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Abstract 

Richard Igbiriki 
ENHANCING INTER-DOCUMENT SIMILARITY USING SUB MAX 

2023-2024 

Anthony Breitzman, Ph.D. 

Master of Science in Computer Science 

 

 Document similarity, a core theme in Information Retrieval (IR), is a machine 

learning (ML) task associated with natural language processing (NLP). It is a measure of 

the distance between two documents given a set of rules. For this thesis, two documents 

are similar if they are semantically alike, and describe similar concepts. While document 

similarity can be applied to multiple tasks, we focus our work on the accuracy of models 

in detecting referenced papers as similar documents using their sub max similarity. 

Multiple approaches have been used to determine the similarity of documents regarding 

literature reviews. Some of such approaches use the number of similar citations, the 

similarity between the body of text, and the figures present in those documents. This 

researcher hypothesized that documents with sections of high similarity (sub max), but a 

global low similarity are prone to being overlooked by existing models as the global 

score of the documents are used to measure similarity. In this study, we aim to detect, 

measure, and show the similarity of documents based on the maximum similarity of their 

subsections. The sub max of any two given documents is the subsections of those 

documents with the highest similarity. By comparing subsections of the documents in our 

corpus and using the sub max, we were able to improve the performance of some models 

by over 100%. 
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Chapter 1 

Introduction 

The overarching goal is to build a system to automate literature reviews. 

However, such a system is beyond the scope of a single thesis. This thesis is more a proof 

of concept where we wish to see if we can train a machine to automatically identify the 

core papers in an area of research. The experiment is given an arbitrary set of papers, can 

we find a method that would identify a high percentage of the papers that were ultimately 

referenced by these target papers.  

To make this thesis self-contained, we will describe the basics of Information 

Retrieval and Document Similarity in the following sections so that the experiment can 

be better understood. 

1.1 Information Retrieval 

Information retrieval, as a field of study, is finding materials of an unstructured 

nature that satisfies an information need from within large collections (now usually stored 

on computers) (Manning et al, 2009). Unstructured text is usually the data type of focus 

for information retrieval tasks. Historically, IR was more associated with librarians, 

researchers, lawyers/paralegals, etc. However, with the rise of the internet, millions of 

people conduct IR when they use a search engine and search their emails and/or 

messages. Generally, the field also provides users with the ability to filter or further 

process a set of previously retrieved documents.  
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In 1945, Vannevar Bush published his article “As We May Think” which 

propelled the concept(s) of automatic access/retrieval of large amounts of stored 

information. In the article, he argues for man's need for a fast and reliable means of 

accessing existing information and the ability of extending such existing knowledge 

(Bush, 1945). This concept evolved into more detailed explanations of how text archives 

could be automatically searched in the 1950s. The fundamental concept of computerized 

text searching was expanded upon in several works that appeared in the middle of the 

1950s. In 1957, H.P. Luhn introduced one of the most effective techniques, in which he 

advocated utilizing words as indexing units for documents and assessing word overlap as 

a criterion for retrieval (Luhn, 1957).  

Information retrieval also extends to other tasks such as correctly grouping a 

given set of related documents (clustering), or accurately specifying what class a 

document belongs to (classification). While clustering of documents can be completed 

automatically, classifying documents requires some subset of the documents to be 

correctly classified (often manually). The classified documents are used as training data 

for the classification model to enable it to automatically classify future documents 

(Manning et al, 2009). 

1.2 Document Similarity 

 Applications across numerous domains frequently must search for similar 

documents given a query document. A news website, for instance, could want to suggest 

articles related to the one the visitor is reading. The PubMed search engine which 

provides access to the life sciences literature, implemented a “more like this” browsing 
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feature as a simple lookup of document-document similarity scores, computed offline 

(Elsayed et al, 2008). However, implementing such functionality requires (i) an effective 

way to find pertinent documents throughout potentially vast corpora, and (ii) a concept of 

document similarity (Paul et al, 2016). It’s important to have a defined concept of 

similarity as it is integral to measuring the success or failure of any document similarity 

task.  

In 2005, Lee et al argued that the automated measurement of the similarity 

between text documents is fundamentally a psychological modeling problem. Thus, the 

different approaches now in use, which are frequently applied in information science 

applications, should be evaluated (at least in part) in terms of their capacity to simulate 

human performance. (Lee et al, 2005). Humans with natural stimuli can accurately detect 

document similarity based on the semantics of given documents, thus any automated 

attempt should provide similar results. Numerous methods have been devised for 

modeling text document similarity. These consist of the more complex methods like 

Latent Semantic Analysis (LSA: Deerwester et al., 1990; Landauer and Dumais, 1997) as 

well as straightforward ones like word-based, keyword-based, and n-gram measurements 

(e.g., Salton, 1989; Damashek, 1995). For this research, we will cover five machine 

learning models used in measuring document similarity, namely: Bidirectional Encoder 

Representations from Transformers (BERT), Global Vectors for Word Representation 

(GloVe), Word2Vec, Term Frequency-Inverse Document Frequency (TF-IDF), and 

Doc2Vec.  
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1.3 Problem Statement and Proposed Solution 

 During literature review, researchers are required to read bodies of work that are 

related to their area(s) of interest to gain the requisite knowledge for conducting their 

own research. While this is a requirement for all scientific research, it is still a time-

consuming task as researchers often must read through papers that may appear related but 

provide no additional information or value to the researcher. Having spent countless 

hours reading research papers as part of my literature review, we decided to find ways to 

improve the literature review experience by improving the quality/similarity of 

recommended literature given a particular piece of literature. 

Multiple approaches have been used to determine the similarity of documents 

regarding literature reviews. Various approaches use the number of similar citations, the 

similarity between the body of text, and the figures present in those documents. The 

hypothesis we wish to test is whether documents with sections of high similarity, but a 

global low similarity are prone to being overlooked by existing models as the overall 

score of the documents are used to measure similarity. In this study, we aim to detect, 

measure, and show the similarity of documents based on the similarity of their 

subsections.  

sim(doc1,doc2) = max(sim(doc1_1,doc2_1), sim(doc1_2,doc2_2),...,sim(doc1_n, doc2_n)) 

The performance of the models will be calculated as a ratio of the references of a 

document present in the top fifty (50) similar documents of a given document. 

perf(mi, dj) = references_in_dj  mi_similar_documents[0:50]/references_in_dj 
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That is, given a model mi, and a document dj, the performance of mi on dj is the ratio of 

the intersection of references in dj and the top fifty (50) similar documents of mi on dj to 

all the references in dj. 

1.4 Thesis Outline 

 In Chapter 1 of this thesis, the concepts Information Retrieval (IR), and Document 

Similarity are discussed. Furthermore, the problem statement and solution are described. 

Chapter 2 covers the literature review on document similarity, its early days, current 

trends, and some related work. In chapter 3, document similarity is discussed in greater 

detail along with the machine learning models of focus. In Chapter 4, the experiment 

design is discussed along with data collection, preprocessing, and statistical analysis of 

the data. Chapter 5 discusses the results of the various models without any 

enhancement(s), and the results of the model(s) considering parts of the document rather 

than the whole document. In chapter 6, the results of the experiments are discussed, and 

techniques to improve performance are suggested. Finally, chapter 7 concludes the thesis 

and postulates future work. 
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Chapter 2 

Literature Review  

 The method described in this thesis builds on essential work in Information 

Retrieval (IR) as well as key ideas from Natural Language Processing (NLP) and Text-

Mining. 

2.1 1957-1994 

 The rise of automated Information Retrieval really begins with H.P. Luhn in 

1957. Although document searching goes back long before this period (Sanderson and 

Croft 2012), the methods used prior to Luhn including Boolean search are not relevant to 

our research. Our interest in this thesis is in what the IR community calls ‘ad-hoc’ 

retrieval, which refers to the task of returning information resources related to a user 

query formulated in natural language rather than a carefully defined Boolean query. 

 Luhn was interested in automatic retrieval as well as automatic summarization of 

documents while working at IBM. Luhn proposed a method where each document in a 

collection was assigned a score indicating its relevance to a query (Luhn 1957). In 

another paper, Luhn suggested “that the frequency of word occurrence in an article 

furnishes a useful measurement of word significance” (Luhn 1958).  

 Gerard Salton, a Professor at Cornell University whose research group developed 

the SMART (System for the Mechanical Analysis and Retrieval of Text) Information 

Retrieval System in the 1960s took Luhn’s work to another level. In a paper 

memorializing Salton after his death in 1995 (Crouch et al. 1996) said of Salton “He was 

a brilliant computer scientist and the man most responsible for the establishment, 
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survival, and recognition of Information Retrieval as a vital and important discipline in 

computer science.”  

 One of Salton’s main contributions was the TF-IDF vector space model 

(discussed in chapter 2) which is widely used in both IR and NLP. The vector space 

model introduced in (Salton et al. 1975) views documents as vectors consisting of term 

frequencies (TF) multiplied by a weighting called the Inverse Document Frequency (IDF) 

which was developed by (Jones 1972). Although the vector space model was introduced 

in 1975 it was initially viewed as an indexing method used in the SMART system and not 

considered as an innovation for use in general IR until the early 1980s (Dubin 2004). 

 Another innovation of the SMART system was relevance feedback. The first 

relevance feedback algorithm was developed by JJ. Rocchio (Rocchio. 1965) and added 

to the SMART system shortly after (Salton 1971). The SMART system allowed users to 

successively broaden or refine searches and incorporated numerous relevance feedback 

techniques since as one researcher on the SMART team stated, “since the user’s original 

query is often inadequate, some sort of user interaction with the retrieval operation is 

desirable” (Kelly and Sugimoto 2013). 

 Despite all the research in IR and NLP, commercial products developed during 

this time such as DIALOG, ERIC, MEDLARS, LEXIS, and LEADERMART (Kelly and 

Sugimoto 2013) which were widely used by professional searchers and librarians, were 

largely restricted to Boolean searching. This situation didn’t change until the early to 

mid-1990s with systems such as WESTLAW’s WIN system (Turtle 1994) and the growth 

of web search engines. 
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2.2 TREC and SIGIR 

Research in IR was recognized as an important branch of computer science way back in 

1978 when the Association for Computing Machinery (ACM) created the Special Interest 

Group on Information Retrieval (SIGIR) and the SIGIR conference where much of the 

research in IR has been published and presented for the last 44 years. In 1992 the 

National Institute of Standards and Technology (NIST) created TREC (Text Retrieval 

Conference), an annual conference where many international research groups collaborate 

to build test collections several orders of magnitude larger than had been in existence 

before. This was in response to the IR community’s concern at the time that existing 

datasets were too small for adequate testing of IR systems (Sanderson and Croft 2012).  

1995-2013 

 With the growth of the internet, searching for text documents goes from an 

activity done by professional searchers and librarians to an activity practiced by the 

public (Kelly and Sugimoto 2013). Since all TREC Proceedings papers from 1992 

through 2021 are available at https://trec.nist.gov/pubs we can see that from 1992 to 2010 

that a shift from Boolean searching to ad-hoc searches in web search engines is taking 

place. Much of the research is related to relevance ranking, query expanding, complex 

question answering, and multilingual systems. Even though relevance ranking existed 

since 1965 (Rocchio. 1965) it took on new relevance in the 1990s as Web search engines 

tried to differentiate themselves with their ranking of results. Ultimately Google became 

the dominant search engine with its PageRank algorithm which identified relevant 

documents from authoritative sources and eliminated pages from unscrupulous authors 

that discovered they could alter their ranking by manipulating the content of their pages 
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(Sanderson and Croft 2012). Query expanding also became a topic of new importance to 

search engines because users tend to use very short queries while hoping for good results. 

(In 2009 the average query length was 2.30 words, the same as that reported ten years 

before in 1999 (Carpineto and Romano 2012).) To see why query expansion is important 

for search engines consider the World Cup which is the most widely viewed and followed 

single sporting event in the world. A user searching World Cup on Google will receive 4 

trillion results, however since the World Cup is going on now (at the time of this writing) 

in Qatar, most users typing in World Cup are interested in recent results or the upcoming 

schedule. Since Google keeps track of trending searches it knows this and will 

automatically expand a query from ‘World Cup’ to ‘World Cup 2022’ to get more 

accurate results. The topics which have dominated TREC in the years 1995-2013 are 

interesting to the IR community but not of interest to this thesis work. However, during 

this period one area of interest was TREC HARD (Highly Accurate Retrieval from 

Documents). This topic is relevant to our research because we wish to conduct literature 

reviews based on a single source document rather than a query or queries. However, the 

HARD track of TREC depends on user feedback which we wish to avoid in our method. 

 

2.3 2013-Present 

 The semantic vector space models of language represent each word as a real-

valued vector. Consequently, these vectors can be used as features in NLP tasks such as 

question answering, document classification, information retrieval, etc. (Pennington et al, 

2014). Prior to 2013, global matrix factorization methods such as latent semantic analysis 

were the main family of models for learning word vectors. However, Mikolov et al. 

introduced the local context window methods such as skip-gram (2013c). Aside from TF-
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IDF, all the models discussed in chapter 2 were developed using some variation of word 

vectors. As stated in 2.2.5, GloVe is a combination of the advantages of the two popular 

model families: global matrix factorization and local context window methods 

(Pennington et al, 2014). Mikolov et al. developed word2vec (2013a) for representing 

word vectors using their context to ensure that words of similar meanings and/or use are 

placed close to each other in vector space. In 2014, Mikolov et al. introduced doc2vec 

which was an improvement from word2vec that allowed the model to learn fixed-length 

feature representations from variable-length pieces of texts, such as sentences, 

paragraphs, and documents. While it is considerably slower than the others, doc2vec can 

represent sentences, paragraphs, and documents as vectors in the Vector Space Model.  

  Both the context and content of a body of text are integral to successfully 

translating or interpreting such text. Thus, it is essential that the application of Deep 

Learning (DL) models on texts should cover the morphological, syntactic, semantic, and 

pragmatic layers of natural language (Braşoveanu and Andonie, 2020). Due to the 

sparseness of training data, building models/networks that met all the requirements of 

text analysis and machine translation was a significant challenge. The first Transformer 

network (Vaswani et al., 2017) showed that it was possible to design networks that 

achieve good results for Natural Language Processing (NLP) tasks with a set of multiple 

sequential attention layers. Transformers generally contain an encoder and a decoder. 

Transformers (using their encoder and decoder) transform input sequences into output 

sequences in deep learning applications. An example of an input sequence could be the 

sentence “I am writing a paper while listening to music”. The corresponding output 

sequence could be a translation of the sentence to French or Italian. Using multiple 
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layers, although typically paired, transformers encode the input sequence using multi-

attention layers and a feed-forward layer. Due to its reliance on attention, transformers 

use a recurrent neural network (RNN) that passes all hidden states of the encoder as 

context to the decoder. While passing all hidden states to the decoder does result in more 

processing, it provides the decoder with full context of the input thus preventing any loss 

in translation of the output. In the original paper introduced by Vaswani et al. (2017), the 

transformer had six (6) encoders and six (6) decoders.  

 Over the last couple of years, hundreds of papers and language models inspired by 

Transformers have been published, the best-known being BERT (Devlin et al., 2019), 

RoBERTa (Liu et al., 2019), AlBERT (Lan et al., 2019), etc. Some of the most popular 

Transformer models are included in the Transformers library, maintained by 

HuggingFace. We discussed BERT in chapter 2 as one of the models that we will be 

covering in this paper. 

 

2.4 Papers Closely Related to This Thesis Research 

 As discussed in the introduction, the idea behind this project is to find a method to 

automate and enhance the conducting of literature reviews. We assume that the key 

papers in a literature review are those that are ultimately cited by the finished research 

paper. Therefore, we wish to build a system that takes the text of a draft paper and finds 

papers that should be cited by that draft. Of course, building such a system will take a 

team and resources beyond the scope of a Master’s thesis so we limit this research to 

testing multiple clustering and similarity methods such as TF-IDF, Word2Vec, Doc2Vec, 

BERT, etc.  
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 One area of research related to automating literature review is the so-called 

Systematic Literature Review (SLR) (Feng et al. 2018). SLRs are very labor-intensive 

that can often take a year or more to compile and generally are restricted to broad areas of 

science. As an example, one might compile an SLR on all evidence-based-medical 

approaches to treating Diabetes. The goal in such an endeavor is to assemble possibly 

thousands of relevant papers and organize them to call out the most important of such 

papers. The Feng study discussed how text-mining techniques could be used to create an 

SLR of Software Engineering. However, while identifying all the important papers within 

a subfield of science is a worthy goal, it is not useful to the researcher who is working on 

a literature review within a very narrow area of science such as this thesis is trying to 

address. 

 Perhaps the closest work related to our topic is (Erekhinskaya et al. 2016) who 

wished to automate the work in doing a literature review as well. However, their 

approach is more of an extractive summarization approach where the method could 

search through a library of 100,000 articles per day per CPU core and automatically 

extract knowledge to populate the predefined document template for each article. In other 

words, their method found papers on predefined topics which is a completely different 

approach than what we propose. 

 In our approach we assume that most researchers have an idea for a paper and do 

a preliminary search to see if there is anything similar in the literature. If nothing is 

found, then the researcher begins to write an initial draft. The idea here is that the method 

can take that initial draft paper and automatically identify papers that are related to 

specific parts of the new paper and should be cited by it. The Erekhinskaya et al. method 
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allows a researcher to identify papers relevant to specific topics, which is probably what 

researchers should do in a careful literature review. However, in new areas of research 

topic names might not be established. The method proposed here will find papers that 

have sections of text that are similar to sections of text within the target paper rather than 

a typical search which attempts to identify papers that are most similar overall to a target 

paper. 
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Chapter 3 

Document Similarity 

In this chapter, we will discuss document similarity, the different methods used in 

calculating document similarity, and the different machine learning models that are 

applicable to this thesis. This chapter thus provides the requisite knowledge or 

background for the rest of the thesis. 

3.1 Overview 

 Document similarity is the measure of how similar (or not) a set of documents are 

given a query document. However, the concept of similarity between two documents is 

debatable as readers often have different rules for claiming similarity (Bar et al. 2011). 

Concerning the general concept of similarity, Goodman (1972), and Bar et al. (2011) 

argue that similarity is an ill-defined notion unless one can say to what aspects similarity 

relates. Goodman (1972) provides a useful illustration of how different people at an 

airport would consider luggage bags to be similar. The pilot just considers a bag's weight, 

whereas the passenger evaluates them based on ownership and destination, whereas a 

spectator might compare bags based on shape, size, or color.  

Recommender systems provide researchers with relevant papers for their work 

using document similarity measures when user feedback is sparse or unavailable ( Beel, 

2016). Given that similarity can be ambiguous, similarity in research papers is often 

concerned with multiple facets of the presented research, e. g., method, findings (Huang 

et al., 2020). Document similarity can be applied to a series of tasks, for example: 

classifying authorship of a paper, plagiarism detection, paraphrase detection etc. Apropos 
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of that, document similarity should be formalized based on the geometric model of 

conceptual spaces along three dimensions inherent to texts: structure, style, and content 

(Bar et al, 2011). Structure refers to the internal developments of a given text, e.g. the 

order of sections. Style refers to grammar, usage, mechanics, and lexical complexity 

(Attali and Burstein, 2006). Content addresses all facts and their relationships within a 

text. For the purposes of this thesis, we will be considering the content of the papers for 

the similarity of the documents.  

Table 1 illustrates different tasks and their associated dimensions as outlined by 

Bar et al (2011). 

 

Table 1 

Natural Language Processing Tasks and Associated Dimensions 

Task Structure Style Content 

Authorship Classification   X  

Automatic Essay Scoring  X X X 

Information Retrieval X X X 

Paraphrase Recognition    X 

Plagiarism Detection  X X 

Question Answering   X 

Short Answer Grading X X X 

Summarization X  X 
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Task Structure Style Content 

Text Categorization    X 

Text Segmentation  X  X 

Text Simplification  X  X 

Word Sense Alignment   X 

 

 Document similarity is based on two concepts: data representation and similarity 

measure. In data representation, most documents are encoded based on the Vector Space 

Document (VSD) (Salton et al, 1975). A feature vector of the words that appear in all of 

the documents in a data collection serves as the foundation of the data model's 

framework. Because words are the fundamental units in most natural languages 

(including English), the VSD model typically considers a distinct word that appears in the 

texts to be an atomic feature term (Paul et al, 2016). Using one of the many similarity 

measures based on the two corresponding feature vectors, such as the cosine measure, 

Jaccard measure, and Euclidean distance, the similarity between two documents is 

calculated. 

 As Li and Han (2013) noted, numerous metrics such as Euclidean distance-based 

metric, Cosine, Jaccard, Dice, Jensen- Shannon Divergence based metric have been 

proposed for the calculation of similarity between two documents for multiple natural 

language processing tasks. Cosine, calculated as the dot-product of two normalized 

vectors, is the most popular one. It measures the angle between two vectors (Li and Han, 

2013). 
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Figure 1. Formula for Calculating Cosine Similarity 

 

The angle given by cosine is inversely proportional to the similarity of the two 

documents. Thus, the lower the angle, the more similar the two documents are. Given 

three vectors (A, B, C) and their angles as shown below, 

 

Figure 2. Cosine Similarity Measure 
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The above figure implies that vector C is more similar to vector B than vector A to B. For 

this thesis, all similarity metrics will be calculated using cosine similarity. 

3.2 Machine Learning Models 

 One of the core concepts of document similarity is data representation in a vector 

space as mentioned above. In this section, we discuss the different machine learning 

models and techniques used to represent the document(s) in vector space. 

3.2.1 TF-IDF 

 Term Frequency and Inverse Document Frequency (TF-IDF) is a numerical 

statistic that shows the relevance of keywords to some specific documents (Qaiser and 

Ali, 2018). Using TF-IDF, we can identify or classify documents based on the words 

appearing in those documents and their frequency. As the name suggests, TF-IDF is a 

combination of two concepts, Term Frequency (TF) and Inverse Document Frequency 

(IDF). TF is used to measure frequency of a given term in a document (Hakim et al, 

2015). IDF is used to determine the importance of a word to a given document. Because 

TF treats all words equally, stop words (words with no significance such as “of”) are 

prone to being ranked high given their high frequency even though they do not provide 

any context for identifying a given document. IDF prevents this by assigning a lower 

weight to high frequency words and a higher weight to low frequency words. TF-IDF is 

the product of TF and IDF. Below, Figure 3, shows the mathematical formula for 

calculating TF, IDF, and TF-IDF. 
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Figure 3. TF-IDF 

 

From Figure 3 above, we can summarize that:  

tf = number of times the term appears in a document/total number of words in the 

document 

idf = log(number of documents/number of documents the term appears) 

tf-idf = tf * idf 

 We calculate the similarity between all the papers using the cosine similarity 

metric. Cosine similarity, as defined in the previous chapter, is calculated as the dot-

product of two normalized vectors. It measures the angle between two vectors (Li and 

Han, 2013). 
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3.2.1.1 Example. Given the example documents:  

documents= [ 

 "The quick brown fox jumped over the lazy dog", 

 "The quick grey fox jumped over the lazy cat", 

 "The slow mouse ambled into the woods" 

] 

The derived stop words from the documents are: 

Stopwords= {the, into, over} 

And the resulting dictionary of words to be used for calculating their similarities: 

Dictionary= {amble, brown, cat, dog, fox, grey, jump, lazy, mouse, quick, slow, woods } 

alphabetize. 

The table below shows the TF-IDF vector of the documents. 

 

Table 2 

TF-IDF Document Vector 

 
amble brown cat dog fox grey jumped lazy mouse quick slow woods 

doc0 0.0 0.48 0.0 0.48 0.37 0.0 0.37 0.37 0.0 0.37 0.0 0.0 

doc1 0.0 0.0 0.48 0.0 0.37 0.48 0.37 0.37 0.0 0.37 0.0 0.0 

doc2 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.5 0.5 

 

 

Using the vector of the words above, the similarity matrix of the documents is given 

below: 
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Table 3 

Similarity of Documents Using TF-IDF 

 Doc0 Doc1 Doc2 

Doc0 1.0 0.54 0.0 

Doc1 0.54 1.0 0.0 

Doc2 0.0 0.0 1.0 

 

 

3.2.2 BERT 

 The Bidirectional Encoder Representations from Transformers (BERT) is a 

language representation model introduced by Jacob et al in 2018. BERT was created with 

the intention of pre-training deep bidirectional representations from unlabeled text by 

concurrently conditioning on both left and right context in all layers. The main difference 

between BERT and its predecessors (language representation models) is that the previous 

models were unidirectional thus restricting the power of pre-trained representations 

(Jacob et al, 2018). Unlike its predecessors, BERT implements a masked language model 

which enables the representation to fuse the left and the right context, consequently 

allowing the pre-training of a deep bidirectional Transformer. BERT is both simple and 

powerful. As demonstrated by Jacob et al (2018), on eleven natural language processing 

tasks, it achieves new state-of-the-art results, raising the General Language 

Understanding Evaluation (GLUE) score to 80.5% (7.7%-point absolute improvement), 

MultiNLI accuracy to 86.7% (4.6% absolute improvement), SQuAD v1.1 question 
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answering Test F1 to 93.2 (1.5-point absolute improvement), and SQuAD v2.0 Test F1 to 

83.1. (5.1-point absolute improvement). These performance metrics make BERT a good 

choice for one of the models of our experiment.  

3.2.2.1 Example. Given the example documents:  

documents= [ 

 "The quick brown fox jumped over the lazy dog", 

 "The quick grey fox jumped over the lazy cat", 

 "The slow mouse ambled into the woods" 

] 

The derived stop words from the documents are: 

Stopwords= {the, into, over} 

And the resulting dictionary of words to be used for calculating their similarities: 

Dictionary= {amble, brown, cat, dog, fox, grey, jump, lazy, mouse, quick, slow, woods} 

alphabetize. 

Below is a table of the similarity matrix of the documents using BERT 

 

Table 4 

Similarity Matrix of Documents Using BERT 

 Doc0 Doc1 Doc2 

Doc0 1.0 0.84 0.38 

Doc1 0.84 1.0 0.38 

Doc2 0.38 0.38 1.0 
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3.2.3 Doc2Vec 

 Le and Mikolov (2014) proposed doc2vec as an extension of word2vec (Mikolov 

et al., 2013a). Word2vec is discussed in the next section. Doc2vec implements Paragraph 

Vector, an unsupervised algorithm that learns fixed-length feature representations from 

variable-length pieces of texts, such as sentences, paragraphs, and documents (Le and 

Mikolov, 2014). As Le and Mikolov noted, machine learning methods need that the input 

be represented as a feature vector of fixed-length. Regarding text and text related tasks, 

Bag of Words (Harris, 1954) is the most used method of achieving fixed-length features. 

Bag-of-words features, despite being widely used, have two significant flaws: they 

neglect the semantics of the words and lose the ordering of the words (Le and Mikolov, 

2014). Doc2vec represents each document by a dense vector which is trained to predict 

words in the document. By developing both Paragraph Vectors and word vectors using 

stochastic gradient descent and backpropagation (Rumelhart et al., 1986), the vector 

representation for doc2vec is trained to predict words in a paragraph.  

3.2.3.1 Example. Given the example documents:  

documents= [ 

 "The quick brown fox jumped over the lazy dog", 

 "The quick grey fox jumped over the lazy cat", 

 "The slow mouse ambled into the woods" 

] 

The derived stop words from the documents are: 

Stopwords= {the, into, over} 

And the resulting dictionary of words to be used for calculating their similarities: 
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Dictionary= {amble, brown, cat, dog, fox, grey, jump, lazy, mouse, quick, slow, woods} 

alphabetize. 

Below is a table of the similarity matrix of the documents using Doc2Vec 

 

Table 5 

Similarity Matrix of Documents Using Doc2Vec 

 Doc0 Doc1 Doc2 

Doc0 1.0 0.99 0.97 

Doc1 0.99 1.0 0.97 

Doc2 0.97 0.97 1.0 

 

 

Note: The similarity between Doc2 and the other documents is higher than expected due 

to the vector size used in running the model. The similarity can be optimized by fine 

tuning the vector size to match the dictionary. Vector sizes and its impact on the 

performance of our models will be discussed in Chapter 7. 

3.2.4 Word2Vec 

 Proposed by Mikolov et al (2013a), word2vec is an architecture for computing 

continuous vector representations of words from very large data sets. Prior to word2vec, 

many of the existing natural language processing algorithms and techniques treated 

words as atomic units with no notion of similarity amongst words. However, word2vec 

represents word vectors using its context so similar words are in close proximity in vector 

space. Word2vec uses a previously proposed technique (Mikolov et al., 2013b) for 
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measuring the quality of the resulting vector representations, with the expectation that not 

only will similar words tend to be close to each other, but that words can have multiple 

degrees of similarity (Mikolov et al., 2013b). Word2vec proposes two new model 

architectures for learning distributed representations of words: continuous bag-of-words 

(CBOW), and continuous skip-gram. The CBOW architecture predicts the current word 

based on the context, and the Skip-gram predicts surrounding words given the current 

word. Shown below are the architectures of CBOW and skip-gram models. 

 

 

Figure 4. CBOW and Skip-Gram Model Architectures 

 

3.2.4.1 Example. Given the example documents:  

documents= [ 

 "The quick brown fox jumped over the lazy dog", 

 "The quick grey fox jumped over the lazy cat", 
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 "The slow mouse ambled into the woods" 

] 

The derived stop words from the documents are: 

Stopwords= {the, into, over} 

And the resulting dictionary of words to be used for calculating their similarities: 

Dictionary= {amble, brown, cat, dog, fox, grey, jump, lazy, mouse, quick, slow, woods} 

alphabetize. 

Below is a table of the similarity matrix of the documents using Word2Vec 

 

Table 6 

Similarity Matrix of Documents Using Word2Vec 

 

 

3.2.5 GloVe 

 Developed by Pennington et al in 2014, GloVe is a log-bilinear model with a 

weighted least-squares objective. It is a combination of the advantages of the two popular 

model families: global matrix factorization and local context window methods 

(Pennington et al, 2014). Although techniques like latent semantic analysis 

(LSA)(Deerwester et al, 1990), which is part of the global matrix factorization methods, 

 Doc0 Doc1 Doc2 

Doc0 1.0 0.92 0.56 

Doc1 0.92 1.0 0.55 

Doc2 0.56 0.55 1.0 
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effectively use statistical data, they perform poorly on the word analogy test, pointing to 

an inadequate vector space structure. Similarly, techniques like skip-gram (Mikolov et al, 

2013c), which is part of the local context window methods, may perform better on the 

analogy task but because they are trained on individual local context windows rather than 

global co-occurrence counts, they do a poor job of utilizing the statistics of the corpus. 

However, by restricting training to the nonzero elements of a word-word co-occurrence 

matrix rather than the full sparse matrix or specific context windows in a huge corpus, 

Pennington et al (2014) were able to produce a model that performed at 75% on an 

analogy task while also improving its performance on similarity tasks.  

3.2.5.1 Example. Given the example documents:  

documents= [ 

 "The quick brown fox jumped over the lazy dog", 

 "The quick grey fox jumped over the lazy cat", 

 "The slow mouse ambled into the woods" 

] 

The derived stop words from the documents are: 

Stopwords= {the, into, over} 

And the resulting dictionary of words to be used for calculating their similarities: 

Dictionary= {amble, brown, cat, dog, fox, grey, jump, lazy, mouse, quick, slow, woods} 

alphabetize. 

Below is a table of the similarity matrix of the documents using GloVe 
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Table 7 

Similarity Matrix of Documents Using GloVe 

 Doc0 Doc1 Doc2 

Doc0 1.0 0.95 0.66 

Doc1 0.95 1.0 0.65 

Doc2 0.66 0.65 1.0 
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Chapter 4 

Experiment Design 

In this section, we will discuss our corpus, gathering criteria, statistics, and pre-

processing. 

4.1 Overview 

We first wish to remind the reader that the idea behind this research is to find a method to 

automate and enhance the conducting of literature reviews. We assume that the key papers 

in a literature review are those that are ultimately cited by the finished research paper. 

Therefore, we need an experiment that will quantify how often an automated method would 

identify key papers that would be found in a traditional literature review. 

The basic idea is that given a field of research (Neural Networks for example) we select a 

paper at random. We then test multiple methods to identify similar papers (e.g., TF-IDF, 

BERT, Doc2Vec etc.) and ask how many of the actual references are among the top scoring 

similar papers? One thing that makes such an experiment difficult is that there is not a 

universal corpus that contains all papers within subfields of computer science that make 

full-text papers available. One can purchase subsets of fields from Elsevier, IEEE, ACM, 

but getting a full set of all papers in several subfields would be cost-prohibitive. As a 

solution, we have created a corpus from the free set of pre-prints at Arxiv.org. The 

limitation with this data set is that most of the paper references will not be in corpus. We 

therefore compile a corpus for each subfield, randomly select 4 target papers, and then seed 

our corpus with additional full-text articles referenced by our target papers. Since the 

similarity methods only care about the text and not the source of the papers, any method 
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that preferentially chooses a high percentage of the referenced papers is a candidate for 

automating and enhancing the conducting of literature reviews. 

4.2 Data Collection 

 To perform the experimentation with multiple existing models, we gathered a 

corpus of 9088 documents from four different but related fields: Artificial Intelligence 

(AI), Neural Networks (NN), Virtual Reality (VR), and Natural Language Processing 

(NLP). The general similarity between the corpus set provides the appropriate 

environment for testing the accuracy of the models based on the number of references 

correctly identified as similar documents. All the documents in our corpus were retrieved 

from arxiv (https://arxiv.org/) by automating its document retrieval API. Using a python 

script, we retrieved documents matching categories outlined in the section above. The 

documents returned by the API were then converted to text documents using the python 

package tika. We limited the documents downloaded to those with thirty (30) or less 

pages. Across the corpus, the average number of pages was above fifteen (15), thus, 

testing all models against a relatively large body of text. 

 

 

 

 

 

 

 

 

https://arxiv.org/


31 
 

Table 8 

Data Set Statistics of Each Document Category 

 

Category Average Page 

Count 

Average Reference 

Count 

Total 

Documents 

Virtual Reality 17 40 1627 

Neural Networks 16 35 4152 

Natural Language 

Processing 

17 30 1388 

Artificial Intelligence 15 25 2133 

 

 

4.3 Test Data 

 To test and measure the performance of existing models, we needed to build a 

dataset of papers and their references. Given a document, the goal of the models will be 

to provide the referenced documents as part of the most similar documents to that 

document. In each of the categories, four (4) documents were randomly selected to be 

used as test documents. Twenty (20) references were randomly selected from each of the 

chosen documents, downloaded, and added to the general corpus.  
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Table 9 

Test Data Document Statistics 

 

Category Average Page 

Count 

Average # 

References 

Total 

Documents 

Virtual Reality 22 89 4 

Neural Networks 14 35 4 

Natural Language 

Processing 

17 30 4 

Artificial Intelligence 15 25 4 

 

 

4.4 Data Pre-Processing 

 Firstly, the documents downloaded from arxiv were limited to documents within 

the range of nine (9) and thirty (30) pages. This provides a sizable corpus from which we can 

get an accurate experiment based on the number of splits each document can be split into. 

All documents collected (in PDF) were converted into text only documents using a 

python package, tika. For the final step, we removed stop-words from the texts. Stop-

words are frequently occurring, inconsequential words in natural languages; in English, 

they are often categorized as prepositions, conjunctions, and adverbs, for example: and 

the, is, of etc. Stop-word removal is an important preprocessing technique used in Natural 

Language processing tasks to improve the performance of the models associated with the 

tasks (Raulji and Saini, 2016). 
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Chapter 5 

Results 

 In this chapter, we will evaluate the performance of the different base models on 

the task of accurately detecting referenced papers as similar documents. The score of 

each model is calculated as a ratio of the number of references in the top fifty (50), and 

hundred (100) similar documents as projected by each model. 

model_score1 = number_of_referenced_papers_in_top_50/50 

model_score2 = number_of_referenced_papers_in_top_100/100 

5.1 Base Model Evaluations 

5.1.1 TF-IDF 

Using scikit-learn, we implemented a TF-IDF model with max_features of 64. 

According to the scikit-learn documentation, the model builds a vocabulary that only 

considers the top max_features ordered by frequency across the corpus. During 

experimentation, we tried multiple values for max_features (32, 128, 200) but maintained 

sixty-four (64) because it provided the best result and performance. Stop-words were 

already removed in our preprocessing step; thus, we did not have to provide the model 

with the stop-words argument.  

Let us consider the performance of TF-IDF on the paper “Uni-Perceiver-MoE: 

Learning Sparse Generalist Models with Conditional MoEs”. This paper has 17 

references as shown in the figure below: 
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Figure 5. Uni-Perceiver-MoE: Learning Sparse Generalist Models with 

Conditional MoEs References 

 

After running the TF-IDF model, the top hundred (100) similar papers to the input 

paper are shown below: 
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Figure 6. Top 100 Similar References for Uni-Perceiver-MoE: Learning Sparse 

Generalist Models with Conditional MoEs Using TF-IDF 
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Consequently, we calculate the performance of the model on the paper by 

comparing the number of references accurately suggested as similar papers. In each of the 

figures below, we show the references in our paper that are part of the top fifty(50), and 

hundred(100) similar documents as predicted by our TF-IDF model. In each figure, we 

show the reference and its similarity score to the input paper. Furthermore, we calculate 

the percentage of references found and display it at the bottom of the list. 

 

 

Figure 7. TF-IDF Performance on Sample Paper I 

 

 

 

Figure 8. TF-IDF Performance on Sample Paper II 

 

As shown above, our TF-IDF model predicted 29.41% of the actual references as 

part of the top fifty (50), and 47.05% when considering the top hundred (100) similar 

documents. Below is a table of the results for the TF-IDF model, for all the test 

documents. 
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Table 10 

TF-IDF Model Performance on Corpus 

Paper Category Score (Top 50) Score (Top 100) 

Functional Code Building Genetic 

Programming 

AI 31.25% 31.35% 

TwiBot-22: Towards Graph-Based 

Twitter Bot Detection 

AI 0% 5.56% 

Jewelry Shop Conversational 

Chatbot 

AI 0% 0% 

Uni-Perceiver-MoE: Learning 

Sparse Generalist 

Models with Conditional MoEs 

AI 29.41% 47.05% 

Visualization in virtual reality: a 

systematic review 

VR 10% 10% 

Joint Compute-Caching-

Communication Control 

for Online Data-Intensive Service 

Delivery 

VR 36.84% 47.37% 
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Paper Category Score (Top 50) Score (Top 100) 

6G Survey on Challenges, 

Requirements, 

Applications, Key Enabling 

Technologies, Use 

Cases, AI integration issues and 

Security aspects 

VR 6.67% 6.67% 

Quantifying the Effects of Working in 

VR for One Week 

VR 44.44% 61.11% 

Neo-GNNs: Neighborhood Overlap-

aware 

Graph Neural Networks for Link 

Prediction 

NN 5% 10% 

Learning Vehicle Trajectory 

Uncertainty 

NN 0% 10% 

Early Transferability of Adversarial 

Examples in 

Deep Neural Networks 

NN 0% 0% 

Face-Dubbing++: Lip-Synchronous, 

Voice Preserving Translation of Videos 

NN 16.67% 22.22% 

NLU for Game-based Learning in Real: 

Initial Evaluations 

NLP 6.25% 18.75% 
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Paper Category Score (Top 50) Score (Top 100) 

Multi-Agent Reinforcement 

Learning is 

A Sequence Modeling Problem 

NLP 23.53% 35.29% 

Differentially Private Model 

Compression 

NLP 6.25% 6.25% 

Quantum Neural Network 

Classifiers: A Tutorial 

NLP 0% 0% 

 

 

 Based on Table 10, the category with the highest average score is VR, with an 

average score of 24.49% for the top 50 papers and 31.29% for the top 100 papers. This is 

higher than the average scores for the other categories, which are AI (15.17% and 

20.99% for the top 50 and top 100, respectively), NLP (9.01% and 15.07% for the top 50 

and top 100, respectively), and NN (5.42% and 10.55% for the top 50 and top 100 papers, 

respectively).  

 

5.1.2 BERT 

 To calculate the cosine similarity of the documents using BERT, we need a pre-

trained model to generate our document embeddings. For this purpose, we used sentence-

transformers, a model that maps sentences and paragraphs to a 768-dimensional dense 

vector space and can be used in natural language processing tasks (Reimers and 
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Gurevych, 2019), and bert-base-nli-mean-tokens. While BERT was considerably faster 

than Doc2Vec, and Word2Vec, it is also less accurate and produces the least performance 

in terms of references detected as similar documents. Given the specificity of our dataset, 

it is possible that the tokens used did not provide enough context or information to the 

model. A possible path of future exploration would be to use a different token set for 

generating the sentence embeddings. Using our sample input paper, none of its references 

are shown as part of the top fifty (50) or hundred (100) similar documents. 

 

Table 11 

BERT Model Performance on Corpus 

Paper Category Score (Top 50) Score (Top 100) 

Functional Code Building Genetic 

Programming 

AI 6.25% 12.5% 

TwiBot-22: Towards Graph-Based 

Twitter Bot Detection 

AI 0% 0% 

Jewelry Shop Conversational Chatbot AI 0% 0% 

Uni-Perceiver-MoE: Learning Sparse 

Generalist 

Models with Conditional MoEs 

AI 0% 0% 

Visualization in virtual reality: a 

systematic review 

VR 5% 5% 

Multi-Agent Reinforcement Learning is 

A Sequence Modeling Problem 

NLP 0% 0% 
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Paper Category Score (Top 50) Score (Top 100) 

Joint Compute-Caching-

Communication Control 

for Online Data-Intensive Service 

Delivery 

VR 0% 0% 

6G Survey on Challenges, 

Requirements, 

Applications, Key Enabling 

Technologies, Use 

Cases, AI integration issues and 

Security aspects 

VR 6.67% 6.67% 

Quantifying the Effects of Working in 

VR for One Week 

VR 5.56% 5.56% 

Neo-GNNs: Neighborhood Overlap-

aware 

Graph Neural Networks for Link 

Prediction 

NN 0% 0% 

Learning Vehicle Trajectory 

Uncertainty 

NN 0% 0% 

Early Transferability of Adversarial 

Examples in 

Deep Neural Networks 

NN 0% 0% 

Face-Dubbing++: Lip-Synchronous, 

Voice Preserving Translation of 

Videos 

NN 5.56% 5.56% 

NLU for Game-based Learning in 

Real: Initial Evaluations 

NLP 0% 0% 

Differentially Private Model 

Compression 

NLP 0% 0% 

Quantum Neural Network Classifiers: 

A Tutorial 

NLP 0% 0% 
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5.1.3 Doc2Vec 

 As stated in the previous section, Doc2Vec tokenizes sentences and documents to 

improve the performance of the model on natural language processing tasks. During 

experimentation, this approach shows obvious differences in the execution time of the 

model. While other models executed successfully within two (2) hours, Doc2Vec takes 

over forty-eight (48) hours to execute and return similar documents. Although the 

significant difference in run time (albeit negative) is a downside to using Doc2Vec, its 

performance regarding the task was the most impressive. We maintain the same vector 

size (100) as with the other models, provide a learning rate of 0.025, and ignore all words 

with a count of 1. As shown below, we see a significant difference and improvement in 

the number of references identified as similar documents to the given documents.  

 Figure 5 shows the references in the paper “Uni-Perceiver-MoE: Learning Sparse 

Generalist Models with Conditional MoEs”.  

 

After running the Doc2Vec model, the top hundred (100) similar papers to the 

input paper are shown below: 
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Figure 9. Top 100 Similar Documents for Uni-Perceiver-MoE: Learning Sparse 

Generalist Models with Conditional MoEs Using Doc2Vec 
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As with the previous sections, we show the references in our paper that are part of 

the top fifty (50), and hundred (100) similar documents as predicted by our Doc2Vec 

model. In each figure, we show the reference and its similarity score to the input paper. 

Finally, we calculate the percentage of references accurately predicted. 

 

 

Figure 10. Doc2Vec Performance on Sample Paper I 

 

 

Figure 11. Doc2Vec Performance on Sample Paper II 

 

As shown above, our Doc2Vec model predicted 52.94% of the references as part 

of the top fifty (50), and 70.59% when considering the top hundred (100) similar 

documents, thus producing the highest accuracy on the sample document. Below is a 

table of the results for the Doc2Vec model, for all the test documents. 
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Table 12 

Doc2Vec Model Performance on Corpus 

Paper Category Score (Top 50) Score (Top 100) 

Functional Code Building Genetic 

Programming 

AI 81.25% 87.5% 

TwiBot-22: Towards Graph-Based 

Twitter Bot Detection 

AI 77.78% 83.33% 

Jewelry Shop Conversational 

Chatbot 

AI 7.69% 7.69% 

Uni-Perceiver-MoE: Learning 

Sparse Generalist 

Models with Conditional MoEs 

AI 52.94% 70.59% 

Visualization in virtual reality: a 

systematic review 

VR 35% 45% 

Joint Compute-Caching-

Communication Control 

for Online Data-Intensive Service 

Delivery 

VR 68.42% 89.47% 
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Paper Category Score (Top 50) Score (Top 100) 

6G Survey on Challenges, 

Requirements, 

Applications, Key Enabling 

Technologies, Use 

Cases, AI integration issues and 

Security aspects 

VR 66.67% 73.33% 

Quantifying the Effects of Working in 

VR for One Week 

VR 61.11% 72.22% 

Neo-GNNs: Neighborhood Overlap-

aware 

Graph Neural Networks for Link 

Prediction 

NN 35% 55% 

Learning Vehicle Trajectory 

Uncertainty 

NN 70% 75% 

Early Transferability of Adversarial 

Examples in 

Deep Neural Networks 

NN 47.06% 52.94% 

Face-Dubbing++: Lip-Synchronous, 

Voice Preserving Translation of 

Videos 

NN 83.33% 88.89% 

NLU for Game-based Learning in 

Real: Initial Evaluations 

NLP 43.75% 62.5% 
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Paper Category Score (Top 50) Score (Top 100) 

Multi-Agent Reinforcement 

Learning is 

A Sequence Modeling Problem 

NLP 64.71% 64.71% 

Differentially Private Model 

Compression 

NLP 37.5% 50% 

Quantum Neural Network 

Classifiers: A Tutorial 

NLP 44.44% 44.44% 

 

 

Based on Table 12, we can infer that like TF-IDF, the category with the highest average 

score is VR, with an average score of 60.86% for the top 50 papers and 70.01% for the top 

100 papers. This is higher than the average scores for the other categories, which are NN 

(58.85% and 67.96% for the top 50 and top 100, respectively), AI (54.92% and 62.28% for 

the top 50 and top 100, respectively), and NLP (47.6% and 55.41% for the top 50 and top 

100 papers, respectively).  

5.1.4 Word2Vec 

 To implement word2vec, we needed pre-trained word embeddings. Each word in 

the embedding (Google-news-300) we used is represented as a three hundred (300) 

dimensional vector. Finally, all documents were tokenized using the Tokenizer from 

keras (keras.preprocessing.text), and padded using pad_sequencesfrom keras 

(keras_preprocessing.sequence). By padding all documents, we ensured that all the 

documents are of the same size. As with the previous models, we explore the 
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performance of word2vec in respect to the top documents that were returned as 

similar documents. 

 Figure 5 shows the references in the paper “Uni-Perceiver-MoE: Learning Sparse 

Generalist Models with Conditional MoEs”. After running the Word2Vec model, the top 

hundred (100) similar papers to the input paper are shown below:  
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Figure 12. Top 100 Similar Documents for Uni-Perceiver-MoE: Learning Sparse 

Generalist Models with Conditional MoEs Using Word2Vec 
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As with the previous sections, we show the references in our paper that are part of 

the top fifty (50), and hundred (100) similar documents as predicted by our Word2Vec 

model. In each figure, we show the reference and its similarity score to the input paper. 

Finally, we calculate the percentage of references accurately predicted. 

 

 

Figure 13. Word2Vec Performance on Sample I 

 

 

Figure 14: Word2Vec Performance on Sample Document II 

 

As shown above, our Word2Vec model predicted 23.53% of the references as part 

of the top fifty (50), and 29.41% when considering the top hundred (100) similar 

documents, thus producing the highest accuracy on the sample document. Below is a 

table of the results for the Word2Vec model, for all the test documents. 
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Table 13 

Word2Vec Model Performance on Corpus 

Paper Category Score (Top 50) Score (Top 100) 

Functional Code Building Genetic 

Programming 

AI 25% 31.25% 

TwiBot-22: Towards Graph-Based 

Twitter Bot Detection 

AI 0% 11.11% 

Jewelry Shop Conversational 

Chatbot 

AI 0% 0% 

Uni-Perceiver-MoE: Learning 

Sparse Generalist 

Models with Conditional MoEs 

AI 23.53% 29.41% 

Visualization in virtual reality: a 

systematic review 

VR 5% 5% 

Joint Compute-Caching-

Communication Control 

for Online Data-Intensive Service 

Delivery 

VR 47.37% 52.63% 
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Paper Category Score (Top 50) Score (Top 100) 

6G Survey on Challenges, 

Requirements, 

Applications, Key Enabling 

Technologies, Use 

Cases, AI integration issues and 

Security aspects 

VR 6.67% 13.33% 

Quantifying the Effects of Working in 

VR for One Week 

VR 22.22% 27.78% 

Neo-GNNs: Neighborhood Overlap-

aware 

Graph Neural Networks for Link 

Prediction 

NN 5% 5% 

Learning Vehicle Trajectory 

Uncertainty 

NN 5% 10% 

Early Transferability of Adversarial 

Examples in 

Deep Neural Networks 

NN 0% 0% 

Face-Dubbing++: Lip-Synchronous, 

Voice Preserving Translation of Videos 

NN 22.22% 22.22% 

NLU for Game-based Learning in 

Real: Initial Evaluations 

NLP 6.25% 6.25% 
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Paper Category Score (Top 50) Score (Top 100) 

Multi-Agent Reinforcement Learning 

is 

A Sequence Modeling Problem 

NLP 17.65% 17.65% 

Differentially Private Model 

Compression 

NLP 6.25% 6.25% 

Quantum Neural Network Classifiers: 

A Tutorial 

NLP 0% 0% 

 

 

Based on Table 13, we can infer that like TF-IDF and Doc2Vec, the category with 

the highest average score is VR, with an average score of 20.32% for the top 50 papers 

and 24.69% for the top 100 papers. This is higher than the average scores for the other 

categories, which are AI (12.13% and 17.94% for the top 50 and top 100, respectively), 

NN (8.01% and 9.25% for the top 50 and top 100, respectively), and NLP (7.5% and 

7.5% for the top 50 and top 100 papers, respectively).  

5.1.5 GloVe 

 We implemented the GloVe model using the word embeddings provided by 

GloVe and Tokenizer from keras. While TF-IDF does not keep the original sequence of 

words, we ensured to maintain the sequence of words from the documents to ensure 

optimal performance by the model. The embeddings were represented as a one hundred 

(100) dimension vector.  
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 Figure 5 shows the references in the paper “Uni-Perceiver-MoE: Learning Sparse 

Generalist Models with Conditional MoEs”. After running the GloVe model, the top 

hundred (100) similar papers to the input paper are shown below: 
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Figure 15. Top 100 Similar Documents for Uni-Perceiver-MoE: Learning Sparse 

Generalist Models with Conditional MoEs Using GloVe 

 

 

As with the previous sections, we show the references in our paper that are part of 

the top fifty (50), and hundred (100) similar documents as predicted by our GloVe model. 
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In each figure, we show the reference and its similarity score to the input paper. Finally, 

we calculate the percentage of references accurately predicted. 

 

 

Figure 16. GloVe Performance on Sample Document I 

 

 

 

Figure 17. GloVe Performance on Sample Document II 

 

As shown above, our GloVe model predicted 17.65% of the references as part of 

the top fifty (50), and 23.53% when considering the top hundred (100) similar 

documents. Below is a table of the results for the GloVe model, for all the test 

documents. 
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Table 14 

GloVe Model Performance on Corpus 

Paper Category Score (Top 50) Score (Top 100) 

Functional Code Building Genetic 

Programming 

AI 12.5% 31.25% 

TwiBot-22: Towards Graph-Based 

Twitter Bot Detection 

AI 0% 5.56% 

Jewelry Shop Conversational 

Chatbot 

AI 0% 0% 

Uni-Perceiver-MoE: Learning 

Sparse Generalist 

Models with Conditional MoEs 

AI 17.65% 23.53% 

Visualization in virtual reality: a 

systematic review 

VR 5% 5% 

Joint Compute-Caching-

Communication Control 

for Online Data-Intensive Service 

Delivery 

VR 36.84% 52.63% 
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Paper Category Score (Top 50) Score (Top 100) 

6G Survey on Challenges, 

Requirements, 

Applications, Key Enabling 

Technologies, Use 

Cases, AI integration issues and 

Security aspects 

VR 6.67% 6.67% 

Quantifying the Effects of Working in 

VR for One Week 

VR 16.67% 44.44% 

Neo-GNNs: Neighborhood Overlap-

aware 

Graph Neural Networks for Link 

Prediction 

NN 5% 5% 

Learning Vehicle Trajectory 

Uncertainty 

NN 5% 10% 

Early Transferability of Adversarial 

Examples in 

Deep Neural Networks 

NN 0% 0% 

Face-Dubbing++: Lip-Synchronous, 

Voice Preserving Translation of 

Videos 

NN 16.67% 16.67% 

NLU for Game-based Learning in 

Real: Initial Evaluations 

NLP 18.75% 18.75% 
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Paper Category Score (Top 50) Score (Top 100) 

Multi-Agent Reinforcement 

Learning is 

A Sequence Modeling Problem 

NLP 11.76% 29.41% 

Differentially Private Model 

Compression 

NLP 6.25% 12.5% 

Quantum Neural Network 

Classifiers: A Tutorial 

NLP 0% 5.56% 

 

 

 Based on Table 14, the category with the highest average score is VR, with an 

average score of 16.30% for the top 50 papers and 27.19% for the top 100 papers. This is 

higher than the average scores for the oth.er categories, which are NLP (9.19% and 

16.55% for the top 50 and top 100, respectively), AI (7.53% and 15.09% for the top 50 

and top 100, respectively), and NN (6.67% and 7.91% for the top 50 and top 100 papers, 

respectively).  

 

5.2 Enhanced Model Evaluations 

 Here, we implement a new algorithm for calculating the similarity of the 

documents by splitting the documents into smaller chunks, comparing the smaller 

chunks, and assigning the maximum similarity between the chunks as the similarity 

between the two documents. This implements the formula:  
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sim(doc1, doc2) =max(sim(doc1_1,doc2_1), sim(doc1_1,doc2_2),...,(sim(doc1_n, 

doc2_n)) 

where doc1_1 and doc2_1 are chunks of document 1 and document 2. As shown in the 

example below, we see an improvement in the performance of the models when 

subsections of the documents are used to determine the similarity score. 

 

Taking one of our input documents as (Functional Code Building Genetic Programing) 

as X, and one if its referenced papers (Lexicase Selection of Specialists) as Y, we compare 

the similarity score between both papers using TF-IDF when comparing the whole 

document, and TF-IDF when we compare subsections of the papers. In the first attempt, 

the TF-IDF model was executed with stopwords removal. The resulting similarity score 

was 0.7872. In order of ranking, it was the fifth most similar paper in the available 

references for the input paper X. Finally, we compared both papers using their subsections. 

Each paper was divided into 15 subsections. Other sizes attempted were ten(10), 

twenty(20), and twenty-five (25). We found the similarity score between the two papers, 

X and Y, to have increased from 0.7872 to 0.9681. We then proceeded to inspect the areas 

of both documents that were marked as most similar. First, section 14 on both documents 

were the most similar. Giving us 0.9681. Inspecting the cleaned version of the papers gives 

the section(s) as follows:  

From Y:  

“e thomas helmuth lee spector comparison lin ear genome representations 
software synthesis genetic programming theory practice xvii wolfgang 

banzhaf erik goodman leigh sheneman leonardo trujillo bill worzel eds 

springer east lansing mi usa https doi org doi edward pantridge lee 

spector code building genetic programming proceedings  genetic 

evolutionary computation conference  riccardo poli william b langdon 

nicholas freitag mcphee field guide genetic programming published via 

http lulu com freely avail able http www gp field guide org uk with 



61 
 

contributions j r koza fran ois pottier type inference presence subtyping 

theory practice research report rr inria https hal inria fr inria john 

alan robinson machine oriented logic based resolution principle journal 

acm jacm geoffrey seward smith polymorphic type inference languages 

overloading subtyping ph d dissertation usa umi order no gax dominik 

sobania generalizability programs synthesized grammar guided genetic 

programming eurogp proceedings th european conference genetic programming 

lncs vol ting hu nuno lourenco eric medvet eds springer verlag virtual 

event  https doi org doi dominik sobania dirk schweim franz rothlauf 

recent develop ments program synthesis evolutionary algorithms arxiv 

preprint arxiv  lee spector jon klein andmaartenkeijzer push execution 

stack evolution control  https doi org  https doi org inco  http www jstor 

org stable https doi org  https doi org https doi org  https doi org  https 

doi org  https doi org  https doi org isal a https doi org  https doi org 

doi tevc  https doi org  https doi org  https doi org https doi org doi 

https hal inria fr inria https doi org doi https doi org  abstract 

introduction code building genetic programming tools type 

theory  types  unification functional code building 

gp  genomes  compilation ast  evolution  simplification experimental 

design  comparison methods results  example solution programs discussion 

future work conclusion acknowledgments re” 

and from paper X:  

“lee spector jon klein maarten keijzer push execution stack evolution 

control gecco proceedings  conference genetic evolutionary computation 

vol  acm press washington dc usa  https doi org lee spector william la 

cava saul shanabrook thomas helmuth edward pantridge relaxations lexicase 

parent selection ingenetic programming theory practice xv wolfgang 

banzhaf randal s olson william tozier rick riolo eds springer 

international publishing cham lee spector alan robinson genetic 

programming autocon structive evolution push programming language genetic 

program ming evolvable machines march  https doi org a https doi 

org  https doi org  https doi org https doi org  https doi org  https doi 

org  https doi org  https doi org  https doi org  https doi org tevc  https 

web cs umass edu publication docs  um cs phd pdf https web cs umass edu 

publication docs  um cs phd pdf https doi org  https doi org  http www 

springer com us book https doi org  https doi org https doi org ecal a 

https doi org ecal a https doi org  https doi org  https doi org  http 

arxiv org abs  http arxiv org abs  http arxiv org abs  https doi org  https 

doi org  https doi org  https doi org a https doi org a erratum notice 

publication came attention errors data presented figure errors corrected 

figure pdf corrections influence discussion presented text therefore text 

changed originally published incorrect version figure found below string 

lengths backwards syllables vector average x word lines last index of 

zero mirror image negative to zero replace space with newline  percent 

training cases used selection e n si ty abstract introduction background 

lexicase selection specialists genetic programming experimental 

design  benchmark problems  push pushgp specialists tournament selection 

specialists lexicase selection importance selecting specialists 

conclusions acknowledgments refe”.  
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The sections from the cleaned version as shown above do not give convincing context into 

why they were the most similar sections. A look into the sections of the documents in their 

original state (uncleaned) revealed that this was the citation section on both papers. 

Another example of a similar performance is when we consider the paper(X): 

Quantum Neural Network Classifiers: A Tutorial in natural language processing. This 

paper, when compared to others using TF-IDF has a 0% similarity match with any of the 

papers referenced in the corpus. However, when compared using subsections of the 

document, we find a 0.9339 match with paper Y (A rigorous and robust quantum speed-

up in supervised machine learning). From the unclean version of the documents, the 

matching subsections were section 13 from X, and section 2 from Y. The text for each of 

the subsections are shown below.  

From paper X: 

“6] X.-Z. Luo, J.-G. Liu, P. Zhang and L. Wang, Yao.jl: Extensible, 

Efficient Framework for Quantum 
Algorithm Design, Quantum 4, 341 (2020), doi:10.22331/q-2020-10-11-341. 
[57] J. Bezanson, A. Edelman, S. Karpinski and V. B. Shah, Julia: A Fresh 

Approach to Numerical 
Computing, SIAM Rev. 59(1), 65 (2017), doi:10.1137/141000671. 

 
[58] M. Broughton, G. Verdon, T. McCourt, A. J. Martinez, J. H. Yoo, S. 

V. Isakov, P. Massey, 
M. Y. Niu, R. Halavati, E. Peters, M. Leib, A. Skolik et al., TensorFlow 

Quantum: A Software 
Framework for Quantum Machine Learning, URL 

https://arxiv.org/abs/2003.02989 (2020). 
22 
https://doi.org/10.22331/q-2021-09-09-539 
https://arxiv.org/abs/2103.16774 
https://doi.org/10.1103/PhysRevA.103.032430 
https://arxiv.org/abs/2106.03880 
https://doi.org/10.1103/PhysRevResearch.3.L032049 
https://doi.org/10.22331/q-2021-03-29-422 
https://doi.org/10.1103/PRXQuantum.2.040321 
https://doi.org/10.1103/PhysRevLett.128.080506 
https://arxiv.org/abs/2007.12369 
https://doi.org/10.1103/PRXQuantum.2.040309 
https://doi.org/10.22331/q-2018-08-06-79 
https://doi.org/10.1103/RevModPhys.94.015004 
https://doi.org/10.22331/q-2020-10-11-341 
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And from paper Y:  

“performance of SVM-QKE remains robust with additive noise in the kernel. 

In the following we prove noise robustness by introducing two additional 

results. First, we show that the dual SVM program (Eq. (5)) is robust, 

i.e., when the kernel used in (5) has a small additive perturbation, then 

the solution returned by the program also has a small perturbation. This 

follows from strong convexity of (5) and standard perturbation analysis 

of positive definite quadratic programs [46]. This result implies that 

the hyperplane w′ obtained by the noisy kernel is close to the noiseless 

solution w with high probability. Second, we show that when w′ is close 

to w, the linear classifier obtained by w′ has high accuracy. This 

seemingly simple statement is not trivial, as the sign function is 

sensitive 
to noise. That is, if 〈φ(x), w〉 is very close to 0, then a small 
perturbation in w could change its sign. We provide a solution to this 

problem by proving a stronger generalization bound. We show 
7 that if a hyperplane w has a large margin on the training set, then not 

only does 〈φ(x), w〉 have the correct sign, it is also bounded away from 

0 with high probability. Therefore, when the noisy solution w′ is close 

to w, 〈φ(x), w′〉 also has the correct sign with high probability. 

Combining these two results with the proof sketch, we have the full proof 

of Theorem 2. 
Conclusions and outlook We show that learning with quantum feature maps 

provides a way to harness the computational 

https://doi/
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power of quantum mechanics in machine learning problems. This idea leads 

to a simple quantum 
machine learning algorithm that makes no additional assumptions on data 

access and has rigorous 
and robust performance guarantees. While the learning problem we have 

presented here that 
demonstrates an exponential quantum speed-up is not practically 

motivated, our result sets a 
positive theoretical foundation for the search of practical quantum 

advantage in machine learning. 
An important future direction is to construct quantum feature maps that 

can be applied to practical 
machine learning problems that are classically challenging. The results 

we have established here 
can be useful for the theoretical analysis of such proposals. 

 
An important advantage of the SVM-QKE algorithm, which only uses quantum 

computers to 
estimate kernel entries, is that error-mitigation techniques can be 

applied [47–49] when the feature 
map circuit is sufficiently shallow. Our robustness analysis gives hope 

that an error-mitigated 
quantum feature map can still maintain its computational power. Finding 

quantum feature maps 
that are sufficiently powerful and shallow is therefore the stepping stone 

towards obtaining a 
quantum advantage in machine learning on near-term devices. 
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Based on the similarities of the documents above and their similar sections, we propose that the 

words “http, https, arxiv, org, abs, and doi” should be added to the stop words list in any future 

experiments. While these words are repeated across the corpus, they do not add any extra context 

to the papers and as such should be applied accordingly. Given the time constraint in completing 

these experiments, updating the stop words list and re-running the experiments would require extra 

weeks of experimentation. Below we take a deeper look at the performance of the different models 

when we compare the papers in subsections. 

5.2.1 TF-IDF 

 Figure 5 shows the references in the paper “Uni-Perceiver-MoE: Learning Sparse 

Generalist Models with Conditional MoEs”. After running the TF-IDF model, the top 

hundred (100) similar papers to the input paper are shown below: 
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Figure 18. Top 100 Similar Documents for Uni-Perceiver-MoE: Learning Sparse 

Generalist Models with Conditional MoEs Using TF-IDF II 
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 As with the previous sections, we show the references in our paper that are part of 

the top fifty (50), and hundred (100) similar documents as predicted by our TF-IDF model. 

In each figure, we show the reference and its similarity score to the input paper. Finally, 

we calculate the percentage of references accurately predicted. 

 

Figure 19. TF-IDF II Performance on Sample Paper I 

 

 

Figure 20. TF-IDF II Performance on Sample Paper II 

 

As shown above, our TF-IDF model predicted 17.65% of the references as part of 

the top fifty (50), and 29.41% when considering the top hundred(100) similar documents. 

Shown below is a table of all the documents and their related scores. 
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Table 15 

TF-IDF II Model Performance on Corpus 

Paper Category Score (Top 50) Score (Top 100) 

Functional Code Building Genetic 

Programming 

AI 12.5% 12.5% 

TwiBot-22: Towards Graph-Based 

Twitter Bot Detection 

AI 0% 11.11% 

Jewelry Shop Conversational Chatbot AI 0% 0% 

Uni-Perceiver-MoE: Learning Sparse 

Generalist 

Models with Conditional MoEs 

AI 17.65% 29.41% 

Visualization in virtual reality: a 

systematic review 

VR 15% 45% 

Joint Compute-Caching-

Communication Control 

for Online Data-Intensive Service 

Delivery 

VR 31.58% 47.37% 

6G Survey on Challenges, 

Requirements, 

Applications, Key Enabling 

Technologies, Use 

Cases, AI integration issues and 

Security aspects 

VR 6.67% 6.67% 
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Paper Category Score (Top 50) Score (Top 100) 

Quantifying the Effects of Working in 

VR for One Week 

VR 22.22% 33.33% 

Neo-GNNs: Neighborhood Overlap-

aware 

Graph Neural Networks for Link 

Prediction 

NN 10% 10% 

Learning Vehicle Trajectory 

Uncertainty 

NN 20% 20% 

Early Transferability of Adversarial 

Examples in 

Deep Neural Networks 

NN 29.41% 35.29% 

Face-Dubbing++: Lip-Synchronous, 

Voice Preserving Translation of Videos 

NN 27.78% 33.33% 

NLU for Game-based Learning in 

Real: Initial Evaluations 

NLP 6.25% 6.25% 

Multi-Agent Reinforcement Learning is 

A Sequence Modeling Problem 

NLP 35.29% 47.05% 

Differentially Private Model 

Compression 

NLP 0% 0% 

Quantum Neural Network Classifiers: 

A Tutorial 

NLP 5.56% 5.56% 



73 
 

Based on Table 15, the category with the highest average score is VR, with an 

average score of 18.89% for the top 50 papers and 33.10% for the top 100 papers. This is 

higher than the average scores for the other categories, which are NN (21.80% and 24.66% 

for the top 50 and top 100, respectively), NLP (11.78% and 14.71% for the top 50 and top 

100, respectively), and AI (7.53% and 13.25% for the top 50 and top 100 papers, 

respectively).  

 

5.2.2 BERT 

 Partial comparison using BERT was not possible due to resource constraints. The 

partial comparison model was only able to process the first five (5) documents against the 

corpus (9, 088 documents) in twenty-four (24) hours. While Google Colab was faster, the 

projected cost of running the model would’ve exceeded seven thousand US dollars 

($7000).  

5.2.3 Doc2Vec 

 Like the partial comparison for BERT, the doc2vec partial comparison model 

wasn’t successful due to its processing speed. During experimentation, we were able to 

compare a hundred and fifteen (115) documents against the corpus in twenty-one days. 

Thus, we estimated that it would take approximately fifty (50) months to complete the 

experiment at its current pace. Like BERT, our Google Colab estimate for completing the 

comparison is approximately eight thousand US dollars ($8000). 
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5.2.4 Word2Vec 

Shown below is a table of all test documents and their related scores when 

partially compared using Word2Vec. 

 

Table 16 

Word2Vec-II Model Performance on Corpus 

Paper Category Score (Top 50) Score (Top 100) 

Functional Code Building Genetic 

Programming 

AI 25% 25% 

TwiBot-22: Towards Graph-Based 

Twitter Bot Detection 

AI 0% 0% 

Jewelry Shop Conversational Chatbot AI 0% 0% 

Uni-Perceiver-MoE: Learning Sparse 

Generalist 

Models with Conditional MoEs 

AI 5.88% 23.5% 

Visualization in virtual reality: a 

systematic review 

VR 50% 75% 

Joint Compute-Caching-

Communication Control 

for Online Data-Intensive Service 

Delivery 

VR 57.89% 63.16% 
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Paper Category Score (Top 50) Score (Top 100) 

6G Survey on Challenges, 

Requirements, 

Applications, Key Enabling 

Technologies, Use 

Cases, AI integration issues and 

Security aspects 

VR 33.33% 40% 

Quantifying the Effects of Working in 

VR for One Week 

VR 27.78% 44.44% 

Neo-GNNs: Neighborhood Overlap-

aware 

Graph Neural Networks for Link 

Prediction 

NN 10% 15% 

Learning Vehicle Trajectory 

Uncertainty 

NN 20% 20% 

Early Transferability of Adversarial 

Examples in 

Deep Neural Networks 

NN 41.17% 47.08% 

Face-Dubbing++: Lip-Synchronous, 

Voice Preserving Translation of 

Videos 

NN 33.33% 38.89% 

NLU for Game-based Learning in 

Real: Initial Evaluations 

NLP 6.25% 12.50% 
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Paper Category Score (Top 50) Score (Top 100) 

Multi-Agent Reinforcement Learning 

is 

A Sequence Modeling Problem 

NLP 47.06% 52.94% 

Differentially Private Model 

Compression 

NLP 0% 0% 

Quantum Neural Network Classifiers: 

A Tutorial 

NLP 0% 0% 

 

 

Based on Table 16, the category with the highest average score is VR, with an 

average score of 42.5% for the top 50 papers and 55.54% for the top 100 papers. This is 

higher than the average scores for the other categories, which are NN (26.125% and 

30.24% for the top 50 and top 100, respectively), NLP (13.27% and 16.36% for the top 50 

and top 100, respectively), and AI (7.72% and 12.125% for the top 50 and top 100 papers, 

respectively). 

5.2.5 GloVe 

Like Doc2Vec, and BERT, partial comparison for GloVe was also not successful 

due to limited resource and time constraints. Similarly, using Google Colab promised to 

complete the experiments, however. The cost of completing the experiment using Colab 

was estimated to be eight thousand US dollars ($8000). 
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Chapter 6 

Analysis And Discussion 

 In this chapter, we will begin by analyzing the results of our experiment(s), and 

consequently our contribution to the current IR landscape. 

6.1 Performance Analysis 

 Firstly, we will discuss the results of TF-IDF. Below is a table of the average 

performance of the two approaches on our test documents.  

 

Table 17 

TF-IDF and TF-IDF II Comparison 

Category TF-IDF (50) TF-IDF II (50) TF-IDF (100) TF-IDF II (100) 

VR 24.49% 18.89% 31.29% 33.10% 

AI 15.17% 7.53% 20.99% 13.25% 

NLP 9.01% 11.78% 15.07% 14.71% 

NN 

 

5.42% 21.80% 10.55% 24.66% 

 

 

 Although not significant, there is a slight increase in the average performance of 

TF-IDF II (when we compare documents in part). The most noticeable difference is in the 

performance of TF-IDF II on Neural Networks, a 300% increase for the top fifty (50) 

papers (from 5.42% to 21.80%) and over 130% performance improvement for the top 

hundred (100) papers (from 10.55% to 24.66%). Another point of interest is the negative 

performance of TF-IDF II on the Artificial Intelligence category. As shown by Table 10, 
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there’s a slight decrease in the number of references returned as part of similar documents 

across both experiment sizes. A 50.38% decrease when comparing the top fifty papers, 

and a 36.88% decrease when comparing the average of the top hundred papers. Based on 

their average performance, we can conclude that when comparing entire documents, TF-

IDF performed better on the VR category. However, when comparing the documents in 

chunks, TF-IDF performed better on the NN category.  

 Next, we look at the performance of word2vec when the papers are compared in 

parts.  

 

Table 18 

Word2Vec and Word2Vec II Comparison 

Category W2Vec (50) W2Vec II (50) W2Vec (100) W2Vec II (100) 

AI 12.13% 7.72% 17.94% 12.125% 

VR 20.32% 42.5% 24.69% 55.54% 

NN 8.05% 26.125% 9.31% 30.24% 

NLP 

 

7.54% 13.27% 7.54% 16.36% 

 

 

 Based on Table 18, we can see that comparing the documents in chunks provides 

a higher performance by average across three (3) of the four (4) categories. The most 

visible difference is in VR and NN, with the performance improvement on NN going as 

high as 200% when considering the top hundred (100) documents. Like TF-IDF II, there 

is a slight decrease in the performance of Word2Vec II on Artificial Intelligence. We 
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notice a 44.4% decrease in the top fifty (50) similar documents and a 32.39% decrease in 

the top one hundred (100) similar documents. 

 The consistency in negative performance of the models in Artificial Intelligence 

can be attributed to the overlapping content of the documents as most of the documents in 

the corpus are related to Artificial Intelligence. Due to the high accuracy in the relevant 

documents recommended by partial comparison, other documents in the corpus that are 

not selected as part of the references for the test documents are returned as the most 

similar documents. 

6.2 Vector and Matrix Size Variations 

The performance of each model varies depending on the vector size 

(max_features for TF-IDF) used to run the model. For models such as Doc2Vec and 

Word2Vec, the processing time varies directly proportional to the vector size i.e higher 

values of vector size would significantly increase the processing time of the models. In 

our initial experiment, TF-IDF was executed with a max_features of sixty-four (64). We 

further experimented with other values: one thousand (1,000), two thousand (2,000), five 

thousand (5000), ten thousand (10,000), and fifteen thousand (15,000). At 18,0000, the 

system goes out of memory due to the large matrix size. As shown in the attached charts, 

we can see that the performance grows as we go towards 10000 but flattens afterwards. 

At its peak, its performance is comparable to the recorded values for Doc2Vec (vector 

size 100). Below is a chart showing the performance of TF-IDF against their 

max_features on AI.  
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Figure 21. Performance of TF-IDF on AI Against Varying max_features I 

Figure 22. Performance of TF-IDF on AI Against Varying max_features II 
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Below are the vector sizes of the other models used in the experiment: 

1. Doc2Vec: The vector_size for Doc2Vec determines the dimensionality of both 

word vectors(embeddings) and document vectors. For the initial experiment, we 

set this value to 100. A higher value can increase the performance but also 

significantly increase the computational requirements. 

2. Word2Vec: The vector_size for Word2Vec determines the dimensionality of 

each word vector. This value was 64 for the initial experiment. 

3. GloVe: The vector size was 100. 

4. BERT: The default size for BERT (128) was used. The transformer model used 

was `sentence-transformers/all-mpnet-base-v2`. 

 Based on the performance of TF-IDF with max_features >= 10,0000 being nearly 

as good as Doc2Vec (with 100 as the vector size) and Word2Vec (with 64 as vector size), 

we can imply that fine tuning Doc2Vec and Word2Vec with higher vector sizes will lead 

to an improved performance of those models, however, we lack the resources to do that 

currently. While we were able to run multiple experiments with TF-IDF using different 

values of max_features, we were unable to replicate the same feat with the other models 

due to their runtime. We intended to test several values, including thirty-two (32), sixty-

four (64), one hundred and twenty-eight (128), and two hundred and fifty-six(256). 

However, due to the limitations of our current resources, conducting such experiments 

would exceed the time available for the current thesis. 
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6.3. The Contribution of This Work and How it Fits into The Current Information 

Retrieval Landscape 

 The Systematic Literature Review (SLR) (Feng et al. 2018), as discussed in 

Chapter 3, is a manual and labor-intensive process of compiling papers that are related to 

a specific topic. Our work improves this by attempting to automatically detect similar 

papers that should be referenced by an author when conducting literature reviews. Using 

the different machine learning models, we attempted to match a given paper with other 

similar papers in our corpus. By comparing the documents in whole, and in parts, we can 

conclude that comparing the documents in parts (subsections) more accurately identifies 

the similar (referenced) documents to a given paper. While Erekhinskaya et al. 2016 

summarized the documents to automate literature reviews, our approach takes a step 

further by accurately selecting referenced papers in a medium sized corpus. We also 

show that the result of comparing two documents in whole and in parts can provide 

varying results in terms of similarity but more importantly, we enable researchers to 

search for similar documents without a structured Boolean query.  
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Chapter 7  

Conclusion and Future Work 

While comparing documents in parts proved to provide more accurate results, it is 

worthy to note that it is relatively slower than comparing the documents as single entities. 

Running on a 2.60Ghz CPU with four (4) cores, each of the original models generated a 

similarity matrix for the corpus within seventy-two (72) hours, asides from Doc2Vec 

which took another twenty-four (24) hours to complete. The processing time for 

comparing the documents in part was exponentially greater than comparing the 

documents as single entities. TF-IDF(II), when we compared the documents in part using 

TF-IDF, created the pairwise similarity matrix in approximately two weeks (2) on the 

same computer, while Word2Vec (II) did the same in three (3). Although these are long 

waiting times for the algorithms to execute, we show that the execution time can be 

reduced by using higher GPUs as provided by Google Colab.  

Based on our experiments, Doc2Vec proved to be the most promising model for 

document similarity as it has the highest similarity score on the corpus. However, we also 

learned that it is the slowest model. Below are some of the other derived conclusions 

from the experiment: 

• In a distinctive corpus, partial comparison is more accurate in selecting 

relevant similar documents. 

• Partial comparison, while more accurate, is more intensive and requires 

higher processing power. 

• Word2Vec and Doc2Vec are the most accurate models for recommending 

similar documents.  
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• TF-IDF is the least accurate when used in partial comparison but it is also 

the fastest. 

• The most relevant part used by partial comparison to determine similar 

documents is their references. 

• Similar documents can be suggested for an input document (text) without 

a query. 

• Doc2Vec, GloVe, and BERT cannot be partially compared without 

significant computing resources beyond what’s available in the current 

research environment. 

 For future work, the algorithm for comparing the documents in part can be 

improved to ensure that it is more efficient and performant on a larger corpus. The 

current implementation uses memoization and dynamic programming to avoid 

recalculating the similarity between two document pairs (i,j and j,i), however, we believe 

that the algorithm can be optimized for parallel execution or multi-threading. Another 

possible avenue for improvement is the application of large language models (LLM) to 

the tasks. 
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Appendix A 

Arxiv File Download Code 

Submitted with this thesis is a copy of the python used in downloading the 

documents from arxiv and converting the documents to PDF. 
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Appendix B 

Document Similarity Code 

Submitted with this thesis is a copy of the python used in the model experiments. 
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Appendix C 

Model Reports Code 

 Submitted with this thesis is a copy of the python code used in calculating the 

similarity of documents using the data/result from Appendix B.  
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