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Abstract 

Emmanuel Apau Aboagye 

A SYSTEMS APPROACH TO PROCESS DESIGN AND SUSTAINABILITY – 

SYNERGY VIA POLLUTION PREVENTION, CONTROL, AND SOURCE 

REDUCTION 

2023-2024 

Kirti M. Yenkie, Ph.D. 

Doctor of Philosophy in Chemical Engineering 

 

Historically, process design prioritized efficiency and profitability, often 

overlooking environmental and societal implications. However, given the global 

challenges like climate change and resource scarcity, there is a growing emphasis on 

embedding sustainability into process design. Adopting a systems-oriented approach 

provides a comprehensive view, spanning from raw material acquisition to end-of-life 

product management. Such an approach not only identifies potential sustainability 

challenges but ensures that solutions foster both environmental responsibility and 

economic viability. In this study, a comprehensive framework for designing industrial 

systems is introduced, aiming to encompass the entire lifecycle impacts of chemical 

processes. The research initially delves into two end-of-life scenarios: solvent recovery (as 

a pollution reduction intervention) and wastewater treatment systems (as a pollution control 

intervention). Employing graph-theoretical methods and multi-objective optimization, a 

thorough systems analysis which incorporates Ecological footprint and Emergy analysis, 

coupled with economic assessment is presented. Furthermore, a Machine Learning (ML) 

model (as a source reduction option) is developed to predict the cradle-to-gate impacts of 

chemicals. Merging the insights from this ML model with the end-of-life scenarios offers 

a comprehensive systems strategy, advocating for a sustainability-focused approach during 

the early stages of process design. 
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Chapter 1 

Introduction 

Text and figures are reproduced and adapted with permission from Aboagye, E. A.; Chea, 

J.D.; Yenkie, K.M.; Systems Level Roadmap for Solvent Recovery and Reuse in Industries 

– A Review. iScience 2021 https://doi.org/10.1016/j.isci.2021.103114, and materials in 

preparation for publication. 

1.1 Motivation 

The increasing awareness of environmental issues has led industries to reassess 

their operations in light of sustainability. Industrial processes, notably solvent recovery [1] 

and wastewater treatment [2], are areas of growing concern given their significant 

environmental footprints. Recognizing this, the body of literature related to the 

sustainability assessment of industrial processes has grown exponentially over the past few 

decades (see Figure 1). 

The chemical process industry is a significant contributor to modern life, producing 

a diverse array of products such as plastics, fuels, pharmaceuticals, and petrochemicals 

[3]–[8].  Therefore, the concept of sustainability in industrial processes is multifaceted, 

encompassing economic, environmental, and social dimensions [9], [10]. Traditionally, 

industrial processes have primarily focused on economic profitability. However, the call 

for sustainable development and recent climate change crises have prompted industries to 

consider environmental impacts alongside economic performance. Consequently, 

decision-makers in industrial processes now face the daunting task of simultaneously 

optimizing a multitude of often-conflicting objectives. This complexity has led researchers 
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and practitioners alike to seek out innovative approaches to sustainability assessment and 

decision-making in industrial processes. 

As illustrated in Figure 1, in recent years there has been a marked increase in 

research focused on the sustainability assessment of chemical process design.  

 

 

Figure 1. Web of Science (WoS) publications on sustainability assessment of chemical 

process design 

 

 

Given that many chemical industries were constructed several years ago, 

prioritizing cost with no consideration for environmental impacts was the main driving 

factor. However, Environmental Impacts Assessment (EIA) [11], [12], which is a key 

aspect of sustainability [13] where the potential environmental consequences of a process 

or product is evaluated is crucial to achieving greenness of industrial processes. These 

environmental consequences take into consideration several factors such as air-, water-, 

soil- quality, biodiversity, and social factors.  To perform any EIA, Life Cycle Assessment 
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(LCA) is the prevailing methodology utilized to quantitatively measure the environmental 

consequences of a product, process, or service [14]. However, performing LCA of 

processes is very challenging, especially at early-stage process synthesis.  

This dissertation provides an in-depth exploration of the application of graph 

theory, optimization, and machine learning techniques for the sustainability assessment of 

industrial processes. In an era where industries are facing increasing pressure to reduce 

environmental impacts and promote sustainable practices, a comprehensive understanding 

of the trade-offs between economic viability and environmental sustainability is crucial. 

Through a set of multidisciplinary methodologies, this research aims to provide robust 

decision-making tools to assess, design, and operate more sustainable industrial systems. 

The methodologies developed can be used to recover valuable resources from waste 

streams and further facilitate EIA at early-stage process synthesis. Thus, the hypothesis for 

this dissertation is that computational methods aid in early-stage process design for 

efficient systems with low cost and enhanced sustainability. Three main objectives are 

addressed in this dissertation to achieve the specified hypothesis namely, (1) wastewater 

treatment network design via simultaneous cost and sustainability assessment approach, 

(2) multi-objective approach to solvent recovery systems design, and (3) predicting life 

cycle impacts of chemicals – a machine learning approach.  

1.2 Background 

The United Nations Commission on Environment and Development describes 

sustainability as fulfilling current needs without jeopardizing the capability of future 

generations to address their own requirements [15]. However, the 2022 report from the 

United Nations Environment Programme (UNEP) suggests that global efforts are trailing 
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behind in maintaining the desired global temperature rise below 2˚C, and ideally, 1.5˚C, 

which is crucial for mitigating the effects of climate change [16]. To meet the targets set 

by the Paris Agreement [17], the UNEP report emphasizes a 30% reduction in greenhouse 

gas emissions. As industries evolve, there is a pressing need to design new processes with 

a sustainability-focused approach. It is essential for the chemical sector to take a lead role, 

exploring ways to significantly reduce emissions, aiding global efforts to counteract 

climate-related challenges. Life Cycle Assessment (LCA) is one of the ways to quantify 

the environmental footprint of processes, products, or services.  

 

 

Figure 2. The product life cycle comprises various stages, each of which involves material 

transportation. LCA can be conducted using one of three primary models: cradle-to-gate, 

cradle-to-grave, and cradle-to-cradle 
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In a typical product life cycle, five distinct stages can be identified: (i) raw material 

extraction, (ii) product manufacturing, (iii) distribution, (iv) usage, and (v) disposal as 

shown in Figure 2. The disposal phase marks the end-of-life of the product and various 

scenarios can be considered, such as recycling, reuse, or disposal to landfills. Conducting 

a Life Cycle Assessment (LCA) generally involves four fundamental steps, which include 

goal and scope definition, Life Cycle Inventory (LCI) analysis, impact assessment, and 

interpretation [14], [18]–[21]. Depending on the scope of the LCA, various analysis 

frameworks can be implemented, namely, cradle-to-gate, cradle-to-grave, gate-to-gate, or 

cradle-to-cradle. As highlighted in Figure 2, cradle-to-gate analysis starts from raw-

material extraction to product distribution. Cradle-to-grave assessment ends at the disposal 

phase.   

1.2.1 Resource Recovery: End-of-Life Scenarios 

In an era of limited resources and increasing environmental concern, resource 

recovery [22] has emerged as a vital strategy to ensure sustainability. Thus, waste is no 

longer considered as an endpoint but as a valuable resource for recovery and reuse of key 

chemicals. This paradigm shift promotes circular economy [23], where the waste goes 

through various transformations into a useful resource.  

 Resource recovery refers to the extraction of useful materials and energy from 

waste. The goals are to reduce the burden on natural resources, mitigate environmental 

impact, and achieve economic benefits from waste valorization. This approach aligns with 

the principles of circular economy, which aims for a closed-loop system minimizing waste 

and making the most of resources. 
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There are different types of End-of-Life (EoL) for various products [24]. For 

example, if we consider solvents, their typical EoLs include incineration, selling to third-

parties, or on- or off-site disposal. Furthermore, these solvents can also end up in 

wastewater streams based on their use. The solvents can be recovered through various 

techniques such as distillation, adsorption, membrane separation, extraction, among others.  

 Implementing resource recovery as an EoL scenario faces numerous challenges. 

These include technical barriers, economic feasibility, regulatory issues, and public 

acceptance [25], [26]. Technical challenges include the diverse nature of waste, which 

requires tailored treatment and recovery solutions. Economically, the initial investment and 

operating costs of recovery facilities may be high compared to the use of virgin materials. 

However, the cost can often be offset by the value of the recovered resources and reduced 

waste disposal costs. On the regulatory front, stringent environmental standards demand 

highly efficient recovery processes to ensure that the effluents meet the required 

specifications.  

 Nevertheless, the opportunities offered by resource recovery are immense. Besides 

the environmental benefits, resource recovery can significantly improve resource 

efficiency, enhance energy security, and create job opportunities. Furthermore, the 

integration of advanced digital technologies, such as machine learning, can enhance the 

efficiency and adaptability of recovery processes [27]. Wastewater treatment and solvent 

recovery as EoL scenarios represent significant strides towards a circular economy. These 

approaches not only mitigate environmental impact but also unlock the value of waste as a 

resource. 
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1.2.2 Wastewater Treatment Networks 

Wastewater treatment process is indispensable to ensuring environmental safety 

and public health, reducing the potential impacts of hazardous substances in the ecosystem. 

Wastewater treatment networks (WWTNs) use a systematic series of process units to treat 

and recover resources from domestic/industrial/agricultural wastes [28]. These treatment 

networks are designed to remove or neutralize contaminants and produce effluents that can 

be safely released into the environment or used in secondary applications. Additionally, 

some of these networks can recover valuable substances, such as solvents, from the waste 

streams [29]. 

WWTNs vary significantly depending on the wastewater characteristics. Despite 

the effectiveness of conventional WWT processes, they are not always capable of fully 

removing certain chemicals, such as active pharmaceutical ingredients (APIs), endocrine 

disruptors, or emerging contaminants such as per- and polyfluoroalkyl substances (PFAS).   

The design of these networks is a complex task requiring the consideration of 

various factors, such as the type and concentration of contaminants, regulations, recovery 

potential, economic viability, and environmental impacts [30], [31]. Therefore, the field of 

process systems engineering (PSE) plays a pivotal role in creating efficient, effective, and 

adaptable wastewater treatment networks [32], [33]. Moreover, the selection and 

sequencing of technologies, the balance between recovery and treatment, and the overall 

network layout require meticulous planning and optimization. In this context, the field of 

graph theory [34] provides a robust framework for WWTN design. It enables the 

systematic enumeration of all possible networks and shortlist the feasible ones when 
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subject to certain input conditions and recovery requirements thereby facilitating the 

optimization of cost, resource recovery, and sustainability metrics.  

However, the use of wastewater treatment networks as an EoL option is not without 

challenges. Technically, the diverse nature of industrial waste makes it challenging to 

develop a one-size-fits-all solution [35]. Regulatory-wise, stringent environmental laws 

necessitate that effluents meet certain quality standards, demanding highly efficient 

treatment processes. Nevertheless, the potential benefits offered by wastewater treatment 

networks as an EoL option for even solvents, are driving research and development efforts 

in this direction. The wastewater treatment network as an EoL scenario offers a sustainable 

solution to industrial waste management. Its successful implementation necessitates 

advanced process engineering and sustainability assessment approaches to optimize the 

performance, economics, and environmental impact of these networks [2]. With growing 

sustainability concerns, such initiatives will undoubtedly play a significant role in the 

future of industrial waste management.  

1.2.3 Solvent Recovery 

Solvents are indispensable to a wide array of industrial procedures, finding 

significant usage in industries such as pharmaceuticals, food, cosmetics, nutraceuticals, 

biofuels, paints, and fine chemicals [36]–[38]. Notably, the pharmaceutical industry 

utilizes solvents extensively for active pharmaceutical ingredient (API) purification and 

refinement [39], [40]. The ever-increasing demand for solvents has, however, led to a 

substantial surge in waste generation. For instance, the pharmaceutical industry generates 

approximately 25-100 kg of waste per kg of product [41]. This waste issue primarily stems 

from industrial process inefficiencies and flawed solvent selection criteria, often leading to 
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excessive solvent usage for achieving the desired product purities and quantities. 

Traditional waste management approaches in many industries have largely revolved 

around incineration, offsite, and onsite disposal techniques. However, these strategies pose 

significant challenges concerning the emissions produced, safety protocols, waste solvent 

handling, and the subsequent impact of these solvents on the ecosystem. For example, the 

annual Disability-Adjusted Life Years (DALY) linked to transportation for offsite disposal 

is estimated to fall between 0.35 and 35.03 [42]–[44], highlighting the considerable human 

health implications associated with these conventional disposal methods. Given the 

escalating trends in waste solvent generation, there is a pressing need for process 

intensification methods, such as solvent recovery, to address the growing environmental, 

health, and safety concerns.  

 Different aspects exist for a systems level solvent recovery design. Figure 3 shows 

the various aspects that can contribute to an efficient design. Economics is the main driving 

factor for most design problems. However, other factors such as process synthesis routes, 

solvent waste characteristics, environmental impact assessment and quality by design or 

control, can have a significant impact on how solvent recovery systems are designed 

efficiently, as shown in Figure 3.   
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Figure 3. Various aspects that can contribute to an efficient design of solvent recovery 

processes 

 

 

 For example, in the pharmaceutical space, Quality by Design (QbD) is of 

paramount importance [45]. Therefore, practicing QbD means finding alternative ways to 

recover the solvent for reuse rather than resorting to conventional treatment methods.  

1.2.4 Process Systems Engineering and Sustainability Assessment  

Future demand for process design research is anticipated to be influenced not only 

by traditional profit-driven motives, but also significantly by initiatives focused on 

sustainability. Thus, leveraging Process Systems Engineering (PSE) in the sustainability 

assessment of chemical processes is critical, offering a unique perspective towards 

addressing Sustainable Development Goals (SDGs).  

PSE deals with the design, operation, and optimization of chemical and industrial 

processes [3], [46]. It employs mathematical and statistical models, computational 
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algorithms, and control strategies for efficient process development, thus, improving 

productivity and reducing cost. However, the confluence of PSE and sustainability 

assessment provides a robust blend of multifaceted approach to sustainable development.  

PSE provides the technological and operational strategies for enhancing process 

efficiency through optimization strategies, thus helping to minimize the environmental 

footprint of the process. This synergistic association enables a systems-level perspective 

that helps to consider the entire life cycle of the process – from resource extraction to end-

of-life. Thus, through PSE, the often-conflicting interest between economics and 

sustainability assessment can be solved via a multi-objective optimization [47] problem 

formulation approach. Therefore, in this work, we leverage the power of PSE to solve 

multi-objective optimization problems within the areas of wastewater treatment network 

and synthesis of solvent recovery pathways.  

1.2.5 Role of Machine Learning in Sustainability Assessment 

The inception phase of process design, referred to as early-stage design, involves 

the preliminary examination undertaken after the delineation and detailing of the product 

[48]. This phase is distinguished by a greater degree of freedom attributed to the copious 

process options available [49]. The abundance of these options can be ascribed to the 

primary objectives of early-stage process synthesis, which predominantly include the 

identification of various raw materials along with their intermediate compounds, 

determination of process conditions, and selection of suitable equipment. Further 

characterizing this stage involves a considerable degree of experimentation and the 

frequent use of trial-and-error techniques, necessitated by the need to refine and test 

different synthesized routes [46], [50]. Concurrently, this phase of design is marked by the 
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limited availability of data [51], making the assessment of process sustainability a 

formidable challenge. 

Recent developments within the chemical process sector have underscored the 

necessity for the incorporation of sustainable design principles as highlighted earlier. 

Instead of treating sustainability as merely a constraint to be optimized, it is progressively 

being viewed as a goal to be achieved. This transition towards a goal-oriented approach is 

crucial, as the consideration of sustainability issues during the early design stages aids in 

the synthesis of processes that are more efficient. This, in turn, minimizes waste and 

emissions, promotes the use of renewable energy sources, and reduces the overall 

environmental impact of the manufacturing process.  

Over the past two decades, considerable research has been dedicated to the 

application of Machine Learning (ML) techniques to enhance the sustainability of chemical 

processes. As evidenced by Figure 4, there has been an exponential increase in the volume 

of publications concerning the application of ML to chemical process design. However, it 

is noteworthy that its application in the context of early-stage design has not been 

adequately explored. This discrepancy emphasizes the need for further research in this 

domain to facilitate the design of innovative and environmentally friendly systems within 

the chemical process space. 
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Figure 4. Publication contributions for Machine Learning for Chemical Process Design 

(ML-CPD) and Machine Learning for Early-stage Chemical Process Design (ML-ECPD) 

from Web of Science 

 

 

1.3 Synergistic Approach of Wastewater Treatment, Solvent Recovery, and ML for 

LCIA Predictions 

Wastewater treatment, fundamentally, is an exercise in pollution control. It 

involves the removal of pollutants and contaminants from wastewater before it is released 

back into the environment [28], [52]. This process is crucial in preventing waterborne 

pollutants from damaging aquatic ecosystems and endangering public health. By treating 

wastewater effectively, we are not just addressing the symptoms of environmental 

degradation but actively working towards maintaining the ecological balance. This aspect 

of environmental management is vital in controlling the direct impacts of industrial and 

domestic activities on natural water bodies.  
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Solvent recovery, in contrast, is a proactive approach that aligns with the principle 

of pollution prevention. This process involves capturing and reusing solvents used in 

industrial processes, thereby reducing the demand for new solvents and minimizing 

solvent-related waste [1], [39], [53]. By recovering and reusing solvents, industries can 

significantly decrease their environmental footprint. This approach not only reduces the 

volume of hazardous waste but also conserves resources and energy that would otherwise 

be expended in the production of new solvents. Solvent recovery exemplifies a shift from 

a traditional, linear economic model to a more sustainable, circular model where resource 

efficiency and waste reduction are prioritized. 

The integration of machine learning in predicting Life Cycle Impact Assessments 

(LCIA) marks a paradigm shift towards source reduction. Machine learning algorithms 

[54]–[56] can analyze complex datasets to predict the environmental impacts of products 

or processes over their entire life cycle. This predictive capability is instrumental in 

identifying potential environmental hotspots and facilitating source reduction strategies. 

By leveraging machine learning, industries can optimize their processes to minimize 

resource use and waste generation from the very beginning. This approach aligns with the 

principle of source reduction, which is the most effective way to minimize environmental 

impact. 

The unification of these three objectives - wastewater treatment as pollution 

control, solvent recovery as pollution prevention, and machine learning for LCIA 

predictions as source reduction - creates a comprehensive and synergistic approach to 

environmental management. Each element complements the others, forming a multi-

layered strategy that addresses environmental issues at different stages:  



 

15 

 

1. Preventive measures: Solvent recovery and machine learning for LCIA predictions work 

at the upstream level, preventing pollution before it occurs. Solvent recovery reduces the 

generation of hazardous waste, while machine learning helps in designing processes and 

products that are environmentally friendly from the outset. 

2. Control measures: Wastewater treatment acts as a control measure, dealing with 

pollutants that have already been generated. This is crucial for mitigating the immediate 

impacts of industrial and domestic effluents on the environment. 

3. Data-driven decision making: The use of machine learning in LCIA predictions also 

facilitates data-driven decision-making, enabling industries and policymakers to evaluate 

the long-term impacts of their actions and make informed choices about resource utilization 

and waste management. 

Thus, the integration of wastewater treatment, solvent recovery, and machine 

learning for LCIA predictions represents a holistic approach to environmental 

management. This unified strategy not only addresses the immediate challenges of 

pollution control but also fosters a culture of pollution prevention and source reduction. By 

adopting this integrated approach, we can significantly enhance our efforts towards 

sustainable development and environmental conservation. 

1.4 Thesis Structure 

This thesis is organized into four main parts. In the first part of this research 

(Chapter 3), the application of superstructure/maximal structure-based optimization 

techniques is used to delve into the sustainability assessment of wastewater treatment 

networks using the P-graph framework. The complex nature of these treatment networks 

requires an intricate balance between treatment effectiveness, economic feasibility, and 
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environmental impact. Our approach enhances the process synthesis methodology with a 

graph-theoretic approach, namely P-graph, that is used to synthesize the wastewater 

treatment networks. The resulting feasible and optimal structures are then individually 

solved using non-linear programming algorithm in GAMS, a high-level modeling system 

for mathematical optimization. This combination of methods results in a more detailed and 

holistic view of the environmental impacts of the network, leading to better-informed and 

more sustainable design and decision-making. 

Chapter 4 continues by exploring waste solvent recovery processes, a critical 

segment of industrial operations with significant sustainability potential. A superstructure-

based optimization model is developed that integrates economic and environmental factors, 

delivering a comprehensive sustainability assessment of these processes. This model 

allows the systematic exploration of feasible process alternatives and pathways, revealing 

optimal configurations under a diverse set of operational, economic, and environmental 

constraints.   

Chapter 5 takes a direction by employing machine learning techniques to predict 

life cycle impact assessment metrics, such as human health and global warming impacts, 

of chemicals during early-stage process synthesis. These metrics are pivotal to measuring 

the sustainability of industrial processes over their entire lifespan. By leveraging machine 

learning, forward-looking assessments can be made that will help industries and 

policymakers to forecast the long-term environmental consequences of their operations, 

thereby promoting sustainability. 
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The last part of the research (Chapter 6) presents the summary and conclusion of 

the key findings. It further gives some future work direction in the space of wastewater 

treatment and machine learning for better systems design and sustainability assessment.   

 Thus, this thesis represents interconnections between process systems engineering 

principles, and machine learning to address sustainability challenges. It delivers a 

comprehensive framework for sustainability assessment in industrial processes, 

illuminating the complex trade-offs between economic performance and environmental 

sustainability. This work seeks to make significant strides in the broader sustainability 

discourse, particularly as it relates to industrial operations.  
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Chapter 2  

Materials and Methods 

2.1 Systems Design Approach  

In the dynamic and complex world of process design, the systems approach has 

emerged as a transformative paradigm, offering a comprehensive framework for addressing 

the multifaceted challenges of designing and managing processes [49], [57]. A systems 

approach is a methodology that views a process not as a mere aggregation of discrete parts, 

but as an integrated whole [58]–[61]. This perspective is grounded in the understanding 

that the performance and efficacy of a process are not solely dependent on its individual 

components, but rather on the interactions and relationships between these components. 

The approach is inherently holistic, emphasizing the importance of understanding the entire 

system, including its environment, objectives, and the complex interplay of its various 

elements [58].  

One of the core principles of the systems approach is interconnectivity [58]. In 

process design, this principle mandates a recognition of the intricate web of dependencies 

and interactions within the system. Each component or operation within the process is seen 

not in isolation, but as part of a larger network, where changes or disturbances in one area 

can have cascading effects throughout the system. This interconnected perspective is 

crucial for predicting and managing the implications of process modifications, ensuring 

that optimizations in one part do not inadvertently lead to inefficiencies or problems in 

another.    
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Another critical aspect of the systems approach is its emphasis on the end-to-end 

process flow [57], [58]. Unlike traditional methods that might focus on optimizing 

individual operations or stages, the systems approach seeks to enhance the overall process 

flow, ensuring smooth and efficient transitions between different stages and minimizing 

bottlenecks. This approach is particularly advantageous in complex processes where 

multiple operations must be seamlessly integrated to achieve the desired output. 

The systems approach also inherently incorporates a degree of flexibility and 

adaptability [59]. In a constantly evolving business and technological landscape, processes 

must be designed with an eye toward future changes and challenges. The systems approach 

allows for this adaptability, enabling processes to evolve and scale in response to new 

demands, technological advancements, or shifts in the market.  

Furthermore, this approach fosters a culture of continuous improvement and 

innovation. By encouraging a broad, holistic view of the process, it opens up opportunities 

for innovative solutions that might be overlooked in a more narrow, segmented approach. 

This culture of innovation is crucial for maintaining competitiveness and efficiency in a 

rapidly changing world. Therefore, in this work, we leverage the idea of systems design to 

develop and solve mixed integer non-linear programming (MINLP) problems. 

2.2 Sustainable Process Index (SPI) Methodology for Sustainability Assessment 

Ecological footprints offer a comprehensive representation of the impact of a 

process on the land area. The utilization of land area as a metric provides meaningful 

insights when interpreting result outcomes. The principal advantage of implementing an 

ecological footprint is the ability to quantify the environmental load and stress associated 

with the process. Typically, ecological footprints take into account emissions affecting air, 
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water, and soil in relation to the process under review. Therefore, most ecological 

assessments inherently incorporate human health impacts.  

The  SPI [62]–[64], which is an ecological footprint, is able to map all these 

processes to land area, with the basic idea being that processes that uses larger land areas 

are less sustainable for  the same product objective.  The main advantage of using SPI is 

its ability to quantify the ecological pressures of the process, which is an often-neglected 

factor when performing sustainability assessments. Furthermore, the SPI helps tackle the 

insufficient interdependencies and relations between society and nature by presenting the 

effect of anthropogenic activities on the ecosystem and also justifies the fact that the 

available land area on earth is limited and must be used judiciously. Additionally, social 

impacts of the process are considered since the SPI inherently takes into consideration 

embedding the related process emissions into the ecosystem. Thus, the SPI presents a better 

way of relating the environment to human activities. 

There are seven main land areas considered in quantifying the SPI of a process or 

product.  These are (1) area needed for raw material production, (2) area needed for the 

energy production, (3) area needed for installation of equipment, (4) area needed for staff 

accommodation, and areas needed for embedding (5) water emissions, (6) air emissions, 

and (7) soil emissions. The summation of these partial areas gives the total arable area 

needed for that process.  The areas can be grouped into two main parts namely: input areas 

and output areas, as shown in Figure 5.  



 

21 

 

 

Figure 5. The various aspects to quantifying the sustainable process index 

 

 

𝐴𝑡𝑜𝑡 =  𝐴𝑅 +  𝐴𝐸 +  𝐴𝐼 + 𝐴𝑆 +  𝐴𝑝 (1)          

                                        

Equation (1) shows the basic equation for calculating the SPI value, where 𝐴𝑅 is the area 

needed for raw material production, 𝐴𝐸  is the area needed for energy consumption, 𝐴𝐼 is 

the area needed for installation of equipment, 𝐴𝑆 is the area needed for to accommodate 

staff, 𝐴𝑃 is the area needed to dissipate the air ,water and soil emissions sustainably into 

the ecosystem, and 𝐴𝑡𝑜𝑡 is the total area.  

 SPI is tailored for assessing industrial processes. It is particularly relevant when the 

goal is to evaluate and improve the sustainability of specific manufacturing processes or 

industrial activities. This approach is especially beneficial in industries where process 

efficiency and environmental impacts are critical considerations. In contrast, other 
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ecological footprints focus broadly on general consumption patterns, urban development, 

and national policies which might not provide the detailed insights required for process 

improvements in the industrial settings. Furthermore, SPI evaluates multiple 

environmental aspects of a process, including energy use, raw material consumption, 

emissions, direct and indirect installation of process equipment. This breadth ensures a 

holistic view and understanding of the environmental impacts. By covering such a wide 

array of environmental factors, SPI enables industries to identify and mitigate their most 

significant environmental impacts, rather than focusing on a single aspect like carbon 

footprint or water usage. Additionally, SPI provides a clear and process-specific tool for 

evaluating and improving industrial sustainability. Such specificity makes SPI an effective 

tool for developing industry-specific regulations and guidelines, as well as for companies 

looking to align with or even exceed environmental standards. Lastly, the SPI methodology 

can be customized and adopted to different industry-types or processes. This flexibility 

allows for more relevant and accurate assessments across various sectors, hence ensuring 

that the unique environmental challenges and opportunities of different industries are 

accurately represented and addressed.  

 In all SPI analysis in this thesis, Equation 1 is foundational model used to assess 

the ecological pressure of the system under consideration. Detailed mathematical models 

and parameter estimations for each component of the SPI is discussed in Chapter 3 and 

Appendix A.  

2.3 Emergy Analysis Methodology for Sustainability Assessment 

Ecological indicators provide valuable insight into the impact of human activities 

on the environment. However, they are often inadequate for accurately estimating the 
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energy demands of processes, a critical metric in chemical processes. Therefore, the 

integration of indicators that measure energy use is essential. Emergy, a quantitative 

methodology introduced by Odum in 1988 [65]–[67], has seen significant application over 

the years. This technique quantifies the flows of materials, energies, currencies, and 

services involved in the production of a product, and represents these flows as solar energy 

equivalents or solar-emjoules (sej).  

Emergy represents the cumulative energy, in its various forms, required to bring 

about a transformation process that results in a particular product [68]. In entropy terms, 

Emergy can be viewed as a measure of the produced entropy along the entire supply chain 

of a process. The concept of Emergy is based on the principle that all forms of energy can 

be traced back to the solar energy that sustains life and processes on earth [69]. Hence, any 

product, service, or system, can be assigned an ‘emergy value’ that signifies the equivalent 

solar energy consumed throughout its production or supply chain. Figure 6 shows the 

various steps involved in Emergy accounting.  
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Figure 6. Various aspects to Emergy accounting 

 

 

As shown in Figure 6, Emergy analysis delivers a quantified assessment of three 

significant footprints: Renewable Natural Resources (R), Non-Renewable Natural 

Resources (N), and Imported Resources (F). These footprints facilitate the calculation of 

Emergy Yield Ratio (EYR), Environmental Loading Ratio (ELR), and the Emergy 

Sustainability Index (ESI) [70]. The sum of Emergy illustrates the wealth of a system.  

One major advantage of using this methodology is its ability to encapsulate both 

the qualitative and quantitative aspects of energy use [71]. It transcends beyond traditional 

life cycle assessment methods and economic evaluation by integrating all the direct and 

indirect energy flows contributing to a product or system. This helps to provide a 

comprehensive analysis of environmental impacts, especially in the area of resource 

utilization. Additionally, it is able to provide more accurate ‘energy hotspots’ in a process, 

especially in areas where energy usage is extremely high. Another significant advantage of 
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Emergy analysis is its ability to integrate economic and ecological evaluations. By 

converting different forms of energy and resources into a common unit (emjoules), Emergy 

facilitates an integrated assessment of both economic costs and ecological impacts. This 

harmonization is essential for formulating strategies that are not only economically viable 

but also ecologically responsible, thus addressing the often-competing interests of 

economic development and environmental preservation. Lastly, Emergy analysis is 

instrumental in promoting the principles of the circular economy. It highlights the 

importance of recycling and efficient resource use, identifying processes where waste 

minimization and resource reuse or recycling can be enhanced. This contributes to a more 

sustainable and circular approach to production and consumption, reducing waste and 

maximizing resource efficiency. 

While Emergy analysis offers a significant benefit, it should not be used in 

isolation. It must be complemented with other environmental impact assessments 

indicators for a comprehensive picture of the sustainability of the process; hence, its 

integration with SPI in this work.  

2.4 Multi-Objective Optimization 

Optimization, as a critical aspect of decision-making and planning, traditionally 

focused on single-objective scenarios, where the aim was to find the best solution from a 

pool of feasible alternatives concerning one objective [47], [72]. However, real-world 

problems often require the simultaneous optimization of multiple, often conflicting, 

objectives. Such scenarios give rise to multi-objective optimization (MOO) [47], a subfield 

of optimization that addresses problems involving multiple objectives.   
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MOO encapsulates the essence of trade-off, compromise, and balance between 

conflicting objectives. The conflicting nature of the objectives means that improving one 

objective may worsen others, leading to a set of multiple optimal solutions, referred to as 

Pareto-optimal solutions. The Pareto-optimal front represents the list of non-dominated 

solution sets that achieve the best trade-offs among the objectives, with no solution being 

superior to any other without sacrificing at least one objective. There are several 

methodologies available for solving multi-objective optimization problems. The choice of 

a specific approach often depends on the problem context and the nature of the decision 

variables, constraints, and objective functions.  

Some of the most prevalent methodologies include the weighting method, the ε-

constraint method, goal programming, and evolutionary algorithms [47], [72].  

2.5 Machine Learning for Sustainability Assessment 

In light of the escalating complexity and multifarious nature of environmental 

challenges, it is crucial for Environmental Impact Assessment (EIA) professionals to have 

access to precise and high-performance tools that bolster their analytical abilities. These 

tools are instrumental in facilitating exhaustive assessments, enabling effective 

communication of outcomes, and promoting data-driven decision-making pertaining to the 

environmental impacts associated with industrial procedures. To cater to this demand, a 

plethora of modeling software platforms have been innovatively devised, each possessing 

distinct attributes and functionalities specifically designed for the execution of 

Environmental Impact Assessment and Life Cycle Assessment (LCA) analyses [73]. Some 

of the most established software platforms are SimaPro®, OpenLCA, Umberto, EcoChain, 

and GaBi [74], [75].  
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 However, while these traditional methods are valuable for impact assessment, there 

are numerous limitations and drawbacks when applied to early-stage process design. The 

dynamic nature of early-stage process design, which is characterized by frequent changes 

and iterations makes impact assessment challenging [49]. Furthermore, these traditional 

methods focus on a comprehensive analysis, however, during the design phase, it may be 

more beneficial to identify and prioritize the most important environmental hotspots or 

improvement opportunities [76].   

 ML is primarily engaged in formulating algorithms and statistical models that 

empower computers to learn and formulate predictions, without explicit programming [77]. 

The main objective of ML systems is to create models that can generalize from known 

examples to make predictions and decisions in previously unseen situations [78], [79]. The 

three main types of ML systems are supervised learning, unsupervised learning, and 

reinforcement learning. Each type addresses different learning scenarios and problems and 

can be combined with other types for better predictions.  

The following chapters in this dissertation will use either of these strategies or a 

combination of them for sustainability assessment. 
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Chapter 3  

Synthesis of Wastewater Treatment Networks via Simultaneous Cost and 

Sustainability Assessment Approach 

 Text and figures are reproduced and adapted with permission from Aboagye, E. A.; 

Burnham, S. M.; Dailey, J.; Zia, R.; Tran, C.; Desai, M.; Yenkie, K. M. Systematic Design, 

Optimization, and Sustainability Assessment for Generation of Efficient Wastewater 

Treatment Networks. Water 2021, 13 (9), 1326. https://doi.org/10.3390/w13091326; 

Pimentel, J., Aboagye, E., Orosz, Á., Markót, M.C.,Cabezas, H., Friedler, F., Yenkie, 

K.M., 2022. Enabling Technology Models with Nonlinearities in the Synthesis of 

Wastewater Treatment Networks based on the P-graph Framework. Computers & 

Chemical Engineering 108034. https://doi.org/10.1016/j.compchemeng.2022.108034; and 

Aboagye E.A., Pimentel J., Orosz Ákos, Cabezas H., Friedler F., Yenkie K.M., 2021, 

Efficient Design and Sustainability Assessment of Wastewater Treatment Networks using 

the P-graph Approach: A Tannery Waste Case Study, Chemical Engineering Transactions, 

88, 493-498, https://doi.org/10.3303/CET2188082 

3.1 Background 

 Minimizing wastewater (WW) generation is a crucial aspect of pollution 

prevention. WW streams usually contain various hazardous pollutants that must be reduced 

to acceptable concentrations or limits before disposal. As water has no substitutes, there is 

an urgent need to treat WW for reuse, proper disposal, or recycling. In the past two decades, 

researchers have explored the systematic design and optimization of wastewater treatment 

(WWT) plants or networks [2], [33], [35], [80]–[83]. However, a comprehensive approach 
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for designing efficient WWT networks is still lacking [31] in regards to sustainability 

assessment.  

The effectiveness of wastewater treatment processes depends on proper design, 

operation, and maintenance of treatment facilities. The environmental impacts of these 

processes include energy consumption and greenhouse gas emissions associated with the 

operation of wastewater treatment plants. Typically, for domestic wastewater treatment, 

the treatment process involves several steps, each designed to reduce different 

contaminants. The process starts with removal of debris, sand and grits. The primary settler 

and activated sludge are typically used for the treatment of such wastewater [52].   

During the primary settling step, there is removal of solid contaminants. 

Wastewater is held in large basins where heavy solids can settle to the bottom, while oil, 

grease, and lighter solids float to the top. These substances are then physically removed. 

Primary settling is effective in removing large, suspended solids but not the dissolved 

organic and inorganic pollutants [28], [35], [52].  

The secondary treatment step is primary biological, and targets dissolved organic 

matter that escapes the settling stage. The activated sludge process is a widely used method 

in this stage. It involves aerating the wastewater to encourage the growth of bacteria and 

other microorganisms. These microorganisms consume organic matter, effectively 

reducing the organic content of the wastewater. The mixture then goes to another settling 

tank to remove the microorganisms from the treated water [31], [84]. Further treatment is 

necessary to remove nutrients like nitrogen and phosphorus, which can cause 

eutrophication in water bodies, and such is accomplished using advanced treatment 

methods which include biological nutrient removal, such as filtration, or chemical 
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treatments. The treated water is usually disinfected to kill any remaining pathogens. 

Common disinfection methods include chlorination and ultraviolet light treatment.  

The tertiary wastewater treatment stage, also known as advanced wastewater 

treatment [33], represents the final cleaning process that improves wastewater quality 

before it is reused, recycled, or discharged into the environment. This stage is particularly 

crucial in the treatment of domestic wastewater as it focuses on the removal of 

contaminants that primary and secondary treatments may not fully address. The primary 

objective of tertiary treatment is to elevate water quality to meet specific standards required 

for its intended final use, which may include agricultural irrigation, industrial processes, or 

replenishment of natural water bodies. A central aspect of tertiary wastewater treatment for 

domestic wastewater is the removal of nutrients, particularly nitrogen and phosphorus, 

which are significant contributors to eutrophication in water bodies [28], [52]. 

Eutrophication, the enrichment of water by nutrients, can lead to excessive growth of algae 

and other aquatic plants, disrupting ecosystems and degrading water quality [85], [86]. 

The process of nitrogen removal typically involves biological nitrification and 

denitrification [28], [52]. Nitrification is a two-step aerobic process where ammonia is first 

converted to nitrite and then to nitrate. Subsequently, in the anoxic conditions of 

denitrification, these nitrates are converted into nitrogen gas, which is released into the 

atmosphere. This biological process is often supplemented with physical and chemical 

methods such as ion exchange and membrane filtration to ensure effective removal. 

In the case of phosphorus, it is generally removed through chemical precipitation 

[28], [52]. Chemicals like alum or iron salts are added to the wastewater to form insoluble 

compounds with phosphorus, which then precipitate out of the water. Biological 
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phosphorus removal can also be employed, where specific bacteria absorb phosphorus in 

excess of their metabolic needs and are subsequently removed from the water as part of the 

waste sludge. Figure 7 shows the traditional flowchart for municipal wastewater treatment 

where the technologies are predefined for the treatment process.  

 

 

Figure 7. Flowchart showing the typical steps involved in municipal wastewater treatment 

 

 

Another area that is increasingly being recognized for its potential is desalination 

[87]–[89] processes for wastewater treatment. In areas grappling with water scarcity, 

desalination offers a promising solution to augment water supplies by transforming treated 

wastewater into a resource suitable for various uses. The technology, while primarily aimed 

at salt removal, effectively eliminates a wide range of contaminants, making it an integral 

component of advanced wastewater treatment strategies. 

The cornerstone of desalination in wastewater treatment lies in its two most 

prevalent technologies: Reverse Osmosis and Electrodialysis [87]–[89]. Reverse Osmosis 

employs a semipermeable membrane to filter out salts, bacteria, and other impurities. 

Electrodialysis, on the other hand, utilizes an electric potential to drive salt ions through 

membranes, effectively separating them from the wastewater. This method excels in 
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applications where specific ion removal is critical, such as in certain industrial wastewater 

treatments. 

In the field of WWT, many researchers have made contributions to process design 

and optimization [32], [84], [90]–[94]. Optimizing the cost of treatment as well as 

sustainability assessment has been given some attention in recent years [2], however, few 

studies have focused on the sustainability assessment of wastewater treatment networks 

(WWTNs). Additionally, there has been no research regarding the integration of ecological 

footprints during the synthesis of wastewater treatment networks. Therefore, this chapter 

uses a superstructure-based approach to formulate a multi-objective problem for cost and 

sustainability assessment through an MINLP formulation and optimization. The 

sustainability assessment metric considered includes the sustainable process index (SPI), 

which is an ecological footprint indicator. This work implements a graph-theoretic 

approach called the P-graph framework [34] for the synthesis of WWTNs.  

The design of wastewater treatment plants (WWTP) is a complex systems problem, 

owing to the diverse range of technologies available for the removal of different 

contaminants. The treatment process is performed in stages, as shown in Figure 8, with the 

classification of treatment technologies based primarily on the relative abundance of the 

contaminants, treatment efficiency, driving force for separation, and the type of 

contaminant being removed.  
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Figure 8. Typical technologies found in stage-wise WWT 

 

 

3.1.1 Stages and Categories in Wastewater Treatment 

Wastewater treatment (WWT) typically falls into three main categories: physical, 

biological, and chemical, as shown in Figure 9. Categories in this case describe the various 

processes and transformations that happen in a specific treatment technology during the 

treatment process. The physical category entails treatment technologies that typically use 
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separation criteria based on physical driving force. For example, sedimentation technology 

leverages the difference in particle densities for contaminant removal. The biological 

category are the technologies that use biological means and transformations to remove 

contaminants, such as activated sludge, rotating biological contactors, among others. 

Finally, the chemical categories are technologies that typically use some chemical 

transformations to remove contaminants. Examples of such technologies include advanced 

oxidation processes, disinfection, among others. It should be noted that most technologies 

use a combination of these categories for contaminant removal, however, there is always a 

predominant mode of contaminant removal for each treatment network.  

These categories are used in a stage-wise approach to effectively remove 

contaminants based on their physical, biological, and chemical properties. During the 

pretreatment stage, a screening unit is used to remove large solids such as rags, cans, 

bottles, or anything that could clog pumps or pipes downstream. Additionally, flocculants 

are typically added to help suspended solid contaminants coalesce together and form 

heavier solids within the wastewater stream. The primary stage involves physical means, 

such as sedimentation and filtration, to remove solid contaminants. Most bacteria and 

microorganism treatment methods are found at the secondary stage, which is used to 

remove biological and chemical contaminants. The tertiary stage is usually used to adjust 

the pH and remove further contaminants that are still not within the desired standards. 

Typically, physical treatment processes are involved in the primary stage, while the 

secondary and tertiary stages include biological and chemical treatment processes. 
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Figure 9. The three major types of categories for WW 

 

 

3.1.2 Wastewater Treatment Technologies 

Technologies selected at each stage of the treatment process are dependent on the 

contamination, efficiency of removal, and the driving force. These technologies can be 

grouped into the pretreatment, primary, secondary, and tertiary stages as shown earlier in 

Figure 8. The pretreatment stage typically facilitates solids removal during the primary 

stage. Additionally, screens are implemented during this stage to remove large solid 

particles which can clog the downstream technologies. Technologies with lower 

efficiencies are generally included in the primary stage, which is focused on the removal 

of solid contaminants (usually are present in large quantities). The secondary stage 

comprises technologies that can effectively remove both biological and chemical 

contaminants. The tertiary stage includes the most efficient technologies for biological and 

chemical contaminants, and solid contaminants that may have escaped the pretreatment, 

primary, and secondary stages. However, in some cases, the tertiary stage can be omitted 

if the purity requirements are not stringent. The illustrated diagram in Figure 8 portrays the 

sequential stages of WWT and some technologies employed in each stage. Abbreviated 

names consisting of three to four letters are used to represent the various technologies in 
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the diagram. These abbreviations will be adopted in the process flow diagrams and 

superstructure representations henceforth. Below is a discussion of some of the treatment 

technologies.  

3.1.2.1 Pretreatment Technologies. Flocculation (Flc) is a process that involves 

the addition of a substance known as flocculants to a mixture, which leads to the clustering 

of particles to form larger agglomerates [52], [95]. The particles tend to become 

destabilized following the introduction of flocculants, which causes them to stick together 

and coagulate [52].  The suspended coagulated solids are further clustered together to form 

rapid-settling flocs. These flocs are then removed during the primary treatment stage [96].   

3.1.2.2 Primary Treatment Technologies. Sedimentation (Sdm) is a unit 

operation used to separate solid components in a liquid mixture based on their density 

differences, with less dense component rising to the top and the heavier ones sinking to the 

bottom [28], [52], [97]. Separation is achieved by allowing the mixture to settle over a 

period of time, during which gravity causes natural separation. Sedimentation is primarily 

employed in the treatment process to remove large solid particles or flocs generated during 

flocculation. 

Filtration (Granular) (Ftt): In WWT, suspended solids (SS) are commonly removed 

using granular filtration, which targets particles with sizes ranging from 10-100 microns. 

Prior to filtration, WW is often subjected to flocculation to promote the formation of larger 

particles. The filtration unit typically employs a bed of granular filter media, which 

functions in layers. Larger particles are removed at the top layer, while smaller particles 

are captured at the lower layers[52], [98], [99]. The efficiency of this process depends on 

factors such as the filter media, filtration velocity, particle concentration, and the 
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physicochemical properties of the SS. Different filter media types used for this process 

include gravel, coarse and fine sand [100].  

3.1.2.3 Secondary Treatment Technologies. Adsorption (Ads) is a well-

established process in which an adsorbate stream is made to flow through a solid adsorbent, 

leading to the accumulation and deposition of the adsorbate onto the surface of the 

adsorbent [101]. Several types of adsorbents can be used for this process, including 

activated carbon, synthetic polymers, and silica-based adsorbents. Activated carbon, in 

particular, is often preferred due to its cost-effectiveness and its ability to undergo thermal 

regeneration after use [52].  

Disinfection (Dis) is a critical process employed to eliminate harmful bacteria and 

other contaminants present in WW. Three widely used disinfection techniques are 

chemical, physical, and radiation-based methods [102]. Chemical disinfection techniques 

include chlorination, ozonation, as well as acid and alkaline treatments [103]. Physical 

disinfection techniques rely on heating, ultraviolet (UV) irradiation, filtration, and settling. 

On the other hand, radiation techniques employ electromagnetics and acoustics [104]. 

Chlorine is the most commonly used chemical disinfectant. While light/heat disinfection is 

also effective, it can be expensive when large volumes of WW require treatment [105], 

[106].  

Rotating Biological Contactor (Rbc) is a biological treatment process that involves 

the use of basins containing large circular disks, which are mounted on horizontal shafts 

that rotate slowly through WW streams. The disks are typically divided into various 

compartments by baffles within a single basin or reservoir [107], [108]. Biomass removal 

efficiency is dependent on the speed of rotation and disc diameter. Rbc is primarily used to 
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remove biological oxygen demand (BOD), phosphorus, nitrates, and some suspended 

solids during the WW treatment process [108].  

Membrane Bioreactor (Mbrt) consists of a bioreactor with immersed membranes. 

The membranes are constructed from various materials such as plastic and ceramics. 

Compressed air is passed through the system to scour the membrane. This technology is 

effective at removing organic carbon and other nutrients [29], [109]. An increase in 

aeration rate can help prevent the formation of biofilms on the surfaces of the immersed 

membranes [110]. The membrane bioreactor operates in a similar manner to activated 

sludge, but without the need for a secondary clarification unit. It is considered a promising 

and environmentally friendly treatment technology due to the high quality of effluent 

produced [111].  

Constructed wetlands (Cwl) utilize the concept of vegetation, soil, and 

microorganisms in the treatment of wastewater. The vegetation within the wetland 

facilitates absorb nutrients such as nitrates from the wastewater [112]. As wastewater 

passes through soil layers in constructed wetlands, there is some sedimentation and 

filtration [113]. The choice of plant species is a crucial factor in determining the efficacy 

of the constructed wetland in treating wastewater [114], [115]. Constructed wetlands are 

advantageous in that they can be used in small or remote areas and do not involve high 

operating costs [116].  

Microbial fuel cell (Mfc) technology involves the degradation of substrates present 

in wastewater by microorganisms. In this process, microbes oxidize the organic substrates 

in the anode chamber, leading to the generation of electricity as a result of the transport of 

electrons to the cathode chamber of the cell. The hydrogen ions move through a semi-
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permeable membrane to the cathode chamber, where they combine with supplied oxygen 

to form purified water [117], [118]. The utilization of wastewater as a fuel source provides 

the advantage of simultaneously purifying water and generating electricity in microbial 

fuel cells. However, the high capital cost associated with this technology represents the 

primary obstacle to its commercialization [119].  

Activated sludge (Asl) is a process used mainly for the treatment of biological 

contaminants. The objective is to convert biodegradable organic substances into more 

stable compounds. The traditional method employed in the activated sludge process is the 

suspended growth process, which can be either anaerobic or aerobic [28], [52]. The 

activated sludge process commonly involves three fundamental components: a reactor for 

microorganism suspension, a liquid-solid separation chamber, and a recycle system [120]. 

Numerous industrial and utility firms have adopted the activated sludge technology for 

treating their wastewater streams [121]–[123].  

3.1.2.4 Tertiary Treatment Technologies. Advanced oxidation processes (Aop) 

refer to the use of oxidizing agents to oxidize contaminants in wastewater. Hydroxyl 

radical-based and sulfate radical-based processes are some examples of such processes 

[124]. These radicals react with the organics in the wastewater, leading to their 

decomposition [125]. Examples of advanced oxidation processes include Fenton, photo-

assisted Fenton, catalytic ozonation, photocatalysis, and the combination of hydrogen 

peroxide with ozone or with other agents [126]–[128].  

Membrane processes (Mbr) refer to pressure-based filtration technologies that 

utilize semi-permeable membranes and particle sizes for separation. The prominent 

membrane technologies are microfiltration, ultrafiltration, nanofiltration, reverse osmosis, 
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dialysis, and electrodialysis [129]. Generally, membrane technologies with smaller pore 

sizes tend to be more expensive. However, these wastewater treatment systems can achieve 

an efficiency of approximately 99% [52], [130]–[132]. 

Bleaching (Blc) is a technology employed in the wastewater treatment (WWT) 

process to remove impurities and enhance the color of the treated wastewater. It is typically 

implemented at the final stage of treatment. The wastewater streams that commonly require 

bleaching are those generated by the pulp-and-paper industry[133], [134]. Chlorine in the 

form of hypochlorite and ozone are the usual bleaching agents utilized in this technology.  

3.1.3 Wastewater Contaminants and their Classification  

Wastewater streams require appropriate treatment technologies based on their 

unique characteristics, such as total suspended solids (TSS), total dissolved solids (TDS), 

pH, phosphates, nitrates, oil and grease contents, and heavy metals, among others [28], 

[135], [136]. Contaminants in WW streams can be categorized as biological or chemical 

oxygen-demanding components. Biological oxygen demand (BOD) is assigned to 

components like fatty acids, proteins, alcohols, and sugars and indicates the amount of 

oxygen required for microorganisms to eliminate contaminants [52], [97], [137]. Chemical 

oxygen demand (COD) is used to measure the presence of chemically treated contaminants, 

including those that require BOD [138]. The ratio between COD and BOD can determine 

the amount of oxygen required to oxidize contaminants to acceptable levels in the WW.  

3.2 Superstructure Optimization Approach to Wastewater Treatment 

The selection of a suitable technology for each treatment stage to meet purity requirements 

while minimizing the overall objective function is a complex decision-making process. 

This design complexity, therefore, requires the application of systems engineering tools to 
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determine the most appropriate technology for a given WW stream. One approach to 

addressing this problem is through the use of a superstructure generation and optimization 

method [35], [139], [140]. Many researchers have employed this superstructure 

optimization technique for process synthesis problems such as integrated process water 

networks [141], distributed water treatment and supply [142], and dynamic influent 

WWTNs [35]. Superstructures are very effective ways of selecting WWT technologies.  

3.3 The P-graph Approach to Wastewater Treatment Network Synthesis 

The P-graph framework is a systematic, graph-theoretic method for process design. 

Established by Friedler et al. in 1992 [34], [143], [144], it uses a distinct set of axioms and 

algorithms, alongside a bipartite graphical depiction of process units. This structure enables 

comprehensive handling of design problems. Guided by the P-graph axioms, a maximal 

structure (or superstructure), is generated from the initial set of materials and operating 

units. This process, inherently ruling out structural inconsistencies and incomplete 

structures, provides a clear advantage over traditional superstructure-based optimization 

methods by preventing errors and reducing unnecessary complexity. Moreover, algorithms 

of the P-graph framework capitalize on the structural properties of the network to manage 

binary terms and expedite optimization solutions. This is achieved by minimizing the 

problem size and enhancing the bounding step. The methodology also yields the set of n-

best designs in a ranked order. In contrast, traditional methods often require further model 

modifications such as integer-cuts to obtain a ranked set of solutions, leading to additional 

time and computational effort.  

 The P-graph framework rests on 3 main foundations. The first foundation is 

characterized by two main node types: M-type and O-type [34]. The M-type nodes, 
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symbolized by circles on the P-graph, represent the materials or streams under 

consideration in the process design. On the other hand, the O-type nodes, depicted as 

horizontal bars, correspond to the operating units that manage the transformation of these 

materials. These distinct nodes are interconnected through arcs, which elucidate the 

directionality of the material flow within the structure.  

The second foundational principle involves a collection of combinatorial axioms 

that define the structural prerequisites for a viable process [34]. A system of operating units 

that adheres to these axioms is termed a “combinatorially feasible structure” or “solution 

structure.” As such, the pursuit of the optimal, or a range of the best feasible processes, is 

restricted to these combinatorially feasible structures, resulting in a significant narrowing 

of the search domain. The following are the axioms of the P-graph framework and the 

corresponding explanations.   

Axiom 1: Every product must be represented as a material node in the structure of a 

feasible process [34].  

This axiom underlines a fundamental principle in process engineering. In the 

context of process engineering, a “material node” refers to a point within the process where 

a specific material or product is identified and accounted for. This includes raw materials, 

intermediates, final products, and by-products. The axiom emphasizes that every desired 

product of a process must have a corresponding material node. This requirement is not 

merely a matter of record-keeping or systematic organization but is crucial for the 

operational feasibility of the process. If a desired product is not represented as a material 

node, it implies that the process lacks a clear pathway or mechanism for its production. 
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Axiom 2: A material node of the structure of a feasible process has no ancestor if and only 

if it represents a raw material [34]. 

This statement not only defines what constitutes a raw material within a process but 

also delineates the boundaries between the process and the external environment. The 

concept of an “ancestor” in this context relates to the origin of a material within the process 

structure. According to the axiom, a material node that has no ancestor is classified as a 

raw material. This essentially means that raw materials are inputs that enter the process 

from outside and are not products or intermediates of any process steps. They are the 

starting points, the inputs from which the process begins. The axiom underscores the role 

of raw materials as interfaces between the process and the outside world. This perspective 

is crucial for understanding how processes are designed and operated. Raw materials are 

inputs that are external to the process – they are not generated within the system but are 

sourced from the environment. In practical terms, the axiom provides a clear guideline for 

identifying and managing raw materials in a process. It implies that any material required 

for the process that cannot be produced internally must be sourced externally. This 

understanding aids in the efficient design and optimization of processes, ensuring that all 

necessary inputs are accounted for.  

Axiom 3: Each operating unit appearing on the structure on the structure must be an 

element of the set of operating units of the problem definition [34].  

This axiom essentially states that in designing a process, only those operating units 

explicitly identified at the outset of the problem should be used as components of the 

process. This axiom has far-reaching implications for how engineers approach the design 

and optimization of industrial processes. At its core, this axiom establishes a foundational 
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rule for process design: the set of operating units considered for a process must be 

predefined and fixed at the beginning of the design phase. Operating units refer to the 

various equipment and components used in a process, such as reactors, separators, heat 

exchangers, and others. The axiom demands that the design and synthesis of a process 

should only incorporate those units that have been identified and defined as part of the 

initial problem set. This approach ensures a structured and focused design process, as it 

limits the scope of the design to a predefined set of tools and capabilities. This axiom also 

serves to streamline the problem-solving process in process synthesis. By establishing clear 

boundaries on what operating units can be used, it helps prevent the complication of the 

design process with too many variables or choices. This focus is particularly important in 

complex industrial processes where the myriad of potential options could otherwise lead 

to analysis paralysis or suboptimal solutions due to an overabundance of choices.  

Axiom 4: For each operating unit node of the structure of a feasible process, there is a 

path leading from this node to a material node of the structure representing a product [34].  

This statement asserts that every operating unit within a process should contribute, 

either directly or indirectly, to the production of a desired product. In any industrial process, 

operating units such as reactors, separators, or distillation columns serve specific functions 

in converting raw materials into desired products. The axiom underlines that each of these 

units must be part of a pathway leading to the creation of a product. This means that every 

unit should have a clear and justified role in the overall process; it should be involved in 

processing, transforming, or otherwise contributing to the production of an end product. 

The rationale behind this axiom is to prevent redundancy and ensure efficiency in process 

design. By stipulating that each operating unit must be part of a productive pathway, the 
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axiom eliminates the inclusion of superfluous or non-contributory units. This approach is 

critical in optimizing resource utilization, reducing costs, and improving the overall 

efficiency of the process.  

Axiom 5: For each material node of the structure of a feasible process, there exists at least 

one operating unit in the process, for which the material represented by this material node 

is an input or an output [34]. 

This axiom essentially states that every material identified in a process must be 

linked to at least one operating unit as either an input or an output. This axiom is pivotal in 

ensuring that every material in a process is accounted for and actively participates in the 

process. The rationale behind this axiom is to prevent the occurrence of redundant or idle 

materials within the process, which can lead to inefficiencies and inconsistencies. By 

stipulating that each material must be associated with at least one operating unit, the axiom 

ensures the coherence and logical flow of the process. This approach is essential for the 

efficient management of materials, ensuring that they are utilized effectively and contribute 

to the desired outputs of the process. 

The third foundational element consists of algorithms developed based on the 

combinatorial axioms. These algorithms leverage the structural details of the problem, 

producing results that refine the synthesis process and address significant challenges in 

algorithmic process design. Specifically, the MSG (Maximal Structure Generation) 

algorithm autonomously creates a thorough and precise superstructure, known as the 

“maximal structure”. This incorporates the operating units and materials as designated by 

the designer. Meanwhile, the SSG (Solution Structure Generation) algorithm lists all 

structures within the maximal structure that adhere to the P-graph axioms. These structures, 
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termed “combinatorially feasible structures”, can then be individually optimized, 

producing either a comprehensive or a top-ranked list of solutions. 

 Thus, these capabilities of P-graph can be leveraged for an efficient design of 

wastewater treatment network due to their systems nature. The superstructure developed 

for both pharmaceutical and municipal case studies presented in this work uses 

conventional approach for the synthesis analysis, while the tannery and coffee wastewater 

case studies implement the P-graph approach for the synthesis problems.  

3.4 Sustainable Process Index for Wastewater Treatment Network Assessment 

As discussed earlier, the commonest way to evaluate the environmental 

sustainability of processes is through LCA. However, there are other methodology that can 

be used which not, only consider the emissions from the process, but also take into account 

the source and type of raw material and energy usage, the area needed to accommodate the 

actual process plant, and further accommodate staff. Thus, in this work we incorporate the 

SPI methodology for sustainability assessment of wastewater treatment networks. Equation 

(1) gives the basic equation for estimating the SPI.  

𝐴𝑅 considers the area needed to provide both renewable and non-renewable raw 

materials. Equation (2) gives the area needed for renewable raw material production, 𝐴𝑅𝑅. 

𝐴𝑅𝑅 =  
𝐹𝑅𝑅

𝑦𝑅𝑅
 (2) 

 

where 𝐹𝑅𝑅 is the flow of the renewable material. Since wastewater is predominantly water, 

the average precipitation rate and seeping ratio are used to estimate the annual yield of 

rainfall, 𝑦𝑅𝑅. From the United States’ National Oceanic and Atmospheric Administration 
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(NOAA), the average precipitation rate from 2009 to 2019 is 0.8105 m/y. Multiplying this 

value by the density of water (1000 kg/m3) and a seeping ratio of 0.3 gives a value of 243.2 

kg/m2y as the yield of water. For the non-renewable raw material, 𝐴𝑁𝑅, Equations (3) and 

(4) are used.  

 

𝐴𝑁𝑅 =  
𝐹𝑁𝑅𝐸𝐷,𝑁𝑅

𝑦𝑁𝑅
  (3) 

 

𝐸𝐷,𝑁𝑅 =  
0.95 𝐶𝑁

𝐶𝐸
 (4) 

 

Here, 𝐹𝑁𝑅 is the flowrate of the non-renewable raw material used in the wastewater 

treatment, 𝐸𝐷,𝑁𝑅 is the energy required to supply one kilogram of the material in question, 

𝐶𝑁 is the price of the material, and 𝐶𝐸 is the unit price of energy. The total raw material 

area is estimated using Equation (5) 

 

𝐴𝑅 =   ∑ 𝐴𝑖,𝑅𝑅

𝑛

𝑖=1

+ ∑ 𝐴𝑗,𝑁𝑅

𝑚

𝑗=1

 (5) 

 

where 𝑖 and 𝑗 are the materials 𝑛 and 𝑚 are the total number of renewable and non-

renewable raw materials, respectively. 

𝐴𝐸  considers the area needed to provide energy for the treatment process. Equation 

(6) is used for the estimation.  
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𝐴𝐸 =   ∑
𝐹𝑖,𝐸

𝑦𝑖,𝐸
 

𝑛

𝑖=1

(6) 

 

Here, the 𝐹𝑖,𝐸 is the energy used from the 𝑖 energy source (hydro, nuclear, solar, etc.), while 

the 𝑦𝑖,𝐸 is the energy yield from the corresponding energy source.  

 For area needed for installation, 𝐴𝐼, two components are considered. The first is the 

area needed for direct installation of the of the various technologies. This area is estimated 

based on the size of the equipment. The second is the area needed for indirect installations 

such as piping and instrumentation. Similar to using the energy demand of the non-

renewable raw material area, an estimate is made based on the cost of installation, plant 

life, and cost of electricity. Equations (7) – (9) are used for these estimates.  

 

𝐴𝐼𝐼 =  
𝐸𝐷,𝐼𝐼

𝑦𝐼𝐼
 (7) 

 

𝐸𝐷,𝐼𝐼 =  
0.54 𝐶𝐼

𝐶𝐸𝑌
 (8) 

 

𝐴𝐼 =   ∑(𝐴𝑖,𝐷𝐼 +  𝐴𝑖,𝐼𝐼)

𝑛

𝑖=1

 (9) 

 

where 𝐴𝑖,𝐷𝐼 is the area occupied by technology 𝑖, and 𝐴𝑖,𝐼𝐼 is the corresponding indirect 

installation associated with the specific technology. Equation (10) is used to estimate the 

area needed to accommodate staff.  
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𝐴𝑆 =  
𝑁𝑆

𝑦𝑆
 (10) 

 

Here, 𝑁𝑆 is the total number of workers or staff at the treatment plant per year, while 𝑦𝑆 is 

the number of workers per m2 in a year. All these areas are considered as “input” areas to 

the process as shown in Figure 5 in section 2.1.  

 The “output” area, in this case comprises the area needed to dissipate the process 

emissions into the air, water, and soil compartments. To estimate the dissipation areas, the 

rate of renewal of each compartment, 𝑐 (𝑅𝑐), the allowable concentration of each emission 

component, 𝑚, into the compartment, 𝑐  (𝐶𝑚,𝑐), and the amount of component, 𝑚 emitted 

𝐹𝑚,𝑐. For the rate of regeneration for the soil compartment, 𝑅𝑠𝑜𝑖𝑙, the rate of soil renewal, 

which averages 0.00022 m/y in the United States is used assuming the soil is of type loamy, 

with a density of 1300 kg/m3 for a 50% pore space. Multiplying the density by the rate of 

soil generation gives an 𝑅𝑠𝑜𝑖𝑙 value of 0.2926 kg/m2y. For the rate of renewal of the water 

compartment, the yield of water in Equation (2) is used. The case is different for the air 

compartment. Equations (11) – (13) are used for the area estimation. Here, the 𝐴𝑃,𝑐 is the 

area for each ecological compartment, while 𝐴𝑃 is the total area for emission dissipation. 

Detailed models developed for each compartment can be found in Appendix A 

 

𝑆𝑐,𝑚 =  𝑅𝑐  𝐶𝑐,𝑚  (11) 

 

𝐴𝑃,𝑐 =  ∑
𝐹𝑐,𝑚

𝑆𝑐,𝑚
 

𝑛

𝑚=1

(12) 
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𝐴𝑃 =  ∑ 𝐴𝑃,𝑐 

𝑛

𝑐=1

(13) 

 

3.5 Cost Optimization and Post-Optimization Analysis for SPI 

Two case studies are considered for this analysis. The first entails a municipal 

wastewater treatment while the second is a pharmaceutical treatment problem. Below is a 

detailed description of the case studies, starting with superstructure synthesis, 

mathematical models for cost optimization, and SPI assessment of the optimal treatment 

pathways. 

3.5.1 Problem Specification and Solution Methodology 

A generic superstructure was developed for both case studies comprising all 

possible connections from the inlet wastewater stream to the final treated water. 

Pretreatment is the first stage which is made up of a flocculation (Flc) unit. In the second 

stage two primary treatment technologies are considered, namely, Sedimentation (Sdm) 

and granular Filtration (Ftt). Adsorption (Ads), Activated Sludge (Asl), Rotating 

Biological Contactors (Rbc), Membrane Bioreactor (Mbrt), and Disinfection (Dis) are the 

secondary stage technologies. The tertiary stage comprises of Advanced Oxidation 

Processes (Aop), Bleaching (Blc), and Membrane Processes (Mbr). Allocation of a 

technology to a stage is based on the efficiency of technology and wastewater 

characteristics. Depending on the effluent specifications, some stages can be skipped, 

hence a Bypass (Byp) is provided at each stage to accommodate that scenario. The 
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developed superstructure is shown in Figure 10, where each stage is linked to the next by 

Mixers (Mxr) and Splitters (Splt).  

 

 

Figure 10. Generic superstructure for municipal and pharmaceutical wastewater treatment 

 

 

The next step is to develop surrogate models for each technology considered in the 

superstructure. In building the mathematical models for each technology, mass and energy 

balances, design capacity constraints, capital cost, and operating cost are considered. The 
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mass balances include the constituents of the wastewater and other raw materials required 

for specific technologies. The capital cost is annualized over a 30-year period. The 

operating cost is made up of raw material, consumables, labor, utilities, and “other” 

(maintenance and overhead) costs. The raw material cost entails the cost of flocculant for 

the Flc unit, sodium hypochlorite for Blc, liquid chlorine for Dis, and ozone for Aop. 

Granulated Activated Carbon (GAC) for the Ads unit and filters for the Mbr unit are the 

major consumables for the analysis. In all technologies, it is assumed that the energy usage 

is by electricity. Detailed mathematical models for each technology in the superstructure, 

together with their parameters can be found in Appendix A. Additionally, all the analysis 

for SPI can be found in Appendix A.  

Wastewater streams typically contain several waste constituents. For example, 

Table 1 shows typical contaminants found in a municipal wastewater.  
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Table 1  

Typical Contaminants Found in Municipal Wastewater Streams ([28], [31], [52], [132]) 

Contaminant Concentration Units 

Acids/Chlorides 

COD 

BOD 

Settable Solids 

Lead 

Zinc 

Nickel 

Copper 

Specialized Chemicals 

5 

68–272 

100–400 

250–450 

30–80 

1.0 

0.04 

40–100 

<0.5 

mg/L 

mg/L 

mg/L 

mg/L 

mg/L 

mg/L 

mg/L 

mg/L 

µg/L 

Nitrogen 20-85 mg/L 

Phosphorus 5-15 mg/L 

 

 

Therefore, to simplify the optimization problem, the contaminants were grouped 

into three main categories, namely, solids, metals, and chemicals. The solids comprised of 

mainly settleable and suspended solids. The metals include heavy metals commonly found 

in wastewater streams such as lead, zinc, nickel. The chemical contaminants include 

chlorides, acids, organics, and inorganic compounds. One of the primary reasons for 

grouping BOD and COD together is to simplify the model. Both BOD and COD are 
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indicators of organic pollution in water, with COD encompassing a wider range of organic 

compounds than BOD. In the context of an MINLP model, which is already complex due 

to its nonlinear and integer characteristics, simplifying the model by aggregating similar 

variables can significantly enhance computational feasibility. This approach reduces the 

number of variables and constraints, thereby making the model more tractable and solvable 

within a reasonable timeframe. Furthermore, in many wastewater treatment scenarios, 

operations are designed to target a broad spectrum of contaminants. While BOD and COD 

have distinct chemical implications, their treatment often involves overlapping processes 

and technologies. By aggregating these parameters, the model more closely mirrors real-

world treatment scenarios where specific treatments target a range of organic pollutants, 

rather than individual constituents. Additionally, the aggregation into a single category 

indicates a focus on the overall treatment efficiency rather than on specific pollutants. This 

approach is particularly relevant when the primary goal is to assess the general performance 

of a wastewater treatment network rather than its effectiveness in removing specific types 

of contaminants. Table 2 shows the inlet concentrations and effluent specifications for the 

municipal case study.  
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Table 2  

Municipal Case Study Contaminant Composition and Effluent Specifications 

Contaminants Inlet Concentrations (g/m3) Outlet Specifications (mg/m3) 

Solids (settleable) 200 ≤2 

Metals (Pb, Cu, Zn, Ni) 0.1 ≤0.005 

Chemicals (acids, chlorides, 

organics, inorganics) 

1 ≤0.001 

 

 

For pharmaceutical wastewater, they vary not only in composition but also in quantity and 

season depending on raw materials used in the manufacturing process [138],[145]. 

Additionally, the wastewater streams usually contain Active Pharmaceutical Ingredients 

(APIs) such as Acetaminophen, Dextromethorphan HBr, Guaifenesin, among others as 

shown in Table 3. Therefore, in the pharmaceutical case study, there is an extra 

contaminant component, namely, APIs, as shown in Table 4. 
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Table 3  

Some APIs Found in Pharmaceutical Wastewater Streams ([29], [132]) 

Contaminants Concentration (g/m3) 

Acetaminophen 32.5 

Dextromethorphan HBr 1.0 

Guaifenesin 20.0 

Phenylephrine HCl 0.5 

 

 

Table 4  

Inlet Composition and Outlet Specification for Pharmaceutical Wastewater Case Study 

Contaminants Entering Stream (g/m3) Purity Specifications (mg/m3) 

Solids 10 ≤ 2 

Metals 0.01 ≤ 0.005 

Chemicals 44 ≤ 5 

Pharmaceutical (APIs) 0.4 ≤ 0.02 

 

 

The problem is formulated as a Mixed Integer Nonlinear Programming (MINLP), 

which is a subset of Discrete Programming problems. In formulating the MINLP problem, 

binary variables are used, where technologies selected are assigned a value of “1” (Yes), 
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while the unselected ones are assigned a value of “0” (No). MINLP optimization are 

typically used in situations where a “Yes” or “No” decision is to be made, hence its 

implementation in this work.  The optimization problem is formulated in the General 

Algebraic Modeling Systems (GAMS) language, and the global optimization solver used 

is the Branch and Bound Navigator (BARON) [147], with the objective of minimizing the 

total cost of treatment as shown in Equation (13). 

 

𝐶𝐶𝑇𝑃𝐶 =  𝐶𝐶𝑇𝐴𝐶 + 𝐶𝐶𝑇𝑅𝑀 + 𝐶𝐶𝑇𝐶𝑆 + 𝐶𝐶𝑇𝐿𝐶 + 𝐶𝐶𝑇𝑈𝐶 + 𝐶𝐶𝑇𝑂𝐶 (13) 

 

Here 𝐶𝐶𝑇𝑃𝐶, is the total treatment cost, while 𝐶𝐶𝑇𝐴𝐶, 𝐶𝐶𝑇𝑅𝑀, 𝐶𝐶𝑇𝐶𝑆, 𝐶𝐶𝑇𝐿𝐶, 𝐶𝐶𝑇𝐿𝐶, 

𝐶𝐶𝑇𝑈𝐶, and 𝐶𝐶𝑇𝑂𝐶 are the annualized capital cost, raw material, consumable, labor, 

utility, and “other” costs, respectively.  

Once the optimization is completed, the final step is to perform sustainability 

assessment of the optimal pathway using the SPI methodology as described in section 3.4. 

Below is the systematic evaluation framework for the treatment problem: 

1. Determine technology, parameters, inlet stream composition, and outlet effluent 

stream specifications 

2. Generate a superstructure that identifies and considers all treatment technologies  

3. Develop mathematical models for each technology  

4. Formulate an MINLP problem to minimize the treatment cost, while satisfying 

effluent specifications 
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5. Perform sustainability assessment for the optimal pathway using SPI. Additionally 

perform a comparative analysis of the incurred ecological burden with and without 

treatment 

3.5.2 Results and Discussion 

The selected optimal pathway for the municipal wastewater treatment is show in 

Figure 11, where Flc, Sdm, Ads, and Blc are the technologies selected.   
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Figure 11. Optimal pathway for municipal wastewater treatment.  

 

 

The total treatment cost is $1.52 million/y (1.92 $/m3) with both pretreatment and 

tertiary stages dominating the cost as shown in Figure 11 by the stage-wise percentage cost 

distribution. This is due the high unit cost of the flocculant and hypochlorite used in the 

flocculation and bleaching units, respectively. Annually, the flocculation unit requires 

796,356 kg of flocculant, and the bleaching process necessitates 1,307,164 kg of sodium 
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hypochlorite. The adsorption unit consumes 275,436 kg of GAC per year. The high 

consumption is attributed to the assumption of no regeneration for the GAC. Thus, 

regenerating the GAC could lower the yearly requirement and associated costs, however, 

most of the cost is dominated by the pretreatment and tertiary stages, hence cost reduction 

prioritization methods should be given to the technologies involved at these stages. Due to 

the high concentration of solids in the municipal wastewater, pretreatment stage was 

implemented to significantly improve the removal of the solid contaminants during the 

primary stage operation. The yearly expense for treating the wastewater, based on 7,920 

hours of annual operation, amounts to 1.92 $/m3. With this amount, the comprehensive 

operating cost - which encompasses material, consumable, labor, utility, and other 

associated costs - for the treated wastewater stands at 1.65 $/m3.  

Figure 12 shows the optimal pathway for the pharmaceutical wastewater treatment 

problem with Flc, Ftt, and Ads the selected technologies. In this case, the tertiary stage was 

bypassed with the primary stage being the highest cost contributor. The total treatment cost 

for the same yearly hours is 3.44 $/m3, with an operating cost contribution of 3.16 $/m3.  
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Figure 12. Optimal treatment pathway for pharmaceutical wastewater treatment 

 

 

Often, stakeholders are interested in the next best choice aside from the optimal 

cost. Therefore, by applying the method of integer-cuts, the next sub-optimal pathway can 

be determined. Table 5 gives a summary of the ranked options for both case studies. From 

Table 5 it can be noted that for the primary stage, filtration was preferred to sedimentation 

due to the need for technologies with higher efficiencies required to meet the effluent 

specifications for the pharmaceutical waste stream. Additionally, due to the complex nature 
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of pharmaceutical wastewater streams, the cost of treatment becomes very expensive even 

for the optimal value. Thus, finding ways to reduce the amount of API in the waste streams 

can help improve the cost of wastewater treatment in these industries.  

 

Table 5  

Results Summary for Second and Third Best Options 

Treatment 

Option 

Treatment Network Pathway Cost ($/m3 WW) 

Municipal Pharmaceutical Municipal Pharmaceutical 

First best 

(optimal) 

Flc-Sdm-Ads-

Blc 

Flc-Ftt-Ads 1.92 3.44 

Second best Flc-Sdm-Dis-

Blc 

Flc-Ftt-Dis 5.89 7.45 

Third best Flc-Ftt-Dis-Blc Flc-Ftt-Blc 8.56 20.80 

 

 

The area needed to embed soil emissions has the highest percentage contribution of 

77.7% to the municipal wastewater treatment. This is due to the low allowable 

concentrations. Given the presence of various metals in the wastewater stream, lead (Pb) 

was selected as the representative metal for quantification in this category. This decision 

was informed by the fact that Pb possesses the most restrictive annual allowable 

concentration in the soil compartment. Consequently, by addressing the area concerning 

lead, we inherently account for the other metallic contaminants. The raw material area is 

the next highest contributor with a value of 14.3%. Nevertheless, this percentage is heavily 
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influenced by the volume of wastewater processed annually. Notably, the spatial 

requirement for installation has the minimal impact on the overall SPI value. When 

contrasting the total spatial imprint for wastewater treatment with that of direct disposal 

(without any prior treatment), there is a marked 99.8% escalation in the SPI. Consequently, 

from an environmental perspective, it is more favorable to undergo wastewater treatment 

prior to its disposal. In our calculations for the area required for direct disposal, we 

exclusively considered the space needed to incorporate the wastewater into the soil and 

water compartments. This assumption is deemed justifiable, as other SPI categories only 

become significant in the presence of a treatment process.  

 For pharmaceutical treatment, the release of chemical contaminants into the water 

compartment of the ecosystem is the predominant factor influencing the SPI value. This 

prominence arises from the limited annual permissible concentration combined with an 

elevated flow rate of chemical contaminants to the water compartment. In contrast, the 

spatial requirement for installation has the least impact on the composite SPI value, 

suggesting that the treatment pathway exerts a minimal environmental burden in the 

overarching sustainability assessment. When considering strategies for pharmaceutical 

wastewater treatment, it's clear that reducing contaminant concentrations at their origin is 

pivotal. This perspective is reinforced by the fact that a substantial 93.9% of the SPI value 

stems from how contaminants disperse throughout various ecosystem compartments. In the 

absence of treatment, the area needed to manage wastewater in an environmentally 

conscious manner increases by 91.7%. In essence, bypassing treatment and introducing 

pharmaceutical wastewater directly into the ecosystem incurs a 91.7% greater 

environmental toll.  
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 For a clearer picture, Figure 13 presents the SPI values from our case studies. It is 

noteworthy that the SPI value, even after pharmaceutical wastewater treatment, remains 

notably elevated compared to the direct disposal of standard municipal wastewater.  

 

 

Figure 13. Consequential SPI for the various scenarios (MWWT – municipal wastewater 

treatment; DDMWW – direct disposal of municipal wastewater; PWWT – pharmaceutical 

wastewater treatment; DDPWW – direct disposal of pharmaceutical wastewater) 

 

 

3.6 Structural Complexity Using the P-graph Methodology for SPI Analysis 

In this section, the P-graph framework is used to first generate the maximal 

structure (superstructure). The solution structure generator (SSG) algorithm is then used to 

enumerate all the structurally feasible networks. Thus, the use of P-graph guarantees 

analyzing only structures that are feasible, thus, narrowing the search space for the optimal 

structure. Additionally, the use of P-graph can help generate the n-best feasible structures 
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without manually implementing integer-cuts for the next feasible options. The operational 

principles and the typical efficiencies of contaminant removal as discussed previously were 

used for the synthesis problem.  

3.6.1 Problem Specification and Solution Methodology 

In synthesizing the superstructure, the primary, secondary, and tertiary stages were 

considered in this analysis. For the structure of the primary stage, filtration has greater 

efficiency compared to sedimentation. Thus, a comprehensive structure may incorporate 

sedimentation followed by filtration. Therefore, the first stage can be structured in two 

main ways: a sedimentation process followed by filtration, or solely a filtration unit. The 

notion of placing filtration before sedimentation is not logical given the higher efficiency 

of filtration. Furthermore, while filtration typically succeeds sedimentation, it does not 

necessitate a mandatory flow through the filtration process. The flow retains the flexibility 

to bypass the filtration subsequent to sedimentation and proceed directly to the secondary 

stage for additional treatment. Figure 14 show the operations and connections for the 

primary stage.   

 

 

Figure 14. Primary stage structural complexity 
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For the secondary stage, one new technology was added to the technologies 

considered in section 3.5, namely, microbial fuel cell (Mfc). The same idea and principle 

used to generate the structure for the primary stage was used to generate a similar structure 

for the secondary stage as shown in Figure 15.  

 

 

Figure 15. Secondary stage structural complexity 

 

 

For the tertiary stage, two more technologies were included, namely, ion exchange 

(Inx) and ultrasonic (Uls). The same formulation used in stage one was used as shown in 

Figure 16.  
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Figure 16. Tertiary stage structural complexity 

 

 

It should be noted that each “streams to be processed” from preceding stage, has access to 

the whole structure of the next stage.  

Upon implementing the P-graph approach in this study, the analysis identified 3, 

38, and 9 plausible outlet streams for stages 1, 2, and 3, respectively. This led to the 

utilization of 1,720 operating units to model the feasible treatment pathways, along with 

an equivalent number of auxiliary units (1,720) to represent the mixing operations. 

Additionally, 3,447 M-type nodes were deployed to delineate the materials within the 

structure. The formulated optimization problem comprises 3,447 material balance 

inequalities and 3,440 continuous variables, which are used to represent the sizes of the 

various units. To indicate the inclusion or exclusion of units within the structure, an 

equivalent number of binary variables are incorporated. Despite the exponential increase 

in problem complexity attributed to these binary variables, they are effectively managed 

through the combinatorial algorithms inherent to the P-graph framework. For the purposes 

of this work, it is posited that the costs associated with the operating units are fixed-charge 
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linear functions, contingent on the flow rates of the streams entering the operations. 

Furthermore, the mixing operation is only considered in the final stage, immediately 

preceding the final product. This assumption is integral in maintaining the linearity of the 

overall model.  

A tannery case study is considered for this analysis. The tannery sector stands as a 

predominant contributor to wastewater generation. In 2016, the United States (US) 

processed an estimated 30,000,000 tons of rawhide [148]. Given that each ton of rawhide 

processing yields 30 – 35 m3 of wastewater [149], the annual tannery wastewater 

production in the US can be approximated to be between 900,000,000 and 1,050,000,000 

m3.  The intricate nature of tannery wastewater can be traced back to the array of chemicals 

employed during the transformation of the rawhide into leather, introducing a spectrum of 

pollutants. Specifically, the tanning phase is the primary source of chromium, ammonium, 

and chloride salts in the wastewater, whereas the beamhouse is chiefly responsible for 

elevated organic and sulfide content. The untreated discharge of tannery WW, with its 

elevated concentrations of organics, sulfides, suspended solids, and notably chromium, 

poses significant health and environmental risks [150].  

To simplify the analysis, contaminants were organized into five principal 

categories. Total Suspended Solids (TSS) encompassed all suspended solids in the sample. 

The metal contaminants category predominantly included heavy metals, specifically Mn2+, 

Zn2+, As3+, Pb2+, Cd2+, Ni2+, Co2+, and Fe2+. Although Chromium (VI) (Cr6+) is generally 

classified as a heavy metal, it was isolated from this category due to its significant presence 

as a challenging pollutant in the tannery industry, stemming from the recalcitrant nature of 

its removal. The chemical contaminants category primarily consisted of anions, including 
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SO4
2−, PO4-, NO3−, and Cl−. For each contaminant category, the pollutant with the most 

stringent permissible limit was employed as the outlet specification. Table 6 presents the 

assumed inlet and outlet contaminant concentrations. The entering flow rate of the 

wastewater (WW) was assumed to be 100 m³/h.  

 

Table 6  

Inlet and Outlet Specification for Case Study 

Contaminant Inlet Concentration (mg/L) Outlet Specification (mg/L) 

TSS 258 ≤100 

Metal 250.20 ≤0.1 

BOD/COD 5,958.62 ≤30 

Chromium 23.07 ≤0.01 

Chemical 3,459.32 ≤30 

 

 

3.6.2 Results and Discussion 

Figure 17 showcases the first three potential structures. The best-fit structure 

incorporates technologies like sedimentation (Sdm), rotating biological contactor (Rbc), 

microbial fuel cells (Mfc), ion exchange (Inx), and advanced oxidation processes (Aop). 

Stage #1, #2, and #3 refer to primary, secondary, and tertiary treatments, in that order. The 

notable variation among the structures is in how the flow is divided for the process. For 

instance, structure #1 diverts 22,308 kg/h of wastewater, which is 24.77% of the total liquid 

stream coming from the ion exchange tech. It is evident from Figure that the wastewater 
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skipping the initial stage in structures #2 and #3 is quite minimal, at around 0.08% and 

0.076%. This likely happens because the contaminant concentration in the waste stream 

remains high at the primary treatment stage. As we move on to the output from secondary 

and tertiary stages, they have had a significant amount of contaminants removed, allowing 

for more considerable flow splitting. 

 

 

Figure 17. First three feasible structures showing selected technologies, the cost of 

treatment for 1 L of wastewater treated, and annual cost 

 

 

From a stagewise cost distribution, the tertiary treatment stage stands out as the 

most significant contributor, ranging between 65.72% and 65.73%. The secondary stage 

contributes the least, at 3.93% for all the structures in Figure 1, while the primary stage 

floats around 30.34 – 30.35%. Diving deeper into the tertiary stage expenses, it becomes 
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clear that the Aop unit is the primary cost contributor, accounting for 93.47% of the entire 

tertiary treatment stage. Worth noting is that in every scenario, the chromium outlet 

specification was met. A closer look at the technologies revealed that the ion exchange unit 

effectively removed more than 90% of the chromium present in the inlet. 

 In the process of estimating the SPI for the treatment procedure, it is assumed that 

the contaminants removed are disposed via land and are thus characterized as emissions to 

soil. Concurrently, the purified wastewater stream, following treatment, is anticipated to 

be discharged into natural water bodies, and is hence classified as emission to water. The 

parameters, as outlined in Section 3.5, concerning the rates of renewability for both the soil 

and water compartments of the ecosphere, are utilized to compute the area necessary to 

effectively dissipate these water and soil emissions. Only the areas needed to dissipate soil 

and water emissions were considered for this analysis since the other areas made 

insignificant contributions to the overall SPI. 

 

Table 7 

SPI for the First Four Feasible Networks 

Rank Feasible Structure SPI (km2/m3) Cost ($/y) 

#1 Sdm-Rbc-Mfc-Inx(24%Byp)-Aop  20.395 1,232,970 

#2 Sdm(0.08%Byp)-Rbc-Mfc-Inx(20.58%Byp)-Aop 20.375 1,233,034 

#3 Sdm(0.076%Byp)-Rbc-Mfc(0.391%Byp)-Inx-Aop 20.382 1,233,365 

#4 Sdm-Rbc-Mfc-Inx-Aop 20.382 1,233,366 
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Table 7 presents the SPI values for each cubic meter of wastewater treated, 

corresponding to the feasible structures depicted in Figure 17. While feasible structure #1 

is the most cost-effective, it simultaneously exhibits the highest SPI value compared to the 

other three structures. Consequently, when evaluating purely on the basis of cost, structure 

#1 emerges as the preferred choice. However, when considering ecological impact, 

structure #2 is more favorable. The variations observed in SPI values can be attributed to 

the distinct inequality constraints applied to the outlet stream. It's noteworthy that while all 

the structures met the stipulated purity standards, certain structures demonstrated superior 

contaminant removal efficiencies. 

3.7 P-graph for Multiple Output Wastewater Treatment Streams and SPI Analysis 

To help improve the sustainability of industrial processes, it is paramount to find 

ways to reduce water usage. The problem arises when trying to treat wastewater with 

multiple outlet streams, with each output stream meeting certain specification for 

reusability or disposal. In that regard, the synthesis problem becomes extremely 

challenging. Thus, having a wastewater treatment system that can produce multiple outlet 

streams can be advantageous, especially in the event of implementing recycling streams. 

Furthermore, there is a reduction in both capital and utility expenses as a singular treatment 

system is adept at facilitating the purification and recovery of multiple streams. In that 

regard, the determination of the set of n-best solutions can be a requirement from the 

decision maker.   

The resulting problem from modeling different technologies oftentimes is a set of 

non-linear models to be solved. This is due to the difficult nature of guaranteeing a global 
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optimum after the optimization due to the nonlinearities within the system. However, by 

initially generating all the structurally feasible networks from the maximal superstructure, 

there is a guarantee that a global optima solution exists once each feasible network is 

numerically optimized. By using P-graph, all the structurally feasible networks can be 

generated using the SSG algorithm, and for each feasible network a detailed mathematical 

model can be developed to solve the resulting NLP problem. One advantage, in addition to 

being able to guarantee a global solution, is the reduction of structures that need to be 

solved, thus, improving computational efficiency. Furthermore, using P-graph helps in 

handling the technology selection part of the MINLP problem, making it easier to solve 

the resulting NLP problems. Additionally, being able to identify and rank n-best or all 

feasible networks based on either cost, or a sustainability metric presents the stakeholders 

a better wholistic view for decision making.   

3.7.1 Problem Specification and Solution Methodology 

A coffee case study is developed for this analysis. The soluble coffee industry is 

one of the highest consumers of water, consequently generating high volumes of 

wastewater [151]–[153]. For process intensification purposes and water conservation 

issues, it is advantageous to recycle water. Additionally, certain unit operations such as 

cooling towers [154] can benefit significantly from recycling due to less stringent water 

requirements for their operations. Table 8 shows the characteristics of the wastewater 

stream considered for this analysis, with a flowrate of 1,324,894 L/day.  
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Table 8 

Wastewater Characteristics from Soluble Coffee Processing 

Contaminant Units Feed Conditions 

COD mg/L 1140 

TSS (Turbidity) NTU 22 

Conductivity µS/cm 940 

 

 

The objective is to have two outlet streams with one stream being used in a cooling tower 

operation while the other stream is discharged into a water body. The recycled stream is to 

have 80% of the contaminants removed, while the discharge stream specification is based 

on the discharge guidelines set by the United States Environmental Protection Agency 

(USEPA). Table 9 gives the inlet and outlet specifications for this case study.  
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Table 9 

Coffee Wastewater Case Study Specifications. TBR – To Be Recycled; TBD – To Be 

Discharged 

Component 
Inlet Wastewater Flowrate 

(L/min) 

Outlet Stream Specification (L/min) 

TBR TBD 

COD 1.05 ≤ 0.21 ≤ 0.87 

TSS  0.01 ≤ 0.01 ≤ 0.24 

Conductivity 0.48 ≤ 0.09 ≤ 0.47 

 

 

Three stages are considered in the synthesis of the maximal structure. The primary 

stage consisted of sedimentation and membrane processes for the removal of the TSS. 

Rotating biological containers, membrane bioreactors, and activated sludge were 

considered for the secondary stage to primarily remove COD, while advanced oxidation 

processes and ion exchange were considered for the tertiary stage to reduce the 

conductivity of the effluent streams to the required specifications. Figure 18 shows the 

maximal structure generated for the coffee case study.  
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Figure 18. Maximal structure for coffee case study. TBR – To Be Recycles; TBD – To Be 

Discharged. 

 

 

3.7.2 Results and Discussion 

Using the MSG algorithm, over 300,000 possible network structures were 

generated. With the implementation of the SSG algorithm, 151,848 combinatorially 

feasible structures were identified from the maximal structure, thus reducing the structural 

search space by about 50%. Based on optimization of each feasible structure 2,779 were 

numerically feasible. The remining structures are either “technically infeasible” or the 

“solver failed to converge to a solution”. For the solutions which are “technically 

infeasible”, the structure fails to satisfy the constraints of the problem. One of the major 

constraints set for the analysis is to select structures with an SPI footprint lower than 1000 

m2. Thus, the problem can further be constrained for structures with even lower SPI values. 
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For the structures that the “solver failed to converge to a solution”, the solver provided no 

results.  

 If this synthesis problem was treated as a standard MINLP problem, the solver may 

halt for problems designated as “solver failed to converge to a solution” and the solution 

process may have been terminated. However, as can be seen from the analysis, these 

structures have no bearing on the results, once the problem was eventually transformed 

into NLP - another major advantage of using this approach for the treatment network 

synthesis. Figure 19 shows the structure (sedimentation-activated sludge-ion exchange) 

with the least SPI of 31.5 m2. One non-intuitive observation is to bypass 25% bypass of the 

wastewater stream at the primary stage. Most of the SPI contribution is allocated to both 

the primary and secondary stages, with the tertiary stage contributing to only about 2% of 

the area.  
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Figure 19. Structure with the least SPI 

 

 

Figure 20 shows the technology preference for each stage based on both cost and 

SPI. Due to filter area requirements, selection of Mbr tend to increase the SPI of the overall 

treatment process, as shown in Figure 20 (a). From Figure 20 (b) it can be noted that there 

is equal preference between Rbc and Asl. One interesting oberservation also from the 

secondary stage is that none of the numerically feasible structures included Mbrt. This is 

due to the high SPI associated with its operation, hence, none of the structures with Mbrt 

could meet the 1000 m2 constraint limit set. For the tertiary stage, there is much preference 

for Inx.  
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Figure 20. Distribution of technology selection for each stage. Subplots (a), (b), and (c) are 

for primary, secondary, and tertiary stages, respectively  

 

 

3.8 Conclusions 

Using the P-graph framework for wastewater treatment presents a better 

understanding of the synthesis problem. Non-intuitive solutions can be easily identified 

with this approach. Technologies that require the use of raw materials tend to increase the 



 

80 

 

SPI of the process. Additionally, mass-intensive technologies tend to increase the SPI of 

the process compared to energy-intensive technologies for wastewater treatment systems.
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Chapter 4 

Multi-Objective Approach to Solvent Recovery Systems 

Text and figures are reproduced and adapted with permission from Aboagye, E. A.; 

Chea, J.D.; Yenkie, K.M.; Systems Level Roadmap for Solvent Recovery and Reuse in 

Industries – A Review. iScience 2021 https://doi.org/10.1016/j.isci.2021.103114 and 

Aboagye, E.A., Chea, J.D., Lehr, A.L., Stengel, J.P., Heider, K.L., Savelski, M.J., Slater, 

C.S., Yenkie, K.M., 2022. Systematic Design of Solvent Recovery Pathways: Integrating 

Economics and Environmental Metrics. ACS Sustainable Chem. Eng. 10, 10879–10887. 

https://doi.org/10.1021/acssuschemeng.2c02497 

4.1 Background  

The execution of solvent recovery processes brings with it several complexities. 

Within the context of our contemporary market-driven economy, cost is a critical factor 

influencing industrial policies, determining the feasibility of integrating solvent recovery 

into industrial processes. Furthermore, the selection of appropriate technology for solvent 

recovery is a challenging task, given the abundance of different technologies performing 

similar functions. The aim is to choose a technology that achieves the required 

specifications at the lowest cost, which necessitates systematic evaluation. The integration 

of a sustainability metric to quantitatively assess the environmental impact of solvent 

recovery processes is a relatively underexplored area. Existing metrics, such as the E-factor 

[41], quantify waste production per kilogram of product manufactured. The American 

Chemical Society Green Chemistry Institute Pharmaceutical Roundtable (ACS-GCIPR) 

has adopted the Process Mass Intensity (PMI)[36] to evaluate the environmental efficiency 
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of pharmaceutical processes. However, these metrics are largely mass-dependent and often 

overlook energy demands along the supply chain of processes. One promising solution is 

the use of Emergy, an assessment that quantifies the total available energy expended in the 

transformation processes required to produce a product. Additionally, as discussed in 

Chapter 2, SPI is a better representation of the ecological burden of a process. Therefore, 

to have a holistic perspective to solvent recovery, there is the need to simultaneously 

optimize for both cost and sustainability.   

4.1.1 Superstructure-Based Optimization 

A superstructure optimization approach is used to capture all the technologies, 

mixers, splitters, streams, and connections. Four main stages were considered for the 

recovery process. The first stage comprised solid removal technologies, while the second 

stage (recovery stage) comprised technologies for liquid separations. The third and fourth 

stages (purification and refinement stages) are also made up of liquid separation 

technologies but of higher efficiencies. Additionally, bypass streams are included to 

eliminate non-essential stages. Binary variables were implemented for technology 

selection, with the summation of all binary variables at each stage equating to 1 meaning 

only a single technology can be selected at a stage. Figure 21 shows the proposed 

superstructure synthesized for the recovery process.   
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Figure 21. Superstructure for waste solvent recovery showing technologies, streams, and 

bypasses (SDM – Sedimentation; FLT – Filtration; PRC – Precipitation; CNF – 

Centrifugation; DST – Distillation; ATPE – Aqueous Two-Phase Extraction; PVP – 

Pervaporation; MF – Microfiltration; UF – Ultrafiltration; NF – Nanofiltration; 

BYP_1,2,3,4 – Bypasses 1,2,3, and 4  

 

 

4.1.2 Multi-Objective Optimization 

Multi-objective optimization (MOO) problem, which involve tackling two or more 

decision criteria that often compete against each other, is used in this analysis. These 

problems are quite common in real-world scenarios, especially when juggling multiple 

goals. For instance, in engineering tasks, it is typical to find challenges where there is a 

need to balance costs, risks, profits, efficiency, sustainability, and safety. This often means 

that there is no single ‘best’ solution, but rather a range of good solutions that offer different 
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trade-offs. MOPs can be broadly categorized into two types: generating-based methods and 

preference-based methods. Generating methods try to find a range of solutions that work 

well for the problem, resulting in what is known as a Pareto set. This set is super useful 

because it lets us weigh the pros and cons of different solutions. On the other hand, 

preference-based methods, like Goal Programming (GP), work a bit differently. Here, the 

presumption is that the decision-maker has predetermined targets that must be satisfied. In 

the context of this study, GP is firstly employed. The rationale for this choice arises from 

the inherent challenges in determining specific upper and lower bounds when multiple 

technologies compete for selection. Such bounds are essential for deploying generating 

methods and their associated Pareto sets. GP works by setting some reasonable target 

values for the decision variables and then trying to minimize the deviation from these 

targets. For the analysis, each objective function is initially optimized (minimization in this 

case) and subsequently a range of +/- 30%, with incremental steps of 10%, is employed to 

ascertain the ‘goal’ values. In the second part, the ε-constraints method. Since the three 

objective functions are all minimization problems, each objective is firstly optimized 

(minimized) to obtain the lower bound. Then an incremental step of 10% is employed as 

the constraint values. It should be noted that the MOP is implemented for the specialty case 

study as the complexity of the case study mimics realistic problems. The overarching 

objective in this research is the minimization of cost, SPI, and Emergy functions. Given 

the non-linear nature of the mathematical models, which encompass both continuous and 

binary variables, a Mixed-Integer Nonlinear Programming (MINLP) is formulated for the 

MOO problem. The Branch-And-Reduce Optimization Navigator (BARON, v 19.12.7) 
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[147] solver in General Algebraic Modeling Systems (GAMS, v 30.3.0) software was used 

to solve the problem. 

4.1.3 Emergy Analysis for Solvent Recovery 

The mathematical models for SPI have already been discussed in section 3.4, hence 

in this section we discussed the models for Emergy. As discussed in section 2.2, there are 

three main aspects to quantifying Emergy, namely, renewable energy resources (R), non-

renewable natural resources (N), and imported resources (F). To estimate R, N, and F, the 

flow of the specific resource is multiplied by its corresponding transformity. Transformity 

is the amount of solar energy (expressed in solar emjoules) required to produce one joule 

or kg of energy or product [65]. It measures the energy quality from the sun that is used in 

transformations. Equation (14) is used to estimate the renewable resource Emergy. 

 

𝑅 =  ∑ 𝑄𝑅𝑖
 𝑇𝑅𝑖

𝑛

𝑖

 (14) 

 

Here, 𝑄𝑅 (J/yr or kg/yr or $/yr) is the flow of the renewable resource, 𝑇𝑅  (sej/J or sej/kg or 

sej/$) is the transformity for that resource, while 𝑖 is the resource and 𝑛 is the total number 

of renewable resources. In this analysis, the mass of cooling water and steam are assumed 

to be renewable resources. For the non-renewable Emergy, Equation (15) is used for the 

estimation.  

 

𝑁 =  ∑ 𝑄𝑁𝑖
 𝑇𝑁𝑖

𝑛

𝑖

 (15) 
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Here, 𝑄𝑁 (J/yr or kg/yr or $/yr) is the flow of the non-renewable resource, 𝑇𝑁  (sej/J or 

sej/kg or sej/$) is the transformity for that resource, while 𝑖 is the resource and 𝑛 is the total 

number of non-renewable resources. The non-renewable resources comprised material of 

construction of each technology, electricity usage, and the waste solvent. For the imported 

resources, Equation (16) is used for the assessment. 

 

𝐹 =  ∑ 𝑄𝐹𝑖
 𝑇𝐹𝑖

 

𝑛

𝑖

(16) 

 

where, 𝑄𝐹 (J/yr or kg/yr or $/yr) is the flow of the imported resource, 𝑇𝐹  (sej/J or sej/kg or 

sej/$) is the transformity for that resource, while 𝑖 is the resource and 𝑛 is the total number 

of imported resources. The imported resources are assumed to be the purchased cost of 

materials and services, namely, annualized capital, labor, utility, maintenance, and 

overhead costs. Thus, the total Emergy, 𝑇𝐸𝑚 (sej/y), is given by Equation (17) 

 

𝑇𝐸𝑚 = 𝑅 + 𝑁 + 𝐹 (17) 

 

These three aspects lead to the quantification of Emergy Yield Ratio (EYR), Environmental 

Loading Ratio (ELR), and the Emergy Sustainability Index (ESI). EYR, calculated as the 

total Emergy divided by the imported resources, reveals the economic reliance of the 

process on imported elements. ELR, computed by dividing non-renewable and imported 

resources by renewable resources, indicates the environmental pressure exerted by 

economic activities on the process. Since this analysis considers both the direct and indirect 
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energy inputs and inputs of material resources, Emergy analysis is far-reaching in terms of 

environmental accounting. Appendix B contains all the detailed models for the Emergy 

analysis.  

4.2 Case Studies 

Pharmaceutical and Specialty chemicals case studies were studied for illustrative 

purposes. The pharmaceutical case study considers a binary waste stream as a motivating 

case study while the specialty case is more complex with four contaminants. Below is the 

solution strategy employed for each case study:  

Step#1: Formulate the mathematical models (mass and energy balances, capacity 

equations, cost equations, SPI equations, Emergy equations) 

Step#2: Specify the input and output stream requirements and other parameters 

Step#3: Perform simulation using mixed-integer non-linear programming in selecting 

technologies and quantifying the cost, SPI, and Emergy  

Step#4: Define ‘goals’ for each objective and perform optimization for each combination 

of ‘goals’ 

Step#5: Use the ε-constraint method for the optimization 

Step#6: Perform a similar analysis for incineration  

Step#7: Compare solvent recovery with incineration and decide 

4.2.1 Pharmaceutical Waste Stream: Problem Statement  

Isopropanol (IPA) serves as a critical solvent in the pharmaceutical industry [155], [156], 

with widespread applications owing to its versatile properties. One notable example of its 

utility is observed in the synthesis of celecoxib, an active pharmaceutical ingredient (API) 

that is a key component of the arthritis medication known as Celebrex [157].  
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4.2.2 Results and Discussion 

For this case study, the model comprises 347 equations and 336 variables, of which 

three are discrete. The model achieves an optimality gap of 0.0001 and takes 15.54 seconds 

to arrive at a solution. Figure 22 provides a detailed view of the Emergy and SPI 

distributions for the optimal pathway based on cost optimization, denoted as PVP-UF. The 

Emergy value of the waste solvent is notably high, approximately 96.6%. This elevated 

value is attributed to the extensive efforts required to convert resources into solvents, as 

evidenced by its sizable transformity and increased annual flow rate of waste solvent. In 

contrast, the Emergy associated with construction materials is the lowest, primarily because 

the pervaporation and ultrafiltration technologies require smaller capacities. The 

significant difference in Emergy content between the waste solvent and other components 

underscores the importance of minimizing waste at its source. This approach is essential 

for enhancing the environmental sustainability of processes. 

 



 

89 

 

 

Figure 22. Emergy and SPI breakdown for pharmaceutical case study. [AE, Area for 

energy consumption; AI,  Area for installation; AS, Area for staff usage; A-air, - Area 

needed to embed air emissions; A-water, - Area needed to embed water emissions; A-soil, 

- area needed to embed soil emissions; SolE – emergy content of waste solvent; MoCE – 

emergy associated with material of construction of selected technologies; LabE – emergy 

associated with labor; MaOE – emergy due to maintenance and overhead cost; APCE – 

emergy due to annualized purchase cost of technologies; UtiE – emergy associated with 

utilities] 

 

 

When evaluating the total Emergy required for incineration, it is found to be 2.88 

times higher than the Emergy for solvent recovery for the same amount of waste solvent. 

The EYR, which measures the economic reliance on imports for the recovery process, 

stands at 29.58. An EYR value exceeding 10 in processes typically signifies reduced 

dependency on imports. In contrast, the EYR for incinerating an equivalent amount of 

solvent is 1, underscoring the reduced sustainability of incineration compared to solvent 

recovery in this study. Furthermore, the ELR value for solvent recovery is 2.41 × 104, 
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whereas for incineration it is 4.02 × 103. Such a result aligns with expectations, given that 

incineration demands a larger influx of renewable resources (notably oxygen from the air) 

than solvent recovery, which primarily requires cooling water and steam. The Emergy 

Footprint Intensity (EFI) for incineration is 7.45, a value greater than 1, indicating that the 

ecological burden surpasses the environment's carrying capacity, highlighting the 

ecological instability of the process. However, with the introduction of solvent recovery, 

the EFI is reduced by 25.6%. Moreover, the ESI for the recovery process is 77.9% greater 

than that of incineration, underscoring the enhanced sustainability of solvent recovery. 

Upon evaluating the SPI analysis for the case study, it becomes evident that the 

area necessary to accommodate water emissions possesses the most significant footprint. 

This expansive requirement is primarily attributed to the stringent limits on the allowable 

concentrations of volatile organic carbons in water. Consequently, even minor quantities 

of organic carbon released into the water necessitate a large, designated area. The total SPI 

for incineration exceeds that of solvent recovery by 76.2%. 

A sensitivity analysis reveals that the cost, SPI, and Emergy values remain within 

acceptable ranges at flow rates below 1000 kg/hr (the standard case). However, when the 

flow rate is doubled, the SPI and Emergy of the process surge notably by 49.9% and 44.3% 

respectively, as shown in Figure 23. This highlights the significant impact of waste solvent 

generation on the sustainability of the process, emphasizing its sensitivity to changes in 

flow rate. 
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Figure 23. Sensitivity analysis showing how cost, SPI, and Emergy change with varying 

waste flowrate 

 

 

4.2.3 Specialty Chemical Waste Stream: Problem Description  

In the presented case study, the solvent waste stream consists of 21.3% 

dimethoxyethane (DME), 1.3% 1-ethoxy-1-methoxy ethane (EME), and 41.3%.  

4.2.4 Results and Discussion 

The model statistics for the specialty chemical case study encompass 825 equations, 

731 continuous variables, 7 discrete variables, an optimality gap of 0.0001, and a solution 

duration of 96.81 seconds. Figure 24 displays the optimization results for various pathways 

related to this case study. 
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Figure 24. Feasible pathways compared to incineration for specialty case study 

 

 

The sedimentation-pervaporation-ultrafiltration (SDM-PVP-UF) pathway 

demonstrates the lowest cost, SPI, and Emergy values, registering at $325,372/yr, 233.1 

km2, and 1.7 × 1018 sej/yr, respectively. Cost-wise, CNT-PVP-UF emerges as the second 

most favorable option, exhibiting a mere 0.02% increase from the optimal value, followed 

by the FTT-PVP-UF pathway, which presents a cost increase of 0.08%. The primary factor 

influencing this cost variation is the diverse capital and utility expenses associated with 

sedimentation, filtration, and centrifugation units. Regarding SPI, the FTT-PVP-UF 

pathway is more advantageous than CNT-PVP-UF due to the energy-intensive character 

of centrifugation, leading to an increased requirement for area to provide energy, thus 

resulting in an elevated SPI value. FLT-PVP-UF records the highest Emergy value, while 

incineration stands out as the pathway with the most substantial cost and SPI values. 
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Elevated emissions from the incineration process play a pivotal role in its higher SPI value. 

Additionally, the reliance on fossil-based fuel augments the area required for nonrenewable 

resource consumption, accounting for 42.3% of the total SPI value for the incineration 

process. Hence, the SPI offers valuable insights into the potential exploration of alternative 

solutions, such as the incorporation of renewable raw materials in the incineration process. 

Considering the economic reliance on imports, the EYR for incineration stands at 1.09, 

compared to 1.08 for the standard scenario (SDM-PVP-UF). However, the ELR for 

incineration exceeds the standard scenario by 95.0%. This pattern aligns with observations 

from the pharmaceutical case study, where the renewable resource input (oxygen, sourced 

from air) for the incineration process surpasses the input required for the recovery process, 

such as cooling water and steam. An increased ELR for the recovery process results in a 

diminished emergy sustainability index (6.80 × 10-6) in comparison to incineration (1.37 × 

10-4), highlighting solvent recovery as a more environmentally friendly option. 
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Figure 25. Breakdown of SPI and Emergy analysis for SDM-PVP-UF pathway for 

specialty case study 

 

 

Figure 25 presents the SPI and Emergy distribution for the SDM-PVP-UF pathway. 

Unlike the Emergy analysis observed in the pharmaceutical case study, the maintenance 

and overhead costs are the predominant contributors to the overall Emergy. In terms of SPI 

value, the area required to assimilate water emissions remains the most significant 

contributor, a trend consistent with findings from the pharmaceutical case study.  

A sensitivity analysis is conducted to assess the variations in cost, SPI, and Emergy 

in response to different waste flow rates as shown in Figure 26. In every scenario, the SDM-

PVP-UF pathway emerges as the most favorable, primarily due to the reduced operating 

expenses linked with the sedimentation process. Variations in the process flow rate exert 

the most pronounced influence on the SPI, followed by its impact on Emergy. This 
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relationship stems from the direct correlation between flow rate and emissions, which 

subsequently affects the required area. 

 

 

Figure 26. Sensitivity analysis showing how cost, SPI, and Emergy change with varying 

waste flowrate 

 

 

Figure 27 shows the pareto chart generated for this case study using the constraint-

based approach. Due to the energy intensive nature of CNT, the pathways shown with 

green circle correspond to CNT-PVP-UF. The data points indicated by the red circle 

correspond to SDM-PVP-UF. It can be observed that due to the bigger area needed by the 

SDM unit, the networks have higher SPI values. The datapoints with the blue circles 
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correspond to FLT-PVP-UF pathway. These pathways have higher cost association, and 

this can be attributed to the requirement of bigger filter areas, consequently, the higher cost.  

 

 

Figure 27. Pareto chart for specialty case study 

 

 

4.3 Conclusions 

In the presented framework, the scope encompasses economic considerations, the 

Sustainable Process Index (SPI), and Emergy metrics. Consequently, challenges related to 

solvent recovery have been reformulated into a multi-objective optimization problem, 

addressed using superstructure and mixed-integer nonlinear programming methodologies. 

Findings reveal that opting for solvent recovery over incineration can mitigate 
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approximately 76−85% of the ecological and energy burdens. It is noted that at lower flow 

rates, solvent recovery becomes less economically viable than incineration, given the 

associated capital and operational expenses. Moreover, when the flow rate is doubled in 

both case studies, there is a pronounced escalation in the SPI and Emergy footprints, 

underscoring the imperative to curtail solvent waste generation to further advance 

sustainability goals. 
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Chapter 5 

Predicting Life Cycle Impacts of Chemicals: A Machine Learning Approach 

 Text and figures used for this Chapter are pending publication. 

5.1 Background 

In the face of urgent challenges posed by climate change and heightened 

environmental concerns, industries are under intense scrutiny regarding the environmental 

consequences of their operations, especially with metrics like Global Warming Potential 

(GWP) taking center stage. This brings into focus the critical role of early-stage process 

synthesis, the stage where potential operational processes are formulated and evaluated. 

Decisions taken during this phase set the tone for the environmental repercussions of the 

entire operation. It is within this scenario that Machine Learning (ML) offers a 

transformative approach. By incorporating ML at this nascent stage, industries can 

effectively leverage its capabilities for prompt, precise, and thorough assessments of 

sustainability.  

One of the standout benefits of ML is its remarkable efficiency to handle systems 

without intuitive connections. Once appropriately trained, ML models can rapidly forecast 

sustainability metrics, enabling swift design adjustments and enhancements. Furthermore, 

the adaptability of ML allows it to seamlessly integrate with optimization strategies, 

assisting industries in designing processes that strike an optimal balance between 

environmental and economic concerns. From a financial perspective, ML proves 

invaluable. By pinpointing and tackling sustainability-related issues at the outset, industries 

can sidestep expensive alterations in later stages, resulting in significant cost savings. In 
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summary, integrating Machine Learning during the early-stage process synthesis marks a 

progressive step for industries committed to paving a sustainable path forward.  

Thermodynamic attributes like enthalpy, entropy, and Gibbs free energy [158], 

[159] offer valuable information about the energy needs of a process, operational 

efficiency, and overall viability . These factors play a critical role in determining the energy 

consumption of a process, subsequently affecting key sustainability metrics such as Global 

Warming Potential (GWP) and the total carbon footprint. Conversely, molecular 

characteristics [160, p. 5], [161, p. 6], which encompass molecular weight, bond energies, 

and functional groups, give insight into the inherent qualities of chemical substances. These 

characteristics serve as indicators of the reactivity[162], potential toxicity [163], and 

environmental impact [164] of a chemical. Often times, information on both 

thermodynamic and molecular properties is accessible during the initial stages of process 

design. Thus, by constructing an ML model that uses thermodynamic and molecular 

descriptors as input features and sustainability metrics as outputs, predictions can be made 

for both new and existing chemicals that may not yet have established sustainability 

metrics, enabling a more comprehensive and informed approach to evaluating 

sustainability right at the early-stage synthesis.   

In this chapter, ML models are developed to predict four sustainability metrics with 

molecular descriptors and thermodynamic properties as input features. The concept of ML 

is introduced where the fundamentals pertaining to developing an ML model is discussed 

briefly. The data acquisition regarding the sources of the thermodynamic and molecular 

properties of the chemicals are discussed. Further, the preparation of the data for model 

development is discussed. Various types of preprocessing methods used in this work is 
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discussed. Upon completion of the data preprocessing, the model development is 

discussed. Finally, the model evaluation and results are discussed together with the 

implementation of the model to a case. Figure 28 shows the various aspects for the ML 

implementation process.  

 

 

Figure 28. Schematic showing the stepwise approach to ML implementation 

 

 

5.2 Fundamentals of Machine Learning 

This section sub-section is dedicated to describing the fundamentals of ML 

systems, starting with the types of ML commonly encountered in the PSE space. Sub-

section 5.2.2 introduces the concepts of feature selection and reducing high dimensional 
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data into a lower dimension, while retaining much information about the data. The last sub-

section deals with ways to evaluate and validate a developed ML model.  

5.2.1 Types of Machine Learning Algorithms 

Supervised Learning (SL) [165], [166] refers to a subset of machine learning 

algorithms trained on labeled datasets. These datasets encompass both the input data 

(features) and corresponding output values (target labels). The primary objective of SL is 

to discern a function that maps inputs to outputs, enabling the model to predict accurately 

for previously unencountered data points [167]. Common applications of SL encompass 

classification and regression tasks, with prevalent methods including linear and logistic 

regression, support vector machines (SVM), ensemble models, and neural networks [54], 

[77], [168]. 

Contrastingly, Unsupervised Learning (UL) pertains to algorithms that process 

datasets lacking predefined labels or output values [77], [168]. The central purpose of UL 

is the identification of inherent patterns or structures within the data, which might manifest 

as clusters, relationships among variables, or concealed representations. Prominent 

applications of UL focus on clustering and dimensionality reduction, with techniques such 

as k-means clustering, hierarchical clustering, and principal component analysis (PCA) 

being widespread [169], [170]. 

Reinforcement Learning (RL) [171], another machine learning category, involves 

an agent that learns to make decisions within a particular environment based on feedback, 

which could be in the form of rewards or penalties. The ultimate goal for RL models is to 

optimize the agent's actions to cumulatively maximize rewards over time. RL is especially 

valuable in scenarios where the optimal solution is elusive and requires a degree of 
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explorative trial and error. Notable RL techniques include Q-learning, deep Q-networks 

(DQN), and policy gradients [171], [172]. 

5.2.2 Feature Selection and Dimensionality Reduction 

Feature selection is crucial for enhancing the accuracy of predictive models by 

identifying the most relevant variables and simplifying the dataset. One approach, known 

as filter methods, assesses features individually using metrics like correlation and mutual 

information [173], [174]. These metrics gauge how each feature relates to the target 

variable, enabling the selection of the most strongly correlated features. Another approach 

involves iterative algorithms that evaluate feature subsets based on a given model's 

performance. Common iterative techniques include forward selection, backward 

elimination, and recursive feature elimination. 

Dimensionality reduction techniques streamline large datasets, enhancing the 

efficacy of predictive models while conserving computational resources. Principal 

Component Analysis (PCA) [56], [175] is a widely used linear method that identifies 

principal components, or primary directions, showcasing the most data variation. While 

reducing data dimensions, PCA maintains much of the original data's variability. Beyond 

these, techniques like feature agglomeration and manifold learning, aggregate features 

based on similarity and retain intricate data relationships, addressing complexities beyond 

the reach of linear methods like PCA and SVD [56].  

5.2.3 Model Evaluation and Validation 

For accurate evaluation and validation of a predictive model, one method is to 

divide the data into training, validation, and test sets. The training set is used to train the 

model, the validation set is used for tuning hyperparameters, and the test set measures 
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efficacy of new data on the model [77]. This division helps ensure the model neither 

overfits nor underfits, offering a genuine reflection of its potential real-world performance. 

Cross-validation offers another evaluation approach: the training data is segmented into ‘k’ 

subsets, with the model trained and validated ‘k’ times, each time using a different subset 

as validation data [176]. The performance of the model is then averaged over these 

iterations for a consistent generalization estimate. Depending on the nature of the problem 

(regression or classification), various metrics, such as mean squared error (MSE), mean 

absolute error (MAE), root mean squared error (RMSE), and R-squared, can assess the 

accuracy and reliability of the model. 

5.3 Data Acquisition  

A list of 350 common solvents is assembled covering a wide spectrum of molecules 

such as alcohols, esters, hydrocarbons, and ethers. The data set acquired is in two parts, the 

first part is the feature set data, while the second part is the label set data set. The feature 

set comprised of two types, the thermodynamic and molecular descriptor data. Thus, the 

feature set entails the chemical properties from which the model learns from. The label 

data is the one that the developed model tries to predict.   

A total of 15 thermodynamic properties is acquired for each chemical. Some of the 

thermodynamic properties used in the model comprised critical temperature, critical 

pressure, critical volume, heat capacity, boiling point, standard Gibbs-free energy, among 

others. To acquire this data, the first step is extracting the SMILES string and chemical 

formula for each chemical. The SMILES string is generated from CIRpy (version 1.0.2), a 

Python library that serves as the interface for the Chemical Identifier Resolver (CIR) [177]. 

This library searches the National Institute of Health database for the structures of the 
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chemicals. In the next step, the extracted SMILES string is used to extract the respective 

thermodynamic properties using ‘chemicals’ (version 1.1.4) [178] and ‘thermo’ (version 

0.2.26), two Python libraries which contain a database of an extensive compilation of pure 

and calculated chemical properties. The local databank found in both libraries is a 

compilation made from National Institute of Standards and Technology (NIST) [179], 

Design Institute for Physical Properties (DIPPR) [180], PubChem (by the National Institute 

of Health) [181], CRC Handbook, Perry’s Chemical Engineers’ Handbook , and various 

scientific papers and publications. Thus, over 20,000 chemicals and their corresponding 

thermodynamic properties are available as a local databank within these libraries.   

For the molecular descriptor properties, RDKit (version 2023.3.3) [182], which is 

also an open-source Python library, is used to acquire 200 molecular descriptors for each 

chemical. RDKit is a comprehensive collection of cheminformatics toolkits which can be 

used to compute a wide range of molecular descriptors. It is commonly used in the 

cheminformatic space for drug discovery, and toxicological studies. Some of the molecular 

properties include molecular weight, carbon count, maximum partial charge, functional 

group, number of heterogeneous atoms, number of radical atoms, number of aliphatic rings, 

among others.  

The last step in the data acquisition is extraction of the label data. For this, 

SimaPro® (version 9.4.0.2) [75] is used to gather sustainability metric data for cradle-to-

gate of each chemical. SimaPro is an LCA software tool, which facilitates a detailed 

analysis of the life cycle of a product. A standout feature of SimaPro is its comprehensive 

database. This extensive resource includes a wide array of international datasets, detailing 

various aspects such as raw materials, different manufacturing processes, transportation 
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methods, and end-of-life practices. Four endpoint metrics are considered, namely, human 

health impact (HHI), ecosystem quality impact (EQI), global warming potential (GWP), 

and resource utilization impact (RUI) for each chemical. These four endpoint metrics are 

chosen due to decision-making relevance, ease of communication, and depth of analysis. 

Thus, using SimaPro, the impact per kilogram of each chemical for the listed sustainability 

metrics are assembled. 

5.4 Data Preprocessing 

The extracted data comes with a lot of inconsistencies, such as missing data, and 

outliers. Additionally, each feature has a different range of values. Therefore, to be 

consistent, and reduce the problem of overfitting or underfitting, the feature set data needs 

to be preprocessed before model development. Thus, data preprocessing is an ensemble of 

techniques aimed at transforming raw data into a format more suitable for model 

development [56]. The first step is to find ways to replace missing label data because the 

label data had 85 out of the 350 datapoints missing. Ideally, it is best to remove rows within 

the dataset that have missing label data, however, ML models thrive on large datasets, 

hence the need to find ways to replace the missing label data. The k-Nearest Neighbors 

(kNN) [183] method of data imputation is used for this analysis. The idea with kNN is to 

identify ‘k’ neighboring points or samples within the dataset that are similar or close in 

space. The space is normally a Euclidean distance or Manhattan distance space. The mean 

value of the ‘k’ neighbors is used to replace the missing data.  

Upon completion of the missing data imputation, the next step is to determine 

outliers. This is done based on the label data, since the aim of the prediction is based on 

the label data. The first step is to normalize the data about the mean and standard deviation, 
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resulting in the z-score. Once normalized, the datapoints that fall beyond the three standard 

deviations from the mean is considered as an outlier [184]. The original label dataset did 

not follow are normal distribution, however, since the z-score outlier detection criteria 

works on the assumption that the data follows a normal distribution, a log transformation 

is initially implemented (see Figure 29) on the label data before the application of the 

outlier removal. The resulting dataset is then reverted to the original.  
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Figure 29. Log transformation of label data. The blue histogram shows the distribution of 

the actual label dataset while the red histogram shows the log-transform form of the data.   

 

 

The last step in the data preprocessing is to scale the feature dataset. In algorithms 

like ANN that calculate the distances between data points, the scale of the features 

significantly affects the results. If feature scaling is not applied, a feature with a broader 
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range and higher order of magnitude might disproportionately influence the outcome, 

regardless of its actual relevance or importance. Additionally, distance-dependent 

algorithms tend to converge faster when the features are on a similar scale. The features 

for this work are scaled to be in a range of 0 and 5.  

5.5 Model Development 

The next crucial step is the model development phase which consists of feature 

selection, model training, hyperparameter tuning and validation, and model evaluation. The 

following subsections delve into the various strategies used at each step of the development 

process.   

5.5.1 Feature Selection 

Due to the high number of features available, there is a need to select features that 

make the highest contribution to the model. By focusing on only features that have 

significant importance to the model, there is reduced computational time, and redundant 

features are neglected, thus, improving the model accuracy. A total of 10 features are 

selected with 5 from each thermodynamic and molecular feature set. This is to make sure 

each feature set has an equal contribution to the model. Furthermore, this makes the model 

more realistic in terms of its usage by users since only 10 properties are needed to make 

predictions for the specific chemical in question. Moreover, rather than using the same 10 

features to make predictions for the four metrics, each metric has its own distinct feature 

set, hence, only the features that significantly have an impact on making predictions for 

that metric is actually used. Additionally, doing so largely reduces redundant calculations 

and saves computational time. To select the top 5 features from each feature set, a 

Sequential Backward Feature Selection (SBFS) [56], [185] criterion is used. The idea with 
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SBFS is to generate all the possible subset of size, n-1, from the original feature set, n. For 

each subset, a scoring evaluation is performed based on a defined model. The subset with 

the best scoring metric is selected for the next iteration. The process is repeated until the 

number of required features is reached. For this analysis, the predefined model used is a 

linear regression, with the scoring being MSE.  

5.5.2 Model Training and Hyperparameter Tuning 

Once the feature set is finalized for each label, the next step is to select the ML 

model for training. Two ML models are tested in this work, namely, eXtreme Gradient 

Boosting (XGBoost) and Artificial Neural Network (ANN).  

 XGBoost [186], [187], which is an ensemble ML model, is an advanced and 

efficient implementation of the gradient boosting framework designed to optimize large-

scale ML problems. In essence, it progressively builds models by correcting the 

inaccuracies of prior models. The adjustments are guided by the gradient descent method, 

which identifies and addresses the weaknesses in the current ensemble by adding a new 

decision tree. This iterative process continues until the error reaches a set limit or once a 

specified number of trees have been incorporated. For this work, the data is divided into 

training, validation, and testing sets, as discussed in section 5.3.3. To improve the 

performance of the model developed, certain hyperparameters of the XGBoost (version 

1.7.6) model need to be optimized. Four to six hyperparameters which have the highest 

impact on the model are chosen and tuned using the ‘hyperopt’ (version, 0.2.7) [188] 

library, a global optimization package which uses a Bayesian optimization [189] 

framework. The hyperparameters include the maximum depth of a tree(‘max_depth’), 

learning rate (‘learning_rate’), the number of trees to include (‘n_estimators’), the 
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minimum number of instance weight needed in a child node (‘min_child_weight’), the 

fraction of samples that are chosen randomly to grow  the trees (‘subsample’), and the 

fraction of features randomly chosen to grow each tree. The validation set is used to 

determine the optimal hyperparameters by defining an objective function to minimize MSE 

between the true and predicted values for the validation set, after training the model on the 

training set. Thus, in all instances, the test set is only used for model evaluation to observe 

the generalizability of the developed model.  

The second model developed is ANN [56], [176]. ANN is a subset of ML 

algorithms, derived from the way biological neural networks within the human brain 

operate. Central to these models are elements called ‘neurons’ or nodes, organized in 

layers, responsible for processing and conveying data. A neuron accepts several inputs, 

computes based on these inputs, and generates an output. Each input has an associated 

weight, adjusted during training to improve the accuracy of predictions. After aggregating 

the inputs considering their weights, the neuron uses an activation function to determine 

its final output. The ANN model is constructed using the TensorFlow (version 2.12.0) 

[176], [190] library. The hyperparameters tuned for this model include the learning rate, 

the number of hidden layers, number of neurons for input and hidden layers, dropout rate, 

type of activation function, type of loss function, the batch size, and the number of epochs. 

The Adam optimizer is used during the training process. Similar to XGBoost, the 

hyperparameter tuning is done on the validation set. For each model, the dataset is divided 

into 80% training, 10% validation, and 10% testing. 

For model evaluation, the R2 value and the Root-Mean-Squared-Error (RMSE) are 

used. Both the coefficient of determination, commonly referred to as R2, and the RMSE 
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are crucial metrics that provide a detailed view of the performance of the model. R2 serves 

as a measure that indicates the proportion of variance in the outcome variable that can be 

explained by the predictors in the model. It effectively captures the relative fit to the data 

of the model. Additionally, due to its intuitive nature and widespread acceptance, R2 has 

become an essential tool for communicating the goodness of fit to a diverse audience. 

Conversely, RMSE provides insight into the accuracy of the model by measuring the 

average magnitude of errors between the predicted and actual outcomes. It offers a direct, 

absolute measure of the fit of the model. In essence, while R2 provides a comparative view 

of the fit of the model in relation to the variance of the data, RMSE quantifies the average 

deviation in predictions. Hence, leveraging both metrics simultaneously yields a well-

rounded evaluation, highlighting potential concerns such as overfitting. By ensuring 

predictions are aligned both in terms of relative and absolute fit with the actual values, this 

dual assessment strategy bolsters the credibility and reliability of the results from the 

model. 

5.6 Model Results and Discussion 

Table 10 shows the selected properties for each metric after the implementation of 

SBFS. For the thermodynamic properties, critical temperature and heat capacity are 

selected for each metric. XLogP and boiling point are the next properties found in three of 

the four metrics. For the molecular descriptors, HallKierAlpha, which captures the three 

dimensionality in terms of shape representation and branching of the molecule, is selected 

for three out of the four metrics.  
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Table 10 

Selected Features for Each Sustainability Metric 

Metric 
Selected Features 

Thermodynamic Properties Molecular Descriptors 

HHI heat of vaporization, heat capacity, 

XLogP, acentric factor, critical 

temperature 

Chi0, HallKierAlpha, SMR_VSA7, 

VSA_EState6, 

NumValenceElectrons 

EQI heat capacity, standard formation 

enthalpy (gas), boiling Point, critical 

temperature, critical volume 

Chi2v, BertzCT, HallKierAlpha, qed, 

fr_halogen 

GWP Heat capacity, boiling point, XLogP, 

critical temperature, critical molar 

volume 

BertzCT, ExactMolWt, 

HallKierAlpha, PEOE_VSA6, 

NOCount 

RUI heat capacity, boiling point, XLogP, 

critical pressure, critical temperature 

ExactMolWt, MaxAbsPartialCharge, 

MaxPartialCharge, 

NumRotatableBonds,  SMR_VSA2 

 

 

Figure 30 shows a parity plot for each of the metric from the ANN model. For the 

HHI (Figure 30 (a)), The test set performs even better from both training and validation set 

with a value of 0.957 for the R2 score. It can also be observed that the RMSE for the train-

validation-test sets are close enough, indicating acceptable predictions, Furthermore, the 

predictions vary between 0.606 – 12.138 (10-6) DALY/kgchem for a 95% confidence 

interval. Despite the large difference in the for the R2 EQI metric (Figure 30 (b)), the RMSE 

is within acceptable limits. Hence, prediction from this model is also acceptable, however, 

more effort must be made to refine the model to improve the R2 value for a much more 
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reliable prediction. For a 95% confidence interval, the prediction ranges from 0.202 – 2.341 

PDF.m2.yr, however from Figure 30 (b), it is evident that an appreciable number of 

predictions fall above the 2.341 upper limit. Therefore, some chemicals with extreme 

impacts on EQI at the edges of the training data are currently predicted and need further 

improvements. Results from the GWP model also shows good prediction however, similar 

to the case of EQI, the model overfits the training data, hence the observed significant 

difference of the R2 between the training and testing sets, however, this model is better 

compared to the EQI predictions. For the GWP model, the prediction ranges from 0.816 to 

8.375 kgCO2-eq/kgchem for a 95% confidence interval. Lastly, the RUI metric, which can 

also be interpreted as the Cumulative Energy Demand (CED) for the production of the 

chemical gives very good predictions, with predictions ranging from 3.667 to 16.960 (x101) 

MJ/kgchem for a 95% confidence interval.  
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Figure 30. Parity plot for each metric from the ANN model. (a) is for human health impact 

(HHI), (b) is for ecosystem quality impact (EQI), (c) is for global warming potential 

(GWP), (d) is for resource utilization impact (RUI) 

 

 

To understand which features out of the 10 have the most impact to the model 

performance, permutation importance is implemented. Figure 31 shows the results of each 

feature on the corresponding metric. It can be observed that for HHI, the molecular 

descriptors have the highest impact on the model as the top 4 features are all molecular 

descriptors. Similar observations are made for EQI and RUI. However, for GWP the 

thermodynamic features have the highest impact on the model. One notable observation 

about the model for EQI is that the ‘boiling point’ feature seems to have a negative impact 

on the model. Hence, one of the ways to improve that model could be to redevelop the 

model without the inclusion of that feature.   
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Figure 31. Feature importance for each metric from the ANN model. (a) is for human 

health impact (HHI), (b) is for ecosystem quality impact (EQI), (c) is for global warming 

potential (GWP), (d) is for resource utilization impact (RUI) 

 

 

Sensitivity analysis is implemented to observe the impact of each feature on the 

corresponding metric. The sensitivity analysis conducted in this context leverages a 

bootstrap-like method to perturb feature values and observe the resultant variations in the 

predictions for each model. Bootstrapping [191], in statistical terms, is a resampling 

technique used to estimate statistics on a population by sampling a dataset with 

replacement. It is widely acclaimed for its efficacy in approximating the distribution of 

various statistics without necessitating the assumption of normality. In the context of this 

sensitivity analysis, the bootstrapping concept is adapted to assess the robustness and 

behavior of a machine learning model, particularly an artificial neural network.  
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The implemented method involves systematically altering the values of a specific 

feature across a defined range while keeping other features constant [191], [192]. This 

range is determined based on the observed values of the feature in the dataset, typically 

spanning from the minimum to the maximum observed value. For each perturbed value, 

the prediction for the model is computed, and the resultant outputs are recorded. This 

process is akin to “sampling” across the possible values of the feature and observing the 

corresponding “response” of the model. In this analysis, the bootstrapping is done using 

the testing set to make sure the analysis is done on unseen data by the respective models. 

Figure 32 shows how sensitive each feature from the human health impact metric 

is for the ANN model. It can be observed that apart from the heat of vaporization and 

acentric factor, the model is sensitive to the remaining features.  
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Figure 32. Sensitivity analysis for each feature for human health impact of ANN model 



 

118 

 

Figure 33 shows the sensitivity of each feature for the ecosystem quality impact metric for 

the ANN model. It can be observed that each feature fairly impacts the prediction. This is 

due to the poor predictions for the metric by the ANN model.  
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Figure 33. Sensitivity analysis for each feature for ecosystem quality impact of ANN 

model 
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Figure 34 shows the sensitivity of each feature for the global warming potential metric for 

the ANN model. It can be observed that XLogP and critical volume have the highest 

sensitivity to the model output.  
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Figure 34. Sensitivity analysis for each feature for global warming potential of ANN model 
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Figure 35 shows the sensitivity analysis for the resource utilization impact metric. It can 

be observed that the SMR_VSA2 feature is the most sensitive to predicting this metric.  

 

 

Figure 35. Sensitivity analysis for each feature for resource utilization impact of ANN 

model 
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Figure 36 shows results from the XGBoost model. One notable observation is the 

improvement of the EQI metric as compared to the ANN model. However, it can also be 

observed that some of the predictions for the validation set in the negatives. This challenge 

is overcome by changing the type of objective function used or defining a custom objective 

function. For the RUI metric, ANN performs better at predictions based on the evaluation 

metrics. Furthermore, there is less overfitting for the GWP metric from the XGBoost model 

compared to the ANN model.  

 

 

Figure 36. Parity plot for each metric from the XGBoost model. (a) is for human health 

impact (HHI), (b) is for ecosystem quality impact (EQI), (c) is for global warming potential 

(GWP), (d) is for resource utilization impact (RUI) 

 

 

Figure 37 shows how the features contribute to prediction for each environmental impact 

metric. The heat capacity has the highest impact on the HHI metric as compared to the 
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second highest which is SMR_VSA7 feature. Similar observation is made for the EQI 

metric as critical molar volume contributes highest to the prediction. For the GWP metric, 

both XGBoost and ANN prefer thermodynamic properties as compared to the molecular 

descriptors. Conversely for the RUI metric both ML models prefer molecular descriptors 

as opposed to thermodynamic properties.  

 

 

Figure 37. Feature importance for each metric from the XGBoost model. (a) is for human 

health impact (HHI), (b) is for ecosystem quality impact (EQI), (c) is for global warming 

potential (GWP), (d) is for resource utilization impact (RUI) 

 

 

In terms of the sensitivity of each feature for the XGBoost models, Figure 38 shows 

that heat of vaporization and heat capacity are the most sensitive to the human health model 

prediction.  
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Figure 38. Sensitivity analysis for each feature for human health impact of XGBoost model 
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Regarding the sensitivity for the ecosystem quality impact metric, it can be observed from 

Figure 39 that heat capacity, molar volume, and Chi2v features have the highest sensitivity 

to predicting the metric.  
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Figure 39. Sensitivity analysis for each feature for ecosystem quality impact of XGBoost 

model 
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From Figure 40, it can be observed that all the features have significant sensitivity to the 

output prediction for the global warming potential metric for the XGBoost model.  
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Figure 40. Sensitivity analysis for each feature for global warming potential of XGBoost 

model 
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Similar to the global warming potential, it can be observed that all the features for the 

resource utilization model have significant impact on the prediction of the metric as shown 

in Figure 41.  
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Figure 41. Sensitivity analysis for each feature for resource utilization impact of XGBoost 

model 
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Table 11 shows the confidence interval for each matric of both ANN and XGBoost model. 

 

Table 11 

Comparison of Confidence Interval for Actual Data and Model 

Metric 

95% Confidence Interval 

Actual Data XGBoost Model ANN Model 

Human Health Impact (x10-6) 0.545 – 12.251 0.632 – 12.374 0.606 – 12.138 

Ecosystem Quality Impact 0.022 – 3.122 0.022 – 3.010 0.202 – 2.341 

Global Warming Potential 0.684 – 9.803 0.810 – 9.048 0.816 – 8.375 

Resource Utilization Impact 34.867 – 175.910 44.934 – 153.296 36.67 – 169.60 

 

 

5.7 Case Study: Cradle-to-Cradle Prediction of Life Cycle Impact Metrics for 

Chemicals 

The ANN model is chosen to demonstrate the capability of the developed ML 

model using a case study and the novelty of incorporating ML models to help perform a 

cradle-to-cradle life cycle assessment of chemicals. Additionally, the case study shows how 

linked this developed model is to the EoL scenarios presented in chapters 3 and 4. In this 

case study, the ANN model is used to predict the environmental impacts of the chemicals 

used from cradle-to-gate, an ASPEN model is created for the use phase of the chemicals 

from a typical chemical process, and solvent recovery is implemented as the EoL option 

for the waste stream resulting from the process.   
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5.7.1 Process Description and Solution Strategy 

N-Methyl-2-pyrrolidone (NMP) is a polar aprotic solvent characterized by its 

elevated boiling point. This solvent finds extensive applications in the chemical sector, 

especially in polymer production. In polymer manufacturing, the application of N-Methyl-

2-pyrrolidone (NMP) raises concerns due to its non-consumptive nature in synthesis and 

processing, leading to its release as waste. Such usage and subsequent waste generation is 

widespread in the fine and specialty chemical industries. Despite the recognized health and 

environmental hazards associated with NMP disposal, the absence of viable and less 

hazardous alternatives to NMP and other dipolar aprotic solvents ensures its continued 

prominence in the specialty chemical domain. Therefore, it is important to recover the 

solvent after usage. Pastore et al [193] performed a life cycle assessment of the recovery 

of NMP from a waste stream. Figure 42 shows the developed flowchart for their analysis. 

Therefore, this case study is chosen to evaluate the developed ML model.   

The impact for the production phase of the chemical is predicted by the developed 

ANN model. The use-phase impact is captured in the energy demand of the reactor and the 

washing. The impact for the EoL phase is captured by recovery of NMP.  
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Figure 42. Flowchart for case study showing the different stages of NMP life cycle 

 

 

Table 12 gives the specifications for the case study. Here ODA is 4,4’-

Diaminodiphenyl ether, PMDA is Pyromellitic dianhydride. These are the aromatic 

dianhydride and aromatic diamine used as monomers for the synthesis of the Polyimide 

(PI) precursor. Trifluoroacetic acid (TFA), hydroxyethyl methacrylate (HEMA), and 

hydrochloric acid (HCl) are reagents and catalysts used to speed up the reaction while 

ethanol (EtOH) is a byproduct from the reaction. There is water as a byproduct from the 

reaction as well. To simplify the analysis, it is assumed that the ethanol produced, together 

with HEMA, TFA, and HCl are in small quantities. This assumption is based on the fact 

that the composition of these components in the waste stream is minute as can be seen in 

Table 12.  
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Table 12  

NMP Case Study Specifications  

Component Inlet Mass (kg/yr) 

(Reactor) 

Ultrapure water (kg/yr) 

(Washing) 

‘Hazardous waste’ 

composition (%wt) 

NMP 183416 - 17 

ODA 24054.84096 - - 

PMDA 26202.28571 - - 

HEMA 5448 - 0.5 

TFA 5448 - 0.5 

HCl 5448 - 0.5 

H2O - 4114148 81.5 

EtOH - - - 

PI - - - 

 

 

Equations (18) – (20) gives the environmental impact of each phase of the life cycle 

assessment.  

 

𝐿𝐶𝐴𝑖,𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 =  ∑ 𝐿𝐶𝐴𝑖,𝑗,𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛

𝑛

𝑗

(18) 

 

𝐿𝐶𝐴𝑖,𝑢𝑠𝑒−𝑝ℎ𝑎𝑠𝑒 =  ∑ 𝐿𝐶𝐴𝑖,𝑘,𝑢𝑠𝑒−𝑝ℎ𝑎𝑠𝑒

𝑚

𝑗

+ 𝐿𝐶𝐴𝑖,𝑤𝑎𝑡𝑒𝑟,𝑢𝑠𝑒−𝑝ℎ𝑎𝑠𝑒 (19) 
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𝐿𝐶𝐴𝑖,𝐸𝑜𝐿 =  (1 − 𝑅𝑟𝑒𝑐,𝑁𝑀𝑃)𝐿𝐶𝐴𝑖,𝑁𝑀𝑃,𝐸𝑜𝐿 + ∑ 𝐿𝐶𝐴𝑖,𝑗,𝐸𝑜𝐿

𝑛

𝑗−1

+ ∑ 𝐿𝐶𝐴𝑖,𝑘,𝐸𝑜𝐿

𝑚

𝑗

(20) 

 

Here, 𝐿𝐶𝐴𝑖,𝑗,𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 is the environment impact metric 𝑖 for the production of chemical 

𝑗, and 𝑛 is the total number of chemicals. 𝐿𝐶𝐴𝑖,𝑘,𝑢𝑠𝑒−𝑝ℎ𝑎𝑠𝑒 is the environmental metric 𝑖 

for the energy demand of technology 𝑘, 𝑚 is the total number of technologies in the 

process, 𝐿𝐶𝐴𝑖,𝑤𝑎𝑡𝑒𝑟,𝑢𝑠𝑒−𝑝ℎ𝑎𝑠𝑒 is the impact metric for the total amount of water used in the 

process. 𝑅𝑟𝑒𝑐,𝑁𝑀𝑃 is the amount of NMP recovered for reuse, 𝐿𝐶𝐴𝑖,𝑁𝑀𝑃,𝐸𝑜𝐿 is the 

environmental impact metric for NMP, 𝐿𝐶𝐴𝑖,𝑗,𝐸𝑜𝐿 is the environmental impact of the 

remaining chemicals not being recovered, and is the environmental impact due to the 

energy demand of the technologies for the solvent recovery process. The total cradle-to-

cradle impact assessment per kg of NMP is given by Equation (21).  

 

𝐿𝐶𝐴𝑖,𝑐𝑟𝑎𝑑𝑙𝑒−𝑡𝑜−𝑐𝑟𝑎𝑑𝑙𝑒 =  𝐿𝐶𝐴𝑖,𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 + 𝐿𝐶𝐴𝑖,𝑢𝑠𝑒−𝑝ℎ𝑎𝑠𝑒 + 𝐿𝐶𝐴𝑖,𝐸𝑜𝐿 (21) 

 

Here, 𝑖 is the environmental impact indicator (HHI, EQI, GWP, RUI), 𝐿𝐶𝐴𝑖,𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 is 

the life cycle assessment metric for the production phase of the chemical (cradle-to-gate), 

𝐿𝐶𝐴𝑖,𝑢𝑠𝑒−𝑝ℎ𝑎𝑠𝑒 is the life cycle assessment metric for the use-phase of the chemical (gate-

to-gate) and 𝐿𝐶𝐴𝑖,𝐸𝑜𝐿 is the life cycle assessment metric for the EoL phase (grave-to-cradle) 

for the chemical. NMP is the functional unit for the analysis hence the impact metric 

analysis is per kg of NMP basis.  
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5.7.2 Results and Discussion 

Table 13 gives the environmental impacts of the production phase predicted by the 

ML model, while Table 14 shows the conversion of each phase of the LCA to per kg NMP 

bases. Due to the higher accuracy of the HHI and RUI metrics from the ANN model, is 

observed that predictions from these two impacts for each of the chemicals had a deviation 

ranging from ±2% to ±10%. For example, the SimaPro® value for RUI for NMP is 168.93, 

while the ML model is 166.40, signifying how well the model predicts these impacts. 

Similarly, the SimaPro® value for HHI for NMP is 7.58E-6, while the model prediction 

only deviates from this value by -6.00%. Furthermore, it is observed that for certain 

chemicals the models perform fairly good for the GWP predictions.  

 

Table 13 

Impact Metric Prediction from ANN Model 

Component HHI  

(x10-6, 

DALY/kgChem) 

EQI  

(PDF.m2.yr 

/kgChem) 

GWP 

(kgCO2eq 

/kgChem) 

RUI  

(x10, 

MJ/kgChem) 

NMP 7.12 0.73 2.69 16.64 

ODA 1.68 0.55 2.54 14.07 

PMDA 3.89 0.86 1.97 16.45 

HEMA 0.80 0.41 2.47 15.90 

TFA 0.77 0.36 1.09 8.23 

HCl 0.67 0.17 0.73 1.33 
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Table 14 

Conversion of Each Phase of the LCA to Per kg NMP Basis 

Component HHI  

(x10-6, 

DALY/kgNMP) 

EQI  

(PDF.m2.yr 

/kgNMP) 

GWP 

(kgCO2eq 

/kgNMP) 

RUI 

(x10, 

MJ/kgNM) 

Production Phase Analysis Using ANN Model Prediction 

NMP 7.12 0.73 2.69 16.64 

ODA 0.22 0.07 0.33 1.85 

PMDA 0.56 0.12 0.28 2.35 

HEMA 0.02 0.01 0.07 0.47 

TFA 0.02 0.01 0.03 0.24 

HCl 0.02 0.01 0.02 0.04 

Total 7.96 0.95 3.43 21.59 

Use-phase 

Energy 

usage 

9.61E-04 2.87E-04 3.01E-03 4.58E-01 

Ultrapure 

water 

1.16E+00 5.96E-01 9.79E-01 1.55E+00 

Total  1.16E+00 5.97E-01 9.82E-01 2.00E+00 

EoL from Solvent Recovery (assuming 90% NMP recovery) 

NMP 0.71 0.07 0.27 1.66 

H2O 0.24 0.12 0.20 0.31 

Total 0.95 0.19 0.47 1.98 
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Then by multiplying the total values for production phase and use-phase in Table 

14 by 183416 kg NMP/yr, the cradle-to-gate and gate-to-gate LCA can be estimated. For 

the grave-to-cradle, the EoL from solvent recovery is multiplied by 18341.6 kg NMP/yr to 

estimate the yearly impacts. Table 15 shows a summary of this analysis. It can be observed 

that the grave-to-cradle contributes the least to the overall process impact, followed by 

gate-to-gate. The solvent production dominates the LCA, hence the importance of this 

research as the developed ML model can help industries experiment with various 

alternatives for solvent choice during early-stage process design.  

 

Table 15 

Environmental Impact of Each LCA Method 

LCA method HHI  

(x10-6, DALY/yr) 

EQI  

(PDF.m2.yr/yr) 

GWP  

(kgCO2-eq/yr) 

RUI 

 (x10, MJ/yr) 

Cradle-to-gate 1.46E+06 1.75E+05 6.29E+05 3.96E+06 

Gate-to-gate 2.13E+05 1.09E+05 1.80E+05 3.67E+05 

Grave-to-cradle 1.74E+04 3.56E+03 8.58E+03 3.63E+04 

 

 

Figure 43 shows a comparison between solvent recovery and incineration as EoL 

scenarios. In the case of incineration, there is no recovery of the solvent, which makes the 

analysis a cradle-to-grave. However, there is the option of heat recovery with incineration, 

which is not considered in this analysis. Since the production and use-phases are the same 
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for the evaluated LCA, the figure shows the impact of just the EoL scenarios. It can be 

observed that solvent recovery performs better in all categories. However, the human 

health impact of the recovery process is close to that of incineration due to the high value 

of the life cycle inventory of NMP.  

 

 

Figure 43. Consequential LCA for various EoL options 

 

 

5.8 Conclusions 

Developed here are two ML models for the prediction of four environmental impact 

metrics. Both models predict the human health and resource utilization impacts of the 

chemicals with higher accuracy. However, more effort is required to improve the model 
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for ecosystem quality predictions for ANN. Furthermore, other objective functions should 

be considered to make the XGBoost predictions from for the ecosystem impacts more 

reliable. Additionally, the GWP model needs further improvements to increase the 

accuracy of predictions for both models. One major highlight from this work is how 

different ML models have better predictions depending on the sustainability metric being 

investigated. Combining the developed ANN model with the solvent recovery developed 

in chapter 4, a novel way of performing a cradle-to-cradle LCA is introduced for processes 

that use high volumes of solvents through case study.  
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Chapter 6 

Summary, Conclusions, and Future Work 

6.1 Summary and Conclusions 

This dissertation unfolds a new perspective for interfacing both PSE and ML in the 

sustainable design of chemical processes. This work presents a practical importance which 

aims at not only understanding the powerful advantage of incorporating sustainability 

assessment in the design of chemical systems, but the ability to perform an entire LCA of 

the process and product even at the early-stage process design.  

The use of graph theory coupled with optimization for wastewater treatment 

networks reveals that rather than performing an exhaustive search on the synthesized 

maximal structure, it is far advantageous to narrow the search space to only networks that 

are combinatorially feasible and focus on optimization of those structures. This provides a 

guarantee that a global optimum is available within the feasible structure search space. 

Regarding the ecological impact of the wastewater treatment networks it is imperative to 

find ways to reduce the area needed to embed the water emissions, since this is the highest 

contributor to SPI in most cases. As more stringent legislations are made by governmental 

bodies on the allowable concentrations of contaminants within the various compartments, 

designing systems that can meet the anticipated future dynamic nature of effluent 

specifications will be crucial to improving the sustainability of industrial processes. This 

will help to prevent future retrofitting of the treatment plants, hence, preventing additional 

land area usage. Furthermore, treating wastewater for reuse presents an ecological 

advantage since the area needed to provide new process water for the process is prevented. 
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Addressing the persistent issue of solvent waste generation necessitates sustainable 

solutions. One promising approach is the recovery and reuse of solvents, which can yield 

significant benefits. However, it is essential to adopt a comprehensive perspective during 

the design process to ensure that solvent recovery does not inadvertently introduce other 

environmental concerns. This dissertation introduced a multi-objective approach that 

facilitates a balanced consideration of both economic and environmental implications of 

various treatment pathways. It advocates for the integration of solvent recovery as an 

integral objective during the process synthesis phase, rather than just a reactive measure to 

manage waste. By emphasizing proactive planning in the early stages of process design, 

companies have the opportunity to substantially reduce their carbon footprint, alleviate 

ecological pressures, and minimize energy consumption associated with their operations.   

Finally, the design of sustainable industrial systems means there should be a way 

to quantify the environmental impacts of the proposed design right at the onset at the 

synthesis phase. Therefore, a comprehensive method should be implemented to aid this 

assessment. However, trying to perform a comprehensive assessment at early-stage where 

the optimal design is still unknown seems to be a daunting task. However, through ML, as 

demonstrated by this dissertation, a cradle-to-cradle assessment is possible. By considering 

solvent recovery and wastewater treatment as the EoL phase scenarios of the process and 

using ML to make predictions for the cradle-to-gate, a cradle-to-cradle LCA can be 

performed for different synthesis routes and the best option can be selected.  

6.2 Future Work  

This work addresses the application of mathematical modeling, optimization, 

process synthesis, sustainability assessment, and ML in wastewater treatment networks, 
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solvent recovery, and LCA metrics prediction for early-stage process synthesis. This 

section first discusses future work in the wastewater treatment, and then looks at possible 

ways of leveraging other aspects of ML for improved sustainability metrics prediction.   

6.2.1 Future Work in Wastewater Treatment 

The work demonstrated in the wastewater treatment aims at using P-graph 

framework to synthesize the networks that are structurally feasible, and then incorporating 

SPI, aside cost, in the optimization of each feasible structure. For the tannery case study 

presented in section 3.6, over 30,000 structures were optimized using an MILP approach. 

Thus, each of these structures have a cost and SPI calculated. One way to leverage all the 

data from this case study is to develop regression model using Graph Neural Network 

(GNN) for both cost and SPI prediction, which can be used as a guiding system for future 

estimation of the economics and ecological sustainability of new structures. GNN [194], 

[195] is a type of ML architecture where the input to the neural network is a graph. Graph 

Neural Networks (GNNs) represent a notable advancement in the ML domain, specifically 

tailored to handle the intricacies of data structured as graphs. Central to GNNs is a method 

that cyclically updates the features of a node by accumulating features from its neighboring 

nodes. This approach diligently captures the inherent relationships and localized 

configurations within the graph. GNNs exhibit adaptability, as evidenced by their diverse 

applications. They play a pivotal role in analyzing social networks, facilitating a deeper 

understanding of user patterns and improving recommendation algorithms. Moreover, in 

molecular chemistry, GNNs have been instrumental in forecasting molecular attributes and 

potential drug effects [196], [197]. Beyond these, GNNs are also being harnessed for 

refining transportation strategies and augmenting the richness of knowledge graphs. Hence, 
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by leveraging the power of GNNs, based on the graphs generated, future wastewater 

treatment network synthesis can be done rapidly and efficiently.  

Furthermore, from the coffee wastewater treatment problem discussed in section 

3.7, out of the 151,848 networks that were structurally feasible, only 2,779 structures were 

numerically feasible after optimization. Thus, GNNs can be leveraged to develop a 

classification model to make predictions as to whether a feasible structure will converge 

numerically to a solution or not. This can also be used as a guiding system to make well-

informed decisions even before venturing into optimization of the structure.  

Another aspect of the design of wastewater treatment networks that needs urgent 

attention is how resilient these systems are when faced with unforeseen circumstances. 

Climate change poses significant challenges to wastewater treatment networks, including 

increased frequency of extreme weather events such as floods and droughts. These events 

can severely disrupt wastewater treatment processes, leading to system overloads, damage 

to infrastructure, and potential environmental contamination. A resilient design 

incorporates adaptive measures to withstand these challenges, such as elevated structures 

to prevent flood damage, expanded capacity to handle increased stormwater runoff, and 

advanced treatment processes to ensure consistent water quality under varying conditions 

[198]–[200]. Furthermore, as urban populations grow, the demand for wastewater 

treatment systems increases. Resilient design considers not only current demands but also 

future growth and changing demographics. This foresight involves scalable and flexible 

system designs that can accommodate increased wastewater volumes and evolving 

treatment needs without significant overhauls.  
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Additionally, the resilience of wastewater treatment networks is not just an 

environmental or technical issue but also a public health imperative. Ineffective or 

interrupted wastewater treatment can lead to the spread of waterborne diseases and 

contamination of natural water bodies, impacting public health and ecosystem health. A 

resilient wastewater treatment system ensures continuous protection of public health, even 

in the face of disruptions, by maintaining consistent and effective treatment of wastewater. 

With most wastewater treatment systems more than 75 years old and approaching 

their end-of-life in the Unites States, and climate change issues on the rise, it is imperative 

to find ways to make these systems more resilient. Thus, resilience assessment of 

wastewater treatment networks should also be a consideration in the synthesis and design 

of these systems. 

6.2.2 Future Work in Machine Learning Approaches to Sustainability Assessment 

The current work discussed in chapter 5 considers the feature dataset used in the 

model development as numerical data. Data representation is very key to developing good 

ML models. Representing the data as graphs and training a GNN model might also be a 

better way at capturing the interactions between the molecules for better predictions [201], 

[202]. Thus, this work can be extended to using a GNN for prediction and a comparative 

assessment and trade-offs can be made.   

 Physics-informed neural networks (PINNs) [203]–[205] have also gained 

tremendous attraction in the chemical engineering space. PINNs innovatively incorporate 

fundamental principles of physics into the structure of neural networks, establishing a 

harmony between data-driven approaches and specialized domain knowledge. Although 

data from related processes can offer valuable insights, the unique characteristics of new 
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processes can lead to potential inaccuracies when relying solely on data-driven predictions. 

However, with the utilization of PINNs, established laws of thermodynamics and chemical 

kinetics can be embedded directly into the predictive framework.  

Currently, certain domains within machine learning, such as Large Language 

Models (LLMs), remain underutilized within the realm of sustainability assessment. These 

advanced models can be synergistically paired with conventional regression and 

classification methodologies to simulate a variety of design situations. By inputting distinct 

scenarios into the LLM, one can obtain generated textual outputs that elucidate potential 

sustainability outcomes. These outcomes can encompass aspects such as carbon footprint, 

energy efficacy, implications for human health, and impacts on ecosystem quality related 

to the given scenario.  

Another tool that can help in acquiring data for LCIA assessment is EPI Suite tool 

[206] from the US EPA.  EPI Suite is a collection of physical and chemical property and 

environmental fate estimation programs developed by the US EPA's Office of Pollution 

Prevention and Toxics and Syracuse Research Corporation (SRC). It serves as a user-

friendly tool for estimating key environmental parameters of organic chemicals based on 

their molecular structure. The suite includes a variety of estimation models that predict 

properties such as biodegradation, soil sorption, aquatic toxicity, and air-water partitioning. 

One of the key features of EPI Suite is its ability to estimate the environmental fate of 

chemicals. It can predict how chemicals will distribute in the environment, whether they 

will accumulate in water, soil, or air, and their potential for long-range transport. This 

information is crucial for assessing the potential exposure of ecosystems and human 

populations to these chemicals, and hence can be integrated into the ML model.  
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Appendix A  

Support Information for Chapter 3 

A.1 Information for Municipal Case Study 

A.1.1  Model equations and details 

i ∈ I – technologies (used as subscript to variables)  

{flc - flocculation,  

sdm - sedimentation, 

ftt - filtration, 

ads - adsorption, 

asl - activated sludge, 

rbc - rotating biological contactors, 

dis - disinfection, 

mbrt - membrane bioreactor, 

aop - advanced oxidation process, 

blc - bleaching, 

mbr - membrane processes 

splt# - splitter and # = {1, 2, 3, 4} 

mxr# - mixer and # = {1, 2, 3, 4} 

byp# - bypass and # = {1, 2, 3, 4}}  

𝑗 ∈ 𝑱 – stream (used as subscript to variables)  

{1, 2, 3, 4, ……………………, 49}  

𝑘 ∈ 𝑲 – components (used as subscript to variables)  

{Wtr   - water,   

Ssld  - solids,   

Mtls  - metals 

Chem  - chemicals 

Flcnt  - flocculants, 

Oz  - ozone, 

NaClO  - sodium hypochlorite, 
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L_Chlrn  - liquid chlorine} 

s ∈ S -  stages {s1, s2, s3, s4}   

A.1.2  Subsets  

Subsets for technologies  

ICST –  technologies with costs  

{flc, sdm, ftt, ads, asl, rbc, mbrt, dis, mbr, blc }  

ICF –  technologies with concentration factor  

{ftt, mbrt, sdm, mbr}  

ICONS –  technologies with consumables  

{ftt, ads, mbrt, mbr} 

 IEAC – technologies with externally added components 

 {flc, aop, dis, blc} 

IBV – technologies with binary variables 

 {flc, sdm, ftt, ads, asl, rbc, mbrt, dis, mbr, blc, byp1, byp2, byp3, byp4 } 

IS1 – technologies in stage 1 

 {flc, byp1} 

IS2 – technologies in stage 2 

 {ftt, sdm, byp2} 

IS3 – technologies in stage 3 

 {ads, asl, rbc, dis, mbrt, byp3} 

IS4 – technologies in stage 4 

 {aop, blc, mbr, byp4} 

Subsets for streams  

Jflc    – streams for flocculation 

 {2, 4, 5} 

Jbyp1 – streams for bypass 1 

 {3, 6} 

Jsdm  – streams for sedimentation 

 {9, 13, 14} 

Jftt    – streams for filtration 

 {8, 11, 12} 
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Jbyp2 – streams for bypass 2 

 {10, 15} 

Jads   – streams for adsorption 

 {17, 23, 24} 

Jasl    – streams for activated sludge 

 {18, 25, 26} 

Jrbc   – streams for rotating biological containers 

 {19, 27, 28} 

Jdis    – streams for disinfection 

 {20, 29, 30, 31} 

Jmbrt – streams for membrane bioreactor 

 {21, 32, 33} 

Jbyp3 – streams for bypass 3 

 {22, 34} 

Jaop   – streams for advanced oxidation process 

 {36, 40, 41, 42} 

Jmbr  – streams for membrane processes 

 {38, 46, 47} 

Jblc   – streams for bleaching 

 {37, 43, 44, 45} 

Jbyp4 – streams for bypass 4 

 {39, 48} 

Subsets for components  

𝑲S – components in streams 

 {Wtr, Ssld, Mtls, Chem, Flcnt, Oz, NaClO, L_Chlrn} 

𝑲SP – components in initial wastewater stream 

 {Wtr, Ssld, Mtls, Chem} 

𝑲CONT – components that are contaminants 

 {Ssld, Mtls, Chem} 

𝑲EAC – components that are externally added 

 {Flcnt, Oz, NaClO, L_Chlrn} 
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A.1.3 Dynamic sets for connectivity 

 Ji - streams of technology i 

 Jini -  inlet streams of technology i 

 Jouti -  outlet streams of technology i 

 Ki -  components k in technology i 

 Kj -  components k in stream j 

A.1.4 Model Parameters   

General Parameters  

𝜌k (kg/m3) = Density of component k  

πWW (m
3 WW/h) = Entering volumetric flowrate of wastewater (WW)  

πRep
i ($/unit) = Replacement cost of consumables per unit capacity in technology i  

μ (N-s/m2)  = viscosity of fluid   

ηi (%) = efficiency of technology i  

θi
R (hr) – residence time in technology i   

θi
Rep (h/year) = Replacement time for consumables in technology i  

τann (h/annum) = annual operation in hours (330 day x 24 h/day = 7920 hrs)  

C0i ($/capacity) = standard capacity cost in technology i 

g (m/s2) = gravitational constant  

nc = cost scaling index (2/3 rule)  

Nlabri (#/h) = standard # of laborers required for technology i per hour  

Q0i (m
3 or m2 or m3/h) = standard capacity of technology i  

MWk (kg/kmol) = molecular weight of component k 

Mink (kg/m3) = initial mass concentration of component k 

Cpurk ($/kg) = purchase cost of added component k 

Wspi (kW/h) = standard power required for technology i per hour 

MMk (--) = Big-M constant for component k 

Φk (kg/kg WW) = amount of externally added component k   

dp (m) = diameter of particle 

ξj,i (--) = retention factor of component k for technology i {ftt, mbrt, and mbr 

technologies} 

ςRF (--) = capital recovery/ charge factor (0.11) 
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ζi (m
3/m2h) = flux of technology i { ftt, mbrt, and mbr technologies} 

κdi (h
-1) = decay of biomass coefficient of technology i {asl technology} 

γi (kg/kg) = biomass yield of technology i { asl technology} 

χi (m
3/m2h) = hydraulic loading of technology i {rbc technology} 

BMCmult (--) = bare module cost multiplier (5.4) 

CLab ($/h) = labor cost – operator basis (30) 

CElec ($/kW) = cost of electricity per hour (0.1) 

Evaluated Parameters 

SORi (m/s) = surface overflow rate id sedimentation  

Ui (m/s) = settling velocity of technology i  

A.1.5  Model Variables 

General Variables  

Cc,i ($) =  Purchase cost of technology i ∈ 𝑰CST  

𝐶Fi (m
3/m3) = Concentration factor for technologies 𝑖 ∈ 𝑰𝑪𝑭  

Cprk ($/h) = Purchase cost of added components k ∈ KEAC 

Mj,k (kg/h) = Mass flowrate of component k in stream j  

𝑄c𝑖 (m3 or m2 or m3/h) = capacity cost of technologies 𝑖 ∈ 𝑰CST  

𝑃Wi (kW/h) = power requirements for technologies 𝑖 ∈ 𝑰CST  

Nlbri (#/h) = number of laborers required for technology 𝑖 ∈ 𝑰CST  

Yoi (kg/kg) = observed bacteria yield of technology i (asl technology) 

Sri (m/h) = settling rate of unit i (asl technology) 

Xi (kg/h) = biomass produced in technology i (asl technology) 

Srti (h) = solids residence time in technology i (asl technology) 

Di (m) = diameter of technology i (mbrt technology) 

Consi ($/annum) = consumable cost of technology 𝑖 ∈ 𝑰CONS  

Binary Variables 

yi (--) = binary variables for technologies to selected 𝑖 ∈ 𝑰BV  

Stage-wise Costing Variables 

 CCACNstg = annualized capital (fixed) cost in nth stage  

 CCRMNstg = material cost in nth stage  

 CCCSNstg = consumable cost in nth stage 
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 CCLBNstg = labor cost in nth stage 

 CCUTNstg = utility cost in nth stage 

 CCOTNstg = other cost in nth stage (plant overhead and supervision costs) 

 CCTCNstg = total cost in nth stage (all cost added in that particular stage) 

 CCTPC    = total cost for process (summation of total cost in each stage) 

A.1.6 Model Equations: 

Initial wastewater flowrate equations: 

𝑀1,𝑘  = (∑ 𝑀𝑖𝑛𝑘𝑘 )𝜋𝑊𝑊 ;  ∀  𝑘 ∈  𝑲𝑺𝑷     

Component balances in all technologies: 

 ∑ 𝑀𝑗,𝑘𝑗∈𝑱𝒊𝒏𝒊
=  ∑ 𝑀𝑗,𝑘𝑗∈𝑱𝒐𝒖𝒕𝒊

 ;  ∀  𝑘 ∈  𝑲𝑺 

Cost of technologies: 

 (
𝐶𝑐𝑖

𝐶0𝑖
) = ( 

𝑄𝑐𝑖

𝑄0𝑖
)

𝑛𝑐

 ;   ∀  𝑖 ∈  𝑰𝑪𝑺𝑻   

Labor requirements in technologies: 

 𝑁𝑙𝑏𝑟𝑖𝑄0𝑖 =  𝑁𝑙𝑎𝑏𝑟𝑖𝑄𝑐𝑖 ;   ∀  𝑖 ∈  𝑰𝑪𝑺𝑻 

Consumable costs in technologies: 

 𝐶𝑜𝑛𝑠𝑖 =  
𝜏𝑎𝑛𝑛

𝜃
𝑖
𝑅𝑒𝑝 𝜋𝑖

𝑅𝑒𝑝𝑄𝑐𝑖 ;  ∀  𝑖 ∈  𝑰𝑪𝑺𝑻   

Logical equations: 

 𝑀𝑖,𝑗 −  𝑀1𝑘𝑦𝑖   ≤   0 ;  ∀  𝑖 ∈  𝑰𝑩𝑽 ,   𝑗 ∈  𝑱,   𝑘 ∈   𝑲𝒊 𝑎𝑛𝑑 𝑲𝒋 

Selection of technologies in each stage: 

Preliminary (Pretreatment) stage: 

 𝑦𝑓𝑙𝑐 +  𝑦𝑏𝑦𝑝,1 = 1 

Primary Treatment Stage: 

 𝑦𝑓𝑡𝑡 +  𝑦𝑠𝑑𝑚 + 𝑦𝑏𝑦𝑝,2 = 1 

Secondary Treatment Stage: 

 𝑦𝑎𝑑𝑠 + 𝑦𝑎𝑠𝑙 +  𝑦𝑟𝑏𝑐 +  𝑦𝑑𝑖𝑠 +  𝑦𝑚𝑏𝑟𝑡 +  𝑦𝑏𝑦𝑝,3 = 1 

Tertiary Treatment Stage: 

 𝑦𝑎𝑜𝑝 +  𝑦𝑚𝑏𝑟 + 𝑦𝑏𝑙𝑐 = 1 

Preliminary (Pretreatment) Stage Model Equations for Technologies 

Flocculation (flc): 



 

169 

 

Flocculent added: 

 𝑀5,𝐹𝑙𝑐𝑛𝑡 =  𝛷𝐹𝑙𝑐𝑛𝑡  ∑ 𝑀2,𝑘𝑘∈𝑲𝑪𝑶𝑵𝑻  

Flocculent cost: 

 𝐶𝑝𝑢𝑟𝑘 =  𝜋𝐹𝑙𝑐𝑛𝑡𝑀5,𝐹𝑙𝑐𝑛𝑡 

Volume of flocculation unit: 

 𝑄𝑐𝑓𝑙𝑐 =  𝜃𝑓𝑙𝑐
𝑅  [∑ (

𝑀2,𝑘

𝜌𝑘
)𝑘∈𝑲𝑺 ] 

Power required in flocculation unit: 

 𝑃𝑊𝑓𝑙𝑐 =  𝑊𝑠𝑝𝑓𝑙𝑐𝑄𝑐𝑓𝑙𝑐  

Primary Stage Model Equations for Technologies 

Sedimentation (sdm): 

Efficiency equation: 

 𝜂𝑠𝑑𝑚 =  
𝑀13,𝑘

𝑀9,𝑘
 ;  𝑘 ∈  𝑲𝑪𝑶𝑵𝑻  

Concentration factor (CFsdm):  

 𝐶𝐹𝑠𝑑𝑚 =  
 [∑ (

𝑀9,𝑘
𝜌𝑘

)
𝑘∈𝑲𝑺𝑷 

]

 [∑ (
𝑀13,𝑘

𝜌𝑘
)

𝑘∈𝑲𝑺𝑷 
]
 

Written as: 𝐶𝐹𝑠𝑑𝑚 [∑ (
𝑀13,𝑘

𝜌𝑘
)𝑘∈𝑲𝑺𝑷 ] =   [∑ (

𝑀9,𝑘

𝜌𝑘
)𝑘∈𝑲𝑺𝑷 ] 

2 ≤  𝐶𝐹𝑠𝑑𝑚  ≤   15 

Written as: 𝐶𝐹𝑠𝑑𝑚  ≤ 15𝑦𝑠𝑑𝑚 𝑎𝑛𝑑 𝐶𝐹𝑠𝑑𝑚  ≥ 2𝑦𝑠𝑑𝑚 

Area of sedimentation unit:  

 𝑄𝑐𝑠𝑑𝑚 =  
 [∑ (

𝑀9,𝑘
𝜌𝑘

)
𝑘∈𝑲𝑺𝑷 

]

𝑆𝑂𝑅𝑠𝑑𝑚
  

Power required in sedimentation unit: 

 𝑃𝑊𝑠𝑑𝑚 =  𝑊𝑠𝑝𝑠𝑑𝑚𝑄𝑐𝑠𝑑𝑚 

Filtration (ftt): 

Retention factor equation 

 𝜉𝑓𝑡𝑡𝑘
=  

𝑀11,𝑘

𝑀8,𝑘
 ;  𝑘 ∈  𝑲𝑺𝑷 

 Written as: 𝜉𝑓𝑡𝑡𝑘
𝑀8,𝑘 =  𝑀11,𝑘 

Concentration factor equation (ftt): 
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 𝐶𝐹𝑓𝑡𝑡 =  
 [∑ (

𝑀8,𝑘
𝜌𝑘

)
𝑘∈𝑲𝑺𝑷 

]

 [∑ (
𝑀11,𝑘

𝜌𝑘
)

𝑘∈𝑲𝑺𝑷 
]
 

Written as: 𝐶𝐹𝑓𝑡𝑡 [∑ (
𝑀13,𝑘

𝜌𝑘
)𝑘∈𝑲𝑺𝑷 ] =   [∑ (

𝑀9,𝑘

𝜌𝑘
)𝑘∈𝑲𝑺𝑷 ] 

1 ≤  𝐶𝐹𝑓𝑡𝑡  ≤   30 

Written as: 𝐶𝐹𝑓𝑡𝑡  ≤ 30𝑦𝑓𝑡𝑡 𝑎𝑛𝑑 𝐶𝐹𝑓𝑡𝑡  ≥ 1𝑦𝑓𝑡𝑡 

Area of filtration unit (flux balance): 

 𝑄𝑐𝑓𝑡𝑡 =  𝐴𝑓𝑡𝑡  =  
 [∑ (

𝑀8,𝑘
𝜌𝑘

)
𝑘∈𝑲𝑺𝑷 

](𝐶𝐹𝑓𝑡𝑡−1)

𝜁𝑓𝑡𝑡𝐶𝐹𝑓𝑡𝑡
  

 Written as: 𝑄𝑐𝑓𝑡𝑡𝜁𝑓𝑡𝑡𝐶𝐹𝑓𝑡𝑡 =   [∑ (
𝑀8,𝑘

𝜌𝑘
)𝑘∈𝑲𝑺𝑷 ] (𝐶𝐹𝑓𝑡𝑡 − 1) 

Power requirements for filtration unit: 

 𝑃𝑊𝑓𝑡𝑡 =  𝑊𝑠𝑝𝑓𝑡𝑡𝑄𝑐𝑓𝑡𝑡 

Power required in sedimentation unit: 

 𝑃𝑊𝑠𝑑𝑚 =  𝑊𝑠𝑝𝑠𝑑𝑚𝑄𝑐𝑠𝑑𝑚 

Filtration (ftt): 

Retention factor equation 

 𝜉𝑓𝑡𝑡𝑘
=  

𝑀11,𝑘

𝑀8,𝑘
 ;  𝑘 ∈  𝑲𝑺𝑷 

 Written as: 𝜉𝑓𝑡𝑡𝑘
𝑀8,𝑘 =  𝑀11,𝑘 

Concentration factor equation (ftt): 

 𝐶𝐹𝑓𝑡𝑡 =  
 [∑ (

𝑀8,𝑘
𝜌𝑘

)
𝑘∈𝑲𝑺𝑷 

]

 [∑ (
𝑀11,𝑘

𝜌𝑘
)

𝑘∈𝑲𝑺𝑷 
]
 

Written as: 𝐶𝐹𝑓𝑡𝑡 [∑ (
𝑀13,𝑘

𝜌𝑘
)𝑘∈𝑲𝑺𝑷 ] =   [∑ (

𝑀9,𝑘

𝜌𝑘
)𝑘∈𝑲𝑺𝑷 ] 

1 ≤  𝐶𝐹𝑓𝑡𝑡  ≤   30 

Written as: 𝐶𝐹𝑓𝑡𝑡  ≤ 30𝑦𝑓𝑡𝑡 𝑎𝑛𝑑 𝐶𝐹𝑓𝑡𝑡  ≥ 1𝑦𝑓𝑡𝑡 

Area of filtration unit (flux balance): 

 𝑄𝑐𝑓𝑡𝑡 =  𝐴𝑓𝑡𝑡  =  
 [∑ (

𝑀8,𝑘
𝜌𝑘

)
𝑘∈𝑲𝑺𝑷 

](𝐶𝐹𝑓𝑡𝑡−1)

𝜁𝑓𝑡𝑡𝐶𝐹𝑓𝑡𝑡
  

 Written as: 𝑄𝑐𝑓𝑡𝑡𝜁𝑓𝑡𝑡𝐶𝐹𝑓𝑡𝑡 =   [∑ (
𝑀8,𝑘

𝜌𝑘
)𝑘∈𝑲𝑺𝑷 ] (𝐶𝐹𝑓𝑡𝑡 − 1) 

Power requirements for filtration unit: 
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 𝑃𝑊𝑓𝑡𝑡 =  𝑊𝑠𝑝𝑓𝑡𝑡𝑄𝑐𝑓𝑡𝑡 

Power required in sedimentation unit: 

 𝑃𝑊𝑠𝑑𝑚 =  𝑊𝑠𝑝𝑠𝑑𝑚𝑄𝑐𝑠𝑑𝑚 

Filtration (ftt): 

Retention factor equation 

 𝜉𝑓𝑡𝑡𝑘
=  

𝑀11,𝑘

𝑀8,𝑘
 ;  𝑘 ∈  𝑲𝑺𝑷 

 Written as: 𝜉𝑓𝑡𝑡𝑘
𝑀8,𝑘 =  𝑀11,𝑘 

Concentration factor equation (ftt): 

 𝐶𝐹𝑓𝑡𝑡 =  
 [∑ (

𝑀8,𝑘
𝜌𝑘

)
𝑘∈𝑲𝑺𝑷 

]

 [∑ (
𝑀11,𝑘

𝜌𝑘
)

𝑘∈𝑲𝑺𝑷 
]
 

Written as: 𝐶𝐹𝑓𝑡𝑡 [∑ (
𝑀13,𝑘

𝜌𝑘
)𝑘∈𝑲𝑺𝑷 ] =   [∑ (

𝑀9,𝑘

𝜌𝑘
)𝑘∈𝑲𝑺𝑷 ] 

1 ≤  𝐶𝐹𝑓𝑡𝑡  ≤   30 

Written as: 𝐶𝐹𝑓𝑡𝑡  ≤ 30𝑦𝑓𝑡𝑡 𝑎𝑛𝑑 𝐶𝐹𝑓𝑡𝑡  ≥ 1𝑦𝑓𝑡𝑡 

Area of filtration unit (flux balance): 

 𝑄𝑐𝑓𝑡𝑡 =  𝐴𝑓𝑡𝑡  =  
 [∑ (

𝑀8,𝑘
𝜌𝑘

)
𝑘∈𝑲𝑺𝑷 

](𝐶𝐹𝑓𝑡𝑡−1)

𝜁𝑓𝑡𝑡𝐶𝐹𝑓𝑡𝑡
  

 Written as: 𝑄𝑐𝑓𝑡𝑡𝜁𝑓𝑡𝑡𝐶𝐹𝑓𝑡𝑡 =   [∑ (
𝑀8,𝑘

𝜌𝑘
)𝑘∈𝑲𝑺𝑷 ] (𝐶𝐹𝑓𝑡𝑡 − 1) 

Power requirements for filtration unit: 

 𝑃𝑊𝑓𝑡𝑡 =  𝑊𝑠𝑝𝑓𝑡𝑡𝑄𝑐𝑓𝑡𝑡 

Tertiary Stage Model Equations for Technologies 

Advanced Oxidation Processes: 

Mass of ozone needed for advanced oxidation processes unit 

𝑀42,𝑂𝑧 =  𝛷𝑂𝑧  ∑ 𝑀31,𝑘
𝑘∈𝑲𝑪𝑶𝑵𝑻  

 

Efficiency equation: 

𝜂𝑎𝑜𝑝 =  
𝑀40,𝑘

𝑀36,𝑘
 ;  𝑘 ∈  𝑲𝑪𝑶𝑵𝑻 

Volume of advanced oxidation processes unit: 

𝑄𝑐𝑎𝑜𝑝 = 𝑉𝑎𝑜𝑝 =  𝜃𝑎𝑜𝑝
𝑅  [∑ (

𝑀36,𝑘

𝜌𝑘
)

𝑘∈𝑲𝑺 
] 
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Power required for advanced oxidation processes unit: 

𝑃𝑊𝑎𝑜𝑝 =  𝑊𝑠𝑝𝑎𝑜𝑝𝑄𝑐𝑎𝑜𝑝 

Membrane Processes: 

Retention factor equation 

 𝜉𝑚𝑏𝑟𝑘
=  

𝑀46,𝑘

𝑀38,𝑘
 ;  𝑘 ∈  𝑲𝑺𝑷 

 Written as: 𝜉𝑚𝑏𝑟𝑘
𝑀38,𝑘 =  𝑀46,𝑘 

Concentration factor equation (mbr): 

 𝐶𝐹𝑚𝑏𝑟 =  
 [∑ (

𝑀38,𝑘
𝜌𝑘

)
𝑘∈𝑲𝑺𝑷 

]

 [∑ (
𝑀46,𝑘

𝜌𝑘
)

𝑘∈𝑲𝑺𝑷 
]
 

Written as: 𝐶𝐹𝑚𝑏𝑟 [∑ (
𝑀46,𝑘

𝜌𝑘
)𝑘∈𝑲𝑺𝑷 ] =   [∑ (

𝑀38,𝑘

𝜌𝑘
)𝑘∈𝑲𝑺𝑷 ] 

1 ≤  𝐶𝐹𝑚𝑏𝑟  ≤   35 

Written as: 𝐶𝐹𝑚𝑏𝑟  ≤ 35𝑦𝑚𝑏𝑟 𝑎𝑛𝑑 𝐶𝐹𝑚𝑏𝑟  ≥ 1𝑦𝑚𝑏𝑟 

Area of membrane processes unit (flux balance): 

 𝑄𝑐𝑚𝑏𝑟 =  𝐴𝑚𝑏𝑟  =  
 [∑ (

𝑀38,𝑘
𝜌𝑘

)
𝑘∈𝑲𝑺𝑷 

](𝐶𝐹𝑚𝑏𝑟−1)

𝜁𝑚𝑏𝑟𝐶𝐹𝑚𝑏𝑟
  

 Written as: 𝑄𝑐𝑚𝑏𝑟𝜁𝑚𝑏𝑟𝐶𝐹𝑚𝑏𝑟 =   [∑ (
𝑀38,𝑘

𝜌𝑘
)𝑘∈𝑲𝑺𝑷 ] (𝐶𝐹𝑚𝑏𝑟 − 1) 

Power requirements for membrane unit: 

 𝑃𝑊𝑚𝑏𝑟 =  𝑊𝑠𝑝𝑚𝑏𝑟𝑄𝑐𝑚𝑏𝑟 

Bleaching:  

Efficiency equation: 

𝜂𝑏𝑙𝑐 =  
𝑀43,𝑘

𝑀37,𝑘
 ;  𝑘 ∈  𝑲𝑪𝑶𝑵𝑻 

Mass of disinfectant required for disinfection unit 

𝑀45,𝑁𝑎𝐶𝑙𝑂 =  𝛷𝑁𝑎𝐶𝑙𝑂  ∑ 𝑀37,𝑘
𝑘∈𝑲𝑪𝑶𝑵𝑻 

 

Volume of disinfection unit: 

𝑄𝑐𝑑𝑖𝑠 = 𝑉𝑑𝑖𝑠 =  𝜃𝑑𝑖𝑠
𝑅  [∑ (

𝑀37,𝑘

𝜌𝑘
)

𝑘∈𝑲𝑺 
] 

Power required for disinfection unit: 

𝑃𝑊𝑑𝑖𝑠 =  𝑊𝑠𝑝𝑑𝑖𝑠𝑄𝑐𝑑𝑖𝑠 
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Cost Model Equations 

Stagewise Cost Equations 

Annualized capital cost in each stage: 

𝐶𝐶𝐴𝐶𝑁𝑠𝑡𝑔 =  1.66 𝜍𝑅𝐹𝐵𝑀𝐶𝑚𝑢𝑙𝑡  ∑ 𝐶𝑒𝑖
𝑖∈𝑖𝑠𝑡𝑔{1,2,3,4} 

 

Material Cost: 

𝐶𝐶𝑅𝑀𝑠1 = [𝜏𝑎𝑛𝑛(𝐶𝑝𝑢𝑟𝐹𝑙𝑐𝑛𝑡)]  

𝐶𝐶𝑅𝑀𝑠2 = 0 

𝐶𝐶𝑅𝑀𝑠3 = [𝜏𝑎𝑛𝑛(𝐶𝑝𝑢𝑟𝐿𝐶ℎ𝑙𝑟𝑛
)] 

𝐶𝐶𝑅𝑀𝑠4 = [𝜏𝑎𝑛𝑛( 𝐶𝑝𝑢𝑟𝑂𝑧 + 𝐶𝑝𝑢𝑟𝑁𝑎𝐶𝑙𝑂)] 

Consumable Cost: 

𝐶𝐶𝐶𝑆𝑠1 = 0  

𝐶𝐶𝐶𝑆𝑠2 =  𝐶𝑜𝑛𝑠𝑓𝑡𝑡 

𝐶𝐶𝐶𝑆𝑠3 =  𝐶𝑜𝑛𝑠𝑎𝑑𝑠 +  𝐶𝑜𝑛𝑠𝑚𝑏𝑟𝑡  

𝐶𝐶𝐶𝑆𝑠4 =  𝐶𝑜𝑛𝑠𝑚𝑏𝑟   

Labor Cost 

𝐶𝐶𝐿𝐶𝑁𝑠𝑡𝑔 =   𝜏𝑎𝑛𝑛𝐶𝐿𝑎𝑏  ∑ 𝑁𝑙𝑏𝑖
𝑖∈𝑖𝑠𝑡𝑔{1,2,3,4} 

 

Utility Cost 

𝐶𝐶𝑈𝐶𝑁𝑠𝑡𝑔 =   𝜏𝑎𝑛𝑛𝐶𝑒𝑙𝑒𝑐  ∑ 𝑃𝑊𝑖
𝑖∈𝑖𝑠𝑡𝑔{1,2,3,4} 

 

Other Cost 

𝐶𝐶𝑂𝐶𝑁𝑠𝑡𝑔 =   2.78 𝜏𝑎𝑛𝑛𝐶𝐿𝑎𝑏  ∑ 𝑁𝑙𝑏𝑖
𝑖∈𝑖𝑠𝑡𝑔{1,2,3,4} 

 

Total Cost in each Stage 

𝐶𝐶𝑇𝐶𝑁𝑠𝑡𝑔 =  𝐶𝐶𝐴𝐶𝑁𝑠𝑡𝑔 + 𝐶𝐶𝑅𝑀𝑁𝑠𝑡𝑔 + 𝐶𝐶𝐶𝑆𝑁𝑠𝑡𝑔 + 𝐶𝐶𝐿𝐶𝑁𝑠𝑡𝑔 + 𝐶𝐶𝑈𝐶𝑁𝑠𝑡𝑔𝐶𝐶𝑂𝐶𝑁𝑠𝑡𝑔  

Total Category Cost: 

𝐶𝐶𝑇𝐴𝐶 =    ∑ 𝐶𝐶𝐴𝐶𝑛
𝑛∈𝑁𝑠𝑡𝑔{1,2,3,4} 

 

𝐶𝐶𝑇𝑅𝑀 =    ∑ 𝐶𝐶𝑅𝑀𝑛
𝑛∈𝑁𝑠𝑡𝑔{1,2,3,4} 

 

𝐶𝐶𝑇𝐶𝑆 =    ∑ 𝐶𝐶𝐶𝑆𝑛
𝑛∈𝑁𝑠𝑡𝑔{1,2,3,4} 
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𝐶𝐶𝑇𝐿𝐶 =    ∑ 𝐶𝐶𝐿𝐶𝑛
𝑛∈𝑁𝑠𝑡𝑔{1,2,3,4} 

 

𝐶𝐶𝑇𝑈𝐶 =    ∑ 𝐶𝐶𝑈𝐶𝑛
𝑛∈𝑁𝑠𝑡𝑔{1,2,3,4} 

 

𝐶𝐶𝑇𝑂𝐶 =    ∑ 𝐶𝐶𝑂𝐶𝑛
𝑛∈𝑁𝑠𝑡𝑔{1,2,3,4} 

 

𝐶𝐶𝑇𝑃𝐶 = 𝐶𝐶𝑇𝐴𝐶 + 𝐶𝐶𝑇𝑅𝑀 + 𝐶𝐶𝑇𝐶𝑆 + 𝐶𝐶𝑇𝐿𝐶 + 𝐶𝐶𝑇𝑈𝐶 + 𝐶𝐶𝑇𝑂𝐶  

Objective Function 1: 

𝑂𝑏𝑗 =  𝑀𝑖𝑛 𝐶𝐶𝑇𝑃𝐶 

 

A.1.7 Model parameters and input data 

Table A1 

Density and Molecular Weight of Components 

Component Value (kg/m3) Value (kg/kmol) 

Water 1000 18 

Solid particles 1800 102 

Metals 2500 98 

Chemicals 1100 48 

Ozone 2.14 48 

Sodium Hypochlorite 1110 74.44 

Flocculant 2200 2200 

Liquid chlorine 1470 70.91 
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Table A2  

Purchase Cost of Added Components 

Component Value ($/kg) 

Ozone 3.53 

Sodium Hypochlorite 0.35 

Flocculant 0.75 

Liquid chlorine 2 
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Table A3 

Standard Capacity, Cost, Laborers, and Power for Technologies 

Unit Operation 

(costing 

capacity) 

Standard 

Capacity 

(Units) 

Standard 

Capacity 

Cost (million 

$) 

 Standard 

Laborers 

Required 

(#/h) 

Standard 

Power 

Required 

(kW/h) 

Flocculation 

(Volume) 
2000 (m3) 0.538 0.1 0.0002 

Filtration  

(Area) 
80 (m2) 0.039 0.5 0.1 

Sedimentation 

(Volume) 
2500 (m3) 1.128 0.1 0.0002 

Adsorption 

(Volume) 
100 (m3) 0.12 0.2 0.3 

Membrane 

Bioreactor 

(Area) 

40 (m2) 1.194 0.1 0.2 

Rotational 

Biological 

Container (Area) 

185 (m2) 0.045 0.3 0.01 

Activated Sludge 

(Volume) 
250 (m3) 0.569 0.4 0.2 

Disinfection 

(Volume) 
540 (m3) 0.627 0.7 0.5 

Membrane 

Processes (Area) 
80 (m2) 0.938 0.5 0.2 

Advanced 

Oxidation 

Processes 

(Volume) 

1000 (m3) 0.735 0.1 0.5 

Bleaching 

(Volume) 
500 (m3) 0.100 0.5 0.33 
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Table A4  

Replacement Time for Technologies with Consumables 

Technology Value (h/yr) 

Filtration 2000 

Adsorption 720 

Membrane Processes 1000 

Membrane Bioreactor 1000 

 

 

Table A5  

Replacement Cost for Technologies with Consumables 

Technology Value ($/Unit) 

Filtration 100 

Adsorption 74.16 

Membrane Processes 400 

Membrane Bioreactor 400 

 

 

A.1.7.1 Flocculation (flc): 

Flocculent added (kg/kg) – 0.005  

Residence time (h) – 0.5 

 

A.1.7.2 Sedimentation (sdm): 

Efficiency – 80%  

Depth – 3m  
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A.1.7.3 Filtration (ftt): 

Retention factor: Water – 0.05, Solids – 0.80, Metals – 0.10, Chemicals – 0.05 

Flux (m3/m2.h): 0.2 

 

A.1.7.4 Membrane Bioreactor (mbrt): 

Retention factor: Water – 0.005, Solids – 0.95, Metals – 0.85, Chemicals – 0.50 

Flux (m3/m2.h): 0.025 

 

A.1.7.5 Adsorption (ads): 

Empty bed contact time (h): 0.25 

Density of granular activated carbon (GAC) (kg/m3): 1030 

Efficiency: 90% 

Void fraction of GAC: 50% 

 

A.1.7.6 Activated Sludge (asl): 

Decay of biomass coefficient (h-1): 0.0021 

Biomass yield (kg/kg): 0.5 

Hydraulic retention time (h): 2 

Efficiency: 80% 

 

A.1.7.7 Rotating Biological Contactors (rbc): 

Efficiency: 80% 

Hydraulic loading (m3/m2h): 20 

 

A.1.7.8 Disinfection (dis): 

Efficiency: 95% 
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Ratio of liquid chlorine to contaminant (kg/kg): 0.00173 

Residence time (h): 2 

 

A.1.7.9 Advanced Oxidation Processes (aop): 

Ratio of ozone to contaminant (kg/kg): 0.000173 

Efficiency: 98% 

Residence time (h): 0.21 

 

A.1.7.10 Membrane Processes (mbr): 

Retention factor: Water – 0.05, Solids – 0.90, Metals – 0.90, Chemicals – 0.95 

Flux (m3/m2.h): 0.0856 

 

A.1.7.11 Bleaching (blc): 

Efficiency: 98% 

Ratio of sodium hypochlorite to contaminant (kg/kg): 0.00173 

Residence time (h): 2 

 

A.1.8 Integer-cuts for determining 1st, 2nd, and 3rd best configuration 

∑ 𝑦𝑖𝑏𝑣
𝑦𝑖𝑏𝑣=1

−  ∑ 𝑦𝑖𝑏𝑣
𝑦𝑖𝑏𝑣=0

 ≤ (# 𝑜𝑓1′ sin 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛) − 1 

 

First integer-cut to determine first best alternative: 

[𝑦𝑏𝑙𝑐 +  𝑦𝑠𝑑𝑚 + 𝑦𝑓𝑙𝑐 + 𝑦𝑎𝑑𝑠] − [𝑦𝑓𝑡𝑡 + 𝑦𝑎𝑠𝑙 + 𝑦𝑟𝑏𝑐 + 𝑦𝑚𝑏𝑟𝑡 + 𝑦𝑎𝑜𝑝 + 𝑦𝑚𝑏𝑟 + 𝑦𝑑𝑖𝑠]

≤ 4 − 1 
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Second integer-cut to determine the second best alternative 

[𝑦𝑏𝑙𝑐 +  𝑦𝑠𝑑𝑚 + 𝑦𝑓𝑙𝑐 + 𝑦𝑑𝑖𝑠] − [𝑦𝑓𝑡𝑡 + 𝑦𝑎𝑠𝑙 + 𝑦𝑟𝑏𝑐 + 𝑦𝑚𝑏𝑟𝑡 + 𝑦𝑎𝑜𝑝 + 𝑦𝑚𝑏𝑟 + 𝑦𝑎𝑑𝑠]

≤ 4 − 1 

 

Third integer-cut to determine third-best alternative: 

[𝑦𝑏𝑙𝑐 +  𝑦𝑓𝑡𝑡 + 𝑦𝑓𝑙𝑐 + 𝑦𝑑𝑖𝑠] − [𝑦𝑠𝑑𝑚 + 𝑦𝑎𝑠𝑙 + 𝑦𝑟𝑏𝑐 + 𝑦𝑚𝑏𝑟𝑡 + 𝑦𝑎𝑜𝑝 + 𝑦𝑚𝑏𝑟 + 𝑦𝑎𝑑𝑠]

≤ 4 − 1 

 

A.1.9 Cost Distribution 

Table A6  

Breakdown of Stage-wise Cost of Purification 

Cost Category 
Stage-wise Cost Distribution 

Pretreatment Primary  Secondary  Tertiary  

Annualized Capital 

Cost($/y) 4.81E+04 6.42E+04 4.59E+04 5.16E+04 

Material Cost($/y) 5.97E+05 0.00E+00 0.00E+00 4.58E+05 

Consumable Cost($/y) 0.00E+00 0.00E+00 1.98E+04 0.00E+00 

Labor Cost ($/y) 6.61E+02 3.37E+02 1.16E+04 4.53E+04 

Utilities Cost($/y) 8.81E+00 5.61E+00 5.78E+03 4.98E+04 

Other Cost($/y) 1.18E+03 2.04E+04 2.06E+04 8.05E+04 

Total($/y) 6.47E+05 8.50E+04 1.04E+05 6.85E+05 

Percentage Distribution 

Annualized capital cost 7.43% 75.56% 44.28% 7.54% 

Raw material cost 92.28% 0.00% 0.00% 66.82% 

Consumable cost 0.00% 0.00% 19.14% 0.00% 

Labor cost  0.10% 0.40% 11.15% 6.61% 

Utilities Cost 0.00% 0.01% 5.58% 7.27% 

Other Cost 0.18% 24.04% 19.85% 11.76% 

Total 100.00% 100.00% 100.00% 100.00% 
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A.1.10 Sustainable Process Index (SPI) Calculations  

A.1.10.1 SPI for Municipal Wastewater Using Values from GAMS Codes  

Parameters 

𝐹𝑅𝑅 (kg/yr)  - feed of a processed resource (752400000) 

𝑦𝑅 (kg/m2.yr)  - specific yield (243.1542) 

𝑦𝐸𝐼,𝑅𝑁 (kWh/m2.yr)  - mean industrial energy yield or mean industrial energy supply 

density (7) 

𝐹𝑅𝑁 (kg/yr)  - feed of a processed resource (2172028) 

𝐶𝑁 ($/kg)  - price of the material (world market price, taxes excluded) (7) 

𝐶𝐸 ($/kWh)  - price of one kilowatt-hour of energy (industrial price, taxes 

excluded) (0.1) 

𝐹𝐸 (kWh/yr)  - energy used in the process (555659.28) 

𝑦𝐸 (kWh/m2.yr)  - energy yield (43) 

𝐶𝐼 ($)   - total cost of energy for indirect installation (122720) 

𝐿𝑆 (yr)   - depreciated area over the life-span years (30) 

𝑦𝐸𝐼,𝐼𝐼 (kWh/m2.yr) - industrial energy supply density or yield (43) 

𝑁𝑆 (cap/yr)  - total number of workers in the treatment plant (80.19)  

𝑦𝑆 (cap/m2.yr)  - yield factor due to staff (3.59E-05) 

𝑐𝑐,𝑚 (kgm/kg)  - allowable concentration of substance, m [Solids, Chemical, Metals, 

Water] in the compartment, c [air, water, soil] 

𝑅𝑐 (kg/m2.yr)  - rate of renewal of the environmental compartments, c [air, water, 

soil]  

 

Estimated Parameters 

𝐸𝐷,𝑅𝑁  - energy demand to supply one kilogram of the material in question for non-

renewable energy (kWh/kg) 

𝐸𝐷,𝑅𝑁 =  
0.95 𝐶𝑁

𝐶𝐸
=  

0.95 × 7

0.1
= 66.5 

𝐸𝐷,𝐼𝐼  - energy demand to supply one kilogram of the material in question for indirect land 

energy (kWh/yr) 
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𝐸𝐷,𝐼𝐼 =  
0.54 𝐶𝐼

𝐶𝐸 . 𝐿𝑆
=  

0.54 × 122720

0.1 × 30
= 22089.6 

𝑆𝑐,𝑚  - dissipation to potential sink (kgm/m2yr) 

𝑆𝑐,𝑚 =  𝑅𝑐 . 𝑐𝑐,𝑚 

Analysis for Rsoil (kg/m2.yr) 

Rate of soil renewal (RSN) in the US is 2.2E-04 m/yr 

Assuming the soil is loamy with a 50% pore space, then the bulk density is 1330 kg/m3  

𝑅𝑠𝑜𝑖𝑙 = 𝑅𝑆𝑁 × 𝐷𝑒𝑛𝑏𝑢𝑙𝑘 = 0.00022 × 1330 = 0.2926  

 

Since contaminants are categorized into solids, chemicals, and metals, we used 

contaminants that had the smallest allowable concentration for each category in the 

compartments to estimate S. For solids contaminant, we used lead (Pb), for chemical we 

used Chromium (Cr), and for metals we used lead (Pb).    

 

Analysis for Ssoil,m (kgm/m2.yr) 

𝑆𝑠𝑜𝑖𝑙,𝑚 =  𝑅𝑠𝑜𝑖𝑙  . 𝑐𝑠𝑜𝑖𝑙,𝑚 

 

Table A7 

Data on soil yield for municipal wastewater contaminants 

Component (m) C(soil,m) (kgm/kg) S(soil,m)  (kgm/m2.y) 

Solids (Sslds) 1.00E+00 2.93E-01 

Chemical (Chem) 1.00E-04 2.93E-05 

Metals (Mtls) 2.00E-06 5.85E-07 

Water (Wtr) 1.00E+00 2.93E-01 
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Analysis for Rwater (kg/m2.yr) 

Average rate of precipitation (RP) form Jan, 2009 to Dec, 2019 in the US is 31.91 in/yr 

(0.810514 m/yr) 

Seeping ratio (SR) of water is 0.30 

𝑅𝑤𝑎𝑡𝑒𝑟 = 𝑅𝑃 × 𝑆𝑅 × 𝐷𝑒𝑛𝑤𝑎𝑡𝑒𝑟 = 0.810514 × 0.30 × 1000 = 243.1542 

 

Analysis for Swater,m (kgm/m2.yr) 

𝑆𝑤𝑎𝑡𝑒𝑟,𝑚 =  𝑅𝑤𝑎𝑡𝑒𝑟  . 𝑐𝑤𝑎𝑡𝑒𝑟,𝑚 

 

Table A8 

Data on water yield for municipal wastewater contaminants 

Component (m) C(water,m) (kgm/kg) S(water,m)  (kgm/m2.y) 

Solids (Sslds) 1.67E-06 4.05E-04 

Chemical (Chem) 1.00E-07 2.43E-05 

Metals (Mtls) 1.50E-08 3.65E-06 

Water (Wtr) 1.00E+00 2.43E+02 

 

 

Sair,chem (kgm/m2.yr) = 6.50E-03  
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Table A9 

FP,c,m product flow rate to compartment c, by substance, m (kgm/yr) [from GAMS code] 

Component 

(m) 

Fraction of m into 

compartment c 

FP,c,m 

Air Water Soil Air Water Soil 

Solids (Sslds) 0 0.05 0.95 0.00E+00 3.17E+03 6.02E+04 

Chemical 

(Chem) 

0.03 0.9 0.07 9.50E+00 2.85E+02 2.22E+01 

Metals (Mtls) 0 0.7 0.3 0.00E+00 2.22E+01 9.50E+00 

Water (Wtr) 0 0.95 0.05 0.00E+00 7.15E+08 3.76E+07 

 

 

Variables 

𝐴𝑅 - area for raw material production (m2/yr) 

𝐴𝑅𝑅  - area for renewable raw material production (m2/yr) 

𝐴𝐸  - area for energy production (m2/yr) 

𝐴𝐼 - area for installation for equipment and other infrastructure (m2/yr)  

𝐴𝐼𝐷 - area for direct installation (m2/yr) 

𝐴𝐼𝐼 - area for indirect installation (m2/yr) 

𝐴𝑆 - area for staff (m2/yr) 

𝐴𝑃,𝑐,𝑚  - area for dissipating a single component of particular product flow to a given 

compartment (m2/yr) 

𝐴𝑃𝑆,𝑐  - area assigned to the dissipation of a particular product stream, S (m2/yr) 

𝐴𝑃 - area for product dissipation (m2/yr) 

𝐴𝑡𝑜𝑡 - total area (m2/m3WW-yr) 

 

Area for Raw Material Production (AR) 

Area for Renewable Raw Material Production (ARR) 
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 𝐴𝑅𝑅 =
𝐹𝑅𝑅

𝑦𝑅
=  

7524000000

243.1542
=   3.09𝐸06  

Area for Non-Renewable Raw Material Production (ARN) 

𝐴𝑅𝑁 =  
𝐹𝑅𝑁. 𝐸𝐷,𝑅𝑁

𝑦𝐸𝐼,𝑅𝑁
=  

2172028 × 66.5

7
= 2.06𝐸07    

𝐴𝑅 =  𝐴𝑅𝑅 +  𝐴𝑅𝑁 =  2.37E07   

 

Area for Energy Production (AE) 

𝐴𝐸 =  
𝐹𝐸

𝑦𝐸
  =  

555659.28

43
=  1.29𝐸4  

 

Area for Installations (AI) 

𝐴𝐼 =  𝐴𝐼𝐷 +  𝐴𝐼𝐼     

Area for Direct Installation (AID)[from GAMS Code] 

Flocculation technology  = 18.54 

Sedimentation technology  = 35.43 

Adsorption technology = 4.86 

Bleaching technology  = 38.09 

𝐴𝐼𝐷 = 96.91 

Area for Indirect Installation (AII) 

𝐴𝐼𝐼 =  
𝐸𝐷,𝐼𝐼

𝑦𝐸𝐼,𝐼𝐼
=

22089.6

43
=  5.14𝐸2  

 

Area for Staff (AS) 

𝐴𝑆 =  𝑁𝑆. 𝑎𝑖𝑛 =  
𝑁𝑆

𝑦𝑆
 =  

80.19

0.0000359
= 2.23𝐸6   

 

Area for Product Dissipation into Various Environmental Compartment (AP) 

𝐴𝑃,𝑐,𝑚 =  
𝐹𝑃,𝑐,𝑚

𝑆𝑐,𝑚
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Table A10 

Area needed for emission dissipation for municipal wastewater treatment 

Component (m) 
AP,c,m 

Air Water Soil 

Solids (Sslds) -- 7.82E+06 2.06E+05 

Chemical (Chem) 1.46E+03 1.17E+07 7.58E+05 

Metals (Mtls) -- 6.08E+06 1.62E+07 

Water (Wtr) -- 2.94E+06 1.29E+08 

 

 

𝐴𝑃𝑆,𝑐 =  𝑚𝑎𝑥𝑚(𝐴𝑃,𝑐,𝑚)    

Highlighted are the maximum values for each component 

 

Table A11 

Highest area from emission dissipation  

Component (m) 
AP,c,m 

Air Water Soil 

Solids (Sslds) -- 7.82E+06 2.06E+05 

Chemical (Chem) 1.46E+03 1.17E+07 7.58E+05 

Metals (Mtls) -- 6.08E+06 1.62E+07 

Water (Wtr) -- 2.94E+06 1.29E+08 

 

 

𝐴𝑃  =  ∑ 𝐴𝑃𝑆,𝑐

𝑐

=  1.40𝐸8   
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𝐴𝑡𝑜𝑡 =  𝐴𝑅 + 𝐴𝐸 + 𝐴𝐼 + 𝐴𝑆 + 𝐴𝑃 = 2.10E+02 (m2/m3WW-yr) 

 

A.1.10.2 SPI for Direct Disposal of Municipal Wastewater  

We considered on the area needed to sustainably embed the wastewater into the ecosystem, 

i.e. AP 

 

Area for Product Dissipation into Various Environmental Compartment (AP) 

Table A12 

FP,c,m product flow rate to compartment c, by substance, m (kgm/yr) [from GAMS code] 

Component (m) 
Fraction of  FP,c,m 

Water Soil Water Soil 

Solids (Sslds) 0.05 0.95 8.76E+06 1.66E+08 

Chemical (Chem) 0.95 0.05 8.32E+05 4.38E+04 

Metals (Mtls) 0.7 0.3 6.13E+04 2.63E+04 

Water (Wtr) 0.95 0.05 8.32E+08 4.38E+07 

 

 

𝐴𝑃,𝑐,𝑚 =  
𝐹𝑃,𝑐,𝑚

𝑆𝑐,𝑚
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Table A13 

Area needed for emission dissipation for direct disposal of wastewater 

Component (m) 
AP,c,m 

Water Soil 

Solids (Sslds) 7.82E+06 2.06E+05 

Chemical (Chem) 1.17E+07 7.58E+05 

Metals (Mtls) 6.08E+06 1.62E+07 

Water (Wtr) 2.94E+06 1.29E+08 

 

 

𝐴𝑃𝑆,𝑐 =  𝑚𝑎𝑥𝑚(𝐴𝑃,𝑐,𝑚)    

Highlighted are the maximum values for each component 

 

Table A14 

Highest area from emission dissipation for direct disposal 

Component (m) 
AP,c,m 

Water Soil 

Solids (Sslds) 2.16E+10 5.69E+08 

Chemical (Chem) 3.42E+10 1.50E+09 

Metals (Mtls) 1.68E+10 4.49E+10 

Water (Wtr) 3.42E+06 1.50E+08 

 

 

𝐴𝑃  =  ∑ 𝐴𝑃𝑆,𝑐

𝑐

=  7.91𝐸10   
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𝐴𝑡𝑜𝑡 =  𝐴𝑃 = 9.03E+04 (m2/m3WW-yr) 

 

A.2 Information for Pharmaceutical Case Study  

A.2.1  Model equations and details 

i ∈ I – technologies (used as subscript to variables)  

{flc - flocculation,  

sdm - sedimentation, 

ftt - filtration, 

ads - adsorption, 

asl - activated sludge, 

rbc - rotating biological contactors, 

dis - disinfection, 

mbrt - membrane bioreactor, 

aop - advanced oxidation process, 

blc - bleaching, 

mbr - membrane processes 

splt# - splitter and # = {1, 2, 3, 4} 

mxr# - mixer and # = {1, 2, 3, 4} 

byp# - bypass and # = {1, 2, 3, 4}}  

𝑗 ∈ 𝑱 – stream (used as subscript to variables)  

{1, 2, 3, 4, ……………………, 49}  

𝑘 ∈ 𝑲 – components (used as subscript to variables)  

{Wtr   - water,   

Ssld  - solids,   

Mtls  - metals 

Chem  - chemicals 

API  - active pharmaceutical ingredients 

Flcnt  - flocculants, 

Oz  - ozone, 

NaClO  - sodium hypochlorite, 
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L_Chlrn  - liquid chlorine} 

s ∈ S -  stages {s1, s2, s3, s4}   

A.2.2  Subsets  

Subsets for technologies  

ICST –  technologies with costs  

{flc, sdm, ftt, ads, asl, rbc, mbrt, dis, mbr, blc }  

ICF –  technologies with concentration factor  

{ftt, mbrt, sdm, mbr}  

ICONS –  technologies with consumables  

{ftt, ads, mbrt, mbr} 

 IEAC – technologies with externally added components 

 {flc, aop, dis, blc} 

IBV – technologies with binary variables 

 {flc, sdm, ftt, ads, asl, rbc, mbrt, dis, mbr, blc, byp1, byp2, byp3, byp4 } 

IS1 – technologies in stage 1 

 {flc, byp1} 

IS2 – technologies in stage 2 

 {ftt, sdm, byp2} 

IS3 – technologies in stage 3 

 {ads, asl, rbc, dis, mbrt, byp3} 

IS4 – technologies in stage 4 

 {aop, blc, mbr, byp4} 

Subsets for streams  

Jflc    – streams for flocculation 

 {2, 4, 5} 

Jbyp1 – streams for bypass 1 

 {3, 6} 

Jsdm  – streams for sedimentation 

 {9, 13, 14} 

Jftt    – streams for filtration 

 {8, 11, 12} 
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Jbyp2 – streams for bypass 2 

 {10, 15} 

Jads   – streams for adsorption 

 {17, 23, 24} 

Jasl    – streams for activated sludge 

 {18, 25, 26} 

Jrbc   – streams for rotating biological containers 

 {19, 27, 28} 

Jdis    – streams for disinfection 

 {20, 29, 30, 31} 

Jmbrt – streams for membrane bioreactor 

 {21, 32, 33} 

Jbyp3 – streams for bypass 3 

 {22, 34} 

Jaop   – streams for advanced oxidation process 

 {36, 40, 41, 42} 

Jmbr  – streams for membrane processes 

 {38, 46, 47} 

Jblc   – streams for bleaching 

 {37, 43, 44, 45} 

Jbyp4 – streams for bypass 4 

 {39, 48} 

Subsets for components  

𝑲S – components in streams 

 {Wtr, Ssld, Mtls, Chem, API, Flcnt, Oz, NaClO, L_Chlrn} 

𝑲SP – components in initial wastewater stream 

 {Wtr, Ssld, Mtls, Chem, API} 

𝑲CONT – components that are contaminants 

 {Ssld, Mtls, Chem, API} 

𝑲EAC – components that are externally added 

 {Flcnt, Oz, NaClO, L_Chlrn} 
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A.2.3 Dynamic sets for connectivity 

 Ji - streams of technology i 

 Jini -  inlet streams of technology i 

 Jouti -  outlet streams of technology i 

 Ki -  components k in technology i 

 Kj -  components k in stream j 

 

A.2.4 Model Parameters   

General Parameters  

𝜌k (kg/m3) = Density of component k  

πWW (m
3 WW/h) = Entering volumetric flowrate of wastewater (WW)  

πRep
i ($/unit) = Replacement cost of consumables per unit capacity in technology i  

μ (N-s/m2)  = viscosity of fluid   

ηi (%) = efficiency of technology i  

θi
R (hr) – residence time in technology i   

θi
Rep (h/year) = Replacement time for consumables in technology i  

τann (h/annum) = annual operation in hours (330 day x 24 h/day = 7920 hrs)  

C0i ($/capacity) = standard capacity cost in technology i 

g (m/s2) = gravitational constant  

nc = cost scaling index (2/3 rule)  

Nlabri (#/h) = standard # of laborers required for technology i per hour  

Q0i (m
3 or m2 or m3/h) = standard capacity of technology i  

MWk (kg/kmol) = molecular weight of component k 

Mink (kg/m3) = initial mass concentration of component k 

Cpurk ($/kg) = purchase cost of added component k 

Wspi (kW/h) = standard power required for technology i per hour 

MMk (--) = Big-M constant for component k 

Φk (kg/kg WW) = amount of externally added component k   

dp (m) = diameter of particle 

ξj,i (--) = retention factor of component k for technology i {ftt, mbrt, and mbr technologies} 
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ςRF (--) = capital recovery/ charge factor (0.11) 

ζi (m
3/m2h) = flux of technology i { ftt, mbrt, and mbr technologies} 

κdi (h
-1) = decay of biomass coefficient of technology i {asl technology} 

γi (kg/kg) = biomass yield of technology i { asl technology} 

χi (m
3/m2h) = hydraulic loading of technology i {rbc technology} 

BMCmult (--) = bare module cost multiplier (5.4) 

CLab ($/h) = labor cost – operator basis (30) 

CElec ($/kW) = cost of electricity per hour (0.1) 

 

Evaluated Parameters 

SORi (m/s) = surface overflow rate id sedimentation  

Ui (m/s) = settling velocity of technology i  

 

A.2.5  Model Variables 

General Variables  

Cc,i ($) =  Purchase cost of technology i ∈ 𝑰CST  

𝐶Fi (m
3/m3) = Concentration factor for technologies 𝑖 ∈ 𝑰𝑪𝑭  

Cprk ($/h) = Purchase cost of added components k ∈ KEAC 

Mj,k (kg/h) = Mass flowrate of component k in stream j  

𝑄c𝑖 (m3 or m2 or m3/h) = capacity cost of technologies 𝑖 ∈ 𝑰CST  

𝑃Wi (kW/h) = power requirements for technologies 𝑖 ∈ 𝑰CST  

Nlbri (#/h) = number of laborers required for technology 𝑖 ∈ 𝑰CST  

Yoi (kg/kg) = observed bacteria yield of technology i (asl technology) 

Sri (m/h) = settling rate of unit i (asl technology) 

Xi (kg/h) = biomass produced in technology i (asl technology) 

Srti (h) = solids residence time in technology i (asl technology) 

Di (m) = diameter of technology i (mbrt technology) 

Consi ($/annum) = consumable cost of technology 𝑖 ∈ 𝑰CONS  

 

Binary Variables 
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yi (--) = binary variables for technologies to selected 𝑖 ∈ 𝑰BV  

 

Stage-wise Costing Variables 

 CCACNstg = annualized capital (fixed) cost in nth stage  

 CCRMNstg = material cost in nth stage  

 CCCSNstg = consumable cost in nth stage 

 CCLBNstg = labor cost in nth stage 

 CCUTNstg = utility cost in nth stage 

 CCOTNstg = other cost in nth stage (plant overhead and supervision costs) 

 CCTCNstg = total cost in nth stage (all cost added in that particular stage) 

 CCTPC    = total cost for process (summation of total cost in each stage) 

 

A.2.6 Model Equations: 

Initial wastewater flowrate equations: 

𝑀1,𝑘  = (∑ 𝑀𝑖𝑛𝑘𝑘 )𝜋𝑊𝑊 ;  ∀  𝑘 ∈  𝑲𝑺𝑷     

 

Component balances in all technologies: 

 ∑ 𝑀𝑗,𝑘𝑗∈𝑱𝒊𝒏𝒊
=  ∑ 𝑀𝑗,𝑘𝑗∈𝑱𝒐𝒖𝒕𝒊

 ;  ∀  𝑘 ∈  𝑲𝑺 

 

Cost of technologies: 

 (
𝐶𝑐𝑖

𝐶0𝑖
) = ( 

𝑄𝑐𝑖

𝑄0𝑖
)

𝑛𝑐

 ;   ∀  𝑖 ∈  𝑰𝑪𝑺𝑻   

 

Labor requirements in technologies: 

 𝑁𝑙𝑏𝑟𝑖𝑄0𝑖 =  𝑁𝑙𝑎𝑏𝑟𝑖𝑄𝑐𝑖 ;   ∀  𝑖 ∈  𝑰𝑪𝑺𝑻 

 

Consumable costs in technologies: 

 𝐶𝑜𝑛𝑠𝑖 =  
𝜏𝑎𝑛𝑛

𝜃
𝑖
𝑅𝑒𝑝 𝜋𝑖

𝑅𝑒𝑝𝑄𝑐𝑖 ;  ∀  𝑖 ∈  𝑰𝑪𝑺𝑻   

 

Logical equations: 
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 𝑀𝑖,𝑗 −  𝑀1𝑘𝑦𝑖   ≤   0 ;  ∀  𝑖 ∈  𝑰𝑩𝑽 ,   𝑗 ∈  𝑱,   𝑘 ∈   𝑲𝒊 𝑎𝑛𝑑 𝑲𝒋 

 

Selection of technologies in each stage: 

Preliminary (Pretreatment) stage: 

 𝑦𝑓𝑙𝑐 +  𝑦𝑏𝑦𝑝,1 = 1 

 

Primary Treatment Stage: 

 𝑦𝑓𝑡𝑡 +  𝑦𝑠𝑑𝑚 + 𝑦𝑏𝑦𝑝,2 = 1 

 

Secondary Treatment Stage: 

 𝑦𝑎𝑑𝑠 + 𝑦𝑎𝑠𝑙 +  𝑦𝑟𝑏𝑐 +  𝑦𝑑𝑖𝑠 +  𝑦𝑚𝑏𝑟𝑡 +  𝑦𝑏𝑦𝑝,3 = 1 

 

Tertiary Treatment Stage: 

 𝑦𝑎𝑜𝑝 +  𝑦𝑚𝑏𝑟 + 𝑦𝑏𝑙𝑐 = 1 

 

Preliminary (Pretreatment) Stage Model Equations for Technologies 

Flocculation (flc): 

Flocculent added: 

 𝑀5,𝐹𝑙𝑐𝑛𝑡 =  𝛷𝐹𝑙𝑐𝑛𝑡  ∑ 𝑀2,𝑘𝑘∈𝑲𝑪𝑶𝑵𝑻  

Flocculent cost: 

 𝐶𝑝𝑢𝑟𝑘 =  𝜋𝐹𝑙𝑐𝑛𝑡𝑀5,𝐹𝑙𝑐𝑛𝑡 

Volume of flocculation unit: 

 𝑄𝑐𝑓𝑙𝑐 =  𝜃𝑓𝑙𝑐
𝑅  [∑ (

𝑀2,𝑘

𝜌𝑘
)𝑘∈𝑲𝑺 ] 

Power required in flocculation unit: 

 𝑃𝑊𝑓𝑙𝑐 =  𝑊𝑠𝑝𝑓𝑙𝑐𝑄𝑐𝑓𝑙𝑐  

 

Primary Stage Model Equations for Technologies 

Sedimentation (sdm): 

Efficiency equation: 
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 𝜂𝑠𝑑𝑚 =  
𝑀13,𝑘

𝑀9,𝑘
 ;  𝑘 ∈  𝑲𝑪𝑶𝑵𝑻  

Concentration factor (CFsdm):  

 𝐶𝐹𝑠𝑑𝑚 =  
 [∑ (

𝑀9,𝑘
𝜌𝑘

)
𝑘∈𝑲𝑺𝑷 

]

 [∑ (
𝑀13,𝑘

𝜌𝑘
)

𝑘∈𝑲𝑺𝑷 
]
 

Written as: 𝐶𝐹𝑠𝑑𝑚 [∑ (
𝑀13,𝑘

𝜌𝑘
)𝑘∈𝑲𝑺𝑷 ] =   [∑ (

𝑀9,𝑘

𝜌𝑘
)𝑘∈𝑲𝑺𝑷 ] 

2 ≤  𝐶𝐹𝑠𝑑𝑚  ≤   15 

Written as: 𝐶𝐹𝑠𝑑𝑚  ≤ 15𝑦𝑠𝑑𝑚 𝑎𝑛𝑑 𝐶𝐹𝑠𝑑𝑚  ≥ 2𝑦𝑠𝑑𝑚 

Area of sedimentation unit:  

 𝑄𝑐𝑠𝑑𝑚 =  
 [∑ (

𝑀9,𝑘
𝜌𝑘

)
𝑘∈𝑲𝑺𝑷 

]

𝑆𝑂𝑅𝑠𝑑𝑚
  

Power required in sedimentation unit: 

 𝑃𝑊𝑠𝑑𝑚 =  𝑊𝑠𝑝𝑠𝑑𝑚𝑄𝑐𝑠𝑑𝑚 

 

Filtration (ftt): 

Retention factor equation 

 𝜉𝑓𝑡𝑡𝑘
=  

𝑀11,𝑘

𝑀8,𝑘
 ;  𝑘 ∈  𝑲𝑺𝑷 

 Written as: 𝜉𝑓𝑡𝑡𝑘
𝑀8,𝑘 =  𝑀11,𝑘 

Concentration factor equation (ftt): 

 𝐶𝐹𝑓𝑡𝑡 =  
 [∑ (

𝑀8,𝑘
𝜌𝑘

)
𝑘∈𝑲𝑺𝑷 

]

 [∑ (
𝑀11,𝑘

𝜌𝑘
)

𝑘∈𝑲𝑺𝑷 
]
 

Written as: 𝐶𝐹𝑓𝑡𝑡 [∑ (
𝑀13,𝑘

𝜌𝑘
)𝑘∈𝑲𝑺𝑷 ] =   [∑ (

𝑀9,𝑘

𝜌𝑘
)𝑘∈𝑲𝑺𝑷 ] 

1 ≤  𝐶𝐹𝑓𝑡𝑡  ≤   30 

Written as: 𝐶𝐹𝑓𝑡𝑡  ≤ 30𝑦𝑓𝑡𝑡 𝑎𝑛𝑑 𝐶𝐹𝑓𝑡𝑡  ≥ 1𝑦𝑓𝑡𝑡 

Area of filtration unit (flux balance): 

 𝑄𝑐𝑓𝑡𝑡 =  𝐴𝑓𝑡𝑡  =  
 [∑ (

𝑀8,𝑘
𝜌𝑘

)
𝑘∈𝑲𝑺𝑷 

](𝐶𝐹𝑓𝑡𝑡−1)

𝜁𝑓𝑡𝑡𝐶𝐹𝑓𝑡𝑡
  

 Written as: 𝑄𝑐𝑓𝑡𝑡𝜁𝑓𝑡𝑡𝐶𝐹𝑓𝑡𝑡 =   [∑ (
𝑀8,𝑘

𝜌𝑘
)𝑘∈𝑲𝑺𝑷 ] (𝐶𝐹𝑓𝑡𝑡 − 1) 

Power requirements for filtration unit: 
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 𝑃𝑊𝑓𝑡𝑡 =  𝑊𝑠𝑝𝑓𝑡𝑡𝑄𝑐𝑓𝑡𝑡 

Power required in sedimentation unit: 

 𝑃𝑊𝑠𝑑𝑚 =  𝑊𝑠𝑝𝑠𝑑𝑚𝑄𝑐𝑠𝑑𝑚 

 

Tertiary Stage Model Equations for Technologies 

Advanced Oxidation Processes: 

Mass of ozone needed for advanced oxidation processes unit 

𝑀42,𝑂𝑧 =  𝛷𝑂𝑧  ∑ 𝑀31,𝑘
𝑘∈𝑲𝑪𝑶𝑵𝑻  

 

Efficiency equation: 

𝜂𝑎𝑜𝑝 =  
𝑀40,𝑘

𝑀36,𝑘
 ;  𝑘 ∈  𝑲𝑪𝑶𝑵𝑻 

Volume of advanced oxidation processes unit: 

𝑄𝑐𝑎𝑜𝑝 = 𝑉𝑎𝑜𝑝 =  𝜃𝑎𝑜𝑝
𝑅  [∑ (

𝑀36,𝑘

𝜌𝑘
)

𝑘∈𝑲𝑺 
] 

Power required for advanced oxidation processes unit: 

𝑃𝑊𝑎𝑜𝑝 =  𝑊𝑠𝑝𝑎𝑜𝑝𝑄𝑐𝑎𝑜𝑝 

 

Membrane Processes: 

Retention factor equation 

 𝜉𝑚𝑏𝑟𝑘
=  

𝑀46,𝑘

𝑀38,𝑘
 ;  𝑘 ∈  𝑲𝑺𝑷 

 Written as: 𝜉𝑚𝑏𝑟𝑘
𝑀38,𝑘 =  𝑀46,𝑘 

Concentration factor equation (mbr): 

 𝐶𝐹𝑚𝑏𝑟 =  
 [∑ (

𝑀38,𝑘
𝜌𝑘

)
𝑘∈𝑲𝑺𝑷 

]

 [∑ (
𝑀46,𝑘

𝜌𝑘
)

𝑘∈𝑲𝑺𝑷 
]
 

Written as: 𝐶𝐹𝑚𝑏𝑟 [∑ (
𝑀46,𝑘

𝜌𝑘
)𝑘∈𝑲𝑺𝑷 ] =   [∑ (

𝑀38,𝑘

𝜌𝑘
)𝑘∈𝑲𝑺𝑷 ] 

1 ≤  𝐶𝐹𝑚𝑏𝑟  ≤   35 

Written as: 𝐶𝐹𝑚𝑏𝑟  ≤ 35𝑦𝑚𝑏𝑟 𝑎𝑛𝑑 𝐶𝐹𝑚𝑏𝑟  ≥ 1𝑦𝑚𝑏𝑟 

Area of membrane processes unit (flux balance): 
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 𝑄𝑐𝑚𝑏𝑟 =  𝐴𝑚𝑏𝑟  =  
 [∑ (

𝑀38,𝑘
𝜌𝑘

)
𝑘∈𝑲𝑺𝑷 

](𝐶𝐹𝑚𝑏𝑟−1)

𝜁𝑚𝑏𝑟𝐶𝐹𝑚𝑏𝑟
  

 Written as: 𝑄𝑐𝑚𝑏𝑟𝜁𝑚𝑏𝑟𝐶𝐹𝑚𝑏𝑟 =   [∑ (
𝑀38,𝑘

𝜌𝑘
)𝑘∈𝑲𝑺𝑷 ] (𝐶𝐹𝑚𝑏𝑟 − 1) 

Power requirements for membrane unit: 

 𝑃𝑊𝑚𝑏𝑟 =  𝑊𝑠𝑝𝑚𝑏𝑟𝑄𝑐𝑚𝑏𝑟 

Bleaching:  

Efficiency equation: 

𝜂𝑏𝑙𝑐 =  
𝑀43,𝑘

𝑀37,𝑘
 ;  𝑘 ∈  𝑲𝑪𝑶𝑵𝑻 

Mass of disinfectant required for disinfection unit 

𝑀45,𝑁𝑎𝐶𝑙𝑂 =  𝛷𝑁𝑎𝐶𝑙𝑂  ∑ 𝑀37,𝑘
𝑘∈𝑲𝑪𝑶𝑵𝑻 

 

Volume of disinfection unit: 

𝑄𝑐𝑑𝑖𝑠 = 𝑉𝑑𝑖𝑠 =  𝜃𝑑𝑖𝑠
𝑅  [∑ (

𝑀37,𝑘

𝜌𝑘
)

𝑘∈𝑲𝑺 
] 

Power required for disinfection unit: 

𝑃𝑊𝑑𝑖𝑠 =  𝑊𝑠𝑝𝑑𝑖𝑠𝑄𝑐𝑑𝑖𝑠 

 

Cost Model Equations 

Stagewise Cost Equations 

Annualized capital cost in each stage: 

𝐶𝐶𝐴𝐶𝑁𝑠𝑡𝑔 =  1.66 𝜍𝑅𝐹𝐵𝑀𝐶𝑚𝑢𝑙𝑡  ∑ 𝐶𝑒𝑖
𝑖∈𝑖𝑠𝑡𝑔{1,2,3,4} 

 

Material Cost: 

𝐶𝐶𝑅𝑀𝑠1 = [𝜏𝑎𝑛𝑛(𝐶𝑝𝑢𝑟𝐹𝑙𝑐𝑛𝑡)]  

𝐶𝐶𝑅𝑀𝑠2 = 0 

𝐶𝐶𝑅𝑀𝑠3 = [𝜏𝑎𝑛𝑛(𝐶𝑝𝑢𝑟𝐿𝐶ℎ𝑙𝑟𝑛
)] 

𝐶𝐶𝑅𝑀𝑠4 = [𝜏𝑎𝑛𝑛( 𝐶𝑝𝑢𝑟𝑂𝑧 + 𝐶𝑝𝑢𝑟𝑁𝑎𝐶𝑙𝑂)] 

Consumable Cost: 

𝐶𝐶𝐶𝑆𝑠1 = 0  

𝐶𝐶𝐶𝑆𝑠2 =  𝐶𝑜𝑛𝑠𝑓𝑡𝑡 
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𝐶𝐶𝐶𝑆𝑠3 =  𝐶𝑜𝑛𝑠𝑎𝑑𝑠 +  𝐶𝑜𝑛𝑠𝑚𝑏𝑟𝑡  

𝐶𝐶𝐶𝑆𝑠4 =  𝐶𝑜𝑛𝑠𝑚𝑏𝑟   

Labor Cost 

𝐶𝐶𝐿𝐶𝑁𝑠𝑡𝑔 =   𝜏𝑎𝑛𝑛𝐶𝐿𝑎𝑏  ∑ 𝑁𝑙𝑏𝑖
𝑖∈𝑖𝑠𝑡𝑔{1,2,3,4} 

 

Utility Cost 

𝐶𝐶𝑈𝐶𝑁𝑠𝑡𝑔 =   𝜏𝑎𝑛𝑛𝐶𝑒𝑙𝑒𝑐  ∑ 𝑃𝑊𝑖
𝑖∈𝑖𝑠𝑡𝑔{1,2,3,4} 

 

Other Cost 

𝐶𝐶𝑂𝐶𝑁𝑠𝑡𝑔 =   2.78 𝜏𝑎𝑛𝑛𝐶𝐿𝑎𝑏  ∑ 𝑁𝑙𝑏𝑖
𝑖∈𝑖𝑠𝑡𝑔{1,2,3,4} 

 

Total Cost in each Stage 

𝐶𝐶𝑇𝐶𝑁𝑠𝑡𝑔 =  𝐶𝐶𝐴𝐶𝑁𝑠𝑡𝑔 + 𝐶𝐶𝑅𝑀𝑁𝑠𝑡𝑔 + 𝐶𝐶𝐶𝑆𝑁𝑠𝑡𝑔 + 𝐶𝐶𝐿𝐶𝑁𝑠𝑡𝑔 + 𝐶𝐶𝑈𝐶𝑁𝑠𝑡𝑔𝐶𝐶𝑂𝐶𝑁𝑠𝑡𝑔  

Total Category Cost: 

𝐶𝐶𝑇𝐴𝐶 =    ∑ 𝐶𝐶𝐴𝐶𝑛
𝑛∈𝑁𝑠𝑡𝑔{1,2,3,4} 

 

𝐶𝐶𝑇𝑅𝑀 =    ∑ 𝐶𝐶𝑅𝑀𝑛
𝑛∈𝑁𝑠𝑡𝑔{1,2,3,4} 

 

𝐶𝐶𝑇𝐶𝑆 =    ∑ 𝐶𝐶𝐶𝑆𝑛
𝑛∈𝑁𝑠𝑡𝑔{1,2,3,4} 

 

𝐶𝐶𝑇𝐿𝐶 =    ∑ 𝐶𝐶𝐿𝐶𝑛
𝑛∈𝑁𝑠𝑡𝑔{1,2,3,4} 

 

𝐶𝐶𝑇𝑈𝐶 =    ∑ 𝐶𝐶𝑈𝐶𝑛
𝑛∈𝑁𝑠𝑡𝑔{1,2,3,4} 

 

𝐶𝐶𝑇𝑂𝐶 =    ∑ 𝐶𝐶𝑂𝐶𝑛
𝑛∈𝑁𝑠𝑡𝑔{1,2,3,4} 

 

𝐶𝐶𝑇𝑃𝐶 = 𝐶𝐶𝑇𝐴𝐶 + 𝐶𝐶𝑇𝑅𝑀 + 𝐶𝐶𝑇𝐶𝑆 + 𝐶𝐶𝑇𝐿𝐶 + 𝐶𝐶𝑇𝑈𝐶 + 𝐶𝐶𝑇𝑂𝐶  

 

Objective Function 1: 

𝑂𝑏𝑗 =  𝑀𝑖𝑛 𝐶𝐶𝑇𝑃𝐶 
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A.2.7 Model parameters and inputs 

Table A15 

Density and Molecular Weight of Components 

Component Value (kg/m3) Value (kg/kmol) 

Water 1000 18 

Solid particles 1800 102 

Metals 2500 98 

Chemicals 1100 48 

Active pharmaceutical ingredient 1400 748.996 

Ozone 2.14 48 

Sodium Hypochlorite 1110 74.44 

Flocculant 2200 2200 

Liquid chlorine 1470 70.91 

 

 

Table A16  

Purchase Cost of Added Components 

Component Value ($/kg) 

Ozone 3.53 

Sodium Hypochlorite 0.35 

Flocculant 0.75 

Liquid chlorine 2 
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Table A17 

Standard Capacity, Cost, Laborers, and Power for Technologies 

Unit Operation 

(costing capacity) 

Standard Capacity 

(Units) 

Standard 

Capacity 

Cost 

(million $) 

Standard 

Laborers 

Required 

(#/h) 

Standard 

Power 

Required 

(kW/h) 

Flocculation (Volume) 2000 (m3) 0.538 0.1 0.0002 

Filtration 

(Area) 
80 (m2) 0.039 0.5 0.1 

Sedimentation 

(Volume) 
2500 (m3) 1.128 0.1 0.0002 

Adsorption (Volume) 100 (m3) 0.12 0.2 0.3 

Membrane Bioreactor 

(Area) 
40 (m2) 1.194 0.1 0.2 

Rotational Biological 

Container (Area) 
185 (m2) 0.045 0.3 0.01 

Activated Sludge 

(Volume) 
250 (m3) 0.569 0.4 0.2 

Disinfection (Volume) 540 (m3) 0.627 0.7 0.5 

Membrane Processes 

(Area) 
80 (m2) 0.938 0.5 0.2 

Advanced Oxidation 

Processes (Volume) 
1000 (m3) 0.735 0.1 0.5 

Bleaching (Volume) 500 (m3) 0.100 0.5 0.33 

 

 

Table A18 

Replacement Time for Technologies with Consumables 

Technology Value (h/yr) 

Filtration 2000 

Adsorption 720 

Membrane Processes 1000 

Membrane Bioreactor 1000 
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Table A19 

Replacement Cost for Technologies with Consumables 

Technology Value ($/Unit) 

Filtration 100 

Adsorption 74.16 

Membrane Processes 400 

Membrane Bioreactor 400 

 

 

A.2.7.1 Flocculation (Flc): 

Flocculent added (kg/kg) – 0.005  

Residence time (h) – 0.5 

 

A.2.7.2 Sedimentation (Sdm): 

Efficiency – 80%  

Depth – 3m  

 

A.2.7.3 Filtration (Ftt): 

Retention factor: Water – 0.05, Solids – 0.80, Metals – 0.10, Chemicals – 0.05, API – 0.50 

Flux (m3/m2.h): 0.2 

 

A.2.7.4 Membrane Bioreactor (Mbrt): 

Retention factor: Water – 0.005, Solids – 0.95, Metals – 0.85, Chemicals – 0.50, API – 

0.90 

Flux (m3/m2.h): 0.025 
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A.2.7.5 Adsorption (Ads): 

Empty bed contact time (h): 0.25 

Density of granular activated carbon (GAC) (kg/m3): 1030 

Efficiency: 90% 

Void fraction of GAC: 50% 

 

A.2.7.6 Activated Sludge (Asl): 

Decay of biomass coefficient (h-1): 0.0021 

Biomass yield (kg/kg): 0.5 

Hydraulic retention time (h): 2 

Efficiency: 80% 

 

A.2.7.7 Rotating Biological Contactors (Rbc): 

Efficiency: 80% 

Hydraulic loading (m3/m2h): 20 

 

A.2.7.8 Disinfection (Dis): 

Efficiency: 95% 

Ratio of liquid chlorine to contaminant (kg/kg): 0.00173 

Residence time (h): 2 

 

A.2.7.9 Advanced Oxidation Processes (Aop): 

Ratio of ozone to contaminant (kg/kg): 0.000173 

Efficiency: 98% 

Residence time (h): 0.21 
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A.2.7.10 Membrane Processes (Mbr): 

Retention factor: Water – 0.05, Solids – 0.90, Metals – 0.90, Chemicals – 0.95, API – 0.95 

Flux (m3/m2.h): 0.0856 

 

A.2.7.11 Bleaching (blc): 

Efficiency: 98% 

Ratio of sodium hypochlorite to contaminant (kg/kg): 0.00173 

Residence time (h): 2 

 

A.2.8 Sustainable Process Index (SPI) Calculations  

A.2.8.1 SPI for Pharmaceutical Wastewater Treatment Using Values from GAMS 

Code 

Parameters 

𝐹𝑅𝑅 (kg/yr)  - feed of a processed resource (752400000) 

𝑦𝑅 (kg/m2.yr)  - specific yield (243.1542) 

𝑦𝐸𝐼,𝑅𝑁 (kWh/m2.yr)  - mean industrial energy yield or mean industrial energy supply 

density (7) 

𝐹𝑅𝑁 (kg/yr)  - feed of a processed resource (215463.6) [from GAMS Code] 

𝐶𝑁 ($/kg)  - price of the material (world market price, taxes excluded) (7) 

𝐶𝐸 ($/kWh)  - price of one kilowatt-hour of energy (industrial price, taxes 

excluded) (0.1) 

𝐹𝐸 (kWh/yr)  - energy used in the process (450584.64) [from GAMS code] 

𝑦𝐸 (kWh/m2.yr)  - energy yield (43) 

𝐶𝐼 ($)   - total cost of energy for indirect installation (1329500) [from 

GAMS code] 

𝐿𝑆 (yr)   - depreciated area over the life-span years (30) 

𝑦𝐸𝐼,𝐼𝐼 (kWh/m2.yr) - industrial energy supply density or yield (43) 

𝑁𝑆 (cap/yr)  - total number of workers in the treatment plant (80.19)  
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𝑦𝑆 (cap/m2.yr)  - yield factor due to staff (3.59E-05) 

𝑐𝑐,𝑚 (kgm/kg)  - allowable concentration of substance, m [Solids, Chemical, Metals, 

Water] in the compartment, c [air, water, soil] 

𝑅𝑐 (kg/m2.yr)  - rate of renewal of the environmental compartments, c [air, water, 

soil]  

 

Estimated Parameters 

𝐸𝐷,𝑅𝑁  - energy demand to supply one kilogram of the material in question for non-

renewable energy (kWh/kg) 

𝐸𝐷,𝑅𝑁 =  
0.95 𝐶𝑁

𝐶𝐸
=  

0.95 × 7

0.1
= 66.5 

𝐸𝐷,𝐼𝐼  - energy demand to supply one kilogram of the material in question for indirect land 

energy (kWh/yr) 

𝐸𝐷,𝐼𝐼 =  
0.54 𝐶𝐼

𝐶𝐸 . 𝐿𝑆
=  

0.54 × 1329500

0.1 × 30
= 239310 

𝑆𝑐,𝑚  - dissipation to potential sink (kgm/m2yr) 

𝑆𝑐,𝑚 =  𝑅𝑐 . 𝑐𝑐,𝑚 

 

Analysis for Rsoil (kg/m2.yr) 

Rate of soil renewal (RSN) in the US is 2.2E-04 m/yr 

Assuming the soil is loamy with a 50% pore space, then the bulk density is 1330 kg/m3  

𝑅𝑠𝑜𝑖𝑙 = 𝑅𝑆𝑁 × 𝐷𝑒𝑛𝑏𝑢𝑙𝑘 = 0.00022 × 1330 = 0.2926  

 

Since we categorized contaminants into of solids, chemicals, and metals, we used 

contaminants that had the smallest allowable concentration for each category in the 

compartments to estimate S. For solids contaminant, we used lead (Pb), for chemical we 

used Chromium (Cr), and for metals we used lead (Pb).    
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Analysis for Ssoil,m (kgm/m2.yr) 

𝑆𝑠𝑜𝑖𝑙,𝑚 =  𝑅𝑠𝑜𝑖𝑙  . 𝑐𝑠𝑜𝑖𝑙,𝑚 

 

Table A20 

Data on Soil Yield for Pharmaceutical Wastewater Contaminants 

Component (m) C(soil,m) (kgm/kg) S(soil,m)  (kgm/m2.y) 

Solids (Sslds) 1.00E+00 2.93E-01 

Chemical (Chem) 1.00E-04 2.93E-05 

Metals (Mtls) 2.00E-06 5.85E-07 

Water (Wtr) 1.00E+00 2.93E-01 

API 1.00E-04 2.93E-05 

 

 

Analysis for Rwater (kg/m2.yr) 

Average rate of precipitation (RP) form Jan, 2009 to Dec, 2019 in the US is 31.91 in/yr 

(0.810514 m/yr) 

Seeping ratio (SR) of water is 0.30 

𝑅𝑤𝑎𝑡𝑒𝑟 = 𝑅𝑃 × 𝑆𝑅 × 𝐷𝑒𝑛𝑤𝑎𝑡𝑒𝑟 = 0.810514 × 0.30 × 1000 = 243.1542 

 

Analysis for Swater,m (kgm/m2.yr) 
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Table A21 

Data on Water Yield for Pharmaceutical Wastewater Contaminants 

Component (m) C(water,m) (kgm/kg) S(water,m)  (kgm/m2.y) 

Solids (Sslds) 1.67E-06 4.05E-04 

Chemical (Chem) 1.00E-07 2.43E-05 

Metals (Mtls) 1.50E-08 3.65E-06 

Water (Wtr) 1.00E+00 2.43E+02 

API 1.00E-07 2.43E-05 

 

 

Sair,chem (kgm/m2.yr) = 6.50E-03  

 

Table A22 

FP,c,m Product Flow Rate to Compartment c, by Substance, M (kgm/yr) [From GAMS Code] 

for Pharmaceutical Wastewater Treatment 

Component 

(m) 

Fraction of m into 

compartment c 

FP,c,m 

Air Water Soil Air Water Soil 

Solids (Sslds) 0 0.05 0.95 0.00E+00 7.92E+03 1.50E+05 

Chemical 

(Chem) 

0.03 0.9 0.07 9.93E+04 2.98E+06 2.32E+05 

Metals (Mtls) 0 0.7 0.3 0.00E+00 4.99E+02 2.14E+02 

Water (Wtr) 0 0.95 0.05 0.00E+00 7.15E+08 3.76E+07 

API 0 0.5 0.5 0.00E+00 7.92E+03 7.92E+03 
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Variables 

𝐴𝑅 - area for raw material production (m2/yr) 

𝐴𝑅𝑅  - area for renewable raw material production (m2/yr) 

𝐴𝐸  - area for energy production (m2/yr) 

𝐴𝐼 - area for installation for equipment and other infrastructure (m2/yr)  

𝐴𝐼𝐷 - area for direct installation (m2/yr) 

𝐴𝐼𝐼 - area for indirect installation (m2/yr) 

𝐴𝑆 - area for staff (m2/yr) 

𝐴𝑃,𝑐,𝑚  - area for dissipating a single component of particular product flow to a given 

compartment (m2/yr) 

𝐴𝑃𝑆,𝑐  - area assined to the dissipation of a particular product stream, S (m2/yr) 

𝐴𝑃 - area for product dissipation (m2/yr) 

𝐴𝑡𝑜𝑡 - total area (m2/m3WW-yr) 

 

Area for Raw Material Production (AR) 

Area for Renewable Raw Material Production (ARR) 

 

 𝐴𝑅𝑅 =
𝐹𝑅𝑅

𝑦𝑅
=  

7524000000

243.1542
=   3.09𝐸06  

Area for Non-Renewable Raw Material Production (ARN) 

𝐴𝑅𝑁 =  
𝐹𝑅𝑁. 𝐸𝐷,𝑅𝑁

𝑦𝐸𝐼,𝑅𝑁
=  

0 × 66.5

7
= 0    

𝐴𝑅 =  𝐴𝑅𝑅 +  𝐴𝑅𝑁 =  3.09E06   

 

Area for Energy Production (AE) 

𝐴𝐸 =  
𝐹𝐸

𝑦𝐸
  =  

450584.64

43
=  1.05𝐸4  

 

Area for Installations (AI) 

𝐴𝐼 =  𝐴𝐼𝐷 +  𝐴𝐼𝐼     

Area for Direct Installation (AID)[from GAMS Code] 

Flocculation technology  = 17.43 
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Filtration technology   = 494.63 

Adsorption technology = 4.95 

𝐴𝐼𝐷 = 517.00 

Area for Indirect Installation (AII) 

𝐴𝐼𝐼 =  
𝐸𝐷,𝐼𝐼

𝑦𝐸𝐼,𝐼𝐼
=

239310

43
=  5.57𝐸3  

Area for Staff (AS) 

 

𝐴𝑆 =  𝑁𝑆. 𝑎𝑖𝑛 =  
𝑁𝑆

𝑦𝑆
 =  

1037.19

0.000035
= 2.89𝐸7   

 

Area for Product Dissipation into Various Environmental Compartment (AP) 

 

𝐴𝑃,𝑐,𝑚 =  
𝐹𝑃,𝑐,𝑚

𝑆𝑐,𝑚
       

 

Table A23 

Area Needed for Emission Dissipation for Pharmaceutical Wastewater Treatment 

Component (m) 
AP,c,m 

Air Water Soil 

Solids (Sslds) -- 1.95E+07 5.14E+05 

Chemical (Chem) 1.53E+07 1.23E+11 7.92E+09 

Metals (Mtls) -- 1.37E+08 3.65E+08 

Water (Wtr) -- 2.94E+06 1.29E+08 

API -- 3.26E+08 2.71E+08 

 

 

𝐴𝑃𝑆,𝑐 =  𝑚𝑎𝑥𝑚(𝐴𝑃,𝑐,𝑚)    
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Highlighted are the maximum values for each component. 

 

Table A24 

Highest Area Needed for Emission Dissipation for Pharmaceutical Wastewater Treatment 

Component (m) 
AP,c,m 

Air Water Soil 

Solids (Sslds) -- 1.95E+07 5.14E+05 

Chemical (Chem) 1.53E+07 1.23E+11 7.92E+09 

Metals (Mtls) -- 1.37E+08 3.65E+08 

Water (Wtr) -- 2.94E+06 1.29E+08 

API -- 3.26E+08 2.71E+08 

 

 

𝐴𝑃  =  ∑ 𝐴𝑃𝑆,𝑐

𝑐

=  1.30𝐸11   

 

𝐴𝑡𝑜𝑡 =  𝐴𝑅 + 𝐴𝐸 + 𝐴𝐼 + 𝐴𝑆 + 𝐴𝑃 = 1.30E+11 m2/yr =1.65E+05 (m2/m3WW-yr) 

 

A.2.8.2 SPI for Direct Disposal of Pharmaceutical Wastewater  

We considered on the area needed to sustainably embed the wastewater into the ecosystem, 

i.e. AP  

 

Area for Product Dissipation into Various Environmental Compartment (AP) 
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Table A25 

FP,c,m Product Flow Rate to Compartment c, By Substance, M (kgm/yr) [From GAMS Code] 

for Direct Disposal of Pharmaceutical Wastewater  

Component (m) 
Fraction of FP,c,m 

Water Soil Water Soil 

Solids (Sslds) 0.05 0.95 4.38E+05 8.32E+06 

Chemical (Chem) 0.95 0.05 3.66E+07 1.93E+06 

Metals (Mtls) 0.7 0.3 6.13E+03 2.63E+03 

Water (Wtr) 0.95 0.05 8.32E+08 4.38E+07 

API 0.5 0.5 1.75E+05 1.75E+05 

 

 

𝐴𝑃,𝑐,𝑚 =  
𝐹𝑃,𝑐,𝑚

𝑆𝑐,𝑚
       

 

Table A26 

Area Needed for Emission Dissipation for Direct Disposal Of Pharmaceutical Wastewater  

Component (m) 
AP,c,m 

Water Soil 

Solids (Sslds) 1.08E+09 2.84E+07 

Chemical (Chem) 1.51E+12 6.59E+10 

Metals (Mtls) 1.68E+09 4.49E+09 

Water (Wtr) 3.42E+06 1.50E+08 

API 7.21E+09 5.99E+09 
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𝐴𝑃𝑆,𝑐 =  𝑚𝑎𝑥𝑚(𝐴𝑃,𝑐,𝑚)    

Highlighted are the maximum values for each component. 

 

Table A27 

Highest Area Needed for Emission Dissipation for Direct Disposal of Pharmaceutical 

Wastewater  

Component (m) 
AP,c,m 

Water Soil 

Solids (Sslds) 1.08E+09 2.84E+07 

Chemical (Chem) 1.51E+12 6.59E+10 

Metals (Mtls) 1.68E+09 4.49E+09 

Water (Wtr) 3.42E+06 1.50E+08 

API 7.21E+09 5.99E+09 

 

 

𝐴𝑃  =  ∑ 𝐴𝑃𝑆,𝑐

𝑐

=  1.57𝐸12   

 

𝐴𝑡𝑜𝑡 =  𝐴𝑃 = 1.57E+12 m2/yr = 1.79E+06 (m2/m3WW-yr) 
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Appendix B 

Supporting Information for Chapter 4 

B.1 Model Equations (Applicable to all technologies) 

B.1.1 Indices and Sets 

i ∈ I – technologies (used as subscript to variables) 

{UF-Ultrafiltration, 

PVP-Pervaporation,  

DST-Distillation,  

SDM-Sedimentation,  

DRY- Dryer,  

ATPE- Aqueous Two-Phase Extraction,  

CNF- Centrifugation,  

FLT- Filter,  

INCN- Incineration} 

𝑗 ∈ 𝑱 – stream (used as subscript to variables) 

{1, 2, 3, 4 …} 

𝑘 ∈ 𝑲 – components (used as subscript to variables) 

 {IPA – isopropyl alcohol,  

  Wtr – water,  

  Salt1 – sodium chloride  

  Salt2 – sodium sulfate anhydrous 

  Hex--Hexane – hexane,  

  DME – dimethoxyethane,  

  EME – 1-ethoxy-1-methoxyethane,  

  Tol – toluene} 

c ∈ C – the various compartment of the ecosystem 

 {Air_C,  

  Water_C,  
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   Soil_C} 

e ∈ E – emissions associated with the recovery process 

 {CO2 – carbon dioxide 

CO – carbon monoxide 

 CH4 – methane  

 NOx – nitrogen oxides 

 NMVOC – non-methane volatile organic compounds 

 Others – other miscellaneous air emissions 

 WE – water emissions  

 SE – soil emissions}    

 

B.1.2 Subsets 

Subsets for Technologies 

ICST – technologies with costs 

 {UF, PVP, DST, SDM, DRY, ATPE, CNF, FLT, INCN} 

ICF – technologies with concentration factor 

 {PVP, UF, FLT, SDM, CNF} 

ICONS – technologies with consumables 

 {ATPE, PVP, FLT, UF} 

 

Subsets for Components 

JbpATPE – bottom phase of ATPE  

JdaDRY – dry air inlet stream to DRY 

JliqCNF – stream containing no solids leaving CNF 

Jini – inlet streams of technology i 

Jouti – outlet streams of technology i 

JpolyATPE – polymer feed stream to ATPE 

JsaltATPE – salt feed stream to ATPE 

JsldCNF – stream containing solids leaving CNF 
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JtpATPE – top phase of ATPE 

Ki – components k in technology i 

Kj – components k in stream j 

KJP – components in process streams 

 {IPA, Wtr, Salt1, Salt 2, Hex, DME, EME, Tol} 

 

B.1.3 General Parameters 

𝜌 (kg/m3) = Density of component k 

πfeed ($/kg biomass) = Entering feed cost in terms of per kg waste 

πRep
i ($/unit) = Replacement cost of consumables per unit capacity in technology i 

λstm (kJ/kg) = Latent heat of steam 

λvap,k (kJ/kg) = Heat of vaporization of component k 

𝛼𝑘 = Relative volatility of component k for technology i 

μ (N-s/m2) = viscosity of fluid  

ηstage = stage efficiency 

θi
R (hr) – residence time in technology i  

θi
Rep (h/year) = Replacement time for consumables in technology i 

τann (h/annum) = (330 days x 24 h/day = 7920 hours) 

C0i ($/capacity) = Cost of a technology with standard capacity 

Cp (KJ/kg-℃) = Specific heat of component k 

Dp,SDM = particle diameter in sedimentation unit 

g (m/s2) = gravitational constant 

nc = cost scaling index (2/3 rule) 

Nlabri (#/h) = # of laborers required for technology i per hour 

Q0i (m
3 or m2 or m3/h) = Standard capacity of a technology for costing, labor and power 

required 

Tamb (°C) = ambient temperature 

𝑇𝑐𝑤𝑖 (℃) = Cooling water temperature in (25)  

𝑇𝑐𝑤𝑜 (℃) = Cooling water temperature out (30) 

Tsat (°C) = saturation temp 



 

216 

 

 

B.1.4 Evaluated Parameters: 

SORi (m/s) = surface overflow rate in sedimentation 

Ui (m/s) = settling velocity of technology i 

 

B.1.5 General Variables 

Bi = volume ratio of equipment i 

Cc,i ($) =  Purchase cost of unit i 

𝐶Fi (m
3/m3) = Concentration factor for technologies 𝑖 ∈ 𝑰𝑪𝑭 

Cpurk ($/h) = Purchase cost of added components (k ∈ KADD) 

Di(m) = diameter of technology unit i 

Li(m) = length of technology unit i 

LiqDST = liquid molar flowrate in distillation column 

Mj,k (kg/h) = Mass flowrate of component k in stream j 

N = actual number of stages 

Nmin = minimum number of stages 

q = quality of mixture (for distillation, entering feed quality) 

𝑄c, (m3 or m2 or m3/h) = Costing variable for technologies 𝑖 ∈ 𝑰CST 

QCDST = cooling requirement for distillation unit 

QHDST = heat duty for distillation unit 

QsDST = heat required to bring the feed to saturation 

𝑃Wi (kW/h) = Power required for technologies 𝑖 ∈ 𝑰CST 

Rmin = minimum reflux ratio 

R = actual reflux ratio 

Uv = Underwood variable 

VapDST = vapor molar flowrate in distillation column 

𝑊sp𝑖 (kW/h) = Power required by technology i per hour 

Xmj,k = mole fraction of component k in stream j 
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B.1.6 General Equations 

Component balances: 

∑ 𝑀𝑗 ,𝑘 =

𝑗∈𝑗𝑖𝑛𝑖

∑ 𝑀𝑗 ,𝑘  ; ∀𝑘 ∈ 𝐾𝐽𝑃 𝑎𝑛𝑑 𝑖 ∈ 𝐼

𝑗∈𝑗𝑜𝑢𝑡𝑖

 

Cost of technologies:  

(
𝐶𝑐𝑖

𝐶0𝑖
) = (

𝑄𝑐𝑖

𝑄0𝑖
)

𝑛𝑐

; ∀𝑖 ∈ 𝐼𝐶𝑆𝑇 

Labor requirements of technologies: 

𝑁𝑙𝑏𝑖𝑄0𝑖 = 𝑁𝑙𝑎𝑏𝑟𝑖𝑄𝑐𝑖; ∀𝑖 ∈ 𝐼𝐶𝑆𝑇 

Consumable costs:  

𝐶𝑜𝑛𝑠𝑖 =
𝜏𝑎𝑛𝑛

𝜃𝑖
𝑅𝑒𝑝 𝜋𝑖

𝑅𝑒𝑝𝑄𝑐𝑖; ∀𝑖 ∈ 𝐼𝐶𝑆𝑇 

Annualized Capital Cost: 

𝐶𝐶𝐴𝐶 =
(1.66 ∗ 𝐶𝑅𝐹 ∗ 𝐵𝑀𝐶 ∗ ∑ 𝐶𝑐𝑖𝑖 )

103
 

Labor Cost: 

𝐶𝐶𝐿𝐵 =
(𝐶𝑙𝑏𝑟 ∗ 𝜏𝑎𝑛𝑛 ∗ ∑ 𝑁𝑙𝑏𝑟𝑖𝑖 )

103
 

Utility Cost: 

𝐶𝐶𝑈𝐶 =
((∑ 𝑃𝑊𝑖𝑖 ∗ 𝐶𝑒𝑙𝑒𝑐 + ∑ 𝑀𝑠𝑡𝑚𝑖𝑖 ∗ 𝐶𝑠𝑡𝑚) ∗ 𝜏𝑎𝑛𝑛)

103
 

Membrane Cost: 

𝐶𝐶𝑀𝐶 =
(𝜏𝑎𝑛𝑛 ∗ ∑ 𝐶𝑃𝑀𝑖1𝑖1 )

𝑅𝑒𝑝𝑡𝑖𝑚𝑒 ∗ 103
 

Other Cost: 

𝐶𝐶𝑇𝐶 = 2.78 ∗ 𝐶𝐶𝐿𝐵 

Total Cost: 

𝐶𝐶𝑇𝐶 = 𝐶𝐶𝐴𝐶 + 𝐶𝐶𝑈𝐶 + 𝐶𝐶𝑀𝐶 + 𝐶𝐶𝑂𝐶 + 𝐶𝐶𝐿𝐵 
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B.1.7 Sustainable Process Index (SPI) Equations 

Parameters for SPI 

γRR (kg/m2.yr) = specific yield for renewable resource  

γRN (kWh/m2.yr) = specific yield for mean industrial energy supply to provide non-

renewable resource  

γE (kWh/m2.yr) = specific energy yield for the process  

γEI (m
2/#person) = specific energy yield for indirect installations  

γS (labor/m2.yr) = specific labor yield  

Cnp ($/kg) = price of material (world market price) 

βe,k (kg/kg) = emission of component e per component k 

δe,C (--) = fraction of emission component e, dissipated into compartment C 

γP(e,C) (kg/m2.yr) = yearly allowable yield of component e, in compartment C 

 

Variables for SPI 

Em(e,k) (kge/yr) = emission due to components in process stream 

Em(e) (kge/yr) = emissions due to steam or electricity usage  

TTot (kge/yr) = total emission of component e 

ARR (km2) = area for renewable raw material production  

ARN (km2) = area for non-renewable raw material production  

AR (km2)= total area for raw material production  

AE (km2)= area for energy supply  

AC, i (m
2)= area for direct installation of technology i  

ATC (m2) = total area for direct installation of equipment  

ED,II (kWh/yr) = energy demand to supply one kilogram of the material in question from 

indirect land use 

AII (m
2) = area for indirect installations 

AI (km2) = total area for installations 

AS (km2) = area needed to accommodate staff 
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AP(e,C) (km2) = area needed for the dissipation of component e, into compartment C 

APtot (km2) = total area needed for the dissipation of component e, into compartment C 

ATOT (km2) = total area needed needed for the entire process  

 

Equations: 

Total Area for raw material usage: 

AR is an area that indicates the environmental pressures exerted by the provision of raw 

materials for the process in question. This raw material area comprises both non-renewable 

and renewable. Depending on the mass flow rate (kg/yr) and the annual specific yield per 

square meter (kg/m2.yr) of the renewable raw material (e.g., corn, barley), the area required 

can be estimated. Furthermore, various raw material alternatives can be compared based 

on area requirements.  The analysis for the area required for non-renewable consumption 

follows the same analogy by considering the consumption of minerals and fossils. Dividing 

the flow rate of fossil and mineral materials by their specific yields give the respective 

areas.   

𝐴𝑅𝑅 =  
𝜏𝑎𝑛𝑛 ∗ 𝑀1,𝑅𝑅

γ𝑅𝑅 ∗ 106
=  

(
ℎ𝑟
𝑦𝑟) (

𝑘𝑔
ℎ𝑟

)

(
𝑘𝑔

𝑚2𝑦𝑟
) (

𝑚2

𝑘𝑚2)
 [=] 𝑘𝑚2 

𝐴𝑅𝑁 =  
𝜏𝑎𝑛𝑛 ∗ 𝑀1,𝑅𝑁

γ𝑅𝑁 ∗ 106
=  

(
ℎ𝑟
𝑦𝑟) (

𝑘𝑔
ℎ𝑟

)

(
𝑘𝑔

𝑚2𝑦𝑟
) (

𝑚2

𝑘𝑚2)
 [=] 𝑘𝑚2 

𝐴𝑅 =  𝐴𝑅𝑅 + 𝐴𝑅𝑁 

 

Total area for energy use: 

AE, the energy area, is estimated based on the electricity requirements of the recovery 

process. It accounts for the environmental pressure caused by energy provision to the 

process. We estimated this area by dividing the annual electricity demand (kWh/yr) of the 

process by the average specific yield of electricity (kWh/m2.yr).    
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𝐴𝐸 =  
𝜏𝑎𝑛𝑛 ∑ 𝑃𝑊𝑖𝑖

γ𝐸 ∗ 106
=  

(
𝑘𝑊ℎ

ℎ𝑟
) (

ℎ𝑟
𝑦𝑟)

(
𝑘𝑊ℎ
𝑚2𝑦𝑟

) (
𝑚2

𝑘𝑚2)
 [=] 𝑘𝑚2 

 

Total area for installation: 

AI, the installation area, comprises the areas needed for the direct and indirect installation 

of equipment. The direct installation area comes directly from the capacity of the 

technologies. The indirect area is associated with the environmental pressures of the piping 

and other instrumentation installations. We calculated the indirect area by dividing the 

indirect installation cost ($/yr) by the unit cost of electricity ($/kWh), which estimated the 

energy demand (kWh/yr). This energy demand was further divided by the specific yield of 

electricity to obtain the area. A factor of 0.5 – 0.6 of the annualized cost is sufficiently 

precise in estimating the indirect installation cost for most industrial processes.       

 

𝐴𝑇𝐶 = ∑ 𝐴𝐶𝑖

𝑖

[=] 𝑚2  

𝐸𝐷𝐼𝐼
=  

0.54 ∗ 𝐶𝐶𝐴𝐶

C𝑒𝑙𝑒𝑐
=  

(
$

𝑦𝑟
)

(
$

𝑘𝑊ℎ
)

 [=] (
𝑘𝑊ℎ

𝑦𝑟
)  

𝐴𝐼𝐼 =  
𝐸𝐷𝐼𝐼

γ𝐸
=  

(
𝑘𝑊ℎ

𝑦𝑟 )

(
𝑘𝑊ℎ
𝑚2𝑦𝑟

)
[=]𝑚2  

𝐴𝐼 =
𝐴𝑇𝐶 + 𝐴𝐼𝐼

106
=  

𝑚2 + 𝑚2

(
𝑚2

𝑘𝑚2)
[=] 𝑘𝑚2 

 

Area for staff:  

AS, the area needed to accommodate the working staff, is a function of the total number of 

employees. The working area was obtained by multiplying the number of employees 

(person) by the specific arable land per person within the United States (m2/person).     
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𝐴𝑆 =  
(

24
8 ) ∗ ∑ 𝑁𝑙𝑏𝑖𝑖 ∗ γ𝑆 

106
  =

(
ℎ𝑟
ℎ𝑟

) (
#𝑝𝑒𝑟𝑠𝑜𝑛 − ℎ𝑟

ℎ𝑟
) (

𝑚2

#𝑝𝑒𝑟𝑠𝑜𝑛
)

(
𝑚2

𝑘𝑚2)
 [=] 𝑘𝑚2 

 

Total Area Needed to Embed Emissions: 

AP constitutes the area needed to embed emissions into the biosphere's air, water, and soil 

compartments. We estimated the annual emissions (kge/yr)  due to the process by 

multiplying the emission factors (kge/kgc) and the component flow rates of the waste 

streams (kgc/yr). Other emissions that were considered were from steam and electricity 

usage. We used the rate of renewal of the various compartments to estimate the specific 

yield (kge/m
2.yr) of emission into the biosphere. This was achieved by multiplying the rate 

of renewal (kg/m2.yr) and the allowable concentration of emissions (kge/kg) into the 

respective compartments. For the water compartment, we used the seeping rate to 

groundwater bodies. This value is usually a fraction (0.3 – 0.5) of the precipitation rate per 

square meter (kg/m2.yr). For the soil compartment, we used the annual rate of topsoil 

renewal through composting of 1 m2 of biomass (kg/m2.yr) while the natural emissions of 

relevant gases by forests per square meter (kg/m2.yr) was used for the air compartment. 

Finally, the area was estimated by dividing the annual emissions by their respective specific 

yields. SimaPro® software was used to estimate the emission factors (LCIs).  

Annual emissions from process stream: 

 

𝐸𝑚_𝑃𝑆(𝑒,𝑘)
= 𝑀18,𝑘∗ β𝑒 ,𝑘∗ 𝜏𝑎𝑛𝑛 =  (

𝑘𝑔

ℎ𝑟
) (

𝑘𝑔𝑒

𝑘𝑔
) (

ℎ𝑟

𝑦𝑟
) [=] (

𝑘𝑔𝑒

𝑦𝑟
) 

𝐸𝑚_𝑃𝑆(𝑒,𝑘)
= 𝑀29,𝑘∗ β𝑒 ,𝑘∗ 𝜏𝑎𝑛𝑛  =  (

𝑘𝑔

ℎ𝑟
) (

𝑘𝑔𝑒

𝑘𝑔
) (

ℎ𝑟

𝑦𝑟
) [=] (

𝑘𝑔𝑒

𝑦𝑟
) 

Annual emissions from steam usage: 

𝐸𝑚_𝑆𝑡(𝑒)
= 𝑀𝑠𝑡𝑚 ∗ β𝑒 ,𝑠𝑡𝑚∗ 𝜏𝑎𝑛𝑛 =  (

𝑘𝑔

ℎ𝑟
) (

𝑘𝑔𝑒

𝑘𝑔
) (

ℎ𝑟

𝑦𝑟
) [=] (

𝑘𝑔𝑒

𝑦𝑟
) 

Annual emissions from electricity usage: 

𝐸𝑚_𝐸𝑙(𝑒)
= ∑ 𝑃𝑊𝑖

𝑖

∗ β𝑒 ,𝐸𝑙∗ 𝜏𝑎𝑛𝑛 =  (
𝑘𝑊ℎ

ℎ𝑟
) (

𝑘𝑔𝑒

𝑘𝑊ℎ
) (

ℎ𝑟

𝑦𝑟
) [=] (

𝑘𝑔𝑒

𝑦𝑟
) 
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Total Emissions for each component: 

𝑇𝑇𝑜𝑡(𝑒)
= ∑ 𝐸𝑚_𝑃𝑆(𝑒,𝑘)

𝑘

+  𝐸𝑚_𝑆𝑡(𝑒)
+ 𝐸𝑚_𝐸𝑙(𝑒)

 [=] (
𝑘𝑔𝑒

𝑦𝑟
) 

Area needed for each component emitted: 

𝐴𝑃𝑒,𝐶
=  

𝑇𝑇𝑜𝑡(𝑒)
∗ δ𝑒,𝐶

γ𝑃𝑒,𝐶
∗ 106

=  
(

𝑘𝑔𝑒

𝑦𝑟
) (

𝑘𝑔𝑒

𝑘𝑔𝑒
)

(
𝑘𝑔𝑒

𝑚2𝑦𝑟
) (

𝑚2

𝑘𝑚2)
 [=] 𝑘𝑚2 

Total Area needed for each component emitted: 

𝐴𝑃 = ∑ 𝐴𝑃𝑒,𝐶

𝑒,𝐶

[=] 𝑘𝑚2 

 

Total Area (SPI): 

𝐴𝑇𝑜𝑡 =  𝐴𝐸 + 𝐴𝐼 + 𝐴𝑆 + 𝐴𝑃𝑇𝑜𝑡
[=] 𝑘𝑚2 

 

B.1.9 Emergy Equations 

Parameters for Emergy 

τrste (sej/kg) = transformity of steel 

τrsol (sej/kg) = average transformity of industrial chemicals 

τrcon (sej/kg) = transformity of concrete 

τrapc (sej/$) = transformity of annualized purchase cost 

τrmo (sej/$) = transformity of maintenance and overhead cost  

τrlbr (sej/$) = transformity of labor  

τrele (sej/kWh) = transformity of electricity 

τrwtr (sej/kg) = transformity of water 

τrdsl (sej/kg) = transformity of diesel 

τrair (sej/kg) = transformity of air  

αg (sej/km2.yr) = specific global emergy per annum 
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Variables for Emergy 

SolEm (sej/yr) = emergy due to solvents 

QEm (sej/yr) = emergy due to material of construction of technology 

PEm (sej/yr) = emergy associated with annualized purchase cost of technology 

LEm (sej/yr) = emergy associated with labor  

MOEm (sej/yr) = emergy associated with maintenance and overhead cost 

UEm (sej/yr) = emergy due to utilities 

TotEm (sej/yr) = total emergy 

SEY (m2) = specific emergy yield (emergy carrying capacity) 

SEI (--) = specific emergy intensity  

Ren (%) = percentage renewability 

EYR (--) = emergy yield ratio  

ELR (--) = emergy loading ratio  

ESI (--) = emergy sustainability index  

 

Equations: 

Emergy due to solvents: 

𝑆𝑜𝑙𝐸𝑚 =  𝜏𝑎𝑛𝑛τr𝑠𝑜𝑙 ∑ 𝑀1,𝑘

𝑘

=  
ℎ𝑟

𝑦𝑟

𝑠𝑒𝑗

𝑘𝑔

𝑘𝑔

ℎ𝑟
 [=] 

𝑠𝑒𝑗

𝑦𝑟
  

Emergy associated with material of construction of technology:  

𝑄𝐸𝑚 = (𝜌𝑠𝑡𝑒τr𝑠𝑡𝑒𝑄𝑐𝑖=𝑑𝑠𝑡,𝑝𝑣𝑝,𝑢𝑓,𝑑𝑟𝑦,𝑐𝑛𝑡) + (𝜌𝑐𝑜𝑛τr𝑐𝑜𝑛𝑄𝑐𝑖=𝑠𝑑𝑚,𝑓𝑙𝑡) =
𝑘𝑔

𝑚3

𝑠𝑒𝑗

𝑘𝑔

𝑚3

𝑦𝑟
 [=]

𝑠𝑒𝑗

𝑦𝑟
 

NB: if 𝑄𝑐 is in m2, it was multiplied by the height of the technology in Table B.1.1 to get 

m3. 

Emergy associated with annualized purchase cost of technology: 

𝑃𝐸𝑚 =  τr𝑎𝑝𝑐 𝐶𝐶𝐴𝐶 =  
𝑠𝑒𝑗

$

$

𝑦𝑟
[=]

𝑠𝑒𝑗

𝑦𝑟
 

Emergy associated with labor 

𝐿𝐸𝑚 =  τr𝑙𝑏𝑟𝐶𝐶𝐿𝐵 =  
𝑠𝑒𝑗

$

$

𝑦𝑟
 [=]

𝑠𝑒𝑗

𝑦𝑟
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Emergy associated with maintenance and overhead cost: 

𝑀𝑂𝐸𝑚 =  τr𝑚𝑜𝐶𝐶𝑂𝐶 =  
𝑠𝑒𝑗

$

$

𝑦𝑟
 [=]

𝑠𝑒𝑗

𝑦𝑟
 

Emergy due to utilities: 

𝑈𝐸𝑚 = (𝜏𝑎𝑛𝑛τr𝑒𝑙𝑒 ∑ 𝑃𝑊𝑖

𝑖

) + (𝜏𝑎𝑛𝑛τr𝑤𝑡𝑟 ∑(𝑀𝑠𝑡𝑚𝑖
+

𝑖

𝑀𝑐𝑤𝑖
))  

=
ℎ𝑟

𝑦𝑟

𝑠𝑒𝑗

𝑘𝑊ℎ

𝑘𝑊ℎ

ℎ𝑟
+

ℎ𝑟

𝑦𝑟

𝑠𝑒𝑗

𝑘𝑔

𝑘𝑔

ℎ𝑟
 [=]

𝑠𝑒𝑗

𝑦𝑟
 

Total emergy: 

𝑇𝑜𝑡𝐸𝑚 = 𝑆𝑜𝑙𝐸𝑚 + 𝑄𝐸𝑚 + 𝑃𝐸𝑚 + 𝐿𝐸𝑚 + 𝑀𝑂𝐸𝑚 + 𝑈𝐸𝑚 [=]
𝑠𝑒𝑗

𝑦𝑟
  

Emergy carrying capacity: 

𝑆𝐸𝑌 =
𝑇𝑜𝑡𝐸𝑚

αg
=

(
𝑠𝑒𝑗
𝑦𝑟 )

(
𝑠𝑒𝑗

𝑘𝑚2𝑦𝑟
)

[=] 𝑘𝑚2  

Specific emergy intensity: 

𝑆𝐸𝐼 =
𝐴𝑇𝑜𝑡

𝑆𝐸𝑌
=  

𝑘𝑚2

𝑘𝑚2
[=] (−−)   

Renewability percentage: 

𝑅𝑒𝑛 =  
𝜏𝑎𝑛𝑛τr𝑤𝑡𝑟 ∑ (𝑀𝑠𝑡𝑚𝑖

+𝑖 𝑀𝑐𝑤𝑖
) ∗ 100

𝑇𝑜𝑡𝐸𝑚
=  

(
𝑠𝑒𝑗
𝑦𝑟 )(%)

(
𝑠𝑒𝑗
𝑦𝑟 )

 [=] % 

Emergy yield ratio: 

𝐸𝑌𝑅 =  
𝑇𝑜𝑡𝐸𝑚

𝑄𝐸𝑚 + 𝑃𝐸𝑚 + 𝐿𝐸𝑚 + 𝑀𝑂𝐸𝑚 + 𝑈𝐸𝑚
=  

(
𝑠𝑒𝑗
𝑦𝑟 )

(
𝑠𝑒𝑗
𝑦𝑟 )

= (−−) 

Emergy loading ratio: 

𝐸𝐿𝑅 =
𝑇𝑜𝑡𝐸𝑚 −  (𝜏𝑎𝑛𝑛τr𝑤𝑡𝑟 ∑ (𝑀𝑠𝑡𝑚𝑖

+𝑖 𝑀𝑐𝑤𝑖
)) 

(𝜏𝑎𝑛𝑛τr𝑤𝑡𝑟 ∑ (𝑀𝑠𝑡𝑚𝑖
+𝑖 𝑀𝑐𝑤𝑖

))
=  

(
𝑠𝑒𝑗
𝑦𝑟 )

(
𝑠𝑒𝑗
𝑦𝑟 )

= (−−)  

Emergy sustainability index: 

𝐸𝑆𝐼 =
𝐸𝑌𝑅

𝐸𝐿𝑅
= (−−) 
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B.1.10 Equations for Individual Technologies 

Ultrafiltration (UF) 

Unit Specific Parameters 

𝜁𝑖 (𝑚3 /𝑚2ℎ) = Flux of technology i 

𝜉𝑘, (−−) = Retention factor of component k for technology i 

Retention factor equations:  

𝜉𝑘,𝑈𝐹 =
𝑀𝐽𝑟𝑢𝑓

,𝑘

𝑀𝐽𝑖𝑛𝑢𝑓
,𝑘

; ∀𝑘 ∈ 𝐾𝑗 

Concentration factor:  

𝐶𝐹𝑈𝐹 =
∑ (

𝑀𝑗 ,𝑘
𝜌𝑘

)𝑘∈𝐾𝑗,𝑗∈𝐽𝑖𝑛𝑈𝐹

∑ (
𝑀𝑗 ,𝑘
𝜌𝑘

)𝑘∈𝐾𝑗,𝑗∈𝐽𝑟𝑒𝑡𝑒𝑛𝑡𝑎𝑡𝑒𝑈𝐹

 

1.01 ≤ 𝐶𝐹𝑈𝐹 ≤ 35 

Flux balance:  

𝜁𝑈𝐹𝑄𝑐𝑈𝐹 = [ ∑ (
𝑀𝑗,𝑘 

𝜌𝑘
)] (1 −

1

𝐶𝐹𝑈𝐹
)

𝑘∈𝐾𝑗,𝑗∈𝐽𝑖𝑛𝑈𝐹

 

Power required:  

𝑃𝑊𝑈𝐹 = 𝑊𝑠𝑝𝑈𝐹𝑄𝑐𝑈𝐹 

Direct installation area:  

𝐴𝐼𝐷𝑈𝐹
=  𝑄𝑈𝐹 

 

Pervaporation (PVP) 

Unit specific parameters 

λstm (KJ/kg) = Latent heat of steam 

λvap,k (KJ/kg) = Heat of vaporization of component k 

Retention factor:   

𝜉𝑘,𝑃𝑉𝑃 =
𝑀𝐽𝑟𝑃𝑉𝑃,𝑘

𝑀𝐽𝑖𝑛𝑃𝑉𝑃,𝑘
; ∀𝑘 ∈ 𝐾𝑗  
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Concentration factor: 

𝐶𝐹𝑃𝑉𝑃 =
∑ (

𝑀𝑗,𝑘

𝜌𝑘
)𝑘∈𝐾𝑗,𝑗∈𝐽𝑖𝑛𝑃𝑉𝑃

∑ (
𝑀𝑗,𝑘

𝜌𝑘
)𝑘∈𝐾𝑗,𝑗∈𝐽𝑟𝑃𝑉𝑃

 

 

Flux balance:  

𝜁𝑃𝑉𝑃𝑄𝐶𝑃𝑉𝑃
= ∑ (

𝑀𝑗,𝑘 

𝜌𝑘
)] (1 −

1

𝐶𝐹𝑃𝑉𝑃
)

𝑘∈𝐾𝑗,𝑗∈𝐽𝑖𝑛𝑃𝑉𝑃

 

Power required: 

𝑃𝑊𝑃𝑉𝑃 = 𝑊𝑠𝑝𝑃𝑉𝑃𝑄𝑐𝑃𝑉𝑃 

Heat required for vaporization:  

𝑀𝑠𝑡𝑚𝑃𝑉𝑃𝜆𝑠𝑡𝑚 = ∑ 𝑀𝑗,𝑘𝜆𝑘
𝑣𝑎𝑝

𝑘∈𝐾𝑗,𝑗∈𝐽𝑝𝑟𝑚𝑃𝑉𝑃

 

Direct installation area:  

𝐴𝐼𝐷𝑃𝑉𝑃
=  𝑄𝑃𝑉𝑃 

 

Distillation (DST) 

Terms 

LK = Light Key (Top Product) 

HK = Heavy Key (Bottom Product) 

λstm (kJ/kg) = Latent heat of steam 

λvap,k (kJ/kg) = Heat of vaporization of component k 

Tamb (°C) = ambient temp 

Tsat (°C) = saturation temp 

𝛼𝑘 = Relative volatility of component k for technology i 

ηstage = stage efficiency 

Cp (KJ/kg-℃) = Specific heat of component k 

𝑇𝑐𝑤𝑖 (℃) = Cooling water temperature in (25)  

𝑇𝑐𝑤𝑜 (℃) = Cooling water temperature out (30) 

Xmj,k – mole fraction of component k in stream j 

Rmin – minimum reflux ratio 
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R – actual reflux ratio 

N – the actual number of stages 

QsDST – heat required to bring the feed to saturation 

QHDST - heat duty for the distillation unit 

QCDST – the cooling requirement for the distillation unit 

 LiqDST- liquid molar flowrate in the distillation column 

VapDST – vapor molar flowrate in the distillation column 

Uv – Underwood variable 

q – the quality of the mixture 

 

Unit Specific Model Equations: 

Molar flow rates in DST:  

𝐹𝑗,𝑘 =
𝑀𝑗,𝑘

𝑀𝑊𝑘
; ∀ 𝑗 ∈ 𝐽𝐷𝑆𝑇 , 𝑘 ∈ 𝐾𝐷𝑆𝑇 

Component balance in DST: 

∑ 𝐹𝑗,𝑘

𝑗∈𝐽𝑖𝑛𝑖

= ∑ 𝐹𝑗,𝑘

𝑗∈𝐽𝑜𝑢𝑡𝑖

; ∀ 𝑗 ∈ 𝐽𝐷𝑆𝑇 , 𝑘 ∈ 𝐾𝐷𝑆𝑇 

Mole fractions in DST:  

𝑋𝑚𝑗,𝑘 =
𝐹𝑗,𝑘

∑ 𝐹𝑗,𝑘𝑘∈𝐾𝐷𝑆𝑇
;  ∀ 𝑗 ∈ 𝐽𝐷𝑆𝑇 , 𝑘 ∈ 𝐾𝐷𝑆𝑇 

Constraints on recovery: 

𝑋𝑚𝐽𝑡𝑜𝑝𝐷𝑆𝑇,𝑘
𝑤ℎ𝑒𝑛(𝛼𝑘 < 𝛼𝐻𝐾) = 0; ∀ 𝑘 ∈ 𝐾𝐷𝑆𝑇 

𝑋𝑚𝐽𝑡𝑜𝑝𝐷𝑆𝑇,𝑘
𝑤ℎ𝑒𝑛(𝛼𝑘 > 𝛼𝐿𝐾) = 0; ∀ 𝑘 ∈ 𝐾𝐷𝑆𝑇 

Distillate recovery constraints: 

𝑋𝑚𝐽𝑡𝑜𝑝𝐷𝑆𝑇,𝐻𝐾
= 0.08 

𝑋𝑚𝐽𝑡𝑜𝑝𝐷𝑆𝑇,𝐿𝐾
= 0.92 

Minimum number of stages with Fenske’s equation: 

𝑁𝑚𝑖𝑛log (𝛼 𝑖)  = 𝑙𝑜𝑔 [
𝑋𝑚𝐽𝑡𝑜𝑝𝐷𝑆𝑇,𝐿𝐾

𝑋𝑚𝐽𝑡𝑜𝑝𝐷𝑆𝑇,𝐻𝐾

𝑋𝑚𝐽𝑏𝑜𝑡𝐷𝑆𝑇,𝐻𝐾

𝑋𝑚𝐽𝑏𝑜𝑡𝐷𝑆𝑇,𝐿𝐾

] 

Underwood’s variable:  
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(1 − 𝑞) = ∑
𝛼𝑘𝑋𝑚𝑗,𝑘

𝛼𝑘 − 𝑈𝑣
𝑘∈𝐾𝐷𝑆𝑇 ,𝑗∈𝐽𝑖𝑛𝐷𝑆𝑇

 

Assume feed is a saturated liquid (q=1): 

0 = ∑
𝛼𝑘𝑋𝑚𝑗,𝑘

𝛼𝑘 − 𝑈𝑣
𝑘∈𝐾𝐷𝑆𝑇,𝑗∈𝐽𝑖𝑛𝐷𝑆𝑇

 

Minimum reflux ratio:  

𝑅𝑚𝑖𝑛 = ∑
𝛼𝑘𝑋𝑚𝑗,𝑘

𝛼𝑘 − 𝑈𝑣
𝑘∈𝐾𝐷𝑆𝑇 ,𝑗∈𝐽𝑡𝑜𝑝𝐷𝑆𝑇

− 1 

Reflux ratio:  

𝑅 = 1.3𝑅𝑚𝑖𝑛 (𝑎𝑠𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛) 

Number of stages:  

0.6𝑁 = 𝑁𝑚𝑖𝑛 

Number of actual stages:  

𝑁𝑎𝑐𝑡 =
𝑁

𝜂𝑠𝑡𝑎𝑔𝑒
 

Height of column:  

𝐻𝐷𝑆𝑇 = 𝐻𝑠𝑡𝑎𝑔𝑒𝑁𝑎𝑐𝑡 

Liquid and vapor flowrates: 

𝐿𝑖𝑞𝐷𝑆𝑇 = 𝑅 ∑ 𝑀𝑗,𝑘

𝑘∈𝐾𝐷𝑆𝑇 ,𝑗∈𝐽𝑡𝑜𝑝𝐷𝑆𝑇

 

𝑉𝑎𝑝𝐷𝑆𝑇 = 𝐿𝑖𝑞𝐷𝑆𝑇 + 𝑅 ∑ 𝑀𝑗,𝑘

𝑘∈𝐾𝐷𝑆𝑇 ,𝑗∈𝐽𝑡𝑜𝑝𝐷𝑆𝑇

 

Column diameter:  

𝐷𝐷𝑆𝑇 = √
4𝑉𝑎𝑝𝐷𝑆𝑇

𝜋𝑢𝑣𝑎𝑝
 

𝑢𝑣𝑎𝑝 = 𝑣𝑎𝑝𝑜𝑟 𝑙𝑖𝑛𝑒𝑎𝑟 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 

Costing variable of column:  

𝑄𝑐𝐷𝑆𝑇 =
𝜋

4
𝐷𝐷𝑆𝑇

2 𝐻 

Initial heating of feed to reach saturation:  
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𝑄𝑆𝐷𝑆𝑇 = ∑ 𝑀𝑗,𝑘𝐶𝑝𝑘(𝑇𝑠𝑎𝑡 − 𝑇𝑎𝑚𝑏)

𝑘∈𝐾𝐷𝑆𝑇,𝑗∈𝐽𝑖𝑛𝐷𝑆𝑇

 

Heat duty:  

𝑄𝐻𝐷𝑆𝑇 = (1 + 𝑅) ∑ 𝐹 𝑗,𝑘𝑀𝑊𝑘𝜆𝑘
𝑣𝑎𝑝

𝑘∈𝐾𝐷𝑆𝑇,𝑗∈𝐽𝑡𝑜𝑝𝐷𝑆𝑇

 

Cooling:  

𝑄𝐶𝐷𝑆𝑇 = 𝑅 ∑ 𝐹 𝑗,𝑘𝑀𝑊𝑘𝜆𝑘
𝑣𝑎𝑝

𝑘∈𝐾𝐷𝑆𝑇 ,𝑗∈𝐽𝑡𝑜𝑝𝐷𝑆𝑇

 

 

Steam required:  

𝑀𝑠𝑡𝑚𝐷𝑆𝑇𝜆𝑠𝑡𝑚 = 𝑄𝑆𝐷𝑆𝑇 + 𝑄𝐻𝐷𝑆𝑇 

Cooling water required:  

𝑀𝑐𝑤𝐷𝑆𝑇𝐶𝑝𝑤(𝑇𝑐𝑤𝑜𝑢𝑡 − 𝑇𝑐𝑤𝑖𝑛) = 𝑄𝐶𝐷𝑆𝑇 

Variable bounds: 

𝑁𝑚𝑖𝑛 ≥ 𝑦𝐷𝑆𝑇 

𝑅𝑚𝑖𝑛 ≥ 1.01𝑦𝐷𝑆𝑇 

 

Sedimentation (SDM) 

Unit Specific Parameters 

Cei
0 ($) – equipment cost for technology i of known capacity  

ni – cost exponent for technology i  

Vi
0 (m3) – vessel volume for technology i of known capacity Ai

0 (m2) – area for technology 

i of known capacity  

Wi
0 (kW) – power consumption for technology i of known capacity  

θi
R (hr) – residence time in technology i  

ρk (kg/m3) – density of component k  

πk ($/kg) –market price of kth component  

ηSDM (−) – efficiency of removal in typical sedimentation unit (75%)  

Variables  

Vi (m
3) – vessel volume for technology i  
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Ai (m
2) – area for technology i  

CPk ($/hr) – cost price for component k consumed per hour  

Cei ($) – equipment cost for technology i 

 

Equations:  

Settling velocity (evaluated parameter): 

𝑈𝑆,𝑆𝐷𝑀   =  
𝑔𝐷𝑝

2(𝜌𝑠 − 𝜌𝐿)

18𝜇
 

US,SDM – settling velocity (m/s)  

Dp – particle diameter (m) (5E-3 m or 5 mm)  

g – acceleration due to gravity (m/s2)  

ρs – density of solid (kg/m3)  

ρl – density of liquid (kg/m3)  

μ – viscosity of fluid (N-s/m2)  

 

Efficiency:  

𝜂𝑆𝐷𝑀  =
𝑀𝐽𝑡𝑝𝑆𝐷𝑀,𝑆𝑜𝑙

𝑀𝐽𝑖𝑛𝑆𝐷𝑀,𝑆𝑠𝑜𝑙
  

 

Concentration factor: (volume concentration factor)  

𝐶𝐹𝑆𝐷𝑀  =
 ∑ (

𝑀𝑗,𝑘

𝜌𝑘
)𝑘∈𝐾𝑗,𝑗∈𝐽𝑖𝑛𝑖

∑ (
𝑀𝑗,𝑘

𝜌𝑘
)𝑘∈𝐾𝑗,𝑗∈𝐽𝑡𝑝𝑆𝐷𝑀

 

1.01 ≤  𝐶𝐹𝑆𝐷𝑀  ≤  15 

Surface overflow rate: 

𝑆𝑂𝑅𝑆𝐷𝑀  =
𝑈𝑆,𝑆𝐷𝑀

𝜂𝑆𝐷𝑀
  

Area of sedimentation tank:  

𝐴𝑆𝐷𝑀  =  
∑ (

𝑀𝑗,𝑘

𝜌𝑘
)𝑘∈𝐾𝑗𝑗∈𝐽𝑖𝑛𝑆𝐷𝑀

𝑆𝑂𝑅𝑆𝐷𝑀
 

Direct installation area:  
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𝐴𝐼𝐷𝑆𝐷𝑀
=  𝑄𝑆𝐷𝑀 

 

Dryer (DRY) 

Unit specific parameters 

vair(m/s) = velocity of air flow in the dryer 

 

Moisture Content in stream j:  

𝑋𝑗 =
𝑀𝑗,𝑊𝑡𝑟

𝑀𝑗,𝑘
; ∀ 𝑘 ∈ 𝐾𝑗 

Diameter of the Drum:  

𝐷𝐷𝑅𝑌 =
𝑀𝐽𝑑𝑎𝐷𝑅𝑌,𝑘

√𝑣𝑎𝑖𝑟𝜋 ∗ 900𝜌𝑎𝑖𝑟 
; ∀𝑘 ∈ 𝐾𝑗 

Length of Drum:  

𝐿𝐷𝑅𝑌 = 𝐵𝐷𝑅𝑌 ∗ 𝐷𝐷𝑅𝑌 

4 ≤ 𝐵𝐷𝑅𝑌 ≤ 15 

Heat required for vaporization:  

𝑄𝑐,𝐷𝑅𝑌 =  
𝜋

4
𝐷𝐷𝑅𝑌

2 𝐿𝐷𝑅𝑌 

 

Power required:  

𝑃𝑊𝐷𝑅𝑌 =
3.19995𝑀𝐽𝑑𝑎𝐷𝑅𝑌,𝑘

𝑀𝑊𝑎𝑖𝑟
;  𝑘 ∈ 𝐾𝑗 

 

Aqueous Two-Phase Extraction (ATPE) 

Unit Specific Parameters 

Ψk-k’- solubility of component k in component k’ 

κPk- partition coefficient of component k 

Solubility Equations: 
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𝑀𝐽𝑏𝑝𝐴𝑇𝑃𝐸,𝑝𝑜𝑙𝑦 =  𝜓𝑝𝑜𝑙𝑦−𝑏𝑝𝑀𝐽𝑏𝑝𝐴𝑇𝑃𝐸,𝑠𝑎𝑙𝑡 

𝑀𝐽𝑡𝑝𝐴𝑇𝑃𝐸,𝑠𝑎𝑙𝑡 =  𝜓𝑠𝑎𝑙𝑡−𝑡𝑝𝑀𝐽𝑡𝑝𝐴𝑇𝑃𝐸,𝑝𝑜𝑙𝑦 

Extraction Factor:  

𝐸𝐹𝐴𝑇𝑃𝐸 =  
𝜅𝑃𝑘𝑀𝐽𝑝𝑜𝑙𝑦𝐴𝑇𝑃𝐸,𝑘

𝑀𝐽𝑠𝑎𝑙𝑡𝐴𝑇𝑃𝐸,𝑘
 

Number of Stages: 

(
𝐸𝐹 − 1

𝐸𝐹𝑁𝐴𝐸+1 − 1
) =

𝑀𝐽𝑓𝑒𝑒𝑑𝐴𝑇𝑃𝐸,𝑘 − 𝑀𝐽𝑡𝑜𝑝𝐴𝑇𝑃𝐸,𝑘

𝑀𝐽𝑓𝑒𝑒𝑑𝐴𝑇𝑃𝐸,𝑘
 

Size of unit:  

𝑄𝑐,𝐴𝑇𝑃𝐸 = ∑
𝑀𝑗,𝑘

𝜌𝑘
𝑘∈𝐾𝑗,𝑗∈𝐽𝑓𝑒𝑒𝑑𝐴𝑇𝑃𝐸 

+ ∑
𝑀𝑗,𝑘

𝜌𝑘
𝑘∈𝐾𝑗𝑗∈𝐽𝑝𝑜𝑙𝑦𝐴𝑇𝑃𝐸

+ ∑
𝑀𝑗,𝑘

𝜌𝑘
𝑘∈𝐾𝑗,𝑗∈𝐽𝑠𝑎𝑙𝑡𝐴𝑇𝑃𝐸

 

Power Required:  

𝑃𝑊𝐴𝑇𝑃𝐸 = 𝑊𝑠𝑝𝐴𝑇𝑃𝐸  𝑄𝑐,𝐴𝑇𝑃𝐸 

Cooling Duty:  

𝑀𝑐𝑤,𝐴𝑇𝑃𝐸 =
3600 𝑃𝑊𝐴𝑇𝑃𝐸

𝑐𝑝(𝑇𝑐𝑤,𝑜𝑢𝑡 − 𝑇𝑐𝑤,𝑖𝑛)
 

 

Centrifugation (CNF) 

Unit Specific Parameters 

Efficiency Equation: 

𝜂𝑤𝑎𝑡𝑒𝑟 =
𝑀𝐽𝑠𝑙𝑑𝐶𝑁𝐹,𝑊𝑇𝑅

𝑀𝐽𝑠𝑙𝑑𝐶𝑁𝐹,𝑊𝑇𝑅
 

𝜂𝑠𝑜𝑙𝑣𝑒𝑛𝑡 =
𝑀𝐽𝑙𝑖𝑞𝐶𝑁𝐹,𝑠𝑜𝑙𝑣𝑒𝑛𝑡

𝑀𝐽𝑓𝑒𝑒𝑑𝐶𝑁𝐹,𝑠𝑜𝑙𝑣𝑒𝑛𝑡
 

Concentration Factor:  

𝐶𝐹𝐶𝑁𝐹 =
[∑ (

𝑀𝑗,𝑘

𝜌𝑘
) 𝑘∈𝐾𝑗,𝑗∈𝐽𝑓𝑒𝑒𝑑𝐶𝑁𝐹

]

[∑ (
𝑀𝑗,𝑘

𝜌𝑘
) 𝑘∈𝐾𝑗𝑗∈𝐽𝑙𝑖𝑞𝐶𝑁𝐹

]

 

      2 ≤ 𝐶𝐹𝐶𝑁𝐹 ≤ 20 

Sigma Factor Equation: 
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𝑄𝑐𝐶𝑁𝐹𝑈𝐶𝑁𝐹 = [ ∑ (
𝑀𝑗,𝑘

𝜌𝑘
) 

𝑘∈𝐾𝑗𝑗∈𝐽𝑓𝑒𝑒𝑑𝐶𝑁𝐹

] 

Power Required:  

𝑃𝑊𝐶𝑁𝐹 = 𝑊𝑠𝑝𝐶𝑁𝐹 [ ∑ (
𝑀𝑗,𝑘

𝜌𝑘
) 

𝑘∈𝐾𝑗,𝑗∈𝐽𝑓𝑒𝑒𝑑𝐶𝑁𝐹

] 

Power dissipation to heat it about 40%, therefore cooling duty is required: 

𝑀𝑐𝑤𝐶𝑁𝐹𝑐𝑝𝑤(𝑇𝑐𝑤,𝑜𝑢𝑡 − 𝑇𝑐𝑤,𝑖𝑛) = 0.4𝑃𝑊 

 

Filtration (FLT) 

Retention factor:   

𝜉𝑘,𝐹𝐿𝑇 =
𝑀𝐽𝑓𝑙𝑡𝐹𝐿𝑇,𝑘

𝑀𝐽𝑓𝑒𝑒𝑑𝐹𝐿𝑇 ,𝑘
; ∀𝑘 ∈ 𝐾𝑗 

Concentration factor:  

𝐶𝐹𝐹𝐿𝑇 =
∑ (

𝑀𝑗,𝑘

𝜌𝑘
)𝑘∈𝐾𝑗,𝐽𝑓𝑒𝑒𝑑𝐹𝐿𝑇

∑ (
𝑀𝑗,𝑘

𝜌𝑘
)𝑘∈𝐾𝑗,𝐽𝑓𝑙𝑡𝐹𝐿𝑇

 

 

 

2 ≤ 𝐶𝐹𝐹𝐿𝑇 ≤ 30 

Flux balance:  

𝜁𝐹𝐿𝑇𝑄𝐶𝐹𝐿𝑇
= ∑ (

𝑀𝑗,𝑘 

𝜌𝑘
) (1 −

1

𝐶𝐹𝐹𝐿𝑇
)

𝑘∈𝐾𝑗,𝑗∈𝐽𝑓𝑒𝑒𝑑𝐹𝐿𝑇

 

Power required:  

𝑃𝑊𝐹𝐿𝑇 = 𝑊𝑠𝑝𝐹𝐿𝑇𝑄𝑐𝐹𝐿𝑇 

Direct installation area:  

𝐴𝐼𝐷𝐹𝐿𝑇
=  𝑄𝐹𝐿𝑇 

 

Incineration (INCN) 

Process Equations 
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Heating value of waste stream:  

𝑄𝑠𝑜𝑙𝑣,𝐼𝑁𝐶𝑁 ∗ 1000 = 14544 ∗ 𝐶 + 62208 (𝐻 −
𝑂

8
) + 4050 ∗ 𝑆 [=] 𝑀𝐽/𝑘𝑔 

 

Mass of fuel needed for heating: 

𝑚𝑓𝑢𝑒𝑙,𝐼𝑁𝐶𝑁 ∗ 𝑁𝐸𝑓𝑢𝑒𝑙 = 𝑄𝑠𝑜𝑙𝑣 ∗ 𝑚𝑠𝑜𝑙𝑣 [=] 𝑀𝐽/𝑠 

𝑁𝐸𝑓𝑢𝑒𝑙  = 38.9 [=] 𝑀𝐽/𝑘𝑔 

*Fuel oils are products of petroleum distillation, consists of hydrocarbons 

Mass of air fed (textbook):  

𝑚𝑎𝑖𝑟,𝐼𝑁𝐶𝑁 = 𝑎𝑖𝑟𝑟𝑎𝑡𝑒 ∗ 𝑂 ∗ 𝑚𝑠𝑜𝑙𝑣 [=] 𝑘𝑔/𝑠 

𝑎𝑖𝑟𝑟𝑎𝑡𝑒  =  4.35 

Energy consumed during process:  

𝐸𝑐𝑜𝑛,𝐼𝑁𝐶𝑁 = 𝑄𝑠𝑜𝑙𝑣,𝐼𝑁𝐶𝑁 ∗ 𝑚𝑠𝑜𝑙𝑣,𝐼𝑁𝐶𝑁 [=] 𝑀𝐽/𝑠 

 

Energy produced during process: 

𝐸𝑝𝑟𝑜𝑑,𝐼𝑁𝐶𝑁 = 𝑒𝑓𝑓𝐼𝑁𝐶𝑁 ∗ 𝐸𝑐𝑜𝑛,𝐼𝑁𝐶𝑁 [=] 𝑀𝐽/𝑠 

Efficiency of energy production ranges from 30-45% 

 

Net energy:  

𝐸𝑛𝑒𝑡,𝐼𝑁𝐶𝑁 = 𝐸𝑝𝑟𝑜𝑑,𝐼𝑁𝐶𝑁 − 𝐸𝑐𝑜𝑛,𝐼𝑁𝐶𝑁 [=] 𝑀𝐽/𝑠 

 

Costing Equations 

Annual fuel cost: 

𝑀𝑎𝑡𝐼𝑁𝐶𝑁 = 𝑚𝑓𝑢𝑒𝑙 ∗ 𝐶𝑓𝑢𝑒𝑙 ∗ 3600 ∗ 24 ∗ 340 [=] $/𝑦𝑟 

𝐶𝑜𝑠𝑡 𝑜𝑓 𝑓𝑢𝑒𝑙 = 𝐶𝑓𝑢𝑒𝑙 = 0.81 [=] $/𝑘𝑔 

Annual energy cost:  

𝐸𝑐𝑜𝑠𝑡,𝐼𝑁𝐶𝑁 ∗ 3.6 = 𝐸𝑛𝑒𝑡 ∗ 𝐶𝑒 ∗ 3600 ∗ 24 ∗ 340 [=] $/𝑦𝑟 

𝐶𝑒 = 0.10 [=] $/𝑘𝑊ℎ 

Conversion factor: 3.6 𝑀𝐽/𝑘𝑊ℎ 

Annual air cost (hydraulics and pneumatics):  
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𝑂𝐶𝐼𝑁𝐶𝑁 ∗ 𝜌𝑎 = 𝐶𝑎𝑖𝑟,𝐼𝑁𝐶𝑁 ∗ 𝑀𝑎𝑠𝑠𝑎𝑖𝑟 ∗ 3600 ∗ 24 ∗ 340 [=]$
𝑘𝑔

𝑚3 𝑦𝑟
  

𝐶𝑎𝑖𝑟,𝐼𝑁𝐶𝑁 = 0.0004 [=] $/𝑚3 

Capital cost: 

𝐶𝑎𝑝𝑐𝑜𝑠𝑡,𝐼𝑁𝐶𝑁 = 𝐶𝑎𝑝𝑜𝑙𝑑,𝐼𝑁𝐶𝑁 ∗ (
𝑚𝑠𝑜𝑙𝑣,𝑖𝑛𝑐𝑛 ∗ 3600

𝑚𝑠𝑡𝑑,𝑖𝑛𝑐𝑛
)

𝑛𝑐

[=] $ 

𝐶𝑎𝑝𝑜𝑙𝑑,𝐼𝑁𝐶𝑁 =  967000 [=] $ 

𝑀𝑠𝑡𝑑,𝐼𝑁𝐶𝑁 =  100000 [=] 𝑘𝑔/ℎ𝑟 

Number of laborers (SuperPro):  

𝑁𝑙𝑏𝐼𝑁𝐶𝑁 ∗ 𝑚𝑠𝑡𝑑,𝐼𝑁𝐶𝑁 = 𝑁𝑙𝑎𝑏𝑟𝐼𝑁𝐶𝑁 ∗ 𝑚𝑠𝑜𝑙𝑣,𝐼𝑁𝐶𝑁 ∗ 3600  

𝑁𝑙𝑎𝑏𝐼𝑁𝐶𝑁 = 0.1 

Annual cost of labor:  

𝑁𝑐𝑜𝑠𝑡𝐼𝑁𝐶𝑁 = 𝑁𝑙𝑏𝐼𝑁𝐶𝑁 ∗ 𝑃𝑎𝑦 ∗ 24 ∗ 340 [=] $/𝑦𝑟 

𝑃𝑎𝑦 = 30 [=] $/ℎ𝑟 

Total annual cost (objective to be minimized):  

𝐶𝐶𝑇𝐼𝑁𝐶𝑁 = 𝑁𝑐𝑜𝑠𝑡,𝐼𝑁𝐶𝑁 + 𝐶𝑎𝑝𝑐𝑜𝑠𝑡,𝐼𝑁𝐶𝑁 + 𝑂𝐶𝐼𝑁𝐶𝑁 + 𝑀𝑎𝑡𝐼𝑁𝐶𝑁 + 𝐸𝑐𝑜𝑠𝑡,𝐼𝑁𝐶𝑁 

 

B.1.11 Model specifications and input data (standard capacities and costs, 

parameters, feed compositions) 

  



 

236 

 

Table B1  

Standard Capacity, Costs, Scaling Factors, Labor Requirements for Technologies 

Unit operation 

(costing 

capacity) 

Standard 

capacity 

(units) 

Base 

costs 

(million 

$) 

Scaling 

exponent 

(n) 

Laborers 

required 

(#/hr) 

Power 

required 

(kWh) 

Consumable 

Costs 

($/unit) 

Height 

of 

Unit 

(m) 

Sedimentation 

(Area) 

2500 m2 1.128 0.67 0.1 0 0 2 

Filtration 

(Area) 

80 m2 0.039 0.67 0.5 0.1 400 ($/m2)c 1.5 

Microfiltration 

(Area) 

80 m2 0.75 0.67 1 0.1 400 ($/m2)c 1 

Centrifuge 

(Sigma factor) 

60000 m2 0.66 0.67 1 19.2 0 1 

Distillation  

(Volume) 

22.58 m3 0.082 0.67 1 0 0 - 

Pervaporation 

(Area) 

80 m2 0.0261 0.67 1 0.33 400 ($/m2)c 1 

Aqueous Two-

Phase 

Extraction 

(volumetric 

flowrate) 

185 m3/hr 0.362 0.67 1 0.5 2.6 ($/kg)a - 

Ultrafiltration 

(Area) 

80 m2 0.938 0.67 1 0.2 400 ($/m2)c 1 

Dryer 

(Volume) 

106 m3 0.024 0.67 0.5 0 0 - 

Incineration 

(Mass flowrate, 

kg/hr) 

100000 0.967 0.67 0.1 ~ b 0 - 
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a. This cost is the consumable cost associated with adding in the hexane and salt into the 

aqueous two-phase extraction unit. The unit cost of hexane is $2/kg and the unit cost of 

sodium chloride salt is $0.6/kg 

b. This value is dependent on the composition of the incoming stream. Different 

compounds have different heat of combustions, which will cause variation in the power 

required.  

c. The replacement time for all filter consumables in assumed to be 2000 hours. 

 

Table B2  

Utility and Labor Costs (SuperPro Designer v8.5) 

Utility Cost per unit ($/unit) 

Electricity $0.1/kWh 

Cooling Water $5E-5/kg 

Steam $0.012/kg 

Labor $30/laborer*hr 
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Table B3  

Input Component Parameters for Case Study 1 – Pharmaceutical Waste Stream 

Component Molecular 

weight of 

component 

(kg kmol-1) 

Density 

(kg m-3) 

Heat of 

vaporization 

of component 

c(kJ kg-1) 

Heat 

capacity of 

component c 

(kJ kg-1 C-1) 

Feed mass 

fraction (kg 

component c 

kg feed-1) 

Isopropanol 60 786 664 2.32 0.51 

Water 18 1000 a. 4.2 0.49 

Salt 138 2430  a. a. a. 

Hexane 86 655 a. 1.58 a. 

a. This value was not a required input for the model 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

239 

 

Table B4  

Input Component Parameters for Case Study 2 – Specialty Chemical Waste Stream 

Component Molecular 

weight of 

component 

(g mol-1) 

Density 

(Kg 

cm-3) 

Heat of 

vaporization 

of 

component c 

(kJ kg-1) 

Heat 

capacity of 

component 

c (kJ kg-1 

C-1) 

Feed mass 

fraction 

(kg 

component 

c kg feed-1) 

Dimethoxyethane 90 867 418.6 1.42 0.167 

Water 18 1000 a. 4.2 0.276 

Toluene 92 876 401.6 1.71 0.323 

Ethoxy methoxy 

ethane 

104 800 400 1.5 0.01 

Salt 142 2671  a. 0.9 0.218 

Air 29 0.864  a.  a.  a. 

a. This value was not a required input for the model 

 

 

B.1.11.1 Aqueous two phase extraction (ATPE): 

Residence time:  2 h  

Partition coefficient: Isopropanol – 8, Water – 0.05 

Solubility Parameter: Hexane in bottom phase – 0.005, Salt in top phase – 0.005 

 

B.1.11.2 Sedimentation (SDM): 

Residence time: 6 h  

Efficiency: 70% 
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B.1.11.3 Ultrafiltration (UF): 

Flux:  0.0856 m3 m-2 h-1  

Retention Factor (UF1): Isopropanol – 0%, Water – 100%, Salt -100%, Hexane – 100% 

Retention Factor (UF2): Isopropanol – 0%, Water – 100% 

 

B.1.11.4 Pervaporation (PVP): 

Flux:  0.55 m3 m-2 h-1  

Retention Factor (PVP1): Isopropanol – 5%, Water – 90% 

Retention Factor (PVP2): Isopropanol – 1%, Water – 90% 

 

B.1.11.5 Filtration (FLT): 

Flux:  0.2 m3 m-2 h-1  

Retention Factor: Dimethoxy ethane - 10%, Toluene – 10%, Ethoxy methoxy ethane – 

10%, Salt – 100%, Water – 100% 

 

B.1.11.6 Pervaporation (PVP): 

Flux:  0.55 m3 m-2 h-1  

Retention Factor: Dimethoxy ethane - 5%, Toluene – 97%, Ethoxy methoxy ethane – 5% 

 

B.1.11.7 Ultrafiltration (UF): 

Flux:  0.0856 m3 m-2 h-1  

Retention Factor: Dimethoxy ethane - 5%, Toluene – 5%, Ethoxy methoxy ethane – 97% 
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B.1.12 Logic Equations for case study 1: 

𝑌𝐴𝑇𝑃𝐸 

[𝑀1,𝑘 = 𝑀2,𝑘] 

 

¬𝑌𝐴𝑇𝑃𝐸 

[𝑀2,𝑘 = 0] 

 

𝑌𝑃𝑉𝑃1 

[𝑀1,𝑘 = 𝑀3,𝑘] 

 

¬𝑌𝑃𝑉𝑃1 

[𝑀3,𝑘 = 0] 

 

𝑌𝐷𝑆𝑇 

[
𝑀1,𝑘 = 𝑀4,𝑘

𝑀20,𝐼𝑃𝐴 ≥ 0.87 ∗ 𝑀4,𝐼𝑃𝐴
] 

 

¬𝑌𝐷𝑆𝑇 

[𝑀24,𝑘𝐶 = 𝑀19,𝑘𝐶 ∗ 𝑌𝐷𝑆𝑇] 

 

 

𝑌𝐴𝑇𝑃𝐸 ∨ 𝑌𝑃𝑉𝑃1 ∨ 𝑌𝐷𝑆𝑇 

 

B.1.13 Logic Equations for case study 2: 

𝑌𝐹𝐿𝑇 

[𝑀1,𝑘 = 𝑀3,𝑘] 

 

¬𝑌𝐹𝐿𝑇 

[𝑀3,𝑘 = 0] 

 

𝑌𝑆𝐷𝑀 

[𝑀1,𝑘 = 𝑀4,𝑘] 

 

¬𝑌𝑆𝐷𝑀 

[𝑀4,𝑘 = 0] 

 

𝑌𝐶𝑁𝐹 

[𝑀1,𝑘 = 𝑀5,𝑘] 

 

¬𝑌𝐶𝑁𝐹 

[𝑀5,𝑘 =  0] 

 

𝑌𝑃𝑉𝑃 

[𝑀17,𝑘𝐶 = 𝑀15,𝑘𝐶] 

¬𝑌𝑃𝑉𝑃 

[𝑀17,𝑘𝐶 = 0] 

  

𝑌𝐷𝑆𝑇1 

[𝑀16,𝑘𝐶 = 𝑀15,𝑘𝐶] 

¬𝑌𝐷𝑆𝑇1 

[𝑀19,𝑘𝐶 = 𝑀32,𝑘𝐶 ∗ 𝑌𝐷𝑆𝑇1] 
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𝑌𝑈𝐹1 

[𝑀26,𝑘𝐶 = 𝑀22,𝑘𝐶] 

¬𝑌𝑈𝐹1 

[𝑀26,𝑘𝐶 = 0] 

  

𝑌𝐷𝑆𝑇2 

[𝑀23,𝑘𝐶 = 𝑀22,𝑘𝐶] 

¬𝑌𝐷𝑆𝑇2 

[𝑀25,𝑘𝑓 = 𝑀33,𝑘𝑓 ∗ 𝑌𝐷𝑆𝑇2] 

 

𝑌𝐹𝐿𝑇 ∨ 𝑌𝑆𝐷𝑀 ∨ 𝑌𝐶𝑁𝐹 

𝑌𝑃𝑉𝑃⋁ 𝑌𝐷𝑆𝑇1 

𝑌𝑈𝐹1 ⋁ 𝑌𝐷𝑆𝑇2 

 

Table B5  

Emission Factors for Case Study 2  

Component DME (kg 

emission/kg 

DME) 

EME (kg 

emission/kg 

EME) 

TOL (kg 

emission/kg 

TOL) 

Water (kg 

emission/kg 

Water) 

Salt (kg 

emission/kg 

Salt) 

CO2 2.02E+00 2.02E+00 1.24E+00 5.13E-04 6.92E-01 

CO 2.45E-03 2.45E-03 2.28E-03 1.86E-06 1.20E-03 

CH4 1.18E-02 1.18E-02 1.24E-02 1.48E-06 1.77E-03 

NOX 4.35E-03 4.35E-03 2.44E-03 1.34E-06 2.22E-03 

NMVOCs 1.77E-03 1.77E-03 1.92E-03 2.32E-07 2.77E-04 

Others 1.11E-02 1.11E-02 3.04E-03 3.86E-06 9.27E-03 

WE 2.50E-01 2.50E-01 8.16E-03 3.56E-04 1.41E-01 

SE 1.73E-03 1.73E-03 1.83E-03 2.22E-07 4.86E-04 
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Table B6  

Emission Factors for Case Study 2 (Cont.) 

Component Electricity (kg 

emission/kWh electricity) 

Steam (kg emission/kg 

Steam) 

CO2 6.38E-01 2.96E-01 

CO 2.50E-04 1.58E-04 

CH4 1.05E-03 6.13E-04 

NOX 7.04E-04 3.85E-04 

NMVOCs 7.25E-05 6.54E-05 

Others 4.26E-03 1.17E-02 

WE 1.22E-01 1.26E-02 

SE 5.04E-05 1.20E-04 
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Table B7  

Emission Factors for Case Study 1 

Component IPA (kg 

emission/ 

kg IPA) 

Water (kg 

emission/kg 

Water) 

Steam (kg 

emission/kg 

Steam) 

Electricity (kg 

emission/kWh 

electricity) 

CO2 1.82E+00 5.13E-04 2.96E-01 6.38E-01 

CO 2.32E-03 1.86E-06 1.58E-04 2.50E-04 

CH4 1.05E-02 1.48E-06 6.13E-04 1.05E-03 

NOX 3.49E-03 1.34E-06 3.85E-04 7.04E-04 

NMVOCs 1.81E-03 2.32E-07 6.54E-05 7.25E-05 

Others 2.93E-02 3.86E-06 1.17E-02 4.26E-03 

WE 2.85E-01 3.56E-04 1.26E-02 1.22E-01 

SE 4.56E-04 2.22E-07 1.20E-04 5.04E-05 
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Table B8  

Fraction of Emitted Component that is Dissipated into Compartment c 

Component Air Compartment Water 

Compartment 

Soil 

Compartment 

CO2 1 0 0 

CO 1 0 0 

CH4 1 0 0 

NOX 1 0 0 

NMVOCs 1 0 0 

Others 1 0 0 

WE 0 1 0 

SE 0 0 1 
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Table B9  

Yearly Allowable Yield of Component Per Square Meter 

Component Air Compartment Water 

Compartment 

Soil 

Compartment 

CO2 (kg CO2/m
2.yr) 6.53E-01 - - 

CO (kg CO/m2.yr) 9.80E-03 - - 

CH4 (kg CH4/m
2.yr) 4.50E-03 - - 

NOX (kg NOX/m2.yr) 1.31E-04 - - 

NMVOCs (kg NMVOCs 

/m2.yr) 6.50E-03 

- 

- 

Others (kg Others /m2.yr) 3.90E-04 - - 

WE (kg WE /m2.yr) - 1.22E-04 - 

SE (kg SE /m2.yr) - - 1.32E-06 

 

 

Table B10  

Yearly Specific Yield  

Yield factor Value 

Non-renewable resource (kg/m2.yr) 2 

Staff (m2/person) 4.74E+3 

Indirect installation (kWh/m2.yr) 6 

Energy (kWh/m2.yr) 43 
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Table B11  

Transformity and other Parameters for Emergy Analysis 

Component Unit Value (x1010) 

Steel sej/kg 8.70 

Concrete sej/kg 227 

Purchase Cost sej/$ 494 

Maintenance Cost sej/$ 494 

Labor sej/$ 280 

Water sej/kg 0.159 

Electricity sej/kWh 122 

Diesel sej/kg 40 

Air (Wind) sej/kg 1.03 

Annual global emergy 

density 

sej/m2.yr 3100000 

Density of Steel kg/m3 8050 

Density of Concrete kg/m3 2400 
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Appendix C 

Copyright Permissions and Educational Contributions from this Work 

Chapter 1 Texts, Figures, & Tables 
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Chapter 3 Texts, Figures, & Tables 
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Chapter 4 Texts, Figures & Tables 
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