employing in-vitro time kill assay data. 

In pursuit of Specific Aim 3, the objective was to derive crucial bacterial growth parameters 

and Emax drug kill parameters for two distinct E. faecalis strains, leveraging the capabilities of 

RStudio. The in-vitro time kill assay data for strains e.2122 and e.2095 from specific aim 1 were 

subjected to further analysis through non-linear regression fitting within the RStudio environment. 

Significant bacterial growth parameters, specifically the growth rate and carrying capacity, were 

successfully extracted for both the e.2122 and e.2095 strains. These parameters serve as critical 

indicators of the microbial response and its capacity to proliferate under varying conditions. 

Employing the widely recognized Emax model, the investigation also encompassed the 

determination of vital drug kill parameters. These parameters included the kill rate, EC50 (the 
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concentration producing half of the maximum effect), and the sigmoidicity constant. The 

application of the Emax model provided a quantitative estimation of the impact resulting from the 

addition of ceftriaxone to the penicillin G monotherapy. 

2.2.4 Specific Aim 4 

To integrate a pharmacodynamic model to the PBPK model developed in Simcyp®  

A pharmacodynamic model was established for the chosen Enterococcus faecalis strains 

isolated from infective endocarditis patients (n=2). By incorporating the pharmacodynamic 

parameters derived from specific aim 3, this model was merged with the penicillin G 

physiologically-based pharmacokinetic (PBPK) model developed in specific aim 2. The resulting 

integrated model was then utilized to evaluate various dosing regimens of penicillin G currently 

practiced in clinical settings. Additionally, this integrated model was further extended to include 

the developed and verified geriatric PBPK model in specific aim 2, enabling the assessment of 

dosing strategies specifically tailored for the geriatric population. 

The overall aim of this thesis dissertation project is to validate the efficacy of the 

comprehensive semi-mechanistic PBPK -PD modeling technique in informing optimal penicillin 

G dosing strategies and evaluating the impact of altered pharmacodynamic parameters resulting 

from the addition of ceftriaxone. This model intends to provide insights that guide informed 

decision-making for penicillin G administration when given with a standard dosing for ceftriaxone 

(2 g every 12 hours) in young and geriatric populations. 
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CHAPTER 3: DETERMINATION OF MINIMUM INHIBITORY 

CONCENTRATIONS  
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3.1 INTRODUCTION  

The minimum inhibitory concentration (MIC) is a measure of the lowest concentration 

(µg/mL) of an antimicrobial agent that prevents the visible growth of a microorganism after 

overnight incubation in broth. It is a critical parameter for determining the appropriate antibiotic 

treatment in clinical settings [40]. Clinical microbiologists classify tested microorganisms as 

clinically susceptible, intermediate, or resistant to the tested drug by comparing the MIC value to 

a breakpoint value. The Clinical and Laboratory Standards Institute (CLSI) in the USA publishes 

interpretative standards for these classifications. A " susceptible " MIC result indicates that the 

antibiotic effectively inhibited bacterial growth in vitro at the MIC, indicating potential therapeutic 

success. A MIC result of "intermediate" signifies that the antibiotic inhibited bacterial growth in 

vitro at a high dosage of the drug but implies unknown therapeutic effects. "Resistant" bacteria are 

not inhibited by achievable concentrations of the antibiotic and/or fall within a range where 

specific microbial resistance mechanisms are likely. The most used techniques to determine MIC 

are agar dilution and broth dilution. In agar dilution, solutions containing defined numbers of 

bacterial cells are directly spotted onto nutrient agar plates that have incorporated different 

antibiotic concentrations. After incubation, bacterial colonies on the plates indicate the organism's 

growth [42]. The CLSI breakpoints for penicillin G and ampicillin for E. faecalis are ≤ 8 µg/mL, 

susceptible; ≥16 µg/mL, resistant [40,41]. 

The gold standard method for determining the MIC of antibiotics and other antimicrobial 

agents is the broth microdilution technique. Broth microdilution is a versatile and reliable method 

that allows for the testing of many antimicrobial agents against a variety of bacterial strains in a 

single experiment. This method involves using a liquid growth medium that contains geometrically 
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increasing concentrations of the antimicrobial agent, typically a twofold dilution series (e.g., from 

8 µg/ml to 4 µg/ml). A specific number of bacterial cells are inoculated into the medium, and the 

growth is observed after overnight incubation. This technique is highly reliable and widely used 

in clinical microbiology laboratories to guide the choice of appropriate antibiotic therapy for 

bacterial infections. [41,42]. 

CLSI guidelines guide the investigator about each bacterial species investigated for 

susceptibility, including the type of broth and agar needed for the bacterial growth, any additional 

additives to the broth for specific antibiotics, bacterial inoculum standards, experiment 

temperatures, and which American Type Culture Collection (ATCC) isolate to utilize as quality 

control. The quality control strain ensures the accuracy of the susceptibility tests. The ATCC 

isolates have a predetermined range of MICs for each antibiotic, which must be matched to validate 

the drug quality and integrity of the experiment [40]. For E. faecalis the testing conditions 

identified and used in this thesis project are summarized in Table 2. 

Table 2:The susceptibility testing conditions for E. faecalis isolates [40]. 

Medium  Broth dilution: Cation Adjusted Mueller-Hinton Broth (CA-

MHB) (Calcium – 25 mg/L and Magnesium – 12.5 mg/L) 

Inoculum  Broth culture method or colony suspension, equivalent to a 

0.5 McFarland standard= 1.5 × 108 CFU/ml 

Incubation  35°C ± 2°C; ambient air for 16–20 hours 

Routine Quality control 

recommendations 

*For dilution method: E. faecalis ATCC® 29212 

* ATCC 29213 (Staphylococcus aureus) was used as the quality control since E. faecalis ATCC® 29212 does not 

have a recommended range for ceftriaxone. 
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3.2 METHODS 

3.2.1 Bacterial Isolates  

A total of 21 clinical bacterial strains and one wild type (JH2-2) were sourced from the 

clinical microbiology laboratories at Mount Sinai Health System and Henry Ford Hospital, Detroit, 

MI. All strains were isolated from blood samples of patients infected by E. faecalis. Most clinical 

isolates were found to be ampicillin and penicillin-susceptible by the clinical microbiology 

laboratory (Vitek 2, bioMérieux, Inc., Durham, NC and MicroScan). To maintain viability, all 

strains were stored in CryoCare (Stamford, TX; tryptic soy broth plus glycerol) at –80°C and sub-

cultured once on brain heart infusion agar for 18–24 h at 35°C before each experiment. 

3.2.2 Chemicals 

Antibiotic powders were purchased from Sigma-Aldrich, Inc. (St. Louis, MO): penicillin 

G potassium salt (product number: Sigma - 46609), ceftriaxone sodium (product number: Sigma- 

PHR1382) and ampicillin (product number: Sigma - A0166-5G). Experiments were performed 

using cation-adjusted (calcium, 25 mg/mL; magnesium, 12.5 mg/mL) Mueller-Hinton broth 

(MHB; BD Difco, Sparks, MD). All viable cell count samples and subcultures were plated on brain 

heart infusion agar plates (BHIA; BD Difco, Sparks, MD, Ref - 241830).  

3.2.3 Preparation of antibiotic stock solution 

The stock solutions for penicillin G potassium and ceftriaxone sodium were prepared by 

dissolving 11.1 mg and 38.9 mg of the respective antibiotics, after considering the salt factor, in 
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10 ml and 2 ml of sterilized water and normal saline, respectively, resulting in stock concentrations 

of 1 mg/ml and 16.364 mg/ml. 

3.2.4 Dilution of Antibiotics 

To ensure that a therapeutically achievable range for each agent was covered, a range of 

concentrations was selected for testing. The required penicillin concentration for the starting well 

in a 96-well microtiter plate determined the stock concentration needed (Figure 15). For example, 

if the starting concentration was 16 µg/ml, the stock needed to be 8 times 16 = 128 µg/ml. 

Similarly, if the starting concentration was 64 µg/ml, the stock needed to be 512 µg/ml. This was 

necessary because the drug was diluted multiple times during the procedure. To achieve the desired 

concentration, the 1000 µg/ml stock was diluted in sterilized water at a ratio of 1:2 or 1:4.  

3.2.5 Preparation of Culture Media and Agar Plates for Microbiological Testing 

To prepare the Cation-adjusted Mueller-Hinton broth (CA-MHB), 16.8 g of Mueller-

Hinton broth (MHB) was added to 800 ml of sterilized water and autoclaved. After cooling, the 

broth was supplemented with filtered and sterilized calcium (25mg/ml) and magnesium (12.5 

mg/ml) solutions. For the Brain Heart Infusion Agar (BHIA) plates, 52 g of BHIA powder was 

dissolved in 1000 ml of sterile water and autoclaved. The mixture was then poured into sterile Petri 

dishes to solidify. 

3.2.6 Preparation of the Inoculum for Microtiter Plate Assay 

To prepare the inoculum, 3 to 4 isolated colonies of E. faecalis were suspended in 5 ml 

Normal Saline from an overnight culture on a BHIA plate, resulting in turbidity of 0.5 McFarland 
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(1.5x108 colony forming units (CFU)/mL). The McFarland meter was calibrated before each 

experiment to ensure accuracy. A dilution of 100 µl of the 0.5 McFarland solution in 9.9 mL CA-

MHB was made, resulting in a 1.5x106 (CFU)/ml concentration. The desired concentration of 2-

8x105 (CFU)/ml was achieved by adding 100 µl of bacterial stock to the wells. 

3.2.7 Preparation of Microtiter Plates for Antibiotic Susceptibility Testing 

The growth control (GC) and media control (MC) were labeled in the plate's 1st and 12th 

columns. Initially, 50 µl of broth was added to all microtiter wells, followed by the addition of 50 

µl of drug stock solution (8x concentration) solely to the second column wells. A serial 1:2 dilution 

of 50 µl was performed from the 2nd to the 11th column, followed by the addition of approximately 

50 µl of broth to achieve a final volume of 100 µl in all wells. Lastly, 100 µl of bacterial stock 

solution was added to all wells except for the MC well to achieve a final volume of 200 µl in all 

wells. 

3.2.8 Inoculum Assessment and Quality Control for Microtiter Plates 

For quality control experiments E. faecalis ATCC® 29212 was not used since there is no 

recommended range for ceftriaxone for this isolate, so instead ATCC 29213 (Staphylococcus 

aureus) was used since it has a defined range for ceftriaxone which is 1-8µg/ml. The starting 

inoculum for all microtiter plates was assessed by withdrawing 100 µl of solution from the first 

GC well, which was further diluted and plated on agar to verify that the starting inoculum ranged 

between 5.5-6.0 log10 CFU/mL (the pathological range for bacteria detection in the blood). 
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3.3 RESULTS 

     Following a 20-hour incubation period at a temperature not exceeding 37°C, the plates 

were retrieved from the incubator. To assess the growth in wells containing the antimicrobial 

agent, a comparison was made with the growth-control wells, and a minimum turbidity of ≥ 2mm 

was required for the growth-control wells to validate the test. The MIC of the antibiotic for the 

tested strain was determined by identifying the first well that showed no turbidity. An illustrative 

microtiter plate result for E. faecalis strain e.2122 is presented in Figure 15, demonstrating a 

penicillin MIC of 2 µg/ml. 

     The results of the susceptibility testing are summarized in Table 3 and Table 4. The 

penicillin MIC for JH2-2 was consistent with previously published findings [43]. All experiments 

were conducted with adherence to quality control measures, ensuring the validity and reliability of 

the results. Only data from experiments that passed the quality control criteria were considered for 

analysis and inclusion in the research project. Notably, all 21 patient isolates exhibited penicillin 

G MICs that closely matched the reported MICs from the clinical microbiology laboratory at 

Durham, NC, with differences of only one to two, 2-fold dilutions. Among these isolates, 13 had 

penicillin MICs ≤ 2 µg/ml (Table 3), while 8 isolates had an elevated penicillin MIC of 4 µg/ml 

(Table 4).  

The MICs for ampicillin across all 21 strains fell between 0.5 to 2 µg/ml. Regarding 

ceftriaxone MICs, the observed elevations were in line with the expected intrinsic resistance, 

except for one isolate (e.2006) that exhibited a ceftriaxone MIC of 16 µg/ml. An interesting finding 

of this study is that a significant majority of isolates with a penicillin MIC of 4 µg/ml exhibited a 
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ceftriaxone MIC of ≥ 2048 µg/ml. In contrast, most isolates with a penicillin MIC of 2 µg/ml 

displayed a ceftriaxone MIC of ≤ 512 µg/ml, as illustrated in Table 5. 

 

Figure 15:Example of 96-well MIC plate. 

 

Table 3:MIC Result for strains with penicillin G MIC of 2 ug/ml 

       Penicillin G Ampicillin Ceftriaxone 

Sr. No. ISOLATE Broth 

microdilution 

Clinical 

microbiology 

lab 

Broth microdilution 

1 JH2-2 2 2 0.5 256-512 

2 e2003 2 1 1 128-256 

3 e2006 2 2 0.5 16 

4 e2011 2 2 1 512 

5 e2012 2 2 1 256 

6 e2014 2 4 1 512 

7 e2015 2 1 1 512-1024 

8 e2017 2 2 1 512-1025 

9 e2020 2 2 1 128 

10 e2025 2 8 1 128 

11 e2029 2 4 0.5 128 

12 e2031 1 2 0.5 128 

13 e2032 2 2 0.5 256-512 

14 e2122 2 2 1 256 
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Table 4: MIC Results for strains with penicillin G MIC of 4 ug/ml 

    Penicillin G Ampicillin 

 

 Ceftriaxone 

 

Sr. No. ISOLATE Broth 

microdilution 

Clinical 

microbiology 

lab 

Broth microdilution 

 

15 e2008 4 8 1 2048 

16 e2009 4 8 1 2048 

17 e2010 4 8 2 512 

18 e2018 4 8 1 >2048 

19 e2024 4 4 1 256 

20 e2027 4 16 1 >2048 

21 e2028 4 16 1 >2048 

22 e2095 4 4 1 2048 

 

Table 5: Most strains with a higher Penicillin MIC had a higher ceftriaxone MIC. 

 Penicillin G MIC ≤ 2 

ug/ml 

Penicillin G MIC = 4 

ug/ml 

No. of isolates 13/21 (61%) 8/21(38%) 

Ceftriaxone MIC ≤ 512 ug/ ml 10/13 (85%) 2/8 (25%) 

Ceftriaxone MIC > 2048 ug/ ml 2 /13 (15%) 6/8 (75%) 

 

3.4 DISCUSSION 

Using the broth microdilution method, the MIC (minimum inhibitory concentration) was 

determined for all three drugs against 21 clinical strains of E. faecalis. According to the results 

table, all isolates exhibited penicillin G MICs of either 2 µg/mL or 4 µg/mL, both of which are 

below the CLSI breakpoint value of ≤ 8 µg/mL for E. faecalis. This indicates that all strains were 

susceptible to penicillin G. Similarly, for ampicillin, all isolates displayed MICs ranging from 0.5 

to 2 µg/mL, also falling below the CLSI breakpoint value of ≤ 8 µg/mL for E. faecalis, signifying 

susceptibility to ampicillin for all strains. In contrast, the MICs for ceftriaxone ranged from 16 
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µg/mL to >2048 µg/mL. Since E. faecalis inherently possesses resistance to cephalosporins, all 

strains were categorized as ceftriaxone resistant.  Among the strains, only e.2006 exhibited a 

relatively lower ceftriaxone MIC, at 16 ug/ml. [40]. 

Vitek 2 (bioMérieux Inc., Durham, NC) is a widely used commercial antimicrobial 

susceptibility test system used by the microbiology lab. Interestingly most of the isolates with a 

penicillin MIC of 4 mg/mL had a higher reported MIC by Vitek 2 (Table 4), with two isolates 

having an MIC above the breakpoint (i.e., 16 mg/mL). The findings of lower MICs by broth 

microdilution compared to Vitek 2 are similar to a previous report of 49 penicillin-resistant 

ampicillin-susceptible E. faecalis isolates, which found that 93.9% of isolate MICs by Vitek 2 

were two, 2-fold dilutions higher than broth microdilution [103]. 

The findings from this segment of the study reveal that all tested E. faecalis strains 

exhibited susceptibility to penicillin G and ampicillin. This indicates that penicillin G could 

potentially be an effective antibiotic against the E. faecalis strains studied in this research and can 

be studied further at different concentrations in the next segment of the study. However, it should 

be noted that some strains showed slightly elevated penicillin G MIC values of 4 µg/ml, which 

may indicate the emergence of low-level resistance. In contrast, the MIC values for ceftriaxone 

varied widely across the tested strains, ranging from 16 to >2048 µg/ml. All the tested strains were 

classified as resistant to ceftriaxone, which may limit its utility if administered as monotherapy for 

treating E. faecalis infections. Drawing from the notable findings in MIC testing across the 

examined isolates, it becomes evident that strains demonstrating resistance to ceftriaxone could 

concurrently cultivate resistance to penicillin G via analogous mechanisms. This insight provides 

a glimpse into the potential outcomes of subjecting strains with reduced susceptibility to the 
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studied combination of penicillin G and ceftriaxone. It is plausible that strains with lower 

susceptibility might exhibit a diminished response to the combination treatment due to resistance 

development. 
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CHAPTER 4: BACTERIAL TIME KILL ASSAYS  
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4.1 INTRODUCTION  

This phase of the dissertation research is dedicated to comprehending the impact of two 

treatments: ampicillin with ceftriaxone, and the combination of penicillin with ceftriaxone, on the 

21 E. faecalis patient isolates. The collected data will subsequently inform the third specific aim 

of this research endeavor, where semi-mechanistic models will be constructed for two distinct 

strains. One of these strains will be of higher susceptibility (MIC = 2 µg/ml) to penicillin G, while 

the other strain tested will be of lower susceptibility (MIC = 4 µg/ml).   

MIC determination is followed by time-kill assays to better understand the antimicrobial 

activity of a drug against a specific bacterial strain. The time-kill kinetics assay is used to determine 

the bactericidal or bacteriostatic activity of an agent over time. The assay monitors bacterial growth 

and death over a wide range of antimicrobial concentrations that have been frequently used to 

evaluate the effect of antimicrobials over time. This data can be analyzed using mathematical 

models and is often the first step in PK-PD modeling [44]. The gold standard for identifying 

synergy between antimicrobial agents is through 24-hour in vitro time-kill assays. In this method, 

bacterial strains are tested against each antimicrobial agent alone and in combination. The time-

kill curve is obtained by measuring the bacterial growth rate at different time intervals, ranging 

from 0 to 24 hours. 

 This information is crucial for developing combination therapies that can improve 

treatment outcomes and reduce the emergence of antimicrobial resistance. The testing of inhibitory 

and sub-inhibitory concentrations serves a dual purpose. Sub-inhibitory concentrations are tested 

to assess the potential for antibiotic synergy. This allows for the evaluation of individual and 

combined effects on bacterial growth and killing, which helps to identify synergistic or 
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antagonistic interactions. The information gained can then be used to optimize dosing regimens 

and minimize the development of resistance [45].  

In vitro time-kill studies are commonly conducted with the aim to assess the efficacy of 

antimicrobial agents. Developing a PK-PD model describing the time course of the effects may 

allow for efficient use of these data and facilitate the comparisons between agents as well as 

making predictions under different settings possible. Previously, several semi-mechanistic PK-PD 

models were developed based on data from in vitro time-kill curve experiments with static 

antibiotic concentrations and dynamic concentrations [47-51]. 

In this research static concentrations were used to develop a semi-mechanistic model. Static 

time-kill assays were performed in 12-well plates. The 12-well plate included wells for growth 

control (no drug) of the bacterial strain, media control (to test the sterility of the growth media), 

and wells with the bacterial strain with different drug concentrations (subinhibitory and inhibitory) 

alone or in combination. After 24 hours of incubation at 37°C and orbital shaking at 50 rpm, the 

tubes/plates are inspected for turbidity and the final sample is counted. The viable colony count at 

time zero and at 4 hours were also determined. Samples were exclusively collected from the growth 

control wells at the initial time-point to determine the initial inoculum. Colony counts are 

converted to colony-forming units (CFU)/mL by multiplying average raw counts by diluting 

factors. CFU/ml data is then further converted to the logarithm (log10) form. The bacterial count 

at each time is expressed as a line graph with the log10 count on the y-axis and time on the x-axis. 

The level of synergy and antagonism is defined as a ≥2 log10 CFU/mL decrease or increase, 

respectively, in bacterial growth when treated with a combination of antimicrobial agents 

compared to the most active single agent. The bactericidal effect is characterized by a reduction of 
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≥3 log10 CFU/mL at 24 hours from the initial inoculum, indicating a significant decrease in 

bacterial burden. Conversely, a reduction of <3 log10 CFU/mL from the initial inoculum indicates 

a bacteriostatic effect, indicating a slowing of bacterial growth without killing. 

4.2 METHODS 

The outline of the time-kill assay procedure has been illustrated in Figure 16, and a detailed 

description of each step has been provided below. 

 

Figure 16:Outline of procedure for time-kill assay. 

 

4.2.1 Bacterial Isolates 

All 21 clinical bacterial strains and one wild type (JH2-2) which were tested for 

susceptibility were further tested in time-kill assays. The strains were sourced from the clinical 

microbiology laboratories at Mount Sinai Health System and Henry Ford Hospital, Detroit, MI. 

All strains were isolated from blood samples of patients infected by E. faecalis. Most clinical 

isolates were found to be ampicillin and penicillin-susceptible by the clinical microbiology 
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laboratory (Vitek 2, bioMérieux, Inc., Durham, NC). To maintain viability, all strains were stored 

in CryoCare (Stamford, TX; tryptic soy broth plus glycerol) at –80°C and sub-cultured once on 

brain heart infusion agar for 18–24 h at 35°C before each experiment. 

4.2.2 Chemicals 

Antibiotic powders were purchased from Sigma-Aldrich, Inc. (St. Louis, MO): penicillin 

G potassium (product number: Sigma - 46609-250), ampicillin sodium (product number: Sigma - 

A0166-5G) and ceftriaxone sodium (product number: Sigma - PHR1382). Experiments were 

performed using cation-adjusted (calcium, 25 mg/mL; magnesium, 12.5 mg/mL) Mueller-Hinton 

broth (MHB; BD Difco, Sparks, MD). All viable cell count samples and subcultures were plated 

on brain heart infusion agar (BHIA; BD Difco, Sparks, MD, Ref - 241830).  

4.2.3 Preparation of Culture Media and Agar Plates for Microbiological Testing 

To prepare the Cation-adjusted Mueller-Hinton broth (CA-MHB), 16.8 g of Mueller-

Hinton broth (MHB) was added to 800 ml of sterilized water and autoclaved. After cooling, the 

broth was supplemented with filtered and sterilized calcium (25 mg/ml) and magnesium (12.5 

mg/ml) solutions. For the Brain Heart Infusion Agar (BHIA) plates, 52 g of BHIA powder was 

dissolved in 1000 ml of sterile water and autoclaved. The mixture was then poured into sterile Petri 

dishes to solidify. 

4.2.4 Preparation of antibiotics stock solutions 

The antibiotics tested for all E. faecalis isolates were prepared in subinhibitory 

concentrations (0.25 x and 0.5 x MIC) and inhibitory concentrations (1 x MIC) of penicillin and 
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ampicillin Ceftriaxone, on the other hand, was tested at the free plasma steady-state concentration 

(fCpss = 17.2 mg/mL), based on population pharmacokinetic data for a 2 g IV q12h regimen, since 

subinhibitory concentrations of ceftriaxone would not be physiologically achievable due to its 

intrinsic resistance to Enterococcus. To prepare the penicillin stock (1 mg/ml), 11.1 mg of the drug 

was dissolved in 10 ml of distilled water, considering the salt factor. Penicillin was tested alone 

and in combination with ceftriaxone at different concentrations. For example, sub-inhibitory 

concentrations for the e.2122 strain with penicillin G MIC of 2 were 0.5 ug/ml and 1 ug/ml (0.25 

x MIC and 0.5 x MIC). Testing sub-inhibitory concentrations in combination time-kill assays is 

done to assess the potential synergistic effects of antibiotics at concentrations lower than their 

individual inhibitory concentrations. These concentrations were multiplied by 20 (dilution factor) 

to obtain 10 ug/ml and 20 ug/ml, respectively, to account for the dilutions during the time-kill 

assay plating procedure. Finally, the stock was diluted by 1:4 to reach the required concentrations. 

4.2.5 Preparation of bacterial inoculum for Time-Kill assay 

To achieve a starting inoculum of 106 CFU/ml, E. faecalis colonies were suspended in 5 

ml normal saline from an overnight culture on a BHIA plate, resulting in turbidity of 0.5 McFarland 

(1.5x108 CFU/ml). The McFarland meter was calibrated before each experiment to ensure 

accuracy. To obtain the desired bacterial concentration, a dilution of 1 ml of the 0.5 McFarland 

solution in 9 mL of CA-MHB was prepared, resulting in a concentration of 1.5x107 CFU/ml. For 

the time-kill assay, 0.2 ml of the bacterial stock was added to the 12-well plate, and the volume 

was made up to 2 ml in each well. This brought the final bacterial concentration to 106 CFU/ml. 
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4.2.6 Preparation of the Time-Kill Assay Plates 

To perform the time-kill assay, a 12-well plate was used and labeled accordingly. The plate 

included wells for growth control and media control. The growth control wells were filled with 1.8 

ml of Mueller Hinton Broth (MHB) and 0.2 ml of bacterial stock. On the other hand, the media 

control well contained only 2ml of MHB and was used to check the sterility of the media used. 

For testing antibiotics alone, the wells were filled with 1.7 ml MHB, 0.1 ml of the drug solution, 

and 0.2 ml of the bacterial solution. For testing the combination of drugs (penicillin G plus 

ceftriaxone), 1.6ml of MHB, 0.1ml of the penicillin G solution, 0.1ml of the ceftriaxone solution, 

and 0.2ml of the bacterial solution were added to the wells.  

4.2.7 Sampling scheme 

The 12-well plates were placed in a 35°C incubator with a rotation speed of 50 rpm during 

the experiment. Samples of approximately 50 µl were collected at 0, 4, and 24 hours for all tested 

concentrations. To gain a better understanding of the growth curve of strains 2122 and 2095, a 

more detailed sampling scheme was employed. This involved sampling at 0, 1, 2, 4, 6, 8, and 24 

hours to provide a more comprehensive view of the bacterial growth patterns over time. Viable 

cell counts were obtained by diluting all samples 1:10 in normal saline. Subsequently, three 20 µl 

samples of each dilution were plated onto BHIA and incubated for 18-24 hours at 35°C. The log10 

CFU/ml viable cell count was obtained by calculating the average of the three samples. 

4.2.8 Calculation of bacterial counts, including CFU/ml and log10 reductions 

The formulas used for calculating CFU/ml and for calculating log10 reductions are shown 

in equations 4 and 5 respectively. 
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Equation 4  

CFU/mL = (number of colonies counted / volume plated) x (1/dilution factor) 

Equation 5 

log10 reduction = ((log10 CFU/mL initial inoculum) – (log10 CFU/mL after treatment)) / log10 

CFU/mL initial inoculum 

4.3 RESULTS 

Table 6 presents the results of the time-kill assay for monotherapy of penicillin and 

ampicillin at inhibitory and sub-inhibitory concentrations against 21 clinical isolates and one wild-

type isolate. The table classifies the antibacterial activity into three categories: Bactericidal, 

Bacteriostatic, and Inactive. The chi-square test was employed to analyze and quantify the 

observed differences in antibacterial activity between penicillin and ampicillin at different 

concentrations for monotherapy and in combination with ceftriaxone. The chi-square test is well-

suited for this type of analysis when dealing with categorical data and comparing proportions or 

percentages between groups. The p-values obtained from the chi-square test provide a quantitative 

measure of the statistical significance of the observed differences. A small p-value (typically less 

than 0.05) would suggest that there is a significant association between the choice of antibiotic and 

the observed antibacterial activity. 

At 0.25 x MIC, both ampicillin and penicillin G showed no significant antibacterial 

activity, as indicated by the p-value of 1 for bactericidal and bacteriostatic categories. At 0.5 x 

MIC, both antibiotics showed no significant difference in bactericidal activity (p-value of 0.50), 

but there was a significant difference in their bacteriostatic activity (p-value of 0.05). At 1 x MIC, 
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ampicillin and penicillin G showed no significant difference in bactericidal activity (p-value of 

0.13), but there was a significant difference in their bacteriostatic activity (p-value of 0.014). 

Ampicillin was more bacteriostatic in both the cases (at 0.5 X MIC and 1.0 X MIC). Additionally, 

the table shows the number and percentage of samples that were categorized as "Inactive" (neither 

bactericidal or bacteriostatic). At 0.25 x MIC, all samples were inactive for both antibiotics. 

However, at 0.5 x MIC and 1 x MIC, there were some differences in the percentage of inactive 

samples between the two antibiotics. Most of the isolates were inactive when treated with 

ceftriaxone monotherapy, with only one isolate (e2006) showing bacteriostatic activity. 

 The comprehensive time-kill curves depicting the responses of all 21 strains under both 

monotherapy and combination treatments, involving penicillin G plus ceftriaxone (PC) and 

ampicillin plus ceftriaxone (AC), have been included in Appendix A. All graphs were generated 

using data visualization in RStudio. Figures 17 and 18 provide a holistic representation of the 

outcomes derived from the 24-hour time-kill assays. These figures provide valuable insights into 

the bactericidal and synergistic effects of the two antibiotic combinations under investigation.  

The combination of penicillin G and ceftriaxone exhibited synergistic activity at 0.25 x 

MIC, 0. 5x MIC, and 1 x MIC. However, among isolates with a penicillin MIC of 4 µg/mL (n = 

8), the synergistic activity of the combination was less frequent compared to isolates with a 

penicillin MIC ≤ 2 ug/mL (n = 13). Bactericidal activity was also more common among isolates 

with a penicillin MIC ≤ 2 compared to a penicillin MIC of 4 ug/ml. Only one isolate (e2024) 

showed bactericidal activity and synergy at 0.25 x MIC and 0.5 x MIC for the combination, and it 

was the only penicillin MIC of 4 ug/mL isolate with a lower ceftriaxone MIC of 256 ug/ml. All 

other isolates with a penicillin MIC of 4 ug/mL, exposed to penicillin and ceftriaxone at 0.25 x 
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MIC and 0.5 x MIC, were inactive and had a higher ceftriaxone MIC (range 512 to 2,048 ug/mL). 

Upon examining the p-values, which indicates whether there are statistically significant 

differences in treatments, it was observed that both combinations exhibited comparable synergistic 

and bactericidal activity overall. They were equally effective against isolates with penicillin MIC 

≤ 2 µg/mL while displaying limited synergy and bactericidal activity for isolates with penicillin 

MIC = 4 µg/mL.  

Table 6:Comparison of antibacterial activity for Monotherapy treatment 

 

 0.25 X MIC 0.5X MIC 1 X MIC 

 Ampicillin Penicillin 

G 

p-

value 

Ampicillin Penicillin 

G 

p-

value 

Ampicillin Penicillin 

G 

p-

value 

Antibacterial activity, no. (%) 

Bactericidal, 

no (%) 

0 (0) 0 (0) 1 1 (5) 0 (0) 0.50 12 (55) 7 (32) 0.13 

Bacteriostatic

, no. (%) 

0 (0) 0 (0) 1 6 (27) 1 (5) 0.05 5 (23) 13 (59) 0.014 

Inactive, no. 

(%) 

22 (100) 22 (100) 1 15 (68) 21 (95) 0.02 5(23) 2 (9) 0.25 
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Figure 17:Comparison of bactericidal activity between AC and PC treatment 

 

Figure 18:Comparison of synergy between AC and PC treatment 
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As previously discussed, the in-vitro data obtained from two strains will serve as the 

foundation for the development of semi-mechanistic PBPK-PD models, enabling the assessment 

of diverse dosing regimens of penicillin G to treat both young and elderly populations. The two 

strains that underwent further investigation were e.2122, characterized by low susceptibility to 

penicillin G with a MIC of 2 µg/ml, and e.2095, showcasing high susceptibility with a MIC of 4 

µg/ml. The time-kill graphs for penicillin G monotherapy and its combination with ceftriaxone for 

e.2122 and e.2095 are depicted in Figures 19 and 20 respectively. 

These two strains serve as an apt representation of the central pattern followed across the 

21 isolates. Like other more susceptible strains, for e.2122 the PC combination showcases 

bactericidal effectiveness, shown by the arrow illustrating a reduction exceeding 3 log10 CFU/ml, 

originating from the initial 6 log 10 CFU/ml inoculum count. Furthermore, an additional insight 

emerges—there is an observed synergy when subinhibitory concentrations of penicillin G are 

employed in combination with ceftriaxone. This is evident through the arrow indicating a decline 

surpassing 2 log 10 CFU/ml, compared to the most potent agent, penicillin G. 

And for e.2095, like other strains with lower susceptibility, the PC combination does not 

show bactericidal activity either in monotherapy or in combination. Figure 20 illustrates the time 

kill graph obtained after plotting the experimental data. Dashed arrows highlight the minimal 

reduction in bacterial density for 0.5 x MIC penicillin G plus ceftriaxone compared to 0.5 x MIC 

penicillin G alone. This indicates there is no synergy. The limited decrease of less than 3 log10 

colony-forming units per milliliter (CFU/ml) strongly indicated the ineffectiveness of the 

combination in producing bactericidal effects for strains with lower susceptibility. 
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Figure 19:Time kill curves for e.2122 (MIC = 2 ug/ml) 

 

Figure 20:Time kill curve for e.2095 (MIC = 4 ug/ml) 

 

4.4 DISCUSSION 

The prevalence of penicillin-resistant ampicillin-susceptible E. faecalis in the United States 

remains undisclosed, yet beta-lactam-based treatments continue to be the established standard of 
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care. Among these, the combination of ampicillin and ceftriaxone is the primary choice for treating 

E. faecalis infective endocarditis due to its enhanced safety profile over aminoglycoside-based 

alternatives. The escalating resistance to aminoglycosides, which has reached up to 60%, further 

substantiates this preference [80,81]. However, logistical challenges associated with administering 

outpatient ampicillin therapy often led to the utilization of penicillin in combination with 

ceftriaxone for effective patient management [37,82]. 

The clinical data supporting the use of penicillin-ceftriaxone combination therapy for E. 

faecalis infective endocarditis is limited. The assessment has been primarily conducted in patients 

who have previously undergone standard of care treatment. One retrospective review in the US 

scrutinized patients discharged on penicillin and ceftriaxone after receiving 3 to 8 days of inpatient 

ampicillin-ceftriaxone therapy. Among them, three out of five patients attained clinical cure with 

no relapse within 90 days [38]. A more extensive multicenter case series in New Zealand 

encompassed 41 patients with enterococcal endocarditis. The study compared the outcomes of 

outpatient treatment with either penicillin plus gentamicin or penicillin plus ceftriaxone. Although 

there was no significant difference in recurrence rates between the two regimens, patients receiving 

gentamicin exhibited a notably higher incidence of side effects and toxicity. [39]. 

Recent investigations include a retrospective cohort study in Australia where 20 patients 

with E. faecalis endovascular infections received penicillin plus ceftriaxone via outpatient 

parenteral antimicrobial therapy (OPAT). The study reported unplanned readmissions in 30% of 

patients, a 5% relapse rate in bacteremia within 6 months, and a 1-year mortality rate of 15%. All 

isolates were deemed susceptible to penicillin, although minimum inhibitory concentrations were 

not documented. Synergy assessments and MIC determinations demonstrated promising results, 
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further emphasizing the need for randomized controlled trials to ascertain the equivalence of 

penicillin-ceftriaxone to ampicillin-ceftriaxone and the predictive role of penicillin G MIC in 

treatment success [83]. 

In the area of in vitro research, only one study has compared the synergistic effects of 

ampicillin-ceftriaxone versus penicillin-ceftriaxone in 28 clinical E. faecalis blood isolates from 

Germany and one wild-type isolate (ATCC 29212). While the study employed specific free 

ceftriaxone concentrations corresponding to various dosing regimens [84], a different approach, 

was adopted for this dissertation project, utilizing a steady-state plasma concentration of 17.2 

mg/mL based on clinical pharmacokinetic data for 2 g IV q12h dosing regimen. Notably, the 

present study results aligned with the referenced research, underscoring the consistency of findings 

[84]. It is also important to note that this study was not via time kills, it used checkerboard which 

is not as effective of a method. 

Time-kill assays, integral to microbiology and pharmacology, provide an understanding of 

antibiotics' efficacy against bacterial pathogens over time. By exposing microorganisms to varying 

concentrations of an antibiotic, these assays reveal valuable insights into drug-pathogen 

interactions and the compound's impact on microbial growth and viability. Fixed microbial 

populations are evaluated at regular intervals, generating growth curves that illuminate the drug's 

influence. 

This research aimed to dissect the effectiveness of the penicillin-ceftriaxone (PC) 

combination through comprehensive in vitro time-kill assays conducted on 21 clinical strains of 

E. faecalis. The study also endeavored to establish a comparative analysis with the current standard 

of care, ampicillin plus ceftriaxone (AC). With the inherent resistance of these strains to 
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ceftriaxone, the assays were designed based on the highest recommended dose's free steady-state 

concentration of ceftriaxone. 

The results of the time-kill assays disclosed differing antibacterial activities of ampicillin 

and penicillin G monotherapy at specific concentrations. Notably, the penicillin-ceftriaxone 

combination exhibited consistent synergistic activity at inhibitory and sub-inhibitory 

concentrations for strains with MIC values less than or equal to 2 ug/mL. This suggests a potential 

advantage of combination therapy in high-susceptibility strains. However, among isolates with a 

penicillin MIC of 4 ug/mL, the synergistic response was less frequent, highlighting the importance 

of correlating the susceptibility of the strain.  

The outcomes consistently show the favorable bactericidal and synergistic effects of PC 

combination therapy, particularly in isolates where penicillin G MIC values were 2 ug/mL or 

lower. This observation aligns with insights from Chapter 3, revealing resistance patterns in strains 

with elevated MIC levels. These findings lay the foundation for constructing a semi-mechanistic 

model, providing a deeper understanding of penicillin G dosing regimens' impact on strain 

responses. 

In essence, the results from this part of the thesis project open avenues for future research 

focusing on personalized treatment strategies tailored to isolates' susceptibility profiles. Such 

tailored approaches hold substantial promise for significantly improving patient care concerning 

E. faecalis infections. 

 

 



86 

 

 

 

 

 

 

 

 

 

CHAPTER 5: DEVELOPMENT OF A BACTERIAL GROWTH MODEL 
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5.1 INTRODUCTION 

     From the pool of 21 E. faecalis clinical strains tested in time-kill assays, two strains 

(e.2095 and e.2122) were selected for further analysis due to their confirmed association with E. 

faecalis - infective endocarditis patients. Bacterial and drug-response models were developed for 

these strains to gain a deeper understanding of their behavior and response to the tested antibiotics. 

5.1.1 Typical bacterial growth pattern 

     When a broth culture is inoculated with a bacterial inoculum, the population size of the 

bacteria increases showing a classical pattern. When plotted on a graph, a distinct curve is obtained 

referred to as the bacterial growth curve. A population growth curve for any species of the 

bacterium may be determined by growing a pure culture of the organism in a liquid medium at a 

constant temperature. Samples of the culture are collected at fixed intervals and the number of 

viable organisms in each sample is determined. The logarithm of the number of bacteria per 

milliliter of medium is plotted against time. The bacterial growth curve shows the following four 

distinct phases, as illustrated in Figure 21. 

 

Figure 21:Phases of bacterial growth curve [52]. 
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From this Figure, the Lag phase is the first phase. After a liquid culture broth is inoculated, 

the multiplication of bacteria does not start immediately. It takes some time to multiply. This time 

between inoculation and the beginning of multiplication is known as the lag phase. In this phase, 

the inoculated bacteria become acclimated to the environment, switch on various enzymes, and 

adjust to the environmental temperature and atmospheric conditions. During this phase, there is an 

increase in the size of bacteria but no appreciable increase in the number of bacterial cells [52].  

Exponential phase is characterized by rapid exponential cell growth (i.e., bacterial cell 

count increases from 1 to 2 to 4 to 8 log10 CFU/ml, and so on). The bacterial population doubles 

during every generation and multiplies at its maximum rate. This phase is always brief unless the 

rapidly dividing culture is maintained by the constant addition of nutrients and frequent removal 

of waste products. When plotted on logarithmic graph paper, it appears as a steeply sloped straight 

line [52].  

Next is the stationary phase, where the bacterial growth almost stops completely due to 

lack of essential nutrients, lack of water oxygen, changes in pH of the medium, etc., and 

accumulation of toxic metabolic wastes. It is during this phase that the culture is at its greatest 

population density. Bacterial cell growth reaches a plateau, or stationary phase, where the number 

of dividing cells equals the number of dying cells. This results in no overall population growth 

[52]. 

During the last death/decline phase, the bacterial population declines due to the death of 

cells. It starts due to the accumulation of toxic products and autolytic enzymes and the exhaustion 

of nutrients. The steepness of the slope corresponds to how fast cells are losing viability [52]. 
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5.1.2 Introduction to Models Describing Bacterial Growth 

Determining the speed of bacterial growth is a fundamental aspect of studying antibiotic 

action and understanding microbial dynamics in various environments, such as the culture media. 

The process of bacterial growth is highly dynamic and can significantly impact the effectiveness 

of antibiotics. By gaining insights into the rate of bacterial proliferation, researchers can better 

assess the efficacy of treatments and devise strategies to combat bacterial infections [53]. The 

study of bacterial growth has been an area of intense research, leading to the development of 

various mathematical models that describe microbial dynamics. These models play a crucial role 

in predicting bacterial population changes over time, providing valuable information such as 

growth rates. 

Exponential growth is a process in which the growth rate of a population increases 

proportionally to its size. As the population size increases, so does the number of organisms added 

in each generation. This concept is illustrated by a J-shaped growth curve when population size 

(N) is plotted over time, as depicted in Figure 22. In Equation 6, dN/dT is the change in population 

concerning time at a given instant, N is the population size, t is time, and r is the growth rate [54]. 

Equation 6 

𝑑𝑁

𝑑𝑡
= 𝑟𝑁 
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Figure 22:Exponential growth curve [54]. 

 

All living organisms have a biotic potential, which represents the highest possible rate of 

population growth under ideal conditions. However, as the population grows, the availability of 

nutrients and resources eventually becomes limited, which slows down the growth rate. At a 

certain point, the growth rate reaches a maximum and levels off, forming an S-shaped curve 

(Figure 23). This maximum population size, known as the carrying capacity (K), represents the 

maximum number of individuals an environment can support. The logistic model is a useful tool 

for describing the growth curves of organisms. This model is based on a differential equation 

(Equation 7), where N represents the population size at time t, and r is the maximum specific 

growth rate. The maximum population size, or carrying capacity, is denoted by Nmax. The logistic 

model incorporates a term, (1- N/Nmax), which regulates the growth rate at high population 

densities. During the lag phase, when the population size is small, this term has little effect on the 

growth rate, as its value is close to one. However, as the population size approaches Nmax, the 

value of this term approaches zero, which in turn, reduces the growth rate to almost zero during 

the stationary phase [55]. 
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Equation 7  

𝑑𝑁

𝑑𝑡
= 𝑟𝑁(1 −

𝑁

𝑁𝑚𝑎𝑥
) 

 

Figure 23:Logistic growth model [54] 

 

Gompertz’s growth model is an alternative model for describing bacterial growth, and 

similar to the logistic growth model, is a sigmoidal growth model that describes the growth of 

populations over time. Both models consider the carrying capacity of the environment, which 

represents the maximum population size that can be supported, and they both include parameters 

that describe the maximum growth rate and the rate at which growth slows as the population 

approaches carrying capacity. Gompertz is an alternative model for describing bacterial growth 

and is given by equation 8, where A is the carrying capacity of the environment for the bacterial 

population. It is the maximum population size that the environment can sustain over the long term. 

B is the term that represents a scaling factor influencing the vertical stretching of the growth curve. 

C is a scaling factor that influences how quickly the bacterial population grows or declines. It 

affects the shape of the growth or decay curve. The term r is the rate constant that determines the 



92 

 

rate at which the bacterial population changes, or the growth rate and t is the time variable, 

indicating the specific time at which size of the bacterial population needs to be determined. 

The Gompertz model assumes that the rate of population growth decreases exponentially 

over time as the population approaches the carrying capacity. It is also represented by Equation 9 

where the natural logarithmic function (ln) introduces a gradual slowing down of growth as the 

population size approaches the carrying capacity. This logarithmic term causes the growth rate to 

decrease as the population size gets closer to the carrying capacity. Here dN/dt is the rate of change 

in population size over time, r is the growth rate, K is the carrying capacity and N is the current 

population size at a given time. 

Overall, both logistic and Gompertz models differ in their functional forms and 

assumptions about population growth [56,57].  

Equation 8 

𝑦 =  𝐴 − 𝐵 ⋅ 𝑒𝑥𝑝(−𝐶 ⋅ 𝑒𝑥𝑝(𝑟 ⋅ 𝑡)) 

Equation 9 

𝑑𝑡/𝑑𝑁 = 𝑟𝑁𝑙𝑛(𝑁/𝐾) 
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5.2 METHODS 

5.2.1 Fitting the Logistic and the Gompertz Model to Bacterial Growth Data  

Bacterial growth data obtained from time-kill experiments was leveraged to gain insights 

into the growth patterns of the bacteria under investigation. The bacterial growth data were 

analyzed using RStudio, a popular integrated development environment for the R programming 

language. Specifically, the mathematical equations of logistic and Gompertz models were fitted to 

the bacterial growth data using the built-in functions in RStudio for curve fitting and parameter 

estimation. This allowed for the selection of the best-fit model to describe the growth patterns of 

the bacteria under study. These models allow for a quantitative description of bacterial growth 

over time, considering parameters such as maximum growth rate and carrying capacity. After 

fitting the growth control data into the mathematical equations of both the logistic and Gompertz 

models, the model that best fits the data was selected. This selection was based on criteria such as 

goodness of fit, which measures how well the model matches the observed data, and the statistical 

significance of the model parameters. The selection of the best-fit model then provided insight into 

the underlying mechanisms of bacterial growth and allows for predictions to be made about future 

growth patterns. The growth data for e.2122 and e.2095 was obtained after taking samples at 

0,1,2,4,6,8, and 24 hours. 

5.2.2 Nonlinear Regression Analysis of Bacterial Growth Data Using RStudio 

A snippet of the used R code is provided in APPENDIX B. To fit the logistic and Gompertz 

equations to the bacterial growth data, the code utilized the NLS () function, which is a part of the 

base R package and facilitates nonlinear regression analysis. The logistic and Gompertz models 

were defined using the functions "logistic" and "Gompertz", respectively. 
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The logistic model requires three parameters to be specified: 'A', representing the initial 

population size or the minimum population size; 'r', representing the growth rate parameter, 

controlling the rate of bacterial population growth; and 'K', representing the upper asymptote or 

the maximum population size that the bacterial population can reach. 

On the other hand, the Gompertz model requires four parameters to be defined: 'A', 

representing the plateau value or the maximum population size that the bacterial population can 

attain; 'B', representing a scaling factor influencing the vertical stretching of the curve. It affects 

the extent to which the bacterial population can increase from the initial value to the plateau value 

(upper asymptote); 'C', representing a time scaling factor determining the time at which the 

maximum growth rate occurs; and 'r', representing the growth rate parameter, which dictates the 

rate at which the bacterial population increases toward its plateau value. The summary of the model 

fits was displayed using the "summary" function. Finally, the "ggplot2" package was loaded to 

plot the actual data as points and the predicted data of both models as a red line. The x-axis 

represents time, and the y-axis represents bacterial density in log10 CFU/ml. 

To compare the goodness of fit of the logistic and Gompertz models, the Akaike 

Information Criterion (AIC) was used. AIC is a statistical measure that considers the complexity 

of the model and the goodness of fit. The model with the lowest AIC value is the best fit for the 

data. Another criterion to compare the model fits is the Sum of Squared Residuals (SSR) and it 

represents the residual error or the sum of the squared differences between the observed values 

and the predicted values obtained from a model. In the context of fitting a model to data, residuals 

are the differences between the actual data points and the corresponding values predicted by the 
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model. The SSR is calculated by squaring each residual, summing up all the squared residuals, and 

it indicates how well the model fits the data. 

In Appendix B, the provided snippet of R code follows the conventional steps for fitting a 

model to observed data. First, starting with describing the observed data in the R environment, 

followed by defining the model to be used to fit the observed data. Here logistic and Gompertz 

models are defined by creating logistic and Gompertz functions. Creating the R function includes 

steps of specifying the parameters and inputs and then the formula or function body shown in the 

syntax below:  

function_name <- function(parameters){ 

  function body  

} 

Next, the in-built function ‘nls’ which is a non-linear least squares function was used to fit 

observed log10 bacteria data to the created logistic and Gompertz function. The ‘nls’ function is 

used for nonlinear regression analysis to estimate the parameters of a non-linear model by 

minimizing the difference between observed log bacteria data and model predictions (residuals). 

The fitted logistic and Gompertz model was assigned to objects ‘fit_log’ and ‘fit_gom’ 

respectively. Another important step in fitting data into a model is to choose the initial estimates 

of the parameters. The start argument in the ‘nls’ function provides the initial estimates for the 

parameter values which help in the start of the optimization process. Using the summary function, 

the parameter estimates table along with their standard error and statistical significance can be 

obtained. The last step is to evaluate the model fit by visual predictive check. 
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Visualization plays an important role in the decision-making process after analyzing 

relevant data. R supports a variety of functions and data visualization packages to build interactive 

visuals for exploratory data analysis. The package used for data visualization was ‘ggplot2’. The 

function ggplot () is used to produce the plots when using the package. Therefore, ggplot () is the 

command, and the whole package is called ‘ggplot2’. It is a part of the R tidyverse, which is an 

ecosystem of similar packages.  

5.2 RESULTS 

The plots presented in Figure 24 for e.2122 and Figure 25 for e.2095 exhibit a clear 

indication that the Gompertz model provides a superior fit to the data compared to the logistic 

model. Here the x-axis depicts the time in hours and the y-axis represents bacterial count in log10 

CFU/mL. The black line depicts the predicted model and the whole black dots represent the 

observed data. The visual representation showcases the Gompertz model's ability to accurately 

capture the observed log bacteria data for both bacterial isolates and give better estimates of the 

growth parameters. Furthermore, the comparison of AIC and SSR values, as depicted in Table 7, 

the smaller AIC values and a smaller residual error obtained for the Gompertz model indicate its 

better performance and superior fit in explaining the bacterial growth dynamics of the isolates. 

Tables 8 and 9 summarize all the estimated parameters from model fitting for e.2122 and 

e.2095 respectively. It is noteworthy that the estimated parameters exhibit a low standard error of 

estimation, indicating a high level of precision in the parameter estimates. The p-value is a measure 

of the evidence against a null hypothesis. In this context, it tests whether the parameter estimate is 

significantly different from zero. A small p-value (typically less than 0.05) suggests that the 

parameter estimate is statistically significant, indicating that there is strong evidence to reject the 
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null hypothesis. A t-test was used to determine whether the parameter estimates are significantly 

different from zero.  And as observed in the table a less than 0.005 p-values associated with the 

parameters further confirms their statistical significance. 

Table 7:Comparison of Gompertz and logistic bacterial models 

 

 

 

 

 

Table 8:Parameters estimates for bacterial growth of e.2122. 

Parameter Estimates Std. 

error 

Corresponding p-

value 

B 2.7 0.08 0.00001 

A 8.48 0.03 0.003 

C 0.14 0.06 0.002 

r 0.43 0.02 0.001 

 

Table 9:Parameters estimates for bacterial growth of e.2095. 

Parameter Estimates Std. 

error 

Corresponding p-

value 

B 2.89 0.05 0.004 

A 8.49 0.06 0.00003 

C 0.16 0.05 0.001 

r 0.38 0.03 0.02 

 

e.2122 Gompertz Logistic 

Akaike Information Criterion (AIC) -3.99 9.13 

The sum of squared residual error (SSR) 0.02 0.58 

e.2095 Gompertz Logistic 

Akaike Information Criterion (AIC) -4.86 5.76 

The sum of squared residual error (SSR) 0.03 0.25 
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Figure 24: e.2122 Logistic (left) and Gompertz (right) bacterial model. 

 

Figure 25: e.2095 Logistic (left) and Gompertz (right) bacterial model. 

 

5.4 DISCUSSION 

Understanding bacterial growth patterns in the absence of antibiotics is essential for 

comprehending the natural behavior of infectious bacteria. To determine bacterial growth 

parameters, various studies have employed different mathematical models that best describe the 

growth patterns of specific strains. Previous studies with Staphylococcus aureus and Pseudomonas 

aeruginosa employed logistic growth models to obtain growth parameters. While for Enterococcus 

faecalis, the growth parameters have been previously investigated in a distinct growth medium, 
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utilizing the Gompertz equation [88,89]. Notably, a study by Ambrosio et al. in 2022 [88] applied 

the Gompertz model to analyze the growth kinetics of Enterococcus faecalis ATCC 29212. This 

dissertation study yielded a favorable fit with minimal standard error of estimation, increasing 

confidence in employing the Gompertz model. 

In this phase of research, the growth patterns of E. faecalis isolates, characterized by 

differing susceptibility to penicillin G (MIC = 2 ug/ml and MIC = 4 ug/ml), were observed. Their 

growth parameters were then deduced by fitting a non-linear model to the logarithmic bacteria 

versus time data gathered from in-vitro experiments. Two models were tested to identify the most 

suitable model for describing the observed bacterial data. After evaluating both logistic and 

Gompertz models, it was determined that the latter provided a superior fit and more accurately 

captured the observed growth dynamics. The availability of tools like RStudio facilitated model 

analysis and parameter estimation, making the process more accessible. 

The estimated parameters included the maximum bacterial population, growth rate, and 

scaling factors influencing the shape of the growth curve. By combining visually informative plots 

comparing different bacterial models, considering AIC (Akaike Information Criterion) values, and 

deriving statistically significant parameter estimates, the Gompertz model emerged as the most 

appropriate and precise representation of bacterial growth dynamics for both e2122 and e2095 

isolates. 

These reliable parameter estimates obtained from the Gompertz model lay a robust 

foundation for constructing a pharmacodynamic model within the Simcyp® platform. This 

subsequent model development will contribute to a deeper comprehension of antibiotic action and 

facilitate the optimization of treatment strategies for bacterial infections caused by E. faecalis.  
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CHAPTER 6: ESTIMATION OF DRUG KILL PARAMETERS USING 

EMAX MODEL 
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6.1 INTRODUCTION 

An Exposure-response relationship refers to the correlation between the dose or 

concentration of a drug or stimulus and its corresponding biological response. To comprehend the 

impact of antibiotics on bacterial isolates, it is important to establish a clear relationship between 

the drug concentration and its effect on inhibiting bacterial growth or killing bacteria. This is where 

the sigmoidal Emax equation comes into play. This mathematical model is extensively used to 

describe the connection between drug concentration and its pharmacological effect, specifically 

the antibacterial effect. In Equation 9, E is the pharmacological effect (antibacterial effect) of the 

drug at a specific drug concentration, Emax is the maximum effect achievable by the drug, 

representing the extent of bacterial killing, C is the drug concentration, EC50 (Effective 

Concentration 50%) is the drug concentration that produces 50% of the maximum killing effect 

(Emax), h is the Hill coefficient, which describes the steepness of the concentration-effect curve. 

It determines how much the effect changes with changes in drug concentration, indicating how 

sensitive the bacterial response is to changes in drug concentration [77,78]. In the context of 

antimicrobials, where the primary mode of action is the inhibition of bacteria, the term used is 

"IC50" or the "inhibitory concentration" that achieves a 50% of the maximum inhibition. 

Equation 9 

Drug Effect (E) =  
𝐸𝑚𝑎𝑥 × 𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛ℎ

𝐼𝐶 50ℎ+𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛ℎ 
 

By exposing bacteria to different drug concentrations and periodically measuring bacterial 

viability or growth, researchers can construct time-kill curves, which show the dynamic 

relationship between drug concentration and bacterial response. To gain deeper insights into the 
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drug's effect on bacteria, often mathematical models like the Emax model are utilized. The Emax 

model provides a quantitative framework for characterizing the relationship between drug 

concentration and its impact on bacterial growth or viability. By fitting the Emax model equation 

to the observed time-kill data using statistical software like RStudio, it is possible to estimate key 

drug effect parameters.  

In this aspect of the research, the goal was to assess the effect of combining constant 

ceftriaxone concentration with different concentrations of penicillin G on bacterial growth in 

comparison to varying concentrations of penicillin G used in monotherapy. 

6.2 METHODS  

6.2.1 Fitting the Emax model to observed bacterial data. 

First, the data fitting was done for the monotherapy of penicillin G and then for the 

combination of penicillin G and ceftriaxone. The R code snippet given in APPENDIX B performs 

an analysis of concentration-response data to study the effect of an antibiotic on bacterial growth 

inhibition and the details of the code are explained in the next section. It utilizes the Emax model 

to quantify the relationship between antibiotic concentration and the reduction in bacterial colony-

forming units per milliliter (CFU/ml) from the initial count. The conventional steps for fitting a 

model to observed data like in Chapter 5 while developing a bacterial model were used in this 

scenario as well. 

6.2.2 Nonlinear Regression Analysis of Time kill data Using RStudio 

The code first defines two vectors, “concentration” and “percent_reduce”, containing the 

antibiotic concentration (in ug/ml) and the corresponding percent reduction in bacterial CFU/ml at 
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24 hours from the initial, respectively. The Emax model equation is defined in the emax_model 

function. This model represents the relationship between antibiotic concentration and the 

antibiotic's effect on bacterial growth inhibition. It includes one variable and three parameters: 

concentration (independent variable - antibiotic concentration), Emax (maximum reduction in 

bacterial CFU/ml), IC50 (antibiotic concentration causing 50% of the maximum reduction), and n 

(a shape parameter). 

The nls() function is used to fit the Emax model to the concentration-response data. The 

function estimates the parameters (Emax, IC50, and n) by minimizing the sum of squared residuals 

between the observed data (percent_reduce) and the model's predictions 

(emax_model(concentration, Emax, IC50, n)). Initial parameter values are provided in the start 

argument to initiate the fitting process. A summary of the fitted model is obtained using 

summary(fit). This provides estimated parameter values and statistical information about the 

goodness of fit. Lastly, to visualize the fit, the ggplot2 library is used. The plot created helps 

visualize the original data points representing antibiotic concentrations and corresponding percent 

reductions in bacterial CFU/ml. Additionally, the fitted Emax model curve is overlaid on the plot 

(black line), allowing a visual representation of the relationship between antibiotic concentration 

and bacterial growth inhibition.  

6.2.3 Obtaining kill rate at the Emax concentration. 

Gaining insights into the kill rate at the point of highest efficacy, typically corresponding 

to the Emax concentration, holds significant importance. During time-kill experiments, the 

bacterial growth rates were deduced from the changes in viable bacterial density (measured in 

CFU/ml) within the initial 6-hour experimental timeframe. This early time window was chosen 
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due to the pronounced bactericidal effects observed during these hours. The basis of this approach 

lies in considering the bacterial populations as undergoing constant-rate growth or decline in the 

presence of the antibiotic, leading to exponential reduction in bacterial density. In this context, 

equation 10 was employed, wherein the kill rate (k) was calculated as a negative value, signifying 

the extent of bacterial reduction due to the antibiotic's effect [79]. 

Equation 10  

𝑁(𝑡)  =  𝑁0 ×  𝑒−𝑘𝑡 

6.3 RESULTS 

Tables present in APPENDIX A provide details about the concentrations of penicillin G 

and the corresponding percentage reductions from the initial inoculum of Log 10 6.03 CFU/mL for 

both penicillin G monotherapy and PC combination treatments. Figures 26 and 27 display the fitted 

concentration-response graphs for monotherapy and combination therapy for e.2122 and e.2095 

respectively. In Table 10 and 11, the parameter estimates obtained from fitting the Emax model 

for both monotherapy and combination therapy have been documented for e.2122 and e.2095 

respectively. 

For e.2122 the high susceptibility strain, upon analyzing both the Emax curves, as 

generated and visualized through data analysis in RStudio, illustrated in Figure 24, an evident 

pattern becomes apparent. In this figure, the y-axis denotes the response as a percentage reduction 

from the initial inoculum and the x-axis represents the concentration of penicillin G. It is evident 

that elevating the concentration of penicillin G, particularly when utilized in combination with 

ceftriaxone, leads to a more pronounced and substantial decrease in bacterial growth. This points 
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towards a synergistic interaction between the two antibiotics, where their combined effects yield 

enhanced antibacterial outcomes. In combination with ceftriaxone, greater reductions in bacterial 

density are observed at comparatively lower levels of penicillin G. 

For e.2095, on analyzing the fitted bacterial kill curves it demonstrates that the reductions 

in bacterial counts are quite comparable between the two treatment approaches. This similarity 

suggests that the addition of ceftriaxone to the penicillin G treatment does not seem to provide a 

significant increase in antibacterial efficacy for this strain. In other words, the combination does 

not appear to exert a substantial additional impact on bacterial reduction beyond what is achieved 

with penicillin G alone. This observation implies that ceftriaxone might not be providing a 

synergistic effect to enhance the antibacterial activity of penicillin G. 

The fitting of the Emax models to the data, indicated by the red lines, closely aligns with 

the observed data points represented by the black dots. This alignment highlights the accuracy of 

the parameter estimates derived from the model. The robust fit between the models and the 

observed data lends credibility to the results drawn from the study. A good fit of the model 

enhances confidence in the efficacy and synergistic effects of the combined penicillin G and 

ceftriaxone treatment strategy for high-susceptibility strain e.2122. Table 10 compares parameter 

estimates for both the monotherapy and combination treatment. These estimates complement the 

trends observed in the graphical representation. Specifically, it highlights a nearly 50% increase in 

the kill rate at the Emax concentration. Simultaneously, there is a reduction of almost 34% in the 

IC50 value. 

While for e.2095, the results in Table 11 indicate that the combination therapy of penicillin 

G and ceftriaxone demonstrates slightly higher estimates for the Emax parameter (0.58 vs. 0.50), 
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suggesting an increased maximum antibacterial effect rate compared to penicillin G monotherapy. 

However, the IC50 values were essentially the same between the two treatment approaches (2.5 vs. 

2.86 ug/ml), implying a comparable concentration at which the effect is half of its maximum. 

 

Figure 26:Emax model fit for e.2122 Penicillin G monotherapy (left) and Penicillin G and ceftriaxone combination 

(right) 

 

Table 10:Emax model estimates for e.2122 

Parameters Estimates for 

monotherapy 

Std. 

error 

Estimates for 

combination 

Std. 

error 

Emax (1/hr) 0.6 0.03 0.9 0.04 

IC50 (ug/ml) 1.89 0.06 1.26 0.02 

N 8.1 0.04 5.6 0.09 
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Figure 27:Emax model fit for e.2095 Penicillin G monotherapy (left) and Penicillin G and ceftriaxone combination 

(right). 

 

Table 11:Emax model estimates for e.2095 

Parameters Estimates 

with 

monotherapy 

Std. 

error 

Estimates 

with 

combination 

Std. 

error 

Emax (1/hr) 0.50 0.06 0.58 0.05 

IC50(ug/ml) 2.86 0.09 2.5 0.08 

N 5.6 0.04 3.5 0.06 

 

6.4 DISCUSSION 

The utilization of mathematical models in pharmacokinetics and pharmacodynamics 

research has greatly enhanced the understanding of how drugs interact with biological systems. 

Among these models, the Emax model stands out as one of the most frequently employed tools, 

facilitating the linkage between pharmacokinetics (PK) and its influence on effect 

(pharmacodynamic, PD) variables. A recent overview focusing on the construction of semi-
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mechanistic models using in vitro time-kill experiment data has shed light on the prevalence and 

significance of this approach. In particular, the use of static time-kill experiment data in 

approximately ten out of thirteen publications to construct models, with the Emax model as the 

chosen framework for describing the effect component, underscores the model's utility in this 

context [14]. 

The Emax model, with its ability to capture saturation effects and provide a quantitative 

representation of the relationship between drug concentration and effect, has proven to be an apt 

choice for characterizing the dynamics of drug-microorganism interactions. The parameter 

estimates obtained from the Emax model hold the key to understanding the differences in the effect 

of antibiotics on different strains. By comparing parameter values, such as the Emax value and 

IC50, researchers gain insights into how strains respond differently to drug exposure. These 

parameters can distinguish between strains with varying susceptibilities, allowing for the 

classification of susceptible and resistant sub-populations. The significant difference in IC50 

concentration observed between two strains observed in a published study of meropenem and 

colistin against Pseudomonas aeruginosa provided valuable information about the nature of the 

strains under investigation [94]. The Emax model's parameter estimates also enable comparisons 

between the effects of monotherapy and combination therapy. This is crucial for evaluating the 

potential synergistic effects. In the case of Staphylococcus aureus and a study of the effect of nisin 

monotherapy and its combination with amikacin and linezolid, the Emax model revealed a 

substantial difference in kill rates between the susceptible and resistant populations. This 

observation indicated that combination therapy did not have a significant effect on the resistant 

population compared to monotherapy [93].  
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Similarly in this dissertation research study, the parameter estimates derived from the Emax 

model offer valuable insights into the nuanced differences between the antibacterial effects of 

monotherapy and combination therapy. Notably, the impact of the combination strategy differs 

significantly based on the susceptibility level of the bacterial isolates. For the highly susceptible 

e.2122 strain, it is evident that the cooperative action of penicillin G and ceftriaxone maximizes 

their antibacterial potential. This is represented by the reduced concentration of penicillin G 

required in conjunction with 17.2 µg/ml of ceftriaxone to achieve a comparable level of bacterial 

kill as penicillin G alone. This result highlights an augmented potency of penicillin G when used 

in the presence of ceftriaxone, indicating their synergistic interaction. 

Conversely, in the case of the low susceptibility strain e.2095, the addition of ceftriaxone 

to penicillin G does not substantially enhance its kill rate which is necessary for the bactericidal 

effect. This lack of significant enhancement is reflected in the modest decrease of only 12% in the 

IC50 parameter. These findings highlight the strain-specific nature of the interaction between 

penicillin G and ceftriaxone, where the combination may offer substantial benefits for highly 

susceptible strains but exhibit limited additional efficacy for less susceptible strains. 

In summary, the parameter estimates from the Emax model provide deeper insights into 

the dynamics of penicillin G and ceftriaxone interaction. This study elucidates how the synergy 

between these antibiotics can enhance their antibacterial potential, especially in highly susceptible 

strains, leading to reduced effective concentrations and enhanced potency. This distinction 

emphasizes the need for tailored treatment strategies based on bacterial susceptibility profiles, 

optimizing the utilization of combination therapies for optimal clinical outcomes. Further 

investigations using these PD parameters through construction of PBPK-PD model in Simcyp® 
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will help better understand the mechanistic underpinnings of these observations and translate them 

into effective therapeutic interventions. 
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CHAPTER 7: DEVELOPMENT OF PBPK MODEL 
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7.1 INTRODUCTION  

The Simcyp® Simulator (version 21) was used to develop PBPK models for penicillin G 

and ceftriaxone. The penicillin G model was further linked to the PD model developed in Chapter 

8 to test different dosing regimens. 

Penicillin G exhibits linear pharmacokinetics, with the Cmax and AUC increasing with 

dose [60]. Single-dose, multiple doses, and population pharmacokinetic studies have demonstrated 

that its pharmacokinetic parameters are not significantly altered by either gender or race [64]. The 

net effect of the interplay between distribution, biotransformation, excretion, and plasma protein 

binding is expressed in the concentrations of penicillin G that develop in the plasma. As mentioned 

previously, the clearance of penicillin G is primarily renal, with 75 to 80 % of the drug being 

eliminated through the kidneys—10% via glomerular filtration and 90% through tubular secretion. 

Probenecid blocks the renal tubular secretion of penicillin. Therefore, the concurrent 

administration of probenecid prolongs the elimination of penicillin G and, consequently, increases 

serum concentrations [60,65]. A mean renal clearance of 320 ml/min is reported, a value which is 

in between the normal glomerular filtration rate of 120 ml/min and normal renal plasma flow rate 

of 625 ml/min, suggesting excretion through both glomerular filtration and active tubular secretion 

[64]. 

Ceftriaxone’s mean t1/2 of 6 to 9 hours has been reported previously. Its pharmacokinetics 

is not affected by gender or race based on several single and multiple dose studies. Ceftriaxone is 

not metabolized by the body and is largely excreted unchanged by the kidney and by biliary 

excretion in urine and feces, respectively. 
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The pKa for ceftriaxone is between 2.0 and 4.5. At a physiological plasma pH of 7.4, 

ceftriaxone exists predominantly in the ionized state. Thus, passive diffusion is unlikely. Because 

of concentration-dependent plasma protein binding of ceftriaxone, the area under the total plasma 

concentration-time curve (AUC) is expected to show a less-than-proportional increase with an 

increase in the dose. However, the area under the free (therapeutically active, unbound drug) 

plasma concentration-time curve (AUCunbound) is expected to be proportional to the dose. In a 

previous study [73], this was substantiated, because the free plasma concentration-time curve 

increased proportionately from 10.1 to 106 ug. h/ml over a 0.15- to 1.5-g dose range. Additionally, 

multiple-dose studies (1 and 2 g every 12 h) indicate that steady-state total plasma concentrations 

of ceftriaxone predicted from the single-dose data derived by assuming linear pharmacokinetics 

were overestimated by only 10 to 20% [74]. Therefore, the impact of the nonlinear 

pharmacokinetics of ceftriaxone on its clinical usage is anticipated to be insignificant. 

7.2 METHODS 

7.2.1 Use of Single Adjustment Compartment (SAC) in minimal distribution model 

The Single Adjusting Compartment (SAC) feature was used in the development of PBPK 

models for both penicillin and ceftriaxone to optimize the distribution profiles of both drugs in 

order to capture clinical observed systemic profiles. In Simcyp®'s minimal PBPK model (Figure 

28) is a specialized tool called SAC helps refine PBPK model predictions by incorporating 

experimental data to adjust the predicted drug concentration-time profiles. It is a virtual organ 

compartment with physiological parameters that can be adjusted arbitrarily. This feature is 

particularly useful when dealing with situations where the observed data may not perfectly align 

with the initial PBPK model predictions, and adjustments are needed to improve the model's 
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accuracy. A single adjusting compartment was incorporated into the present models as a potential 

function that can offset the lack of predictive precision. The SAC approach helped to bring the 

predicted drug concentrations closer to the observed concentrations by adjusting the relevant 

model parameters which were kin and kout and volume of the adjusting compartment. Here, kin 

is influx rate constant or rate of entry into the compartment and kout is efflux rate constant or rate 

of exit from the compartment. This is achieved through iterative steps that modify the model 

predictions based on the difference between the predicted and observed data points. The SAC 

feature essentially fine-tunes the model to better fit the available data, improving the predictive 

performance of the PBPK model [92]. 

 

Figure 28:Minimal PBPK model in Simcyp® 

 

7.2.1 Estimation of the nonrenal clearance of penicillin G and ceftriaxone 

Based on the available published literature on penicillin G's pharmacokinetics in healthy 

adult volunteers, it was observed that 75% of the drug is excreted through the kidneys. And for 

ceftriaxone, about 65% of the drug is renally excreted, rest is biliary excretion. This finding 
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suggested that penicillin G and ceftriaxone undergo both renal and nonrenal elimination pathways.  

To quantify these clearance mechanisms accurately, total clearance and renal clearance values 

were obtained from literature clinical studies. Subsequently, the nonrenal clearance was estimated 

by subtracting the renal clearance from the total clearance [62].  

The derived nonrenal clearance (CLnon-renal) of penicillin G, estimated at 13 L/hr/70 kg 

(Table 12) and 0.47 L/hr/70kg for ceftriaxone (Table 13), was assumed to reflect hepatic clearance. 

Using this information, the free hepatic intrinsic clearance (CLu int, H) was calculated through 

equation 10 which considered hepatic blood flow (Q H,B) in L/hr and cardiac output (hepatic blood 

flow is 25.5% of the cardiac output). Cardiac output values were available in the population library 

of Simcyp®, and for this study, the utilized value was 355.64 L/hr as a representative value for 

healthy volunteers. The free fraction of penicillin G in the blood (f u,B) and the nonrenal blood 

clearance (CL nonrenal, B) were calculated by dividing the free fraction in plasma/serum and CL 

nonrenal, respectively, with the blood-to-plasma ratio (B: P = 0.55) [62]. 

Equation 10  

Cl u int,H (L/h) = (𝑄𝐻,𝐵 ×  𝐶𝑙𝑛𝑜𝑛−𝑟𝑒𝑛𝑎𝑙,𝐵 )/( 𝑓𝑢𝐵 × (𝑄𝐻,𝐵 − 𝐶𝑙𝑛𝑜𝑛−𝑟𝑒𝑛𝑎𝑙,𝐵) 

These calculations enable the conversion of the unit of CLuint, H to mL/min/million cells, 

considering relevant scaling factors shown in equation 11, like liver weight and hepatocellularity. 

The population system parameters for liver weight and hepatocellularity (million cells/g) were 

obtained from the Simcyp® population library, and for this study, the representative values of 

1,736.96 g of liver weight and 117.52 million cells/g liver for healthy volunteers [62]. 
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Equation 11  

Cl u int,H (ul/min/million cells) = 
𝐶𝑙 𝑢 𝑖𝑛𝑡,𝐻  ×106

𝑙𝑖𝑣𝑒𝑟 𝑤𝑒𝑖𝑔ℎ𝑡 × 𝐻𝑒𝑝𝑎𝑡𝑜𝑐𝑒𝑙𝑙𝑢𝑙𝑎𝑟𝑖𝑡𝑦 ×60
 

The overall methodology of the development of the PBPK model of penicillin G and 

ceftriaxone in healthy young volunteers and elderly populations and its subsequent application of 

penicillin G PBPK model in building the semi-mechanistic PBPK-PD model is depicted in Figure 

29. 

 

Figure 29:Schematic representation of the development and qualification of PBPK model and its subsequent 

application. 
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The first step was to develop and validate the penicillin G and ceftriaxone PBPK models 

in healthy volunteers. The performance of simulations was assessed by visual predictive checks 

and the mean fold error (MFE) (Equation 12) for PK parameters (AUC, Cmax) extracted from 

Simcyp®. Using the final models for both drugs in healthy volunteers, the extrapolation to the 

geriatric populations was accomplished using Simcyp® default parameters for geriatric 

populations. The PK profiles in this special population were simulated and compared with the 

observed data for penicillin G and ceftriaxone geriatric population, using the same criteria 

previously described. A fold error of 1.0 represents the complete agreement between model 

predictions and clinical observations. However, values ranging between 0.5 – 2.0 are generally 

considered acceptable. 

Equation 12  

MFE = 
𝑃𝐾 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑚𝑒𝑎𝑛

𝑃𝐾 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑚𝑒𝑎𝑛
 

  

7.2.3 Development of penicillin G PBPK model in healthy volunteers 

The objective of this part of the research project was to construct a comprehensive PBPK 

model for penicillin G, focusing on healthy volunteers. Leveraging the Simcyp® simulator 

(version 21), a penicillin G substrate profile was created, considering the physicochemical 

properties sourced from online databases and scientific literature. The model was developed by 

incorporating all relevant parameters, summarized in Table 12.  The pharmacokinetics of penicillin 

G have been studied extensively; however, there is limited information on its pharmacokinetics in 

healthy volunteers. Absorption was not considered in model development because penicillin G is 
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always administered intravenously. As mentioned earlier, it has poor oral bioavailability due to its 

degradation in the stomach’s acidic environment. 

Table 12:Simcyp® substrate parameter values for penicillin G 

a = https://pubchem.ncbi.nlm.nih.gov/compound/Penicillin-G [61] 

b = Data after an intravenous single dose of penicillin g in healthy volunteers, mean ± SD, n = 7, dose = 600 mg (Eur 

J Clin Pharmacol (1986) 30:731-734) [64]. 

c = Nonrenal clearance was estimated as a difference between total clearance and renal clearance. 

d = predicted using Simcyp® Prediction Toolbox function. 

*Abbreviations: fu = fraction unbound, Vss = steady state volume of distribution, Vsac = Volume in the single 

adjustment compartment, kin= influx rate constant, kout = efflux rate constant 

 

For the validation of the penicillin G compound file, virtual clinical trials were simulated 

in healthy volunteers which is already built into the Simcyp® population library. The simulated 

Parameter Value 

Physiochemical Properties 

 

Molecular weight 

Log P 

pKa 

Fraction unbound in plasma 

Type of compound 

Blood to plasma ratio (B:P) 

 

 

334.39a 

1.83a 

2.72a 

0.50a 

Monoprotic acid 

0.55d 

 

Distribution 

 

Distribution Model 

Prediction method 

Vss (L/kg) 

Vsac (L/kg) 

Kin/Kout (1/hour) 

 

 

 

Minimal PBPK model + SAC 

Method 1(Paulin et al) 

0.38 b 

0.07(optimized) 

0.6/1.2 (optimized) 

Elimination 

 

Total clearance estimate (L/hr) 

Renal elimination estimate (Clr)(L/hr) 

Non-renal elimination estimate (L/hr) 

 

 

33 ± 7b 

19.44 ± 8.7b (65% -85% of total) 

13 ± 3.2c 
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plasma-concentration time profiles were compared with observed clinical data reported in the 

literature. The plasma profiles from these published/observed clinical trials were digitized using 

WebPlotDigitizer© (https://automeris.io/WebPlotDigitizer/). Three studies were used for the 

development and validation of penicillin G [64-67].  

     Trial design in healthy volunteers A: A virtual clinical trial of a total of 70 patients (10 

trials of 7 patients each), aged between 21 to 23 years, 57% male, were administered a single 600 

mg IV bolus dose, and the trial was carried out over a period of 6 hours [64].  

Trial design in healthy volunteers B: A virtual clinical trial of a total of 40 patients (10 

trials of 4 patients each), aged between 28 to 40 years, 50% male, were administered a multiple 

dose of 0.5 g/hr continuous infusion for 3 hours, and the trial was carried out over a period of 6 

hours [65,66]. 

Trial design in healthy volunteers C: A virtual clinical trial of a total of 50 patients (10 

trials of 5 patients each), aged between 28 to 40 years, 50% male, were administered a single 500 

mg IV bolus dose, and the trial was carried out over a period of 6 hours [67]. 

7.2.4 Development of ceftriaxone PBPK model in healthy volunteers 

The objective of this part of the research project was to construct a comprehensive PBPK 

model for ceftriaxone, focusing on healthy volunteers. Leveraging the Simcyp® simulator (version 

21), a ceftriaxone substrate profile was created, considering the physicochemical properties 

sourced from online databases and scientific literature. The model was developed by incorporating 

all relevant parameters, summarized in Table 13. Absorption was not considered in model 
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development since it is only given as an injection, either intramuscularly or 

intravenously. Ceftriaxone has less than 1% bioavailable if given orally.  

 

Table 13:Simcyp® substrate parameter values for ceftriaxone 

Parameter Value 

Physiochemical Properties 

 

Molecular weight 

Log P 

pKa 

Fraction unbound in plasma (fu) 

Type of compound 

Blood: Plasma Ration (B:P) 

 

554.6a 

-1.7 a 

2.67 a 

0.05 b 

Monoprotic acid b 

0.55 e 

Distribution 

 

Distribution Model 

Prediction method 

Vss (L/kg) 

Reported Vss after i.v. administration (L/kg) 

Vsac (L/kg) 

Kin/Kout (1/hour) 

 

 

Minimal + SAC PBPK model 

Method 2 (Rodgers et al) 

0.085 

0.08 to 0.19d 

0.015 (optimized) 

0.40/0.90 (optimized) 

Elimination 

 

Total clearance estimate (L/hr) 

Renal elimination estimate (Clr)(L/hr) 

Non-renal elimination estimate (L/hr) 

 

 

0.96 ± 7 f 

0.65 ± 8.7 f (33% - 67% of total) 

0.47 ± 3.2 c 

a =https://pubchem.ncbi.nlm.nih.gov/compound/Ceftriaxone [68]. 

b = Data after an intravenous single dose of ceftriaxone in healthy volunteers [86]. 

c = Nonrenal clearance was estimated as a difference between total clearance and renal clearance. 

d = ceftriaxone package inserts [69]. 

e = predicted using Simcyp® Prediction Toolbox function. 

f = [87] 
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*Abbreviations: fu = fraction unbound, Vss = steady state volume of distribution, Vsac = Volume in the single 

adjustment compartment, kin= influx rate constant, kout = efflux rate constant 

 

For the validation of the ceftriaxone compound file, virtual clinical trials were simulated 

in healthy volunteers which is already built into the Simcyp® population library. The simulated 

plasma-concentration time profiles were compared with observed clinical data reported in the 

literature. The plasma profiles from these published/observed clinical trials were digitized using 

WebPlotDigitizer© (https://automeris.io/WebPlotDigitizer/). Three studies were used to validate 

the developed ceftriaxone PBPK model. 

Trial design in healthy volunteers A: A virtual clinical trial of a total of 120 patients (10 

trials of 12 patients each), aged between 21 to 47 years, 83% male, were administered a single 500 

mg IV infusion dose by means of infusion pump at a constant rate over a 30-min period, and the 

trial was carried out over a period of 24 hours [69,73].  

Trial design in healthy volunteers B:  A virtual clinical trial of a total of 120 patients (10 

trials of 12 patients each), aged between 21 to 47 years, 83% male, were administered a single 

1000 mg IV infusion dose by means of infusion pump at a constant rate over a 30-min period, and 

the trial was carried out over a period of 24 hours [69,72]. 

Trial design in healthy volunteers C: A virtual clinical trial of a total of 120 patients (10 

trials of 12 patients each), aged between 21 to 47 years, 83% male, were administered a single 

2000 mg IV infusion dose by means of infusion pump at a constant rate over a 30-min period, and 

the trial was carried out over a period of 24 hours [69,72]. 
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Trial design in healthy volunteers D: A virtual clinical trial of a total of 240 patients (10 

trials of 24 patients each), aged between 23 to 50 years, 50% male, were administered multiple 

doses of 1000 mg IV by means of infusion pump at a constant rate over a 30-min period every 12 

hours for 4 days, and the trial was carried out over a period of 84 hours [74]. 

7.2.5 Development of penicillin G and ceftriaxone PBPK model in geriatric population 

As previously discussed, pharmacokinetics is notably influenced by alterations in body 

composition. Aging gives rise to modifications in fat tissue and lean body mass, which, in turn, 

can impact the distribution of drugs depending on their lipophilicity. Variations in muscle mass 

and shifts in body water distribution can affect the dispersion of hydrophilic drugs. These dynamics 

might lead to fluctuations in drug plasma concentrations and heightened peak concentrations 

within the central compartment.  

Using the final model for penicillin G and ceftriaxone for healthy volunteers, the 

extrapolation to the geriatric populations was accomplished using Simcyp® default parameters for 

the geriatric populations. The PK profiles in this special population were simulated and compared 

with the observed data for geriatric populations, using the same criteria previously described. 

Penicillin G and ceftriaxone predominantly undergo renal clearance and are characterized as 

hydrophilic drugs. Consequently, the repercussions of decreased renal clearance due to a 

diminished Glomerular Filtration Rate (GFR) assume a lot of significance. 

The study designs simulated were based on published clinical studies that compared the 

impact of age on pharmacokinetics of these drugs by administering the drug in young and elderly 

populations simultaneously and compared the plasma concentrations. 
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Trial design in geriatric and young population for penicillin G : A virtual clinical trial of 

a total of 395 patients (5 trials of 79 patients each), young population aged between 20 to 50 years 

with 55% male and 210 subjects  and elderly population aged between 65 to 98 years with 14% 

male and 185 subject  were administered a single 120 mg IV bolus dose the trial was carried out 

over a period of 6 hours [75]. 

Trial design in geriatric and young population for ceftriaxone: A virtual clinical trial of a 

total of 160 patients (10 trials of 16 patients each), young population aged between 24 to 35 years 

with 75% male and 80 subjects  and elderly population aged between 65 to 78 years with 50 % 

male and 80 subjects  were administered a single 1000 mg IV infusion over 30 minutes and the 

trial was carried out over a period of 24 hours [76].  

7.3 RESULTS 

7.3.1 Verification of the penicillin G PBPK model in healthy volunteers  

The penicillin G PBPK model was verified in healthy volunteers by performing visual 

predictive checks of the PBPK model simulation and clinically observed plasma concentration-

time profiles. The model-predicted plasma profiles with trial designs A, B and, C were compared 

against data from published clinical trials. The results are shown in Figure 30 to 32, where the 

solid line represents mean values of PBPK simulation and dashed lines are simulated 5th and 95th 

percentiles. Closed circles are the observed data obtained from digitizing the original publication.  

The penicillin G PBPK model was able to capture observed plasma concentrations well. 

All the clinically observed plasma concentrations fall within the 5th and 95th percentiles of the 

simulation in both curves. Additional validation assessment was conducted by calculating the fold 
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errors (predicted over observed values) of PK parameters AUC and Cmax (mean). Table 14 

represents the fold errors associated with each PK parameter in both studies. All the values range 

between 0.97 – 1.20, which suggests a good prediction. The predicted models for all doses had a 

median half-life of 42 minutes which falls in the literature reported range of 31 to 50 minutes [61]. 

These results indicated that the developed penicillin G substrate profile is verified in 

healthy subjects and can be extended to other populations.  

 

Figure 30:Penicillin G PBPK model verification in healthy volunteers (Trial design A) 
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Figure 31:Penicillin G PBPK model verification in healthy volunteers (Trial design B) 

 

 

Figure 32:Penicillin G PBPK model verification in healthy volunteers (Trial design C) 
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Table 14:Penicillin G PBPK model fold error values in a healthy volunteer population 

 

 

 

 

 

 

 

 

 

7.3.2 Verification of the ceftriaxone PBPK model in healthy volunteers  

The ceftriaxone PBPK model was verified in healthy volunteers by performing visual 

predictive checks of the PBPK model simulation and clinically observed plasma concentration-

time profiles. The model-predicted plasma profiles with trial designs A, B, C and D were compared 

against data from published clinical trials. The results are shown in Figures 33 to 36 where the 

solid line represents mean values of PBPK simulation and dashed lines are simulated 5th and 95th 

percentiles. Closed circles are the observed data obtained from digitizing the original publication.  

The ceftriaxone PBPK model was able to capture observed plasma concentrations well. All 

the clinically observed plasma concentrations fall within the 5th and 95th percentiles of the 

simulation in both curves. Additional validation assessment was conducted by calculating the fold 

errors (predicted over observed values) of PK parameters AUC and Cmax (mean). Table 15 

Trial 

design 

Parameter Predicted 

 

Obser

ved 

Fold 

error 

Reference 

A Cmax (mg/l) 30.91 32.00 0.96 [64] 

AUC 0-t (mg.h/L) 18.60 19.21 0.97 

B 

 

 

 

 

 

 

 

 

Concentration 

(mg/l) 

Time(hr) 

1.00 

2.00 

2.50 

3.00 

 

 

14.03 

16.00 

16.25 

16.50 

 

 

13.92 

15.05 

16.42 

17.09 

 

 

1.01 

1.06 

0.98 

0.96 

 

[65,66] 

AUC0-t (mg.h/L) 24.66 25.43 0.96 

C Cmax  22.17 18.00 1.22 [67] 

AUC0-t (mg.h/L) 15.05 NA  
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represents the fold errors associated with each PK parameter in both studies. All the values range 

between 0.91 – 1.03, which suggests a good prediction. The half-life predicted by the model for 

all three doses of 0.5g, 1g, and 2g was within 6 to 8 hours which is the reported range in the 

literature [68]. These results indicate that the developed ceftriaxone substrate profile is validated 

in healthy subjects and can be extended to other populations. 

 

Figure 33:Ceftriaxone PBPK model verification in healthy volunteers (Trial design A) 
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Figure 34:Ceftriaxone PBPK model verification in healthy volunteers (Trial design B) 

 

Figure 35:Ceftriaxone PBPK model verification in healthy volunteers (Trial design C) 
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Figure 36:Ceftriaxone PBPK model verification in healthy volunteers (Trial design D) 

 

Table 15:Ceftriaxone PBPK model fold error values in a healthy volunteer population 

Trial design Parameter Predicted Observed Fold error Reference 

A Cmax (mg/l) 74.00 82.00 0.91 69,73 

AUC (mg.h/L) 521.00 551.00 0.95 

B Cmax (mg/l) 139.80 150.70 0.93 69,73 

AUC (mg.h/L) 960.22 1006.00 0.96 

C Cmax (mg/l) 266.86 256.90 1.03 69,73 

AUC (mg.h/L) 1758.00 1703.00 1.03 

D Cmax (DAY 1) 140.10 145.00 0.97 75 

Cmax (DAY 4) 173.32 168.00 1.03 

AUC (DAY 1) 987.00 976.00 1.01 

AUC (DAY 4) 888 864 1.02 
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7.3.3 Extension of penicillin G and ceftriaxone PBPK model in the geriatric population 

The PBPK models for both penicillin G and ceftriaxone exhibited proficiency in accurately 

reproducing observed plasma concentrations within both the young and elderly populations. This 

is demonstrated in Figures 37 and 38, where the predicted PK profiles for both age groups closely 

mirror the observed data. Apart from visual predictive checks, additional validation assessment 

was conducted by calculating the fold errors (predicted over observed values) of PK parameters 

AUC and Cmax (mean) wherever feasible. Table 16 and 18 represent the fold errors associated 

with each PK parameter for penicillin G and ceftriaxone respectively. 

Moreover, Table 17 and 19 show the change in the concentrations and exposure parameters 

along with clearance estimates predicted from the PBPK model in the young and elderly 

population for penicillin G and ceftriaxone respectively. 

Table 16: Penicillin G PBPK model fold error for geriatric and young population 

Trial design Parameter Predicted Observed Fold error Reference 

Penicillin G 

(elderly) 

Conc (mg/l) Time(hr) 

 

0.5 

1.5 

3.0 

6.0 

 

 

2.88 

1.52 

0.66 

0.14 

 

 

 

2.60 

1.60 

0.58 

0.10 

 

 

1.10 

0.95 

1.13 

1.40 

[75] 

Penicillin G 

(young) 

Conc (mg/l) Time (hr) 

 

0.5 

1.5 

3.0 

6.0 

 

 

2.12 

0.77 

0.10 

0.012 

 

 

 

1.90 

0.60 

0.07 

0.01 

 

 

1.11 

1.28 

1.40 

1.20 

[75] 
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Figure 37:Penicillin G PK profiles in geriatric (>65y) and young population. 

Table 17:Percentage change in penicillin G PK parameters in young and elderly population 

Parameter young elderly % change 

AUC (mg.h/L) 3.46 6.49 46.0% 

Cl total (l/h) 34.1 18.1 46.9% 

Cl renal 24.7 14.1 42.7% 

 

 

Figure 38:Ceftriaxone PK profiles in geriatric (>65y) and young population. 



132 

 

Table 18:Ceftriaxone PBPK model fold error for geriatric and young population 

 

 

Table 19:Percentage change in ceftriaxone PK parameters in young and elderly population 

Parameter young elderly % change 

AUC (mg. h/L) 1101 1300 18% 

Cl total (l/h) 1.04 0.69 32% 

Cl renal 0.25 0.17 32% 

 

7.4 DISCUSSION 

The development and application of physiologically based pharmacokinetic (PBPK) 

models offer a valuable tool set for comprehending drug behavior within complex biological 

systems. In this study, PBPK modeling played a pivotal role in understanding the pharmacokinetics 

(PK) of two important antibiotics, penicillin G and ceftriaxone, first in a healthy population and 

subsequently in the elderly. 

Penicillin G and ceftriaxone are two crucial antibiotics with distinctive pharmacokinetic 

profiles that dictate their behavior within the human body. Penicillin G, a beta-lactam antibiotic, 

and ceftriaxone, a third-generation cephalosporin, share common characteristics as predominantly 

renally cleared, hydrophilic compounds. These attributes influence their distribution, elimination, 

Trial design Parameter Predicted Observed Fold error Reference 

Ceftriaxone 

(elderly) 

 

Cmax (mg/l) 143 140 1.02 [76] 

AUC (mg.h/L) 1350 1289 1.04 

Ceftriaxone 

(young) 

 

Cmax (mg/l) 142 148 0.95 [76] 

AUC (mg.h/L) 1091 1006 1.08 
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and overall pharmacokinetics. Renal clearance plays a pivotal role in the disposition of both drugs, 

highlighting the importance of considering factors such as glomerular filtration rate (GFR) 

alterations, which occur with aging and can impact drug exposures. 

The development of the penicillin G PBPK model in this research did not consider the 

absorption module. Studies with penicillin G have reported that absorption following oral 

administration was poor, which was demonstrated both by low concentrations obtained in the 

blood plasma and by the small amounts excreted in the urine. In the 3 studies where penicillin was 

given orally, the average excretion was 8.6 per cent [95]. Instability of penicillin G in the acidic 

pH of the stomach may account for these results. It is unlikely from these observations that oral 

administration will yield adequate concentrations in the blood plasma for the treatment of 

infections. Upon administration, penicillin G rapidly distributes to extracellular fluids and achieves 

peak concentrations in the plasma. There is an initial rise in the concentration, and a rapid fall. The 

rapid plasma clearance is explained by its excretion in the urine.  Its hydrophilic character prevents 

extensive tissue penetration, resulting in lower concentrations within lipid-rich compartments. The 

drug's renal clearance is a primary determinant of its elimination, making it particularly susceptible 

to changes in renal function. In another study performed to delineate the effect of the variations in 

serum protein binding of four penicillin analogues on the concentrations achieved in the blood 

following intravenous injection in man, penicillin G was found to be the least bound to human 

serum (49%) [76]. In the same study, the cumulative 24-hour urinary recovery was reported as 

48.5% and 44.87 % [76]. Another study examining specifically the renal clearance of penicillin G 

reported contraindicating results for urinary recovery of about 76% [96]. 
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In this thesis study, the estimation of non-renal clearance played a significant role in 

characterizing the pharmacokinetics of penicillin G and ceftriaxone. Using a method previously 

applied in a PBPK model development study for vancomycin, the non-renal component of total 

clearance was determined [62]. This approach aligns with the modeling strategy for vancomycin, 

a drug that similarly exhibits substantial renal excretion ranging from 70% to 85%. To effectively 

capture the distribution phase for both drugs, the single adjustment compartment (SAC) feature in 

Simcyp® was employed. The efficacy of this approach has been established in the literature 

through several papers, demonstrating its compatibility with minimal PBPK models [97,98]. 

The pharmacokinetic profile of ceftriaxone reveals a prolonged elimination half-life of 6.2 

hours, accompanied by relatively small volume of distribution (9.1 liters) and plasma clearance 

(17.4 ml/min). In various studies, approximately 48% to 55% of the administered dose was 

excreted unchanged in urine within 48 hours [86,100]. Notably, biliary excretion was found to 

contribute to ceftriaxone elimination in a study reporting up to 67% of the dose being eliminated 

via this pathway. However, the feasibility of substantial drug concentrations being reintroduced 

into the vascular system through enterohepatic circulation was questioned [99]. A separate 

investigation indicated that ceftriaxone excreted in bile undergoes microbiological inactivation, 

with minimal reabsorption from the intestinal tract [76]. Considering the relatively short 

elimination half-life of ceftriaxone (6 to 8 hours), the study suggests that dosing regimens such as 

twice daily or possibly once daily could suffice for clinical use. 

A previously developed PBPK model for ceftriaxone, intended for extension to the 

pregnant population, omitted consideration of non-renal clearance [101]. Consequently, the 

model's predicted AUC exceeded observed values, and distribution phase representation was 
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inaccurate, leading to a lower Cmax than observed. In contrast, the present thesis study employed 

a more effective approach, mimicking the clinical data closely by incorporating SAC compartment 

and biliary clearance to model both distribution and elimination. 

Furthermore, this thesis project examined the impact of age on the pharmacokinetics of 

penicillin G and ceftriaxone. Elderly individuals exhibited an increased serum half-life of 

penicillin G (1.5 to 2 hours), primarily attributed to declining renal function [102]. Consistent with 

this observation, the model developed in the current investigation predicted a half-life of 1.5 hours. 

The increase in AUC observed as a consequence of a decrease in renal clearance indicates the need 

for dose adjustments, potentially achieved through dose reduction or increased dosing intervals, in 

geriatric patients [60].  

Similarly, ceftriaxone's half-life increased to approximately 10 to 11 hours in geriatric 

subjects [76]. The model predicted a half-life of 10.8 hours in this population. A reduction of 24% 

in ceftriaxone clearance in the elderly corresponded closely with the 19% decrease in creatinine 

clearance. The predicted 32% decrease in clearance by the PBPK model agreed with the observed 

change. Despite these age-related alterations, minimal elevation in mean ceftriaxone trough levels 

was noted in the elderly, consistent with the PBPK model's predictions. An elevation of this 

magnitude would not be expected to induce toxic reactions and since the other age-related changes 

in the kinetic parameters were relatively small. Consequently, the consensus emerging from 

published literature suggests that dosage adjustments in ceftriaxone therapy are likely unnecessary 

for elderly subjects, considering the passable changes observed in pharmacokinetic parameters 

[76]. 
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8.1 INTRODUCTION 

The PBPK model of penicillin G which was developed in Chapter 7 of this thesis research 

was expanded to integrate a semi-mechanistic pharmacodynamic model to fulfill the final aim of 

this research project.  

In PK/PD modeling, a link between the PK and its influence on an effect variable is 

established by a mathematical function. The effect variable may be a measurement, such as 

bacterial count used in this dissertation research, a composite score such as an outcome describing 

success or failure, or a time to an event or cure. For the relationship between drug concentration 

and efficacy in terms of bacterial killing the PD definition of “how the drug affects the body” 

would be more adequately phrased as “how the drug affects the bacteria.” PK/PD relationships of 

antibiotics are now routinely being searched for to help establish dosing guidelines. The effect of 

anti-infective agents in improving the health of patients (or animals) is mediated through their 

ability to prevent the growth of, or kill, the infecting pathogen at the primary site of infection. If 

one takes as a hypothesis that the number of organisms killed at the primary infection site is closely 

linked to the outcome, then it becomes clear why different measures of exposure are linked to the 

outcome for the different drug classes [10]. 

A few years after penicillin G’s first successful clinical application, investigations in 

animal infection models explored factors influencing its antibacterial effects. These studies 

revealed that the response depended not only on the total daily dose but also on dosing frequency 

and the administration pattern—intermittent or continuous. As more antibiotics emerged, 

researchers started measuring antibiotic concentrations in bodily fluids. This allowed them to 

connect antibacterial responses in animals or in vitro models with summary pharmacokinetic 
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measures of in vivo antibiotic exposure. The summary PK exposure measures were normalized to 

the MIC, an in vitro measure of the pharmacodynamic potency of the drug. The traditional indices 

are the ratio of the maximum plasma antibiotic concentration to the minimum inhibitory 

concentration (i.e., Cmax/MIC), the ratio of the area under the plasma concentration-time curve to 

the MIC (i.e., AUC/MIC), and the percentage of time for which the unbound plasma concentration 

exceeds the MIC (i.e., % fT >MIC) [79] [Figure 39]. 

 

Figure 39:The three traditional, MIC-based PK-PD indices [79] 

 

The pursuit of an optimal dosing regimen for beta-lactam antibiotics revolves around 

maximizing the duration of exposure. This characteristic earns them the classification of "time-

dependent antibiotics." The significance of % fT>MIC (percentage of time above the minimum 

inhibitory concentration) lies in its depiction of the proportion of a dosage interval during which 

free plasma levels exceed the MIC, as depicted in Figure 39. Increasing the frequency of dosing 

or employing continuous infusion will increase % fT> MIC and enhance the efficacy of beta-

lactams [10,79]. 
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This research thesis explores various dosing regimens of penicillin G and demonstrates the 

effect of linking %fT>MIC to bacterial kill. However, there are several important limitations 

related to the traditional PK-PD indices, one of which is highlighted in this research when 

exploring the dosing regimen for the less susceptible bacterial strain (e.2095). 

8.1.1 Pharmacodynamic Modeling in Simcyp® 

     The Simcyp® population-based Simulator is a widely used platform for the predictive 

simulation of pharmacokinetic/ pharmacodynamic (PKPD) parameters and profiles, and drug-drug 

interaction (DDI) based largely on the extrapolation of a limited set of physicochemical properties 

and in vitro experimental data. Simcyp® has an inbuilt tool to integrate pharmacodynamic 

response with whole-body PBPK modeling. By default, Simcyp® only takes into consideration 

traditional empirical pharmacodynamic models. However, Simcyp® provides a custom scripting 

tool to write custom pharmacodynamic models. This tool requires users to write differential 

equations using Simcyp® 's coding convention, Lua language. 

The Simulator provides common empirical and semi-mechanistic “Built-In” 

pharmacometrics building blocks to ease the construction of quite complex models by picking and 

mixing such building blocks, in a flexible environment, to various input tissue/organ 

concentrations to drive the response. The architecture of the Simcyp® PD module presents several 

different model-building blocks called PD Response Units (Figure 40). Such units can be linked 

together to develop more complex responses via certain “transduction” options offered by the 

platform. PD Response units are subdivided into a sequence of steps with associated model choices 

from unit input to unit output. Each step calculates values according to a chosen model for that 

step and passes its result to the next step in the sequence. The applications of linking PBPK and 
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these PD models are to predict the impact of genotypic variability, formulation differences, 

differences in target binding capacity, and target site drug concentrations on drug responses and 

variability [12].  

Since a Simcyp® PD model is linked to the PBPK simulation model for a specific 

compound via a chain of response units and each unit comprises several built-in steps in a data 

flow, this design allows replacing a step within a unit with a custom model (Figure 40). In the 

same way, as for a built-in model, the custom model connects to its input and passes on its output. 

By this mechanism, the input of the custom model acts in the same manner as the input into the 

processing step it replaces, and the custom step output feeds back into the sequence of the PD 

processing step in the same way that the output from the step it replaces would have done. Thus, 

the flow of the PD units is maintained sequentially. If the PD Custom step is the first step 

occurrence in a chain of PD response steps (for example on PD Basic 1, Figure 41), the input to 

the PD Custom step can be a drug (total or free) concentration or amount in plasma, blood, effect 

compartment, or any other tissue in the PBPK model. When a simulation is executed, different 

branches of the simulator (trial design, population library, and compound library) are initiated in 

order and connected to generate individual values for the compound and population type under 

study. The engine then starts to run PKPD calculations and reports the results [12]. 
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Figure 40:Simcyp PD response unit structure [12] 

 

Figure 41:General scheme shows the Custom PD Step within the PD Units Chain [12]. 

 

The scripting language – Lua is a high-level freely available, very lightweight, and flexible 

scripting language (www.lua.org). It can easily be embedded in other programs with no need to 

run an external compiler, and scripts are run seamlessly as part of a “live simulation.” Within a 

script, there are named script functions (e.g., “Step” and “Setup” functions) which are called by 
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the Simulator platform at specific points in the simulation. Such functions are generically known 

to programmers as “call-back” functions. Simcyp® maintains the signatures of these call-back 

functions and uses them to give controlled access to inputs and parameters through function 

arguments and the values to be passed onto as the function’s return value. Coding of Lua scripts 

is supported by a “Functions” dropdown menu, which provides templates for calls to Simcyp® 

Library functions (calls to Simcyp® C++ code available as Lua script functions) as well as function 

definition templates for user-coded Lua Setup and Step functions. Two main types of functions 

are used in Simcyp®: setup functions and step functions [12]. 

To control the information passage, the Simcyp® data store provides four types of storage 

space to support PD custom scripting, namely: stores for values scoped at the simulation-

population, compound, individual, and individual-compound data levels with one Setup function 

corresponding to each scoping level give in Table 20. Custom PD script includes one or more setup 

functions which are called at key points in Simcyp® simulator. The setup function provides space 

for code to be executed less frequently, for example once per simulation or once per individual. 

Table 20: Summary of setup functions 

Setup Function Description 

popSimSetup (...)  It operates at the population and simulation level and is called only once 

per simulation. 

individualSetup (...)  Called after the above, it is called once for each individual subject to 

assign individual parameter values. 

compoundSetup (...)  Called after the above, it is called once for each PD-active compound. 

individualCompoundSetup (...)  Called after the above, after PK-PD parameters have been calculated but 

before PD response is calculated once for each individual-(PD-active) 

compound combination. 
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Step function provides controlled access to inputs and parameters through function 

arguments, this includes defining parameters and values as well as differential equations associated 

with it. These functions are also associated with a return argument which gives the user the 

flexibility to select a parameter or state term which is to be passed onto the next step. The step 

function is called every time a corresponding step is executed (Table 21). The Simcyp® Library 

also consists of several Lua function calls (prefixed by sc:) implemented within the Simcyp® C 

++ code, as well as some pre-supplied named values (prefixed by sc.) for use as function 

arguments. These facilities allow and control the passing of information between the Simcyp® 

simulator and Lua scripts. The su and gu are references to arrays or associative arrays representing 

a reserved block of user state and user gradient variables reserved by Simcyp®. 

Table 21:Summary of step functions 

Function Description 

directAlgebraicStep  Uses a time-independent parameterized model with input xin as the independent 

variable. 

transformStep  Provides parameter transform of the input xin. 

odeRateStep  Defines parameterized ode equation(s); has access to xin and ode state (also t); 

sets gradient gu 

odelnitStep  Sets initial condition(s) for the ode equation(s); has access to xin; sets state su; t 

is 0. 

 

Overall, a scripting facility for customizing PD response models within the Simcyp® 

Simulator has been developed, whereby a user can replace the built-in model for a given PD step 

with a script using a dedicated editor. The editor supplies a library of Simcyp® functions for 

storing variables in the Simulator and for accessing or manipulating elements of the PK and PD 

simulation.  
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8.2 METHODS  

As previously discussed, semi-mechanistic models, also known as mechanism-based 

PK/PD models, encompass a bacterial growth model, incorporating bacterial growth kinetics 

Subsequently, a pharmacokinetic model is formulated within the studied population—be it animal 

models or humans capturing the free, pharmacologically active antibiotic concentrations. Finally, 

these components are integrated into a comprehensive PK/PD model, which further includes a 

pharmacodynamic component linking the dynamics of drug concentrations to bacterial turnover. 

Up until this point in the thesis, successful derivation of parameters for the bacterial model, the 

drug PBPK model, and the drug kill parameters has been accomplished, as discussed in the 

previous chapters of this document. 

This culminates in the final step which is integrating the PD model, bacterial sub-model, 

and PK model through the introduction of an equation that delineates the impact of the antibacterial 

drug on the bacteria. The antimicrobial effect is commonly assumed to exhibit nonlinear 

dependence on drug concentration, often modeled using either an ordinary Emax or a sigmoidal 

Emax model, as demonstrated in Chapter 6. A possible hypothesis that is often used to build semi-

mechanistic models is that the drug effect (E) inhibits the bacterial growth rate (kgrowth) as outlined 

in Equation 13. kgrowth is the net rate between kreplication and kdeath In Figure 42, the 

pharmacodynamics of the antibacterial process is illustrated, where the drug's impact can be 

represented as the inhibition of kgrowth (a capacity-limited bacterial growth constant) utilizing the 

Hill-type function. This impact corresponds to the bacterial killing-rate constant influenced by 

antibiotic treatment (Emax, the maximum achievable drug-induced bacterial killing-rate constant, 

with units of hours⁻¹). 
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Figure 42:PK/PD model consisting of PK component, bacterial growth model, and PD link. 

 

Equation 14 accounts for both the natural bacterial growth and the inhibitory effect of the 

antibacterial drug as influenced by its concentration. The equation represents the dynamic 

interaction between bacterial growth and the drug's impact, allowing for the prediction of bacterial 

population changes over time in response to the drug treatment. The first half of the equation 

describes the rate of bacterial growth, dB/dt represents the rate of change of the bacterial 

population over time, kgrowth signifies the intrinsic bacterial growth rate, (1 - B/Bmax) is a factor 

that introduces a saturation effect. It indicates that as the bacterial population (B) approaches the 

maximum possible population (Bmax), the growth rate slows down due to limited resources or 

space and B is the current bacterial population. 

Now the second half of Equation 14 represents the drug's inhibitory impact on bacterial 

growth. It is the proportion of the maximum antibacterial effect that the drug has at the current 

concentration. Breaking the parameters further, Emax indicates the maximum achievable drug-

induced bacterial killing rate constant. It represents the highest extent to which the drug can inhibit 
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bacterial growth, C denotes the drug concentration at a specific time, γ (gamma) influences the 

shape of the drug concentration-response curve (sigmoidicity factor) and EC50 represents the drug 

concentration at which the effect (bacterial killing) is half of its maximum value. It indicates drug 

potency. Multiplying this term by B indicates that the antibacterial effect is applied to the current 

bacterial population, leading to a reduction in bacterial growth. 

Equation 13 

𝑑𝐵

𝑑𝑡
= 𝑘𝑔𝑟𝑜𝑤𝑡ℎ × 𝐵 − (

𝐸𝑚𝑎𝑥 ×  𝐶𝛾

𝐸𝐶50
𝛾

+ 𝐶𝛾
 )  × 𝐵  

Equation 14 

𝑑𝐵

𝑑𝑡
= 𝐾𝑔𝑟𝑜𝑤𝑡ℎ × (1 −

𝐵

𝐵𝑚𝑎𝑥
) ×  𝐵 − 

𝐸𝑚𝑎𝑥 × 𝐶𝛾

𝐼𝐶50
𝛾

 +  𝐶𝛾
 ×  𝐵 

 

Equation 14 can be coded in a Lua script in Simcyp® as shown in APPENDIX B. This Lua 

code defines a simulation setup and implements a bacterial growth model with a drug effect. It 

initializes the state variable, calculates its rate of change, and incorporates the growth model along 

with the drug effect. The Lua script first codes for the simulation setup where the popSimSetup(...) 

function initializes the simulation, indicating that there is 1 user-defined Ordinary Differential 

Equation (ODE). It sets the name of the user-defined state to "sensitive bacteria." Next is the 

initialization step with the odeInitStep (xin, su, P, ...) function which is called at the start of the 

simulation. It initializes the value of the "sensitive bacteria" state variable to 6.12. Finally, there is 

the bacterial growth calculation with the odeRateStep (t, xin, su, gu, P, ...) function that calculates 
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the rate of change of the "sensitive bacteria" state during each simulation time step. S = su[1] 

assigns the value of the state variable to the variable S. Key bacterial growth model parameters 

(Bmax and r) and drug-related parameters (Emax, EC50, h) are defined. The drug effect (DRUG) 

is calculated using the Emax model formula. The bacterial growth model is applied, accounting 

for the drug effect. The updated growth rate is assigned to the gu[1] variable. As previously 

mentioned, the input for the PD custom step can be derived from the free concentration obtained 

from the PBPK model. In this context, the variable "xin" represents the free concentration of 

penicillin G as calculated by the pre-existing PBPK model. Unbound plasma concentration is 

chosen as the input because it is only the concentration of free drug in the blood which is available 

and capable of antibacterial action. 

The complete PBPK-PD model was employed to assess various dosing schedules for 

penicillin G. The primary objective is to identify dosing regimens that exhibit a notably elevated 

likelihood of attaining the intended therapeutic outcome specifically, a bactericidal effect 

equivalent to a reduction of 3 log10 CFU/ml in bacterial density. This objective was accomplished 

by utilizing the PD parameters that were previously acquired in Chapter 6. These parameters 

pertain to bacterial growth model, penicillin G monotherapy as well as its combinations with 

ceftriaxone. For the monotherapy simulations of penicillin G, PD parameters extracted from 

monotherapy time-kill data were utilized. While investigating combination effects, PD parameters 

obtained from time-kill data for combination therapy (penicillin G plus ceftriaxone) were 

employed. The kill rate contributed by ceftriaxone will be considered constant. 

The dosing schedules under examination have been derived from the IE guidelines for 

Enterococcus spp. These guidelines advocate for the administration of penicillin G at 3 to 5 million 
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units (MU) every 4 hours as IV bolus in conjunction with gentamicin, or 9 to 15 million units every 

12 hours through continuous infusion. It holds significance to assess these diverse penicillin G 

regimens due to the fluctuations they bring about in the %fT>MIC for all cases. The dosing 

regimens were first tested in Simcyp®’s healthy population followed by the elderly population. 

Due to marked differences noticed in the pharmacokinetics of the elderly for penicillin G in chapter 

7, it is important to keep the recommended alterations in dosing for penicillin G in consideration. 

The recommended changes in the elderly are an increase in dosing intervals from 4 hours to 6 

hours or a reduction in dose from 3 to 5 MU/ 4 hours to 1 to 2 MU/ 4 hours. 

8.3 RESULTS 

8.3.1 Evaluation of Dosing Regimens for Young Population for e.2122 

Initially, the evaluation focused on testing dosing regimens for the more susceptible e.2122 

strain with a penicillin G MIC of 2ug/ml. Leveraging pharmacodynamic parameters derived from 

ceftriaxone combination therapy (2 g every 12 hours), distinct reductions in bacterial density were 

achieved compared to monotherapy with penicillin G. Among the examined dosing schedules, the 

most pronounced reductions in bacterial densities emerged with the 5 MU every 4 hours regimen, 

followed by 4 MU every 4 hours, and subsequently 3 MU every 4 hours. The percentage of time 

the unbound concentration exceeds the MIC (% ft > MIC) for each regimen has been summarized 

in Table 22 for reference. Figures 43 and 44 (left) depict the alterations in bacterial density 

observed in both monotherapy and combination therapy scenarios across the dosing regimens of 3 

MU every 4 hours, 4 MU every 4 hours, and 5 MU every 4 hours respectively.  

On examining the impact of a continuous intravenous infusion, it was observed that 

administering 9 MU of penicillin every 12 hours in combination with ceftriaxone resulted in the 
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highest reduction in bacterial density (Figure 45 (right)). This effect can be attributed to the 

regimen’s remarkable % ft>MIC value of 100%. The figure illustrates the variation in bacterial 

density for both monotherapy and combination therapy scenarios involving a continuous infusion 

of 9 MU every 12 hours of penicillin G. The observation reveals a consistent trend: whether dealing 

with a low kill rate during monotherapy or a high kill rate during combination therapy, continuous 

infusion consistently demonstrates superior bacterial reduction or kill. 

Table 22:Dosing regimens and their corresponding %fT >MIC for e.2122 in healthy population 

(MIC =2 ug/ml) 

Dosing regimen %fT>MIC 

3 MU every 4 hours (IV bolus) 43% 

4 MU every 4 hours (IV bolus) 50% 

5 MU every 4 hours (IV bolus) 55% 

9 MU every 12 hours (IV infusion) 100% 

 

 

Figure 43:Simulations with penicillin G dosing regimens using PD parameters for monotherapy and 

combination in healthy volunteers for e.2122 (dosing regimens for penicillin G Left: 3MU/ 4 h; right: 4 MU/4 h) 
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Figure 44:Simulations with penicillin G dosing regimens using PD parameters for monotherapy and combination in 

healthy volunteers for e.2122 (dosing regimens for penicillin G Left: 5MU/ 4 h; right: 9 MU/12 h continuous 

infusion) 

 

8.3.2 Evaluation of Dosing Regimens for Geriatric Population for e.2122 

Upon evaluating recommended dosing regimens tailored for the geriatric population 

(Figure 45), two distinct approaches have been explored: a 3 MU every 6 hours regimen and a 2 

MU every 4 hours IV bolus regimen, both coupled with a combination treatment’s PD parameters 

(Chapter 6). These regimens demonstrated the ability to achieve a substantial 3 log10 CFU/ml 

reduction in bacterial density. Additionally, a continuous infusion strategy involving the 

administration of 6 MU over a 12-hour period has exhibited a comparable reduction in bacterial 

density. Notably, when compared with the young adult population, the geriatric population shows 

a markedly higher %f t > MIC as shown in Table 23. For the IV bolus dosing regimens that were 

examined, the %ft >MIC surpasses 80%, underscoring their efficacy. Meanwhile, the continuous 

infusion approach attains a %ft >MIC of 100%, indicating higher performance. 
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Table 23:Dosing regimens and their corresponding %fT >MIC for e.2122 in geriatric population 

(MIC =2 ug/ml) 

Dosing regimen %fT>MIC 

3 MU every 6 hours (IV bolus) 82% 

2 MU every 4 hours (IV bolus) 92.5% 

6 MU every 12 hours (IV infusion) 100% 

 

Figure 45: Simulations of different penicillin G dosing regimens for geriatric population for e.2122 

 

8.3.3 Evaluation of Dosing Regimens for Young Population for e.2095 

Examining the outcomes for the less susceptible strain (MIC = 4 ug/ml), on utilization of 

penicillin G monotherapy, scarcely demonstrated any notable reduction in bacterial density. When 

employing the PD parameters derived from the combination treatment with ceftriaxone, the extent 

of reduction exhibited marginal difference when compared to penicillin monotherapy (Figures 46 

and 47). 

Despite an increase in the time above the minimum inhibitory concentration (MIC) – from 

36% to 48% – through the transition from penicillin G dosing of 3 million units (MU) administered 

every 4 hours to 5 MU every 4 hours, the impact on bacterial density reduction remained limited 
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due to the low kill rate. Additionally, focusing on the continuous infusion dosing of penicillin G 

in Figure 47 (right), it becomes evident that despite achieving a 100% of time above MIC, the 

reduction in bacterial density was merely below 2 log10 CFU/ml from the initial count. This 

observation highlights the low kill rate, signifying insufficient efficacy in eradicating the bacteria 

and pointing towards potential resistance against this treatment combination. 

Table 24:Dosing regimens and their corresponding %fT >MIC for e.2095 in healthy population 

(MIC = 4 ug/ml) 

Dosing regimen %fT>MIC 

3 MU every 4 hours (IV bolus) 36% 

4 MU every 4 hours (IV bolus) 42% 

5 MU every 4 hours (IV bolus) 49% 

9 MU every 12 hours (IV infusion) 100% 

 

 

Figure 46:Simulations with penicillin G dosing regimens using PD parameters for monotherapy and combination in 

healthy volunteers for e.2095 (dosing regimens for penicillin G Left: 3MU/ 4 h; right: 4 MU/4 h) 
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Figure 47:Simulations with penicillin G dosing regimens using PD parameters for monotherapy and combination in 

healthy volunteers for e.2095 (dosing regimens for penicillin G Left: 5MU/ 4 h; right: 9 MU/12 h continuous 

infusion 

 

8.3.4 Evaluation of Dosing Regimens for Geriatric Population for e.2095 

When investigating the geriatric population for this strain, the recommended dosing 

strategies for penicillin G were evaluated. This involved either extending the dosing interval to 3 

million units (MU) every 6 hours or reducing the dosage to 2 MU every 4 hours. To model the 

effect of the combination, these penicillin G dosing regimens were subjected to testing using the 

pharmacodynamic parameters derived from combination experiments with ceftriaxone. The results 

depicted in Figure 48 reveal a reduction of less than 2 log10 CFU/ml despite an increase in the area 

under the concentration-time curve (AUC) for the geriatric cohort. 

Upon analyzing the unbound concentration for the dosing regimen of 3 MU every 6 hours, 

it was observed that the % fT>MIC accounts for approximately 46% of the dosing interval. 

Similarly, for the dosing regimen of 2 MU every 4 hours, % fT>MIC extends to approximately 
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55% of the dosing interval. While for 6 MU continuous infusion every 12 hours fT>MIC was 

100% (Table 25). 

Table 25:Dosing regimens and their corresponding %fT >MIC for e.2122 in geriatric population 

(MIC =2 ug/ml) 

Dosing regimen %fT>MIC 

3 MU every 6 hours (IV bolus) 46% 

2 MU every 4 hours (IV bolus) 54.5% 

6 MU every 12 hours (IV infusion) 100% 

 

 

Figure 48:Simulations of different penicillin G dosing regimens for geriatric population for e.2095 

 

8.4 DISCUSSION 

This comprehensive thesis research unveiled a detailed understanding of the effect of 

different dosing regimens, particularly in the context of combination therapy, for E. faecalis 
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infections. The outcomes provide valuable insights for optimizing treatment strategies, especially 

considering the specific bacterial strain’s susceptibility and patient demographics. 

Starting with the time-kill assays in Chapter 4, the results provided a distinct differentiation 

in the efficacy of penicillin G and ceftriaxone, particularly evident in their responses to the more 

penicillin G susceptible strain (MIC = 2 ug/ml) and the less susceptible strain (MIC = 4 ug/ml). 

The subsequent development of the physiologically based pharmacokinetic-pharmacodynamic 

(PBPK-PD) model in Simcyp® effectively corroborated that the combination of penicillin G and 

ceftriaxone exhibited bactericidal activity against the highly susceptible strain e.2122 while 

demonstrating limited efficacy against the less susceptible strain e.2095.  

In the context of the more susceptible strain e.2122, the PBPK-PD model underscored the 

bactericidal efficacy of the treatment regimens. This effect was particularly pronounced with the 

dosing schedules of 4 million units (MU) of penicillin every 4 hours and 5 MU of penicillin every 

4 hours, combined with a 2-gram infusion of ceftriaxone every 12 hours. By altering the 

pharmacodynamic parameters to reflect the impact of ceftriaxone on penicillin G's antibacterial 

activity, the PBPK-PD model revealed a 50% increase in the kill rate and a 38% decrease in the 

EC50 for the combination treatment, contributing to the observed differences. 

Moreover, the study highlighted the potential of outpatient parenteral antibiotic therapy 

(OPAT), wherein penicillin G administration could be optimized through a continuous infusion 

strategy. Specifically, a regimen involving a continuous infusion of 9 MU of penicillin every 12 

hours was identified as effective in maintaining the free plasma concentration of penicillin G above 

the minimum inhibitory concentration (% fT>MIC) for the entire dosing interval (100%). This 

continuous infusion approach yielded the most substantial reduction in bacterial count. Notably, 
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this method significantly can reduce the number of required injections as discussed previously, 

narrowing the treatment protocol to only three injections. 

As discussed previously, penicillin G's aqueous stability for over 24 hours at room 

temperature and within elastomeric infusion pumps used in OPAT renders it an ideal candidate for 

strains that exhibit a high susceptibility to penicillin G. This observation highlights the practical 

feasibility and potential advantages of employing penicillin G for highly susceptible strains, 

optimizing therapeutic outcomes, and enhancing patient convenience through reduced injection 

frequency. 

Regarding the lower susceptibility strain e.2095, the combination treatment exhibited 

limited impact on reducing bacterial densities in plasma. This aligns with the findings previously 

discussed in Chapter 6, where pharmacodynamic parameters were derived. These parameters 

indicated minimal change in both the Emax values (0.50 vs. 0.58) and IC50 values (2.86 vs. 2.5) 

when comparing monotherapy with combination therapy involving ceftriaxone. The results from 

the PBPK model simulations corroborate these observations, as they reflect the insufficient kill 

rate achieved by the combination treatment to induce a significant reduction in bacterial counts. 

As demonstrated by the model, the combination's kill remains notably low for a strain with lower 

susceptibility, due to the marginal increase in the kill rate and decrease in IC50 values for penicillin 

G when combined with ceftriaxone. 

The results of a susceptibility test must be interpreted by the laboratory prior to 

communicating a report to a patient's physician. It is clear that the success of a treatment depends 

on the susceptibility of the strain. It is also evident that the impact of antibiotics like penicillin G 

hinges on the extent of time the unbound drug maintains concentrations surpassing the MIC. A 
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strategic approach to enhancing therapeutic outcomes involves reducing dosing frequency or 

employing continuous infusion methods, both of which contribute to an elevated % fT > MIC. 

Contrary to expectations, escalating the dose to attain higher concentrations does not yield greater 

efficacy once concentrations surpass the MIC threshold. This underscores the critical role of 

sustained exposure in optimizing the therapeutic effect of beta-lactam antibiotics. 

Regarding β-lactams, it is well known that the PD index that optimizes efficacy is the 

percentage of time the unbound concentration remains above the minimum inhibitory 

concentration of the target microorganism (%fT>MIC). Age-related effects on the 

pharmacokinetics (PK) of β-lactams have been established, primarily attributed to diminished 

renal clearance among the elderly. This age-associated impact on PK is notably demonstrated in 

Chapter 7, where a significant increase in AUC of penicillin G is observed due to reduced renal 

clearance. Consequently, this prompts the necessity for adjustments in dosing regimens to ensure 

optimal therapeutic outcomes. 

In the context of strains e.2122 and e.2095, the application of altered dosing regimens 

exhibited distinctive responses. For e.2122, the adjusted regimens demonstrated bactericidal 

activity, indicating a successful reduction in bacterial density. In contrast, for e.2095, despite an 

increase in drug concentration, there was no significant decrease in bacterial density. This 

discrepancy indicates the presence of a low kill rate associated with e.2095, which, in turn, reflects 

its resistance profile. These observations accentuate the importance of both PK and PD 

considerations in optimizing dosing strategies, particularly for different strains characterized by 

varying susceptibilities. 
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In the area of modern medicine, patient care is continuously evolving with advancements 

in technology and research. When it comes to combating infections, particularly in the context of 

antibiotic therapy, understanding the interaction between the medication, the pathogen, and the 

patient's individual characteristics is crucial. The technique of semi-mechanistic PK-PD modeling 

used in this thesis project aimed to provide an adequate bridge from the bench to the bedside. 

Over the course of time, Enterococcus faecalis has evolved into a significant contributor 

to nosocomial infections, standing as the third leading cause of infective endocarditis. This project 

successfully explored anti-bacterial treatments for Enterococcus faecalis through in-vitro time-kill 

assays and PBPK-PD modeling and simulation techniques. A major treatment plan for E. faecalis 

infection, particularly E. faecalis infective endocarditis, is double beta lactam therapy. Ampicillin 

plus ceftriaxone (AC) has been used clinically as the first line of treatment. Although often 

parenteral antibiotic treatments extend the hospital stay and put the patient at an increased risk of 

nosocomial infection and financial burden due to hospital costs. Outpatient Parenteral Antibiotic 

Treatment (OPAT) is increasingly recognized as a cost-efficient and acceptable management 

strategy for a variety of selected patients requiring either short- or medium-to long-term parenteral 

therapy. Ampicillin’s instability in solution for long hours at room temperature limits its utility of 

OPAT.  This provided rationale for testing an alternative that is penicillin G plus ceftriaxone (PC) 

in this thesis project against 21 E. faecalis clinical isolates. 

Penicillin G is the oldest antibiotic with a known safety profile and is a narrow spectrum 

antibiotic used to treat infections caused by susceptible bacteria. It is typically administered 

intravenously (IV) or intramuscularly (IM), as its oral absorption is poor. IV administration allows 

for rapid and complete drug delivery into the bloodstream. It is sparingly soluble in water (210 
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mg/L) and moderately lipophilic with a Log P of 1.83. It is therefore administered as a sodium or 

potassium salt which is stable for 24 hours at room temperature. Penicillin G shows about 55 to 

60 % plasma protein binding. The drug distributes and reaches various tissues and fluids, including 

the blood, lungs, liver, and kidneys. Penicillin G or benzylpenicillin is minimally metabolized in 

the body. It undergoes limited biotransformation, primarily in the liver, resulting in the formation 

of penicilloic acid, which has minimal to no antibacterial activity. The primary route of elimination 

is through the kidneys via glomerular filtration and active tubular secretion. The drug is excreted 

largely unchanged in the urine. Its elimination half-life is relatively short, leading to frequent 

dosing in some cases. It is often administered multiple times a day to maintain therapeutic levels 

in the body. Recommended dosing for serious infections might range from 1 to 24 million units 

per day, divided into multiple doses, depending on the infection and the patient's condition. 

Ceftriaxone is a third-generation cephalosporin. Ceftriaxone is administered intravenously 

and intramuscularly, and the drug is completely absorbed. It is not available orally due to 

degradation in the gastrointestinal tract. It has a Log P of -1.7 which indicates that it is highly 

hydrophilic. It is administered as a sodium salt to increase its solubility, stability, and 

compatibility. It has a low volume of distribution of approximately 0.12 l/kg and is 95% plasma 

protein bound. 33–67% of the drug is renally excreted as unchanged drug, rest is excreted in the 

bile as unchanged drug which is ultimately excreted in feces as inactive compounds from hepatic 

and gut flora metabolism. The average elimination half-life in healthy adults is 5.8–8.7 (mean 6.5) 

hours. Recommended dosing for bacteremia 1 to 2 g IV or IM once a day (or in equally divided 

doses twice a day). 
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The dissertation research focused on developing physiologically based pharmacokinetic 

(PBPK) models for two antibiotics, penicillin G and ceftriaxone, using the Simcyp® software. The 

models incorporated a minimal PBPK approach along with a special "SAC compartment" to 

effectively model the distribution phase of the drugs. By considering non-renal elimination 

processes, the models were able to accurately estimate clearance rates for both drugs. 

These PBPK models were then extended to the elderly population (individuals over 65 

years old), as there's evidence that this demographic is particularly susceptible to infections caused 

by E. faecalis bacteria. The goal was to understand how changes in demographics could impact 

the pharmacokinetics (PK) of these antibiotics. The PBPK models were successfully validated 

against published data, both for healthy volunteers and for the geriatric population. This validation 

was achieved using visual predictive checks and mean fold error (MFE) calculations to compare 

the predicted and observed exposures (such as area under the curve - AUC, and maximum 

concentration - Cmax). The models revealed that the geriatric population exhibited increased drug 

exposure compared to the younger population due to a decrease in renal clearance. This finding 

had important implications for dosing and treatment strategies for elderly patients. 

Susceptibility testing always plays a pivotal role in guiding treatment decisions by 

assessing the effectiveness of antibiotics against specific strains of pathogens in a clinical setting. 

This project successfully performed susceptibility testing on all the strains as part of identifying 

the Minimum Inhibitory Concentrations (MICs) for ampicillin, penicillin G and ceftriaxone. Using 

microbroth dilution techniques while following all the CLSI guidelines, all 21 strains were 

identified as susceptible to ampicillin and penicillin G, while all strains were resistant to 

ceftriaxone. Further, the strains were classified into two categories based on their demonstrated 
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penicillin G susceptibilities. The first category susceptibility (n= 13/21 (61%)) displayed a 

heightened susceptibility to penicillin G, as reflected by a MIC ≤ 2 ug/ml, whereas the second 

category (n= 8/21(38%)) exhibited a comparatively diminished responsiveness to the antibiotic, 

with a MIC of 4 ug/ml higher susceptibility. This part of the project also reported an interesting 

observation of low susceptibility strains, all of them had higher ceftriaxone MICs as well (> 2048 

ug/ml). This was assumed to be the hypothesis of resistance development for both the antibiotics 

through similar mechanisms. Optimal interpretation of MICs provided information on the likely 

success of penicillin G and ceftriaxone in eradicating bacterial strain. 

In the next phase of the project, time-kill assays were conducted using 21 clinical strains 

of Enterococcus faecalis. The effects of penicillin G and ceftriaxone were tested individually, as 

well as in combination, against these strains. The penicillin G concentrations were varied, while 

ceftriaxone was used at a concentration of 17.2 ug/ml, corresponding to the free steady-state 

plasma concentration achieved with a specific dosing regimen (2 g IV q12h). In addition, the 

strains underwent time-kill assays using ampicillin and ceftriaxone, allowing for a comparative 

assessment between the two treatments (AC v/s PC). 

It was worth noting that E. faecalis is intrinsically resistant to ceftriaxone. Despite this 

intrinsic resistance, a synergistic effect between ceftriaxone and ampicillin was observed. This 

observation agrees with the previously published results. Importantly, the study successfully 

demonstrated that penicillin G and ceftriaxone exhibited equivalent and comparable synergy and 

bactericidal activity in highly susceptible strains. This finding suggested that the PC combination 

could potentially serve as an effective OPAT treatment option. 
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Furthermore, the study highlighted those strains with low susceptibility exhibited similarly 

poor outcomes with both treatments (AC and PC, with no obvious advantage of one treatment over 

the other. The strength of this study lies in its utilization of clinical blood strains of Enterococcus 

faecalis and the implementation of time-kill assays, which provide a clear definition of synergy. 

Building upon the promising outcomes of the time-kill assays, which suggested the 

potential benefits of investigating the combination of penicillin G and ceftriaxone further, a 

focused approach was taken. The intensive time-kill data were extracted from two specific strains 

out of the 21 strains used in the study. These strains, one with high susceptibility and another with 

low susceptibility were sourced from patients with E. faecalis infective endocarditis. Using this 

targeted data, a pharmacokinetic-pharmacodynamic (PK-PD) model was successfully developed. 

The primary objective of this model was to identify appropriate dosing regimens for penicillin G. 

Currently, the dosing of penicillin G is recommended alongside an aminoglycoside. However, this 

study aimed to test this dosing regimen, optimizing its effectiveness. 

The project adhered to a stepwise semi-mechanistic model building process. This involved 

the identification and fitting of a bacterial model to the observed data, which was a critical aspect 

of the study. The observed data pertaining to bacterial growth was effectively aligned with the 

chosen Gompertz model through non-linear regression techniques in RStudio. This fitting process 

resulted in minimized residual errors, indicating a robust alignment between the model and the 

data. The implementation of the R code for this purpose was well-structured. Validation of the 

estimated parameters was conducted through comprehensive visual predictive checks, in addition 

to assessing statistical errors. These analyses substantiated the precision and accuracy of the 

parameters obtained from the model. 
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In the next step, the observed data related to bacterial kill and drug concentration for 

penicillin G, both alone and in the presence of ceftriaxone, was fitted to the well-known Emax 

model. Non-linear fitting techniques were employed, followed by data visualization, to estimate 

the drug kill parameters for the two strains under investigation. Like the bacterial model, the Emax 

model underwent thorough verification through visual predictions. The precision of the estimated 

parameters was highlighted by the low standard errors of estimation, which significantly increased 

confidence in the results. 

An important observation was that with the low susceptible strain (e.2095). The 

combination of ceftriaxone with penicillin G did not result in an increase in Emax (kill rate) for 

penicillin G or enhance the potency by reducing the EC50. This outcome further corroborated the 

initial results from the analysis of the 8 low susceptible strains, which indicated reduced 

antibacterial efficacy for both monotherapy and combination treatment. Conversely, for the high 

susceptible strain (e.2122), successful model fitting provided a clear insight into the advantages of 

combining ceftriaxone with penicillin G. The fitted model effectively showcased an elevated kill 

rate and an increase in the potency of penicillin G, as evidenced by a decrease in the EC50. 

The developed PBPK model for penicillin G underwent further expansion to incorporate a 

Pharmacodynamic (PD) component. This addition aimed to predict how the free drug 

concentration impacts bacterial density. The integration of the PD aspect involved utilizing Lua 

scripting, which facilitated the construction of the PD model. The Lua scripting process primarily 

encompassed integrating parameters acquired in earlier phases of the project. These parameters 

included bacterial growth parameters, drug kill parameters, and a core equation that established a 

link between the pharmacokinetics of penicillin G and the bacterial and kill parameters. A key 
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aspect of this extension was the modeling of the effect of ceftriaxone. This was achieved by 

adjusting parameters obtained from combination experiments involving ceftriaxone and penicillin 

G. The combination experiments provided valuable insights into how ceftriaxone influences the 

overall bacterial density reduction. 

The developed model yielded significant insights, particularly concerning the high 

susceptibility strain (e.2122). The model illustrated that the optimal bacterial kill occurred when 

the free drug concentration remained above the Minimum Inhibitory Concentration (%f T > MIC) 

for 100% of the time. Various dosing regimens were evaluated, including IV bolus doses of 3MU, 

4MU, and 5MU every 4 hours, as well as an IV infusion of 9MU every 12 hours. Notably, 

continuous infusion demonstrated the highest bacterial kill, regardless of the kill rate and IC50 

(both for monotherapy and combination kill). This underscored a strong correlation between 

bacterial kill in the susceptible strain and the pharmacokinetic-pharmacodynamic (PKPD) 

indicator/index %f T > MIC. 

Upon linking the PD model with combination parameters to the geriatric PBPK model of 

penicillin G, dosing alterations recommended by the FDA were tested for the high susceptibility 

strain (e.2122). Specifically, dosing regimens including an IV bolus of 2MU/4 hours or 3MU every 

6 hours, along with a continuous infusion of 6MU every 12 hours, were evaluated. It was observed 

that both the 2MU/4 hours bolus and the continuous infusion of 6MU every 12 hours resulted in 

comparable reductions in bacterial density. 

Conversely, for the low susceptibility strain (e.2095), there was minimal improvement in 

antibacterial activity when transitioning from 3MU to 5MU every 4 hours. Testing a dosing 

regimen of 9MU every 12 hours, which maintained a %fT > MIC of 100%, didn't lead to a 
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significant decrease in bacterial density compared to monotherapy. This indicated that the kill rate 

wasn't sufficient for this strain with low susceptibility. Ceftriaxone's inability to enhance the kill 

rate or potency of penicillin G, as evidenced by time kill assays, was reiterated. In the geriatric 

population, the assessment of dosing regimens for the low susceptibility strain (e.2095) revealed 

that despite observing an increase in the AUC, there were no significant reductions in bacterial 

density observed. This suggests that although the physiological alterations in elderly led to higher 

exposure to the antibiotic, it did not result in the desired bacterial kill effect. This finding highlights 

the complexity of antibiotic treatment, particularly in certain strains and populations. It suggests 

that the increase in AUC alone might not be sufficient to achieve the desired antibacterial outcome, 

and other factors, such as the potency of the antibiotic against the specific strain and its ability to 

effectively combat bacterial growth, are also critical. 

In conclusion, this research project has illuminated distinct patterns between the two 

categories of strains studied. To enhance therapeutic effectiveness in strains with higher 

susceptibility, a strategic approach involves careful manipulation of the dosing regimen. Two 

primary strategies are frequently employed: increasing dosing frequency and employing 

continuous infusion methods. Both tactics aim to extend the duration of time during which the 

drug concentration remains above the MIC, thereby prolonging the suppression of bacterial 

growth.  

However, considering the observations related to the low susceptibility strain (e.2095), it 

becomes increasingly clear that selecting the most predictive traditional pharmacokinetic-

pharmacodynamic (PK-PD) index and determining the required magnitude of that index for 

achieving certain levels of bacterial kill or resistance suppression can be influenced by various 
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factors. These factors could include isolate characteristics; in this context, the isolate might be 

hetero-resistant, meaning it contains covert resistant bacterial subpopulations within an otherwise 

"susceptible" isolate as per MIC testing. Hetero resistance is often unstable, with the resistant 

subpopulation reverting to susceptibility within a limited number of generations in the absence of 

antibiotics. Detecting such subpopulations is challenging using conventional minimum inhibitory 

concentration methods [104]. Another hypothesis could be that this isolate is showing borderline 

resistance, which is a term used in situations where a bacterial isolate exhibit reduced susceptibility 

to an antibiotic but doesn't meet the criteria for being categorized as fully resistant. In other words, 

the bacteria are not highly resistant, but they are not fully susceptible either. It's important to note 

that the distinction between hetero-resistance and borderline resistance can be subtle, and only 

further research and in-depth analysis can help determine which hypothesis is true in a particular 

case. This underscores the complexity of antibiotic resistance mechanisms and the need for 

ongoing investigation to better understand and combat them. While the terms "hetero resistance" 

and "borderline resistance" have been used in the context of Staphylococcus aureus before, their 

application to Enterococcus faecalis would require a comprehensive understanding of resistance 

mechanisms which paves way for future research [105,106]. 

A few limitations in this thesis study are worth noting, setting the stage for future research. 

The study does not consider resistance or regrowth, which are frequently encountered in clinical 

scenarios. The absence of simultaneous modeling of both drugs in Simcyp® may have resulted in 

an overestimation of ceftriaxone's kill effect. Further research is warranted to explore strains of E. 

faecalis with hetero-resistance or borderline resistant characteristics to penicillin G and 

ceftriaxone, potentially forming the logical progression of this project. 
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APPENDIX A 

 21 PATIENT ISOLATES TIME KILL CURVES 

1) e.2003 (Amp MIC = 1ug/ml, Pen G MIC = 2ug/ml, Cx MIC = 256 -512 ug/ml) 

 

 

2) e.2006 (Amp MIC = 0.5 ug/ml, Pen G MIC = 2 ug/ml, Cx MIC = 16 ug/ml) 

 



180 

 

 

 

3) e.2008 (Amp MIC = 1 ug/ml, Pen G MIC = 4 ug/ml, Cx MIC = 2048) 

 

 

 



181 

 

4) e.2009 (Amp MIC = 1 ug/ml, Pen G MIC = 4 ug/ml, Cx MIC = 2048) 

 

5) e.2010 (Amp MIC = 2 ug/ml, Pen G MIC = 4 ug/ml, Cx MIC = 512 ug/ml) 

 



182 

 

 

6) e.2011 (Amp MIC = 1 ug/ml, Pen G MIC = 2 ug/ml, Cx MIC = 512 ug/ml) 
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7) e.2012 (Amp MIC = 1 ug/ml, Pen G MIC = 2 ug/ml, Cx MIC = 256 ug/ml) 

 

 

8) e.2014 (Amp MIC = 1 ug/ml, Pen G MIC = 2 ug/ml, Cx MIC = 512 ug/ml) 
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9) e.2015 (Amp MIC = 1 ug/ml, Pen G MIC = 2 ug/ml, Cx MIC = 512 -1024 ug/ml) 

 

 

 

 



185 

 

10) e.2017 (Amp MIC = 1 ug/ml, Pen G MIC = 2 ug/ml, Cx MIC = 512 -1024 ug/ml) 

 

 

11) e.2018 (Amp MIC = 1 ug/ml, Pen G MIC = 4 ug/ml, Cx MIC = > 2048 ug/ml) 
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12) e. 2020 (Amp MIC = 1 ug/ml, Pen G MIC = 2 ug/ml, Cx MIC = 128 ug/ml) 
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13) e.2024 (Amp MIC = 1 ug/ml, Pen G MIC = 4 ug/ml, Cx MIC = 256 ug/ml) 

 

 

 

14) e.2025 (Amp MIC = 1 ug/ml, Pen G MIC = 2 ug/ml, Cx MIC = 128 ug/ml) 
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15) e. 2027 (Amp MIC = 1 ug/ml, Pen G MIC = 4 ug/ml, Cx MIC = >2048 ug/ml)  
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16) e. 2028 (Amp MIC = 1 ug/ml, Pen G MIC = 4 ug/ml, Cx MIC = >2048 ug/ml) 

 

 

17) e. 2029 (Amp MIC = 0.5 ug/ml, Pen G MIC = 2 ug/ml, Cx MIC = 128 ug/ml) 
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18) e.2031 (Amp MIC = 0.5 ug/ml, Pen G MIC = 2 ug/ml, Cx MIC = 128 ug/ml) 

 

 

 

19) e. 2032 (Amp MIC = 0.5 ug/ml, Pen G MIC = 2 ug/ml, Cx MIC = 256-512 ug/ml) 
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20) e.2122 (Amp MIC = 1 ug/ml, Pen G MIC = 2 ug/ml, Cx MIC = 256 ug/ml) 

 

 

21) e.2095 (Amp MIC = 1 ug/ml, Pen G MIC = 4 ug/ml, Cx MIC = 2048 ug/ml) 
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TIME KILL TABLES  

1) e.2122   

Concentration And % Reduction Table for Combination  

 

 

 

 

 

 

Concentration And % Reduction Table for Monotherapy  

 

 

 

 

 

 

 

 

 

 

Penicillin G 

Concentration 

(ug/ml) 

Log bacteria at 24 

hours (CFU/ml) 

% reduction 

0.6 5.73 4.5 

0.8 5.68 5.3 

1.0 5.20 14 

1.1 4.91 19 

1.4 3.30 44.5 

1.6 2.34 58.5 

1.8 2.16 65 

Penicillin G 

Concentration 

(ug/ml) 

Log bacteria at 24 

hours (CFU/ml) 

% reduction 

1.0 5.92 1.4 

1.2 5.68 5.4 

1.4 5.61 6.5 

1.6 5.16 14 

1.8 4.34 27.6 

2.0 3.21 44.5 

2.5 2.76 59.5 

4.0 2.00 66 
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2) e.2095   

Concentration And % Reduction Table for Combination  

 

 

 

 

 

 

 

 

Concentration And % Reduction Table for Monotherapy  

  

 

 

 

 

 

 

 

 

 

 

Penicillin G 

Concentration 

(ug/ml) 

Log bacteria at 24 

hours (CFU /ml) 

% reduction  

1.2 5.75 4.64 

1.6 5.53 8.20 

2.0 5.25 13.00 

2.4 4.89 18.9 

2.8 4.53 24.9 

3.2 4.13  31.6 

3.6  4.02  33 

4.0   3.69  38.9 

8.0 3.59 40 

Penicillin G 

Concentration 

(ug/ml) 

Log bacteria at 24 

hours (CFU /ml) 

% reduction  

1.2 6 0.5 

1.6 5.73 4.97 

2.4 5.42 10.02 

2.8 5.23 13.26 

3.2 4.58 24.11 

3.6 4.26 29.5 

4.0 4.06 32.6 

8.0 3.9 37 
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APPENDIX B 

 

R CODE FOR THE BACTERIAL GROWTH MODEL (CHAPTER 5) 

# Define the Gompertz function 

gompertz <- function (t, A, B, C, r) { 

 A - B * exp (-C * exp (r * t)) 

} 

# Fit the Gompertz model to the data 

fit_gom <- nls(log_bacteria ~ gompertz(time, A, B, C, r), 

start = list (A = 10, B = 6, C = 0.2, r = 0.4)) 

# Summary of the model fit 

summary(fit_gom) 

# Obtain predicted values from the fitted model 

time_new <- seq (0, 24, length.out = 1000) 

log_bacteria_pred <- predict (fit_gom, newdata = list (time = time_new)) 

# Create a data frame with observed and predicted values 

df <- data.frame(observed = log_bacteria, predicted = predicted) 

df_pred <- data.frame(time=time_new, log_bacteria =log_bacteria_pred) 

# Plot predicted fit 

library(ggplot2) 

ggplot(df, aes(x = time, y = log_bacteria)) +geom_point() + geom_line(data= df_pred, aes(x = 

time , y = log_bacteria) , color = "red“) +  labs (x = “Time", y = “Log Bacteria") + theme_bw() 

# Define the logistic function 

logistic_func <- function (t, A, B, C) { 
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  A / (1 + exp (-B * (t - C))) 

} 

# Fit logistic model 

fit_log <- nls(log_bacteria ~ logistic_func(time, A, B, C), 

start = list (A = 6, B = -0.3, C = 2)) 

summary(fit_log) 

 

R CODE FOR EMAX MODEL (CHAPTER 6) 

# Define the Emax model 

emax_model <- function (concentration, Emax, IC50, n) { 

Emax * concentration^n / (IC50^n + concentration^n) 

} 

# Fit the Emax model to the data 

fit <- nls (percent_reduce ~ emax_model (concentration, Emax, IC50, n), 

start = list (Emax = 70, IC50 = 2.2, n = 4)) 

# Print the summary of the model fit 

summary(fit) 

# Create a data frame with the original data and fitted values 

df <- data.frame(concentration = concentration, percent_reduce = percent _reduce, fitted_values = 

predict (fit)) 

# Plot the data and the fitted Emax model 

library(ggplot2) 

ggplot (df, aes (x= concentration ,  y = percent_reduce)) + geom_point () + geom_smooth (method 

= “nls” , formula = y ~ emax_model (x, Emax , IC50,n), method.args = list (start = c(Emax = 70 , 

IC50 = 2.2 , n = 4)), se = FALSE, color = “black” , size =0.8)+ labs (x= “cpncnetration (ug/ml) , 

y = “ Percent Reduce “)+ theme_bw() 
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LUA SCRIPT FOR PENICILLIN G PD MODEL  

function popSimSetup(...) 

sc:setNUserOdes(1) 

sc:setUserStateName(1, "sensitive bacteria") 

end 

function odeInitStep (xin, su, P, ...) 

   su[1] = 6.12 

   return 0 

end 

function odeRateStep(t, xin, su, gu, P, ...) 

   S = su [1] 

   kgrowth = 0.44 – bacterial growth rate (1/hr) 

   Bmax = 8.55 – maximum bacterial density (log CFU/ml) 

   Emax = 0.60 – maximum drug kill rate for penicillin G monotherapy 

   EC50 = 1.89 – concentration of drug with 50 % of maximal effect 

   h = 8.1 – Hill’s coefficient   

   DRUG = (Emax0 * math.pow(xin, h)) / ((math.pow(EC50, h) + math.pow(xin, h))) 

   gu[1] = kgrowth*((1-S/Bmax)*S-(DRUG)*S) 

   return S 

end 
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