
Rowan University Rowan University

Rowan Digital Works Rowan Digital Works

Theses and Dissertations

11-23-2023

Enhancing Inter-Document Similarity Using Sub Max Enhancing Inter-Document Similarity Using Sub Max

Richard Imorobebh Igbiriki
Rowan University

Follow this and additional works at: https://rdw.rowan.edu/etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Igbiriki, Richard Imorobebh, "Enhancing Inter-Document Similarity Using Sub Max" (2023). Theses and
Dissertations. 3170.
https://rdw.rowan.edu/etd/3170

This Thesis is brought to you for free and open access by Rowan Digital Works. It has been accepted for inclusion
in Theses and Dissertations by an authorized administrator of Rowan Digital Works. For more information, please
contact graduateresearch@rowan.edu.

https://rdw.rowan.edu/
https://rdw.rowan.edu/etd
https://rdw.rowan.edu/etd?utm_source=rdw.rowan.edu%2Fetd%2F3170&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=rdw.rowan.edu%2Fetd%2F3170&utm_medium=PDF&utm_campaign=PDFCoverPages
https://rdw.rowan.edu/etd/3170?utm_source=rdw.rowan.edu%2Fetd%2F3170&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:graduateresearch@rowan.edu

ENHANCING INTER-DOCUMENT SIMILARITY USING SUB MAX

by

Richard Igbiriki

A Thesis

Submitted to the

Department of Computer Science

College of Science and Mathematics

In partial fulfillment of the requirement

For the degree of

Master of Science in Computer Science

at

Rowan University

July 10, 2023

Thesis Chair: Anthony Breitzman, Ph.D., Professor, Department of Computer Science

Committee Members:

Shen-Shyang Ho, Ph.D., Associate Professor, Department of Computer Science

Bo Sun, Ph.D., Associate Professor, Department of Computer Science

© 2023 Richard Imorobebh Igbiriki

Dedications

 It is said “education is the key to success” but not everyone can readily access it.

Thus, I would like to dedicate this to everyone who desired a graduate degree but could

not afford it.

iv

Acknowledgments

I would like to show my appreciation to Dr. Anthony Breitzman, who believed in

me, pushed me to work harder, and provided me with all the help I needed to succeed.

I would also like to thank my family and friends for supporting and believing in

me every step of the way.

v

Abstract

Richard Igbiriki
ENHANCING INTER-DOCUMENT SIMILARITY USING SUB MAX

2023-2024

Anthony Breitzman, Ph.D.

Master of Science in Computer Science

 Document similarity, a core theme in Information Retrieval (IR), is a machine

learning (ML) task associated with natural language processing (NLP). It is a measure of

the distance between two documents given a set of rules. For this thesis, two documents

are similar if they are semantically alike, and describe similar concepts. While document

similarity can be applied to multiple tasks, we focus our work on the accuracy of models

in detecting referenced papers as similar documents using their sub max similarity.

Multiple approaches have been used to determine the similarity of documents regarding

literature reviews. Some of such approaches use the number of similar citations, the

similarity between the body of text, and the figures present in those documents. This

researcher hypothesized that documents with sections of high similarity (sub max), but a

global low similarity are prone to being overlooked by existing models as the global

score of the documents are used to measure similarity. In this study, we aim to detect,

measure, and show the similarity of documents based on the maximum similarity of their

subsections. The sub max of any two given documents is the subsections of those

documents with the highest similarity. By comparing subsections of the documents in our

corpus and using the sub max, we were able to improve the performance of some models

by over 100%.

vi

Table of Contents

Abstract ..v

List of Figures ..ix

List of Tables ...xi

Chapter 1: Introduction ..1

 1.1 Information Retrieval ...1

 1.2 Document Similarity ..2

 1.3 Problem Statement and Proposed Solution ..4

 1.4 Thesis Outline ..5

Chapter 2: Literature Review ...6

 2.1 1957-1994 ..6

 2.2 TREC and SIGIR ...8

 2.3 2013-Present ..9

 2.4 Papers Closely Related to This Thesis Research ...11

Chapter 3: Document Similarity ..14

 3.1 Overview ..14

 3.2 Machine Learning Models ...18

 3.2.1 TF-IDF ..18

 3.2.2 BERT ..21

 3.2.3 Doc2Vec ...23

 3.2.4 Word2Vec ...24

 3.2.5 GloVe ..26

vii

Table of Contents (Continued)

Chapter 4: Experiment Design ...29

 4.1 Overview ..29

 4.2 Data Collection ..30

 4.3 Test Data ..31

 4.4 Data Pre-Processing ...32

Chapter 5: Results ..33

 5.1 Base Model Evaluations ..33

 5.1.1 TF-IDF ..33

 5.1.2 BERT ..39

 5.1.3 Doc2Vec ...42

 5.1.4 Word2Vec ...47

 5.1.5 GloVe ..53

 5.2 Enhanced Model Evaluations ..59

 5.2.1 TF-IDF ..68

 5.2.2 BERT ..73

 5.2.3 Doc2Vec ...73

 5.2.4 Word2Vec ...74

 5.2.5 GloVe ..76

Chapter 6: Analysis and Discussion ..77

 6.1 Performance Analysis ..77

 6.2 Vector and Matrix Size Variations ..79

 6.3 The Contribution of This Work and How it Fits into The Current Information

Retrieval Landscape ...82

viii

Table of Contents (Continued)

Chapter 7: Conclusion and Future Work ...83

References ..85

Appendix A: Arxiv File Download Code ..89

Appendix B: Document Similarity Code ...90

Appendix C: Model Reports Code ...91

ix

List of Figures

Figure Page

Figure 1. Formula for Calculating Cosine Similarity ..17

Figure 2. Cosine Similarity Measure ...17

Figure 3. TF-IDF ..19

Figure 4. CBOW and Skip-Gram Model Architectures...25

Figure 5. Uni-Perceiver-MoE: Learning Sparse Generalist Models with Conditional

MoEs References ..34

Figure 6. Top 100 Similar Documents for Uni-Perceiver-MoE: Learning Sparse

Generalist Models with Conditional MoEs Using TF-IDF35

Figure 7. TF-IDF Performance on Sample Paper I ..36

Figure 8. TF-IDF Performance on Sample Paper II ..36

Figure 9. Top 100 Similar Documents for Uni-Perceiver-MoE: Learning Sparse

Generalist Models with Conditional MoEs Using Doc2Vec43

Figure 10. Doc2Vec Performance on Sample Paper I ...44

Figure 11. Doc2Vec Performance on Sample Paper II ..44

Figure 12. Top 100 Similar Documents for Uni-Perceiver-MoE: Learning Sparse

Generalist Models with Conditional MoEs Using Word2Vec49

Figure 15. Top 100 Similar Documents for Uni-Perceiver-MoE: Learning Sparse

Generalist Models with Conditional MoEs Using GloVe54

Figure 16. GloVe Performance on Sample Document I ..56

Figure 17. GloVe Performance on Sample Document II ...56

Figure 18. Top 100 Similar Documents for Uni-Perceiver-MoE: Learning Sparse

Generalist Models with Conditional MoEs Using TF-IDF II69

x

List of Figures (Continued)

Figure Page

Figure 19. TF-IDF II Performance on Sample Paper I ..70

Figure 20. TF-IDF II Performance on Sample Paper II ...70

Figure 21. Performance of TF-IDF on AI Against Varying max_features I80

Figure 22. Performance of TF-IDF on AI Against Varying max_features II80

xi

List of Tables

Table Page

Table 1. Natural Language Processing Tasks and Associated Dimensions15

Table 2. TF-IDF Document Vector ...20

Table 3. Similarity of Documents Using TF-IDF ..21

Table 4. Similarity Matrix of Documents Using BERT ..22

Table 5. Similarity Matrix of Documents Using Doc2Vec ...24

Table 6. Similarity Matrix of Documents Using Word2Vec ...26

Table 7. Similarity Matrix of Documents Using GloVe ..28

Table 8. Data Set Statistics of Each Document Category ..31

Table 9. Test Data Document Statistics ...32

Table 10. TF-IDF Model Performance on Corpus...37

Table 11. BERT Model Performance on Corpus ...40

Table 12. Doc2Vec Model Performance on Corpus ..45

Table 13. Word2Vec Model Performance on Corpus ...51

Table 14. GloVe Model Performance on Corpus ..57

Table 15. TF-IDF II Model Performance on Corpus ...71

Table 16. Word2Vec II Model Performance on Corpus ..74

Table 17. TF-IDF and TF-IDF II Comparison...77

Table 18. Word2Vec and Word2Vec II Comparison ..78

1

Chapter 1

Introduction

The overarching goal is to build a system to automate literature reviews.

However, such a system is beyond the scope of a single thesis. This thesis is more a proof

of concept where we wish to see if we can train a machine to automatically identify the

core papers in an area of research. The experiment is given an arbitrary set of papers, can

we find a method that would identify a high percentage of the papers that were ultimately

referenced by these target papers.

To make this thesis self-contained, we will describe the basics of Information

Retrieval and Document Similarity in the following sections so that the experiment can

be better understood.

1.1 Information Retrieval

Information retrieval, as a field of study, is finding materials of an unstructured

nature that satisfies an information need from within large collections (now usually stored

on computers) (Manning et al, 2009). Unstructured text is usually the data type of focus

for information retrieval tasks. Historically, IR was more associated with librarians,

researchers, lawyers/paralegals, etc. However, with the rise of the internet, millions of

people conduct IR when they use a search engine and search their emails and/or

messages. Generally, the field also provides users with the ability to filter or further

process a set of previously retrieved documents.

2

In 1945, Vannevar Bush published his article “As We May Think” which

propelled the concept(s) of automatic access/retrieval of large amounts of stored

information. In the article, he argues for man's need for a fast and reliable means of

accessing existing information and the ability of extending such existing knowledge

(Bush, 1945). This concept evolved into more detailed explanations of how text archives

could be automatically searched in the 1950s. The fundamental concept of computerized

text searching was expanded upon in several works that appeared in the middle of the

1950s. In 1957, H.P. Luhn introduced one of the most effective techniques, in which he

advocated utilizing words as indexing units for documents and assessing word overlap as

a criterion for retrieval (Luhn, 1957).

Information retrieval also extends to other tasks such as correctly grouping a

given set of related documents (clustering), or accurately specifying what class a

document belongs to (classification). While clustering of documents can be completed

automatically, classifying documents requires some subset of the documents to be

correctly classified (often manually). The classified documents are used as training data

for the classification model to enable it to automatically classify future documents

(Manning et al, 2009).

1.2 Document Similarity

 Applications across numerous domains frequently must search for similar

documents given a query document. A news website, for instance, could want to suggest

articles related to the one the visitor is reading. The PubMed search engine which

provides access to the life sciences literature, implemented a “more like this” browsing

3

feature as a simple lookup of document-document similarity scores, computed offline

(Elsayed et al, 2008). However, implementing such functionality requires (i) an effective

way to find pertinent documents throughout potentially vast corpora, and (ii) a concept of

document similarity (Paul et al, 2016). It’s important to have a defined concept of

similarity as it is integral to measuring the success or failure of any document similarity

task.

In 2005, Lee et al argued that the automated measurement of the similarity

between text documents is fundamentally a psychological modeling problem. Thus, the

different approaches now in use, which are frequently applied in information science

applications, should be evaluated (at least in part) in terms of their capacity to simulate

human performance. (Lee et al, 2005). Humans with natural stimuli can accurately detect

document similarity based on the semantics of given documents, thus any automated

attempt should provide similar results. Numerous methods have been devised for

modeling text document similarity. These consist of the more complex methods like

Latent Semantic Analysis (LSA: Deerwester et al., 1990; Landauer and Dumais, 1997) as

well as straightforward ones like word-based, keyword-based, and n-gram measurements

(e.g., Salton, 1989; Damashek, 1995). For this research, we will cover five machine

learning models used in measuring document similarity, namely: Bidirectional Encoder

Representations from Transformers (BERT), Global Vectors for Word Representation

(GloVe), Word2Vec, Term Frequency-Inverse Document Frequency (TF-IDF), and

Doc2Vec.

4

1.3 Problem Statement and Proposed Solution

 During literature review, researchers are required to read bodies of work that are

related to their area(s) of interest to gain the requisite knowledge for conducting their

own research. While this is a requirement for all scientific research, it is still a time-

consuming task as researchers often must read through papers that may appear related but

provide no additional information or value to the researcher. Having spent countless

hours reading research papers as part of my literature review, we decided to find ways to

improve the literature review experience by improving the quality/similarity of

recommended literature given a particular piece of literature.

Multiple approaches have been used to determine the similarity of documents

regarding literature reviews. Various approaches use the number of similar citations, the

similarity between the body of text, and the figures present in those documents. The

hypothesis we wish to test is whether documents with sections of high similarity, but a

global low similarity are prone to being overlooked by existing models as the overall

score of the documents are used to measure similarity. In this study, we aim to detect,

measure, and show the similarity of documents based on the similarity of their

subsections.

sim(doc1,doc2) = max(sim(doc1_1,doc2_1), sim(doc1_2,doc2_2),...,sim(doc1_n, doc2_n))

The performance of the models will be calculated as a ratio of the references of a

document present in the top fifty (50) similar documents of a given document.

perf(mi, dj) = references_in_dj mi_similar_documents[0:50]/references_in_dj

5

That is, given a model mi, and a document dj, the performance of mi on dj is the ratio of

the intersection of references in dj and the top fifty (50) similar documents of mi on dj to

all the references in dj.

1.4 Thesis Outline

 In Chapter 1 of this thesis, the concepts Information Retrieval (IR), and Document

Similarity are discussed. Furthermore, the problem statement and solution are described.

Chapter 2 covers the literature review on document similarity, its early days, current

trends, and some related work. In chapter 3, document similarity is discussed in greater

detail along with the machine learning models of focus. In Chapter 4, the experiment

design is discussed along with data collection, preprocessing, and statistical analysis of

the data. Chapter 5 discusses the results of the various models without any

enhancement(s), and the results of the model(s) considering parts of the document rather

than the whole document. In chapter 6, the results of the experiments are discussed, and

techniques to improve performance are suggested. Finally, chapter 7 concludes the thesis

and postulates future work.

6

Chapter 2

Literature Review

 The method described in this thesis builds on essential work in Information

Retrieval (IR) as well as key ideas from Natural Language Processing (NLP) and Text-

Mining.

2.1 1957-1994

 The rise of automated Information Retrieval really begins with H.P. Luhn in

1957. Although document searching goes back long before this period (Sanderson and

Croft 2012), the methods used prior to Luhn including Boolean search are not relevant to

our research. Our interest in this thesis is in what the IR community calls ‘ad-hoc’

retrieval, which refers to the task of returning information resources related to a user

query formulated in natural language rather than a carefully defined Boolean query.

 Luhn was interested in automatic retrieval as well as automatic summarization of

documents while working at IBM. Luhn proposed a method where each document in a

collection was assigned a score indicating its relevance to a query (Luhn 1957). In

another paper, Luhn suggested “that the frequency of word occurrence in an article

furnishes a useful measurement of word significance” (Luhn 1958).

 Gerard Salton, a Professor at Cornell University whose research group developed

the SMART (System for the Mechanical Analysis and Retrieval of Text) Information

Retrieval System in the 1960s took Luhn’s work to another level. In a paper

memorializing Salton after his death in 1995 (Crouch et al. 1996) said of Salton “He was

a brilliant computer scientist and the man most responsible for the establishment,

7

survival, and recognition of Information Retrieval as a vital and important discipline in

computer science.”

 One of Salton’s main contributions was the TF-IDF vector space model

(discussed in chapter 2) which is widely used in both IR and NLP. The vector space

model introduced in (Salton et al. 1975) views documents as vectors consisting of term

frequencies (TF) multiplied by a weighting called the Inverse Document Frequency (IDF)

which was developed by (Jones 1972). Although the vector space model was introduced

in 1975 it was initially viewed as an indexing method used in the SMART system and not

considered as an innovation for use in general IR until the early 1980s (Dubin 2004).

 Another innovation of the SMART system was relevance feedback. The first

relevance feedback algorithm was developed by JJ. Rocchio (Rocchio. 1965) and added

to the SMART system shortly after (Salton 1971). The SMART system allowed users to

successively broaden or refine searches and incorporated numerous relevance feedback

techniques since as one researcher on the SMART team stated, “since the user’s original

query is often inadequate, some sort of user interaction with the retrieval operation is

desirable” (Kelly and Sugimoto 2013).

 Despite all the research in IR and NLP, commercial products developed during

this time such as DIALOG, ERIC, MEDLARS, LEXIS, and LEADERMART (Kelly and

Sugimoto 2013) which were widely used by professional searchers and librarians, were

largely restricted to Boolean searching. This situation didn’t change until the early to

mid-1990s with systems such as WESTLAW’s WIN system (Turtle 1994) and the growth

of web search engines.

8

2.2 TREC and SIGIR

Research in IR was recognized as an important branch of computer science way back in

1978 when the Association for Computing Machinery (ACM) created the Special Interest

Group on Information Retrieval (SIGIR) and the SIGIR conference where much of the

research in IR has been published and presented for the last 44 years. In 1992 the

National Institute of Standards and Technology (NIST) created TREC (Text Retrieval

Conference), an annual conference where many international research groups collaborate

to build test collections several orders of magnitude larger than had been in existence

before. This was in response to the IR community’s concern at the time that existing

datasets were too small for adequate testing of IR systems (Sanderson and Croft 2012).

1995-2013

 With the growth of the internet, searching for text documents goes from an

activity done by professional searchers and librarians to an activity practiced by the

public (Kelly and Sugimoto 2013). Since all TREC Proceedings papers from 1992

through 2021 are available at https://trec.nist.gov/pubs we can see that from 1992 to 2010

that a shift from Boolean searching to ad-hoc searches in web search engines is taking

place. Much of the research is related to relevance ranking, query expanding, complex

question answering, and multilingual systems. Even though relevance ranking existed

since 1965 (Rocchio. 1965) it took on new relevance in the 1990s as Web search engines

tried to differentiate themselves with their ranking of results. Ultimately Google became

the dominant search engine with its PageRank algorithm which identified relevant

documents from authoritative sources and eliminated pages from unscrupulous authors

that discovered they could alter their ranking by manipulating the content of their pages

9

(Sanderson and Croft 2012). Query expanding also became a topic of new importance to

search engines because users tend to use very short queries while hoping for good results.

(In 2009 the average query length was 2.30 words, the same as that reported ten years

before in 1999 (Carpineto and Romano 2012).) To see why query expansion is important

for search engines consider the World Cup which is the most widely viewed and followed

single sporting event in the world. A user searching World Cup on Google will receive 4

trillion results, however since the World Cup is going on now (at the time of this writing)

in Qatar, most users typing in World Cup are interested in recent results or the upcoming

schedule. Since Google keeps track of trending searches it knows this and will

automatically expand a query from ‘World Cup’ to ‘World Cup 2022’ to get more

accurate results. The topics which have dominated TREC in the years 1995-2013 are

interesting to the IR community but not of interest to this thesis work. However, during

this period one area of interest was TREC HARD (Highly Accurate Retrieval from

Documents). This topic is relevant to our research because we wish to conduct literature

reviews based on a single source document rather than a query or queries. However, the

HARD track of TREC depends on user feedback which we wish to avoid in our method.

2.3 2013-Present

 The semantic vector space models of language represent each word as a real-

valued vector. Consequently, these vectors can be used as features in NLP tasks such as

question answering, document classification, information retrieval, etc. (Pennington et al,

2014). Prior to 2013, global matrix factorization methods such as latent semantic analysis

were the main family of models for learning word vectors. However, Mikolov et al.

introduced the local context window methods such as skip-gram (2013c). Aside from TF-

10

IDF, all the models discussed in chapter 2 were developed using some variation of word

vectors. As stated in 2.2.5, GloVe is a combination of the advantages of the two popular

model families: global matrix factorization and local context window methods

(Pennington et al, 2014). Mikolov et al. developed word2vec (2013a) for representing

word vectors using their context to ensure that words of similar meanings and/or use are

placed close to each other in vector space. In 2014, Mikolov et al. introduced doc2vec

which was an improvement from word2vec that allowed the model to learn fixed-length

feature representations from variable-length pieces of texts, such as sentences,

paragraphs, and documents. While it is considerably slower than the others, doc2vec can

represent sentences, paragraphs, and documents as vectors in the Vector Space Model.

 Both the context and content of a body of text are integral to successfully

translating or interpreting such text. Thus, it is essential that the application of Deep

Learning (DL) models on texts should cover the morphological, syntactic, semantic, and

pragmatic layers of natural language (Braşoveanu and Andonie, 2020). Due to the

sparseness of training data, building models/networks that met all the requirements of

text analysis and machine translation was a significant challenge. The first Transformer

network (Vaswani et al., 2017) showed that it was possible to design networks that

achieve good results for Natural Language Processing (NLP) tasks with a set of multiple

sequential attention layers. Transformers generally contain an encoder and a decoder.

Transformers (using their encoder and decoder) transform input sequences into output

sequences in deep learning applications. An example of an input sequence could be the

sentence “I am writing a paper while listening to music”. The corresponding output

sequence could be a translation of the sentence to French or Italian. Using multiple

11

layers, although typically paired, transformers encode the input sequence using multi-

attention layers and a feed-forward layer. Due to its reliance on attention, transformers

use a recurrent neural network (RNN) that passes all hidden states of the encoder as

context to the decoder. While passing all hidden states to the decoder does result in more

processing, it provides the decoder with full context of the input thus preventing any loss

in translation of the output. In the original paper introduced by Vaswani et al. (2017), the

transformer had six (6) encoders and six (6) decoders.

 Over the last couple of years, hundreds of papers and language models inspired by

Transformers have been published, the best-known being BERT (Devlin et al., 2019),

RoBERTa (Liu et al., 2019), AlBERT (Lan et al., 2019), etc. Some of the most popular

Transformer models are included in the Transformers library, maintained by

HuggingFace. We discussed BERT in chapter 2 as one of the models that we will be

covering in this paper.

2.4 Papers Closely Related to This Thesis Research

 As discussed in the introduction, the idea behind this project is to find a method to

automate and enhance the conducting of literature reviews. We assume that the key

papers in a literature review are those that are ultimately cited by the finished research

paper. Therefore, we wish to build a system that takes the text of a draft paper and finds

papers that should be cited by that draft. Of course, building such a system will take a

team and resources beyond the scope of a Master’s thesis so we limit this research to

testing multiple clustering and similarity methods such as TF-IDF, Word2Vec, Doc2Vec,

BERT, etc.

12

 One area of research related to automating literature review is the so-called

Systematic Literature Review (SLR) (Feng et al. 2018). SLRs are very labor-intensive

that can often take a year or more to compile and generally are restricted to broad areas of

science. As an example, one might compile an SLR on all evidence-based-medical

approaches to treating Diabetes. The goal in such an endeavor is to assemble possibly

thousands of relevant papers and organize them to call out the most important of such

papers. The Feng study discussed how text-mining techniques could be used to create an

SLR of Software Engineering. However, while identifying all the important papers within

a subfield of science is a worthy goal, it is not useful to the researcher who is working on

a literature review within a very narrow area of science such as this thesis is trying to

address.

 Perhaps the closest work related to our topic is (Erekhinskaya et al. 2016) who

wished to automate the work in doing a literature review as well. However, their

approach is more of an extractive summarization approach where the method could

search through a library of 100,000 articles per day per CPU core and automatically

extract knowledge to populate the predefined document template for each article. In other

words, their method found papers on predefined topics which is a completely different

approach than what we propose.

 In our approach we assume that most researchers have an idea for a paper and do

a preliminary search to see if there is anything similar in the literature. If nothing is

found, then the researcher begins to write an initial draft. The idea here is that the method

can take that initial draft paper and automatically identify papers that are related to

specific parts of the new paper and should be cited by it. The Erekhinskaya et al. method

13

allows a researcher to identify papers relevant to specific topics, which is probably what

researchers should do in a careful literature review. However, in new areas of research

topic names might not be established. The method proposed here will find papers that

have sections of text that are similar to sections of text within the target paper rather than

a typical search which attempts to identify papers that are most similar overall to a target

paper.

14

Chapter 3

Document Similarity

In this chapter, we will discuss document similarity, the different methods used in

calculating document similarity, and the different machine learning models that are

applicable to this thesis. This chapter thus provides the requisite knowledge or

background for the rest of the thesis.

3.1 Overview

 Document similarity is the measure of how similar (or not) a set of documents are

given a query document. However, the concept of similarity between two documents is

debatable as readers often have different rules for claiming similarity (Bar et al. 2011).

Concerning the general concept of similarity, Goodman (1972), and Bar et al. (2011)

argue that similarity is an ill-defined notion unless one can say to what aspects similarity

relates. Goodman (1972) provides a useful illustration of how different people at an

airport would consider luggage bags to be similar. The pilot just considers a bag's weight,

whereas the passenger evaluates them based on ownership and destination, whereas a

spectator might compare bags based on shape, size, or color.

Recommender systems provide researchers with relevant papers for their work

using document similarity measures when user feedback is sparse or unavailable (Beel,

2016). Given that similarity can be ambiguous, similarity in research papers is often

concerned with multiple facets of the presented research, e. g., method, findings (Huang

et al., 2020). Document similarity can be applied to a series of tasks, for example:

classifying authorship of a paper, plagiarism detection, paraphrase detection etc. Apropos

15

of that, document similarity should be formalized based on the geometric model of

conceptual spaces along three dimensions inherent to texts: structure, style, and content

(Bar et al, 2011). Structure refers to the internal developments of a given text, e.g. the

order of sections. Style refers to grammar, usage, mechanics, and lexical complexity

(Attali and Burstein, 2006). Content addresses all facts and their relationships within a

text. For the purposes of this thesis, we will be considering the content of the papers for

the similarity of the documents.

Table 1 illustrates different tasks and their associated dimensions as outlined by

Bar et al (2011).

Table 1

Natural Language Processing Tasks and Associated Dimensions

Task Structure Style Content

Authorship Classification X

Automatic Essay Scoring X X X

Information Retrieval X X X

Paraphrase Recognition X

Plagiarism Detection X X

Question Answering X

Short Answer Grading X X X

Summarization X X

16

Task Structure Style Content

Text Categorization X

Text Segmentation X X

Text Simplification X X

Word Sense Alignment X

 Document similarity is based on two concepts: data representation and similarity

measure. In data representation, most documents are encoded based on the Vector Space

Document (VSD) (Salton et al, 1975). A feature vector of the words that appear in all of

the documents in a data collection serves as the foundation of the data model's

framework. Because words are the fundamental units in most natural languages

(including English), the VSD model typically considers a distinct word that appears in the

texts to be an atomic feature term (Paul et al, 2016). Using one of the many similarity

measures based on the two corresponding feature vectors, such as the cosine measure,

Jaccard measure, and Euclidean distance, the similarity between two documents is

calculated.

 As Li and Han (2013) noted, numerous metrics such as Euclidean distance-based

metric, Cosine, Jaccard, Dice, Jensen- Shannon Divergence based metric have been

proposed for the calculation of similarity between two documents for multiple natural

language processing tasks. Cosine, calculated as the dot-product of two normalized

vectors, is the most popular one. It measures the angle between two vectors (Li and Han,

2013).

17

Figure 1. Formula for Calculating Cosine Similarity

The angle given by cosine is inversely proportional to the similarity of the two

documents. Thus, the lower the angle, the more similar the two documents are. Given

three vectors (A, B, C) and their angles as shown below,

Figure 2. Cosine Similarity Measure

18

The above figure implies that vector C is more similar to vector B than vector A to B. For

this thesis, all similarity metrics will be calculated using cosine similarity.

3.2 Machine Learning Models

 One of the core concepts of document similarity is data representation in a vector

space as mentioned above. In this section, we discuss the different machine learning

models and techniques used to represent the document(s) in vector space.

3.2.1 TF-IDF

 Term Frequency and Inverse Document Frequency (TF-IDF) is a numerical

statistic that shows the relevance of keywords to some specific documents (Qaiser and

Ali, 2018). Using TF-IDF, we can identify or classify documents based on the words

appearing in those documents and their frequency. As the name suggests, TF-IDF is a

combination of two concepts, Term Frequency (TF) and Inverse Document Frequency

(IDF). TF is used to measure frequency of a given term in a document (Hakim et al,

2015). IDF is used to determine the importance of a word to a given document. Because

TF treats all words equally, stop words (words with no significance such as “of”) are

prone to being ranked high given their high frequency even though they do not provide

any context for identifying a given document. IDF prevents this by assigning a lower

weight to high frequency words and a higher weight to low frequency words. TF-IDF is

the product of TF and IDF. Below, Figure 3, shows the mathematical formula for

calculating TF, IDF, and TF-IDF.

19

Figure 3. TF-IDF

From Figure 3 above, we can summarize that:

tf = number of times the term appears in a document/total number of words in the

document

idf = log(number of documents/number of documents the term appears)

tf-idf = tf * idf

 We calculate the similarity between all the papers using the cosine similarity

metric. Cosine similarity, as defined in the previous chapter, is calculated as the dot-

product of two normalized vectors. It measures the angle between two vectors (Li and

Han, 2013).

20

3.2.1.1 Example. Given the example documents:

documents= [

 "The quick brown fox jumped over the lazy dog",

 "The quick grey fox jumped over the lazy cat",

 "The slow mouse ambled into the woods"

]

The derived stop words from the documents are:

Stopwords= {the, into, over}

And the resulting dictionary of words to be used for calculating their similarities:

Dictionary= {amble, brown, cat, dog, fox, grey, jump, lazy, mouse, quick, slow, woods }

alphabetize.

The table below shows the TF-IDF vector of the documents.

Table 2

TF-IDF Document Vector

amble brown cat dog fox grey jumped lazy mouse quick slow woods

doc0 0.0 0.48 0.0 0.48 0.37 0.0 0.37 0.37 0.0 0.37 0.0 0.0

doc1 0.0 0.0 0.48 0.0 0.37 0.48 0.37 0.37 0.0 0.37 0.0 0.0

doc2 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.5 0.5

Using the vector of the words above, the similarity matrix of the documents is given

below:

21

Table 3

Similarity of Documents Using TF-IDF

 Doc0 Doc1 Doc2

Doc0 1.0 0.54 0.0

Doc1 0.54 1.0 0.0

Doc2 0.0 0.0 1.0

3.2.2 BERT

 The Bidirectional Encoder Representations from Transformers (BERT) is a

language representation model introduced by Jacob et al in 2018. BERT was created with

the intention of pre-training deep bidirectional representations from unlabeled text by

concurrently conditioning on both left and right context in all layers. The main difference

between BERT and its predecessors (language representation models) is that the previous

models were unidirectional thus restricting the power of pre-trained representations

(Jacob et al, 2018). Unlike its predecessors, BERT implements a masked language model

which enables the representation to fuse the left and the right context, consequently

allowing the pre-training of a deep bidirectional Transformer. BERT is both simple and

powerful. As demonstrated by Jacob et al (2018), on eleven natural language processing

tasks, it achieves new state-of-the-art results, raising the General Language

Understanding Evaluation (GLUE) score to 80.5% (7.7%-point absolute improvement),

MultiNLI accuracy to 86.7% (4.6% absolute improvement), SQuAD v1.1 question

22

answering Test F1 to 93.2 (1.5-point absolute improvement), and SQuAD v2.0 Test F1 to

83.1. (5.1-point absolute improvement). These performance metrics make BERT a good

choice for one of the models of our experiment.

3.2.2.1 Example. Given the example documents:

documents= [

 "The quick brown fox jumped over the lazy dog",

 "The quick grey fox jumped over the lazy cat",

 "The slow mouse ambled into the woods"

]

The derived stop words from the documents are:

Stopwords= {the, into, over}

And the resulting dictionary of words to be used for calculating their similarities:

Dictionary= {amble, brown, cat, dog, fox, grey, jump, lazy, mouse, quick, slow, woods}

alphabetize.

Below is a table of the similarity matrix of the documents using BERT

Table 4

Similarity Matrix of Documents Using BERT

 Doc0 Doc1 Doc2

Doc0 1.0 0.84 0.38

Doc1 0.84 1.0 0.38

Doc2 0.38 0.38 1.0

23

3.2.3 Doc2Vec

 Le and Mikolov (2014) proposed doc2vec as an extension of word2vec (Mikolov

et al., 2013a). Word2vec is discussed in the next section. Doc2vec implements Paragraph

Vector, an unsupervised algorithm that learns fixed-length feature representations from

variable-length pieces of texts, such as sentences, paragraphs, and documents (Le and

Mikolov, 2014). As Le and Mikolov noted, machine learning methods need that the input

be represented as a feature vector of fixed-length. Regarding text and text related tasks,

Bag of Words (Harris, 1954) is the most used method of achieving fixed-length features.

Bag-of-words features, despite being widely used, have two significant flaws: they

neglect the semantics of the words and lose the ordering of the words (Le and Mikolov,

2014). Doc2vec represents each document by a dense vector which is trained to predict

words in the document. By developing both Paragraph Vectors and word vectors using

stochastic gradient descent and backpropagation (Rumelhart et al., 1986), the vector

representation for doc2vec is trained to predict words in a paragraph.

3.2.3.1 Example. Given the example documents:

documents= [

 "The quick brown fox jumped over the lazy dog",

 "The quick grey fox jumped over the lazy cat",

 "The slow mouse ambled into the woods"

]

The derived stop words from the documents are:

Stopwords= {the, into, over}

And the resulting dictionary of words to be used for calculating their similarities:

24

Dictionary= {amble, brown, cat, dog, fox, grey, jump, lazy, mouse, quick, slow, woods}

alphabetize.

Below is a table of the similarity matrix of the documents using Doc2Vec

Table 5

Similarity Matrix of Documents Using Doc2Vec

 Doc0 Doc1 Doc2

Doc0 1.0 0.99 0.97

Doc1 0.99 1.0 0.97

Doc2 0.97 0.97 1.0

Note: The similarity between Doc2 and the other documents is higher than expected due

to the vector size used in running the model. The similarity can be optimized by fine

tuning the vector size to match the dictionary. Vector sizes and its impact on the

performance of our models will be discussed in Chapter 7.

3.2.4 Word2Vec

 Proposed by Mikolov et al (2013a), word2vec is an architecture for computing

continuous vector representations of words from very large data sets. Prior to word2vec,

many of the existing natural language processing algorithms and techniques treated

words as atomic units with no notion of similarity amongst words. However, word2vec

represents word vectors using its context so similar words are in close proximity in vector

space. Word2vec uses a previously proposed technique (Mikolov et al., 2013b) for

25

measuring the quality of the resulting vector representations, with the expectation that not

only will similar words tend to be close to each other, but that words can have multiple

degrees of similarity (Mikolov et al., 2013b). Word2vec proposes two new model

architectures for learning distributed representations of words: continuous bag-of-words

(CBOW), and continuous skip-gram. The CBOW architecture predicts the current word

based on the context, and the Skip-gram predicts surrounding words given the current

word. Shown below are the architectures of CBOW and skip-gram models.

Figure 4. CBOW and Skip-Gram Model Architectures

3.2.4.1 Example. Given the example documents:

documents= [

 "The quick brown fox jumped over the lazy dog",

 "The quick grey fox jumped over the lazy cat",

26

 "The slow mouse ambled into the woods"

]

The derived stop words from the documents are:

Stopwords= {the, into, over}

And the resulting dictionary of words to be used for calculating their similarities:

Dictionary= {amble, brown, cat, dog, fox, grey, jump, lazy, mouse, quick, slow, woods}

alphabetize.

Below is a table of the similarity matrix of the documents using Word2Vec

Table 6

Similarity Matrix of Documents Using Word2Vec

3.2.5 GloVe

 Developed by Pennington et al in 2014, GloVe is a log-bilinear model with a

weighted least-squares objective. It is a combination of the advantages of the two popular

model families: global matrix factorization and local context window methods

(Pennington et al, 2014). Although techniques like latent semantic analysis

(LSA)(Deerwester et al, 1990), which is part of the global matrix factorization methods,

 Doc0 Doc1 Doc2

Doc0 1.0 0.92 0.56

Doc1 0.92 1.0 0.55

Doc2 0.56 0.55 1.0

27

effectively use statistical data, they perform poorly on the word analogy test, pointing to

an inadequate vector space structure. Similarly, techniques like skip-gram (Mikolov et al,

2013c), which is part of the local context window methods, may perform better on the

analogy task but because they are trained on individual local context windows rather than

global co-occurrence counts, they do a poor job of utilizing the statistics of the corpus.

However, by restricting training to the nonzero elements of a word-word co-occurrence

matrix rather than the full sparse matrix or specific context windows in a huge corpus,

Pennington et al (2014) were able to produce a model that performed at 75% on an

analogy task while also improving its performance on similarity tasks.

3.2.5.1 Example. Given the example documents:

documents= [

 "The quick brown fox jumped over the lazy dog",

 "The quick grey fox jumped over the lazy cat",

 "The slow mouse ambled into the woods"

]

The derived stop words from the documents are:

Stopwords= {the, into, over}

And the resulting dictionary of words to be used for calculating their similarities:

Dictionary= {amble, brown, cat, dog, fox, grey, jump, lazy, mouse, quick, slow, woods}

alphabetize.

Below is a table of the similarity matrix of the documents using GloVe

28

Table 7

Similarity Matrix of Documents Using GloVe

 Doc0 Doc1 Doc2

Doc0 1.0 0.95 0.66

Doc1 0.95 1.0 0.65

Doc2 0.66 0.65 1.0

29

Chapter 4

Experiment Design

In this section, we will discuss our corpus, gathering criteria, statistics, and pre-

processing.

4.1 Overview

We first wish to remind the reader that the idea behind this research is to find a method to

automate and enhance the conducting of literature reviews. We assume that the key papers

in a literature review are those that are ultimately cited by the finished research paper.

Therefore, we need an experiment that will quantify how often an automated method would

identify key papers that would be found in a traditional literature review.

The basic idea is that given a field of research (Neural Networks for example) we select a

paper at random. We then test multiple methods to identify similar papers (e.g., TF-IDF,

BERT, Doc2Vec etc.) and ask how many of the actual references are among the top scoring

similar papers? One thing that makes such an experiment difficult is that there is not a

universal corpus that contains all papers within subfields of computer science that make

full-text papers available. One can purchase subsets of fields from Elsevier, IEEE, ACM,

but getting a full set of all papers in several subfields would be cost-prohibitive. As a

solution, we have created a corpus from the free set of pre-prints at Arxiv.org. The

limitation with this data set is that most of the paper references will not be in corpus. We

therefore compile a corpus for each subfield, randomly select 4 target papers, and then seed

our corpus with additional full-text articles referenced by our target papers. Since the

similarity methods only care about the text and not the source of the papers, any method

30

that preferentially chooses a high percentage of the referenced papers is a candidate for

automating and enhancing the conducting of literature reviews.

4.2 Data Collection

 To perform the experimentation with multiple existing models, we gathered a

corpus of 9088 documents from four different but related fields: Artificial Intelligence

(AI), Neural Networks (NN), Virtual Reality (VR), and Natural Language Processing

(NLP). The general similarity between the corpus set provides the appropriate

environment for testing the accuracy of the models based on the number of references

correctly identified as similar documents. All the documents in our corpus were retrieved

from arxiv (https://arxiv.org/) by automating its document retrieval API. Using a python

script, we retrieved documents matching categories outlined in the section above. The

documents returned by the API were then converted to text documents using the python

package tika. We limited the documents downloaded to those with thirty (30) or less

pages. Across the corpus, the average number of pages was above fifteen (15), thus,

testing all models against a relatively large body of text.

https://arxiv.org/

31

Table 8

Data Set Statistics of Each Document Category

Category Average Page

Count

Average Reference

Count

Total

Documents

Virtual Reality 17 40 1627

Neural Networks 16 35 4152

Natural Language

Processing

17 30 1388

Artificial Intelligence 15 25 2133

4.3 Test Data

 To test and measure the performance of existing models, we needed to build a

dataset of papers and their references. Given a document, the goal of the models will be

to provide the referenced documents as part of the most similar documents to that

document. In each of the categories, four (4) documents were randomly selected to be

used as test documents. Twenty (20) references were randomly selected from each of the

chosen documents, downloaded, and added to the general corpus.

32

Table 9

Test Data Document Statistics

Category Average Page

Count

Average #

References

Total

Documents

Virtual Reality 22 89 4

Neural Networks 14 35 4

Natural Language

Processing

17 30 4

Artificial Intelligence 15 25 4

4.4 Data Pre-Processing

 Firstly, the documents downloaded from arxiv were limited to documents within

the range of nine (9) and thirty (30) pages. This provides a sizable corpus from which we can

get an accurate experiment based on the number of splits each document can be split into.

All documents collected (in PDF) were converted into text only documents using a

python package, tika. For the final step, we removed stop-words from the texts. Stop-

words are frequently occurring, inconsequential words in natural languages; in English,

they are often categorized as prepositions, conjunctions, and adverbs, for example: and

the, is, of etc. Stop-word removal is an important preprocessing technique used in Natural

Language processing tasks to improve the performance of the models associated with the

tasks (Raulji and Saini, 2016).

33

Chapter 5

Results

 In this chapter, we will evaluate the performance of the different base models on

the task of accurately detecting referenced papers as similar documents. The score of

each model is calculated as a ratio of the number of references in the top fifty (50), and

hundred (100) similar documents as projected by each model.

model_score1 = number_of_referenced_papers_in_top_50/50

model_score2 = number_of_referenced_papers_in_top_100/100

5.1 Base Model Evaluations

5.1.1 TF-IDF

Using scikit-learn, we implemented a TF-IDF model with max_features of 64.

According to the scikit-learn documentation, the model builds a vocabulary that only

considers the top max_features ordered by frequency across the corpus. During

experimentation, we tried multiple values for max_features (32, 128, 200) but maintained

sixty-four (64) because it provided the best result and performance. Stop-words were

already removed in our preprocessing step; thus, we did not have to provide the model

with the stop-words argument.

Let us consider the performance of TF-IDF on the paper “Uni-Perceiver-MoE:

Learning Sparse Generalist Models with Conditional MoEs”. This paper has 17

references as shown in the figure below:

34

Figure 5. Uni-Perceiver-MoE: Learning Sparse Generalist Models with

Conditional MoEs References

After running the TF-IDF model, the top hundred (100) similar papers to the input

paper are shown below:

35

Figure 6. Top 100 Similar References for Uni-Perceiver-MoE: Learning Sparse

Generalist Models with Conditional MoEs Using TF-IDF

36

Consequently, we calculate the performance of the model on the paper by

comparing the number of references accurately suggested as similar papers. In each of the

figures below, we show the references in our paper that are part of the top fifty(50), and

hundred(100) similar documents as predicted by our TF-IDF model. In each figure, we

show the reference and its similarity score to the input paper. Furthermore, we calculate

the percentage of references found and display it at the bottom of the list.

Figure 7. TF-IDF Performance on Sample Paper I

Figure 8. TF-IDF Performance on Sample Paper II

As shown above, our TF-IDF model predicted 29.41% of the actual references as

part of the top fifty (50), and 47.05% when considering the top hundred (100) similar

documents. Below is a table of the results for the TF-IDF model, for all the test

documents.

37

Table 10

TF-IDF Model Performance on Corpus

Paper Category Score (Top 50) Score (Top 100)

Functional Code Building Genetic

Programming

AI 31.25% 31.35%

TwiBot-22: Towards Graph-Based

Twitter Bot Detection

AI 0% 5.56%

Jewelry Shop Conversational

Chatbot

AI 0% 0%

Uni-Perceiver-MoE: Learning

Sparse Generalist

Models with Conditional MoEs

AI 29.41% 47.05%

Visualization in virtual reality: a

systematic review

VR 10% 10%

Joint Compute-Caching-

Communication Control

for Online Data-Intensive Service

Delivery

VR 36.84% 47.37%

38

Paper Category Score (Top 50) Score (Top 100)

6G Survey on Challenges,

Requirements,

Applications, Key Enabling

Technologies, Use

Cases, AI integration issues and

Security aspects

VR 6.67% 6.67%

Quantifying the Effects of Working in

VR for One Week

VR 44.44% 61.11%

Neo-GNNs: Neighborhood Overlap-

aware

Graph Neural Networks for Link

Prediction

NN 5% 10%

Learning Vehicle Trajectory

Uncertainty

NN 0% 10%

Early Transferability of Adversarial

Examples in

Deep Neural Networks

NN 0% 0%

Face-Dubbing++: Lip-Synchronous,

Voice Preserving Translation of Videos

NN 16.67% 22.22%

NLU for Game-based Learning in Real:

Initial Evaluations

NLP 6.25% 18.75%

39

Paper Category Score (Top 50) Score (Top 100)

Multi-Agent Reinforcement

Learning is

A Sequence Modeling Problem

NLP 23.53% 35.29%

Differentially Private Model

Compression

NLP 6.25% 6.25%

Quantum Neural Network

Classifiers: A Tutorial

NLP 0% 0%

 Based on Table 10, the category with the highest average score is VR, with an

average score of 24.49% for the top 50 papers and 31.29% for the top 100 papers. This is

higher than the average scores for the other categories, which are AI (15.17% and

20.99% for the top 50 and top 100, respectively), NLP (9.01% and 15.07% for the top 50

and top 100, respectively), and NN (5.42% and 10.55% for the top 50 and top 100 papers,

respectively).

5.1.2 BERT

 To calculate the cosine similarity of the documents using BERT, we need a pre-

trained model to generate our document embeddings. For this purpose, we used sentence-

transformers, a model that maps sentences and paragraphs to a 768-dimensional dense

vector space and can be used in natural language processing tasks (Reimers and

40

Gurevych, 2019), and bert-base-nli-mean-tokens. While BERT was considerably faster

than Doc2Vec, and Word2Vec, it is also less accurate and produces the least performance

in terms of references detected as similar documents. Given the specificity of our dataset,

it is possible that the tokens used did not provide enough context or information to the

model. A possible path of future exploration would be to use a different token set for

generating the sentence embeddings. Using our sample input paper, none of its references

are shown as part of the top fifty (50) or hundred (100) similar documents.

Table 11

BERT Model Performance on Corpus

Paper Category Score (Top 50) Score (Top 100)

Functional Code Building Genetic

Programming

AI 6.25% 12.5%

TwiBot-22: Towards Graph-Based

Twitter Bot Detection

AI 0% 0%

Jewelry Shop Conversational Chatbot AI 0% 0%

Uni-Perceiver-MoE: Learning Sparse

Generalist

Models with Conditional MoEs

AI 0% 0%

Visualization in virtual reality: a

systematic review

VR 5% 5%

Multi-Agent Reinforcement Learning is

A Sequence Modeling Problem

NLP 0% 0%

41

Paper Category Score (Top 50) Score (Top 100)

Joint Compute-Caching-

Communication Control

for Online Data-Intensive Service

Delivery

VR 0% 0%

6G Survey on Challenges,

Requirements,

Applications, Key Enabling

Technologies, Use

Cases, AI integration issues and

Security aspects

VR 6.67% 6.67%

Quantifying the Effects of Working in

VR for One Week

VR 5.56% 5.56%

Neo-GNNs: Neighborhood Overlap-

aware

Graph Neural Networks for Link

Prediction

NN 0% 0%

Learning Vehicle Trajectory

Uncertainty

NN 0% 0%

Early Transferability of Adversarial

Examples in

Deep Neural Networks

NN 0% 0%

Face-Dubbing++: Lip-Synchronous,

Voice Preserving Translation of

Videos

NN 5.56% 5.56%

NLU for Game-based Learning in

Real: Initial Evaluations

NLP 0% 0%

Differentially Private Model

Compression

NLP 0% 0%

Quantum Neural Network Classifiers:

A Tutorial

NLP 0% 0%

42

5.1.3 Doc2Vec

 As stated in the previous section, Doc2Vec tokenizes sentences and documents to

improve the performance of the model on natural language processing tasks. During

experimentation, this approach shows obvious differences in the execution time of the

model. While other models executed successfully within two (2) hours, Doc2Vec takes

over forty-eight (48) hours to execute and return similar documents. Although the

significant difference in run time (albeit negative) is a downside to using Doc2Vec, its

performance regarding the task was the most impressive. We maintain the same vector

size (100) as with the other models, provide a learning rate of 0.025, and ignore all words

with a count of 1. As shown below, we see a significant difference and improvement in

the number of references identified as similar documents to the given documents.

 Figure 5 shows the references in the paper “Uni-Perceiver-MoE: Learning Sparse

Generalist Models with Conditional MoEs”.

After running the Doc2Vec model, the top hundred (100) similar papers to the

input paper are shown below:

43

Figure 9. Top 100 Similar Documents for Uni-Perceiver-MoE: Learning Sparse

Generalist Models with Conditional MoEs Using Doc2Vec

44

As with the previous sections, we show the references in our paper that are part of

the top fifty (50), and hundred (100) similar documents as predicted by our Doc2Vec

model. In each figure, we show the reference and its similarity score to the input paper.

Finally, we calculate the percentage of references accurately predicted.

Figure 10. Doc2Vec Performance on Sample Paper I

Figure 11. Doc2Vec Performance on Sample Paper II

As shown above, our Doc2Vec model predicted 52.94% of the references as part

of the top fifty (50), and 70.59% when considering the top hundred (100) similar

documents, thus producing the highest accuracy on the sample document. Below is a

table of the results for the Doc2Vec model, for all the test documents.

45

Table 12

Doc2Vec Model Performance on Corpus

Paper Category Score (Top 50) Score (Top 100)

Functional Code Building Genetic

Programming

AI 81.25% 87.5%

TwiBot-22: Towards Graph-Based

Twitter Bot Detection

AI 77.78% 83.33%

Jewelry Shop Conversational

Chatbot

AI 7.69% 7.69%

Uni-Perceiver-MoE: Learning

Sparse Generalist

Models with Conditional MoEs

AI 52.94% 70.59%

Visualization in virtual reality: a

systematic review

VR 35% 45%

Joint Compute-Caching-

Communication Control

for Online Data-Intensive Service

Delivery

VR 68.42% 89.47%

46

Paper Category Score (Top 50) Score (Top 100)

6G Survey on Challenges,

Requirements,

Applications, Key Enabling

Technologies, Use

Cases, AI integration issues and

Security aspects

VR 66.67% 73.33%

Quantifying the Effects of Working in

VR for One Week

VR 61.11% 72.22%

Neo-GNNs: Neighborhood Overlap-

aware

Graph Neural Networks for Link

Prediction

NN 35% 55%

Learning Vehicle Trajectory

Uncertainty

NN 70% 75%

Early Transferability of Adversarial

Examples in

Deep Neural Networks

NN 47.06% 52.94%

Face-Dubbing++: Lip-Synchronous,

Voice Preserving Translation of

Videos

NN 83.33% 88.89%

NLU for Game-based Learning in

Real: Initial Evaluations

NLP 43.75% 62.5%

47

Paper Category Score (Top 50) Score (Top 100)

Multi-Agent Reinforcement

Learning is

A Sequence Modeling Problem

NLP 64.71% 64.71%

Differentially Private Model

Compression

NLP 37.5% 50%

Quantum Neural Network

Classifiers: A Tutorial

NLP 44.44% 44.44%

Based on Table 12, we can infer that like TF-IDF, the category with the highest average

score is VR, with an average score of 60.86% for the top 50 papers and 70.01% for the top

100 papers. This is higher than the average scores for the other categories, which are NN

(58.85% and 67.96% for the top 50 and top 100, respectively), AI (54.92% and 62.28% for

the top 50 and top 100, respectively), and NLP (47.6% and 55.41% for the top 50 and top

100 papers, respectively).

5.1.4 Word2Vec

 To implement word2vec, we needed pre-trained word embeddings. Each word in

the embedding (Google-news-300) we used is represented as a three hundred (300)

dimensional vector. Finally, all documents were tokenized using the Tokenizer from

keras (keras.preprocessing.text), and padded using pad_sequencesfrom keras

(keras_preprocessing.sequence). By padding all documents, we ensured that all the

documents are of the same size. As with the previous models, we explore the

48

performance of word2vec in respect to the top documents that were returned as

similar documents.

 Figure 5 shows the references in the paper “Uni-Perceiver-MoE: Learning Sparse

Generalist Models with Conditional MoEs”. After running the Word2Vec model, the top

hundred (100) similar papers to the input paper are shown below:

49

Figure 12. Top 100 Similar Documents for Uni-Perceiver-MoE: Learning Sparse

Generalist Models with Conditional MoEs Using Word2Vec

50

As with the previous sections, we show the references in our paper that are part of

the top fifty (50), and hundred (100) similar documents as predicted by our Word2Vec

model. In each figure, we show the reference and its similarity score to the input paper.

Finally, we calculate the percentage of references accurately predicted.

Figure 13. Word2Vec Performance on Sample I

Figure 14: Word2Vec Performance on Sample Document II

As shown above, our Word2Vec model predicted 23.53% of the references as part

of the top fifty (50), and 29.41% when considering the top hundred (100) similar

documents, thus producing the highest accuracy on the sample document. Below is a

table of the results for the Word2Vec model, for all the test documents.

51

Table 13

Word2Vec Model Performance on Corpus

Paper Category Score (Top 50) Score (Top 100)

Functional Code Building Genetic

Programming

AI 25% 31.25%

TwiBot-22: Towards Graph-Based

Twitter Bot Detection

AI 0% 11.11%

Jewelry Shop Conversational

Chatbot

AI 0% 0%

Uni-Perceiver-MoE: Learning

Sparse Generalist

Models with Conditional MoEs

AI 23.53% 29.41%

Visualization in virtual reality: a

systematic review

VR 5% 5%

Joint Compute-Caching-

Communication Control

for Online Data-Intensive Service

Delivery

VR 47.37% 52.63%

52

Paper Category Score (Top 50) Score (Top 100)

6G Survey on Challenges,

Requirements,

Applications, Key Enabling

Technologies, Use

Cases, AI integration issues and

Security aspects

VR 6.67% 13.33%

Quantifying the Effects of Working in

VR for One Week

VR 22.22% 27.78%

Neo-GNNs: Neighborhood Overlap-

aware

Graph Neural Networks for Link

Prediction

NN 5% 5%

Learning Vehicle Trajectory

Uncertainty

NN 5% 10%

Early Transferability of Adversarial

Examples in

Deep Neural Networks

NN 0% 0%

Face-Dubbing++: Lip-Synchronous,

Voice Preserving Translation of Videos

NN 22.22% 22.22%

NLU for Game-based Learning in

Real: Initial Evaluations

NLP 6.25% 6.25%

53

Paper Category Score (Top 50) Score (Top 100)

Multi-Agent Reinforcement Learning

is

A Sequence Modeling Problem

NLP 17.65% 17.65%

Differentially Private Model

Compression

NLP 6.25% 6.25%

Quantum Neural Network Classifiers:

A Tutorial

NLP 0% 0%

Based on Table 13, we can infer that like TF-IDF and Doc2Vec, the category with

the highest average score is VR, with an average score of 20.32% for the top 50 papers

and 24.69% for the top 100 papers. This is higher than the average scores for the other

categories, which are AI (12.13% and 17.94% for the top 50 and top 100, respectively),

NN (8.01% and 9.25% for the top 50 and top 100, respectively), and NLP (7.5% and

7.5% for the top 50 and top 100 papers, respectively).

5.1.5 GloVe

 We implemented the GloVe model using the word embeddings provided by

GloVe and Tokenizer from keras. While TF-IDF does not keep the original sequence of

words, we ensured to maintain the sequence of words from the documents to ensure

optimal performance by the model. The embeddings were represented as a one hundred

(100) dimension vector.

54

 Figure 5 shows the references in the paper “Uni-Perceiver-MoE: Learning Sparse

Generalist Models with Conditional MoEs”. After running the GloVe model, the top

hundred (100) similar papers to the input paper are shown below:

55

Figure 15. Top 100 Similar Documents for Uni-Perceiver-MoE: Learning Sparse

Generalist Models with Conditional MoEs Using GloVe

As with the previous sections, we show the references in our paper that are part of

the top fifty (50), and hundred (100) similar documents as predicted by our GloVe model.

56

In each figure, we show the reference and its similarity score to the input paper. Finally,

we calculate the percentage of references accurately predicted.

Figure 16. GloVe Performance on Sample Document I

Figure 17. GloVe Performance on Sample Document II

As shown above, our GloVe model predicted 17.65% of the references as part of

the top fifty (50), and 23.53% when considering the top hundred (100) similar

documents. Below is a table of the results for the GloVe model, for all the test

documents.

57

Table 14

GloVe Model Performance on Corpus

Paper Category Score (Top 50) Score (Top 100)

Functional Code Building Genetic

Programming

AI 12.5% 31.25%

TwiBot-22: Towards Graph-Based

Twitter Bot Detection

AI 0% 5.56%

Jewelry Shop Conversational

Chatbot

AI 0% 0%

Uni-Perceiver-MoE: Learning

Sparse Generalist

Models with Conditional MoEs

AI 17.65% 23.53%

Visualization in virtual reality: a

systematic review

VR 5% 5%

Joint Compute-Caching-

Communication Control

for Online Data-Intensive Service

Delivery

VR 36.84% 52.63%

58

Paper Category Score (Top 50) Score (Top 100)

6G Survey on Challenges,

Requirements,

Applications, Key Enabling

Technologies, Use

Cases, AI integration issues and

Security aspects

VR 6.67% 6.67%

Quantifying the Effects of Working in

VR for One Week

VR 16.67% 44.44%

Neo-GNNs: Neighborhood Overlap-

aware

Graph Neural Networks for Link

Prediction

NN 5% 5%

Learning Vehicle Trajectory

Uncertainty

NN 5% 10%

Early Transferability of Adversarial

Examples in

Deep Neural Networks

NN 0% 0%

Face-Dubbing++: Lip-Synchronous,

Voice Preserving Translation of

Videos

NN 16.67% 16.67%

NLU for Game-based Learning in

Real: Initial Evaluations

NLP 18.75% 18.75%

59

Paper Category Score (Top 50) Score (Top 100)

Multi-Agent Reinforcement

Learning is

A Sequence Modeling Problem

NLP 11.76% 29.41%

Differentially Private Model

Compression

NLP 6.25% 12.5%

Quantum Neural Network

Classifiers: A Tutorial

NLP 0% 5.56%

 Based on Table 14, the category with the highest average score is VR, with an

average score of 16.30% for the top 50 papers and 27.19% for the top 100 papers. This is

higher than the average scores for the oth.er categories, which are NLP (9.19% and

16.55% for the top 50 and top 100, respectively), AI (7.53% and 15.09% for the top 50

and top 100, respectively), and NN (6.67% and 7.91% for the top 50 and top 100 papers,

respectively).

5.2 Enhanced Model Evaluations

 Here, we implement a new algorithm for calculating the similarity of the

documents by splitting the documents into smaller chunks, comparing the smaller

chunks, and assigning the maximum similarity between the chunks as the similarity

between the two documents. This implements the formula:

60

sim(doc1, doc2) =max(sim(doc1_1,doc2_1), sim(doc1_1,doc2_2),...,(sim(doc1_n,

doc2_n))

where doc1_1 and doc2_1 are chunks of document 1 and document 2. As shown in the

example below, we see an improvement in the performance of the models when

subsections of the documents are used to determine the similarity score.

Taking one of our input documents as (Functional Code Building Genetic Programing)

as X, and one if its referenced papers (Lexicase Selection of Specialists) as Y, we compare

the similarity score between both papers using TF-IDF when comparing the whole

document, and TF-IDF when we compare subsections of the papers. In the first attempt,

the TF-IDF model was executed with stopwords removal. The resulting similarity score

was 0.7872. In order of ranking, it was the fifth most similar paper in the available

references for the input paper X. Finally, we compared both papers using their subsections.

Each paper was divided into 15 subsections. Other sizes attempted were ten(10),

twenty(20), and twenty-five (25). We found the similarity score between the two papers,

X and Y, to have increased from 0.7872 to 0.9681. We then proceeded to inspect the areas

of both documents that were marked as most similar. First, section 14 on both documents

were the most similar. Giving us 0.9681. Inspecting the cleaned version of the papers gives

the section(s) as follows:

From Y:

“e thomas helmuth lee spector comparison lin ear genome representations
software synthesis genetic programming theory practice xvii wolfgang

banzhaf erik goodman leigh sheneman leonardo trujillo bill worzel eds

springer east lansing mi usa https doi org doi edward pantridge lee

spector code building genetic programming proceedings genetic

evolutionary computation conference riccardo poli william b langdon

nicholas freitag mcphee field guide genetic programming published via

http lulu com freely avail able http www gp field guide org uk with

61

contributions j r koza fran ois pottier type inference presence subtyping

theory practice research report rr inria https hal inria fr inria john

alan robinson machine oriented logic based resolution principle journal

acm jacm geoffrey seward smith polymorphic type inference languages

overloading subtyping ph d dissertation usa umi order no gax dominik

sobania generalizability programs synthesized grammar guided genetic

programming eurogp proceedings th european conference genetic programming

lncs vol ting hu nuno lourenco eric medvet eds springer verlag virtual

event https doi org doi dominik sobania dirk schweim franz rothlauf

recent develop ments program synthesis evolutionary algorithms arxiv

preprint arxiv lee spector jon klein andmaartenkeijzer push execution

stack evolution control https doi org https doi org inco http www jstor

org stable https doi org https doi org https doi org https doi org https

doi org https doi org https doi org isal a https doi org https doi org

doi tevc https doi org https doi org https doi org https doi org doi

https hal inria fr inria https doi org doi https doi org abstract

introduction code building genetic programming tools type

theory types unification functional code building

gp genomes compilation ast evolution simplification experimental

design comparison methods results example solution programs discussion

future work conclusion acknowledgments re”

and from paper X:

“lee spector jon klein maarten keijzer push execution stack evolution

control gecco proceedings conference genetic evolutionary computation

vol acm press washington dc usa https doi org lee spector william la

cava saul shanabrook thomas helmuth edward pantridge relaxations lexicase

parent selection ingenetic programming theory practice xv wolfgang

banzhaf randal s olson william tozier rick riolo eds springer

international publishing cham lee spector alan robinson genetic

programming autocon structive evolution push programming language genetic

program ming evolvable machines march https doi org a https doi

org https doi org https doi org https doi org https doi org https doi

org https doi org https doi org https doi org https doi org tevc https

web cs umass edu publication docs um cs phd pdf https web cs umass edu

publication docs um cs phd pdf https doi org https doi org http www

springer com us book https doi org https doi org https doi org ecal a

https doi org ecal a https doi org https doi org https doi org http

arxiv org abs http arxiv org abs http arxiv org abs https doi org https

doi org https doi org https doi org a https doi org a erratum notice

publication came attention errors data presented figure errors corrected

figure pdf corrections influence discussion presented text therefore text

changed originally published incorrect version figure found below string

lengths backwards syllables vector average x word lines last index of

zero mirror image negative to zero replace space with newline percent

training cases used selection e n si ty abstract introduction background

lexicase selection specialists genetic programming experimental

design benchmark problems push pushgp specialists tournament selection

specialists lexicase selection importance selecting specialists

conclusions acknowledgments refe”.

62

The sections from the cleaned version as shown above do not give convincing context into

why they were the most similar sections. A look into the sections of the documents in their

original state (uncleaned) revealed that this was the citation section on both papers.

Another example of a similar performance is when we consider the paper(X):

Quantum Neural Network Classifiers: A Tutorial in natural language processing. This

paper, when compared to others using TF-IDF has a 0% similarity match with any of the

papers referenced in the corpus. However, when compared using subsections of the

document, we find a 0.9339 match with paper Y (A rigorous and robust quantum speed-

up in supervised machine learning). From the unclean version of the documents, the

matching subsections were section 13 from X, and section 2 from Y. The text for each of

the subsections are shown below.

From paper X:

“6] X.-Z. Luo, J.-G. Liu, P. Zhang and L. Wang, Yao.jl: Extensible,

Efficient Framework for Quantum
Algorithm Design, Quantum 4, 341 (2020), doi:10.22331/q-2020-10-11-341.
[57] J. Bezanson, A. Edelman, S. Karpinski and V. B. Shah, Julia: A Fresh

Approach to Numerical
Computing, SIAM Rev. 59(1), 65 (2017), doi:10.1137/141000671.

[58] M. Broughton, G. Verdon, T. McCourt, A. J. Martinez, J. H. Yoo, S.

V. Isakov, P. Massey,
M. Y. Niu, R. Halavati, E. Peters, M. Leib, A. Skolik et al., TensorFlow

Quantum: A Software
Framework for Quantum Machine Learning, URL

https://arxiv.org/abs/2003.02989 (2020).
22
https://doi.org/10.22331/q-2021-09-09-539
https://arxiv.org/abs/2103.16774
https://doi.org/10.1103/PhysRevA.103.032430
https://arxiv.org/abs/2106.03880
https://doi.org/10.1103/PhysRevResearch.3.L032049
https://doi.org/10.22331/q-2021-03-29-422
https://doi.org/10.1103/PRXQuantum.2.040321
https://doi.org/10.1103/PhysRevLett.128.080506
https://arxiv.org/abs/2007.12369
https://doi.org/10.1103/PRXQuantum.2.040309
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.1103/RevModPhys.94.015004
https://doi.org/10.22331/q-2020-10-11-341

63

https://doi.org/10.1137/141000671
https://arxiv.org/abs/2003.02989
REFERENCES Submission
[59] V. Bergholm, J. Izaac, M. Schuld, C. Gogolin, M. S. Alam, S. Ahmed,

J. M. Arrazola, C. Blank,
A. Delgado, S. Jahangiri, K. McKiernan, J. J. Meyer et al., PennyLane:

Automatic differ-
entiation of hybrid quantum-classical computations, URL

https://arxiv.org/abs/1811.04968
(2020).
[60] N. Killoran, J. Izaac, N. Quesada, V. Bergholm, M. Amy and C.

Weedbrook, Strawberry
Fields: A Software Platform for Photonic Quantum Computing, Quantum 3,

129 (2019),
doi:10.22331/q-2019-03-11-129.
[61] G. Aleksandrowicz, T. Alexander, P. Barkoutsos, L. Bello, Y. Ben-

Haim, D. Bucher, F. J.
Cabrera-Hernández, J. Carballo-Franquis, A. Chen, C.-F. Chen, J. M. Chow,

A. D. Córcoles-
Gonzales et al., Qiskit: An Open-source Framework for Quantum Computing,

Zenodo,
doi:10.5281/zenodo.2562111 (2019).
[62] K. Svore, A. Geller, M. Troyer, J. Azariah, C. Granade, B. Heim, V.

Kliuchnikov, M. Mykhailova,
A. Paz and M. Roetteler, Q#: Enabling Scalable Quantum Computing and

Development with a
High-level DSL, In Proceedings of the Real World Domain Specific Languages

Workshop 2018,
RWDSL2018, pp. 1–10. Association for Computing Machinery, New York, NY,

USA, ISBN
978-1-4503-6355-6, doi:10.1145/3183895.3183901 (2018).
[63] F. Zhang, C. Huang, M. Newman, J. Cai, H. Yu, Z. Tian, B. Yuan, H.

Xu, J. Wu, X. Gao,
J. Chen, M. Szegedy et al., Alibaba Cloud Quantum Development Platform:

Large-Scale Clas-
sical Simulation of Quantum Circuits, URL

https://arxiv.org/abs/1907.11217 (2019).
[64] C. Huang, M. Szegedy, F. Zhang, X. Gao, J. Chen and Y. Shi, Alibaba

Cloud Quantum De-
velopment Platform: Applications to Quantum Algorithm Design, URL

https://arxiv.org/abs/
1909.02559 (2019).
[65] D. Nguyen, D. Mikushin and Y. Man-Hong, HiQ-ProjectQ: Towards user-

friendly
and high-performance quantum computing on GPUs, In 2021 Design, Automa-
tion Test in Europe Conference Exhibition (DATE), pp. 1056–1061. Grenoble,

France,
doi:10.23919/DATE51398.2021.9474170 (2021).
[66] A. S. Green, P. L. Lumsdaine, N. J. Ross, P. Selinger and B. Valiron,

Quipper: A scal-
able quantum programming language, In Proceedings of the 34th ACM SIGPLAN

Con-
ference on Programming Language Design and Implementation, PLDI ’13, pp.

333–342.
Association for Computing Machinery, New York, NY, USA, ISBN 978-1-4503-

2014-6,
doi:10.1145/2491956.2462177 (2013).

64

[67] A. JavadiAbhari, S. Patil, D. Kudrow, J. Heckey, A. Lvov, F. T. Chong

and M. Martonosi,
ScaffCC: Scalable compilation and analysis of quantum programs, Parallel

Computing 45,
2 (2015), doi:10.1016/j.parco.2014.12.001.
[68] N. Khammassi, I. Ashraf, X. Fu, C. Almudever and K. Bertels, QX: A

high-performance quan-
tum computer simulation platform, In Design, Automation Test in Europe

Conference Exhibition
(DATE), 2017, pp. 464–469. Lausanne, Switzerland,

doi:10.23919/DATE.2017.7927034
(2017).
[69] J. R. Johansson, P. D. Nation and F. Nori, QuTiP: An open-source

Python framework for the dy-
namics of open quantum systems, Computer Physics Communications 183(8),

1760 (2012),
doi:10.1016/j.cpc.2012.02.021.
23
https://arxiv.org/abs/1811.04968
https://doi.org/10.22331/q-2019-03-11-129
https://doi.org/10.5281/zenodo.2562111
https://doi.org/10.1145/3183895.3183901
https://arxiv.org/abs/1907.11217
https://arxiv.org/abs/1909.02559
https://arxiv.org/abs/1909.02559
https://doi.org/10.23919/DATE51398.2021.9474170
https://doi.org/10.1145/2491956.2462177
https://doi.org/10.1016/j.parco.2014.12.001
https://doi.org/10.23919/DATE.2017.7927034
https://doi”

And from paper Y:

“performance of SVM-QKE remains robust with additive noise in the kernel.

In the following we prove noise robustness by introducing two additional

results. First, we show that the dual SVM program (Eq. (5)) is robust,

i.e., when the kernel used in (5) has a small additive perturbation, then

the solution returned by the program also has a small perturbation. This

follows from strong convexity of (5) and standard perturbation analysis

of positive definite quadratic programs [46]. This result implies that

the hyperplane w′ obtained by the noisy kernel is close to the noiseless

solution w with high probability. Second, we show that when w′ is close

to w, the linear classifier obtained by w′ has high accuracy. This

seemingly simple statement is not trivial, as the sign function is

sensitive
to noise. That is, if 〈φ(x), w〉 is very close to 0, then a small
perturbation in w could change its sign. We provide a solution to this

problem by proving a stronger generalization bound. We show
7 that if a hyperplane w has a large margin on the training set, then not

only does 〈φ(x), w〉 have the correct sign, it is also bounded away from

0 with high probability. Therefore, when the noisy solution w′ is close

to w, 〈φ(x), w′〉 also has the correct sign with high probability.

Combining these two results with the proof sketch, we have the full proof

of Theorem 2.
Conclusions and outlook We show that learning with quantum feature maps

provides a way to harness the computational

https://doi/

65

power of quantum mechanics in machine learning problems. This idea leads

to a simple quantum
machine learning algorithm that makes no additional assumptions on data

access and has rigorous
and robust performance guarantees. While the learning problem we have

presented here that
demonstrates an exponential quantum speed-up is not practically

motivated, our result sets a
positive theoretical foundation for the search of practical quantum

advantage in machine learning.
An important future direction is to construct quantum feature maps that

can be applied to practical
machine learning problems that are classically challenging. The results

we have established here
can be useful for the theoretical analysis of such proposals.

An important advantage of the SVM-QKE algorithm, which only uses quantum

computers to
estimate kernel entries, is that error-mitigation techniques can be

applied [47–49] when the feature
map circuit is sufficiently shallow. Our robustness analysis gives hope

that an error-mitigated
quantum feature map can still maintain its computational power. Finding

quantum feature maps
that are sufficiently powerful and shallow is therefore the stepping stone

towards obtaining a
quantum advantage in machine learning on near-term devices.
ACKNOWLEDGMENTS
We thank Sergey Bravyi and Robin Kothari for helpful comments and

discussions. Y.L. was sup-
ported by Vannevar Bush faculty fellowship N00014-17-1-3025 and DOE QSA

grant #FP00010905.
Part of this work was done when Y.L. was a research intern at IBM. S.A.

and K.T. acknowledge
support from the MIT-IBM Watson AI Lab under the project Machine Learning

in Hilbert Space,
the IBM Research Frontiers Institute and the ARO Grant W911NF-20-1-0014.
[1] J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe, and S.

Lloyd, Nature 549, 195 (2017).
[2] S. Arunachalam and R. de Wolf, SIGACT News 48, 41–67 (2017).
[3] V. Dunjko and H. J. Briegel, Reports on Progress in Physics 81, 074001

(2018).
[4] C. Ciliberto, M. Herbster, A. D. Ialongo, M. Pontil, A. Rocchetto, S.

Severini, and L. Wossnig, Proceed-
ings of the Royal Society A: Mathematical, Physical and Engineering

Sciences 474, 20170551 (2018).
[5] G. Carleo, I. Cirac, K. Cranmer, L. Daudet, M. Schuld, N. Tishby, L.

Vogt-Maranto, and L. Zdeborová,
Rev. Mod. Phys. 91, 045002 (2019).
[6] A. W. Harrow, A. Hassidim, and S. Lloyd, Phys. Rev. Lett. 103, 150502

(2009).
[7] N. Wiebe, D. Braun, and S. Lloyd, Phys. Rev. Lett. 109, 050505 (2012).
[8] S. Lloyd, M. Mohseni, and P. Rebentrost, Quantum algorithms for

supervised and unsupervised machine
learning (2013), arXiv:1307.0411 [quant-ph].

66

[9] S. Lloyd, M. Mohseni, and P. Rebentrost, Nature Physics 10, 631

(2014).
[10] P. Rebentrost, M. Mohseni, and S. Lloyd, Phys. Rev. Lett. 113, 130503

(2014).
[11] S. Lloyd, S. Garnerone, and P. Zanardi, Quantum algorithms for

topological and geometric analysis of
big data (2014), arXiv:1408.3106 [quant-ph].
[12] I. Cong and L. Duan, New Journal of Physics 18, 073011 (2016).
[13] I. Kerenidis and A. Prakash, Quantum recommendation systems (2016),

arXiv:1603.08675 [quant-ph].
https://doi.org/10.1038/nature23474
https://doi.org/10.1145/3106700.3106710
https://doi.org/10.1088/1361-6633/aab406
https://doi.org/10.1098/rspa.2017.0551
https://doi.org/10.1098/rspa.2017.0551
https://doi.org/10.1103/RevModPhys.91.045002
https://doi.org/10.1103/PhysRevLett.103.150502
https://doi.org/10.1103/PhysRevLett.109.050505
https://arxiv.org/abs/1307.0411
https://doi.org/10.1038/nphys3029
https://doi.org/10.1103/PhysRevLett.113.130503
https://arxiv.org/abs/1408.3106
https://doi.org/10.1088/1367-2630/18/7/073011
https://arxiv.org/abs/1603.08675
8
[14] F. G. S. L. Brandão, A. Kalev, T. Li, C. Y.-Y. Lin, K. M. Svore, and

X. Wu, in 46th International Col-
loquium on Automata, Languages, and Programming (ICALP 2019), Leibniz

International Proceedings
in Informatics (LIPIcs), Vol. 132 (2019) pp. 27:1–27:14.
[15] P. Rebentrost, A. Steffens, I. Marvian, and S. Lloyd, Phys. Rev. A

97, 012327 (2018).
[16] Z. Zhao, J. K. Fitzsimons, and J. F. Fitzsimons, Phys. Rev. A 99,

052331 (2019).
[17] S. Aaronson, Nature Physics 11, 291 (2015).
[18] E. Tang, in Proceedings of the 51st Annual ACM SIGACT Symposium on

Theory of Computing , STOC
(2019) p. 217–228.
[19] E. Tang, Quantum-inspired classical algorithms for principal

component analysis and supervised clus-
tering (2018), arXiv:1811.00414 [cs.DS].
[20] A. Gilyén, S. Lloyd, and E. Tang, Quantum-inspired low-rank

stochastic regression with logarithmic
dependence on the dimension (2018), arXiv:1811.04909 [cs.DS].
[21] N.-H. Chia, H.-H. Lin, and C. Wang, Quantum-inspired sublinear

classical algorithms for solving low-

rank linear systems (2018), arXiv:1811.04852 [cs.DS].
[22] C. Ding, T.-Y. Bao, and H.-L. Huang, Quantum-inspired support vector

machine (2019),
arXiv:1906.08902 [cs.LG].
[23] N.-H. Chia, A. Gilyén, T. Li, H.-H. Lin, E. Tang, and C. Wang, in

Proceedings of the 52nd Annual
ACM SIGACT Symposium on Theory of Computing , STOC (2020) p. 387–400.
[24] K. Mitarai, M. Negoro, M. Kitagawa, and K. Fujii, Physical Review A

98, 032309 (2018).

67

[25] E. Farhi and H. Neven, arXiv preprint arXiv:1802.06002 (2018).
[26] E. Grant, M. Benedetti, S. Cao, A. Hallam, J. Lockhart, V. Stojevic,

A. G. Green, and S. Severini, npj
Quantum Information 4, 1 (2018).
[27] M. Schuld, A. Bocharov, K. M. Svore, and N. Wiebe, Physical Review

A 101, 032308 (2020).
[28] M. Benedetti, E. Lloyd, S. Sack, and M. Fiorentini, Quantum Science

and Technology 4, 043001 (2019).
[29] V. Havĺıček, A. D. Córcoles, K. Temme, A. W. Harrow, A. Kandala, J.

M. Chow, and J. M. Gambetta,
Nature 567, 209 (2019).
[30] M. Schuld and N. Killoran, Phys. Rev. Lett. 122, 040504 (2019).
[31] B. E. Boser, I. M. Guyon, and V. N. Vapnik, in Proceedings of the

Fifth Annual Workshop on Compu-
tational Learning Theory , COLT (1992) p. 144–152.
[32] V. Vapnik, The nature of statistical learning theory (Springer

science & business media, 2013).
[33] M. Anthony and P. L. Bartlett, Combinatorics, Probability and

Computing 9, 213–225 (2000).
[34] J. Shawe-Taylor, P. L. Bartlett, R. C. Williamson, and M. Anthony,

IEEE Transactions on Information
Theory 44, 1926 (1998).
[35] P. Bartlett and J. Shawe-Taylor, Generalization performance of

support vector machines and other
pattern classifiers, in Advances in Kernel Methods: Support Vector

Learning (MIT Press, Cambridge,
MA, USA, 1999) p. 43–54.
[36] J. Shawe-Taylor and N. Cristianini, IEEE Transactions on Information

Theory 48, 2721 (2002).
[37] M. J. Kearns, The computational complexity of machine learning (MIT

press, 1990).
[38] R. A. Servedio and S. J. Gortler, SIAM J. Comput. 33, 1067–1092

(2004).
[39] R. Sweke, J.-P. Seifert, D. Hangleiter, and J. Eisert, On the quantum

versus classical learnability of
discrete distributions (2020), arXiv:2007.14451 [quant-ph].
[40] X. Gao, Z.-Y. Zhang, and L.-M. Duan, Science Advances 4,

10.1126/sciadv.aat9004 (2018).
[41] M. J. Kearns and U. V. Vazirani, An introduction to computational

learning theory (MIT press, 1994).
[42] P. W. Shor, SIAM Journal on Computing 26, 1484 (1997).
[43] M. Blum and S. Micali, SIAM J. Comput. 13, 850–864 (1984).
[44] D. Aharonov and A. Ta-Shma, SIAM Journal on Computing 37, 47 (2007).
[45] P. L. Bartlett and P. M. Long, Journal of Computer and System Sciences

56, 174 (1998).
[46] J. W. Daniel, Mathematical Programming 5, 41 (1973).
[47] K. Temme, S. Bravyi, and J. M. Gambetta, Phys. Rev. Lett. 119, 180509

(2017).
[48] Y. Li and S. C. Benjamin, Phys. Rev. X 7, 021050 (2017).
[49] A. Kandala, K. Temme, A. D. Córcoles, A. Mezzacapo, J. M. Chow, and

J. M. Gambetta, Nature 567,
491 (2019).
[50] M. Mosca and C. Zalka, International Journal of Quantum Information

02, 91 (2004).
[51] C. J. Burges, Data Mining and Knowledge Discovery 2, 121 (1998).
[52] A. J. Smola and B. Schölkopf, Statistics and Computing 14, 199

(2004).

68

https://doi.org/10.4230/LIPIcs.ICALP.2019.27
https://doi.org/10.4230/LIPIcs.ICALP.2019.27
https://doi.org/10.1103/PhysRevA.97.012327
https://doi.org/10.1103/PhysRevA.99.052331
https://doi.org/10.1038/nphys3272
https://doi.org/10.1145/3313276.3316310
https://arxiv.org/abs/1811.00414
https://arxiv.org/abs/1811.04909
https://arxiv.org/abs/1811.04852
https://arxiv.org/abs/1906.08902
https://doi.org/10.1145/3357713.3384314
https://doi.org/10.1145/3357713.3384314
https://doi.org/10.1088/2058-9565/ab4eb5
https://doi.org/10.1038/s41586-019-0980-2
https://doi.org/10.1103/PhysRevLett.122.040504
https://doi.org/10.1145/130385.130401
https://doi.org/10.1145/130385.130401
https://doi.org/10.1017/S0963548300004247
https://doi.org/10.1137/S0097539704412910
https://arxiv.org/abs/2007.14451
https://doi.org/10.1126/sciadv.aat9004
https://doi.org/10.1137/S0097539795293172
https://doi.org/10.1137/0213053
https://doi.org/10.1137/060648829
https://doi.or”

Based on the similarities of the documents above and their similar sections, we propose that the

words “http, https, arxiv, org, abs, and doi” should be added to the stop words list in any future

experiments. While these words are repeated across the corpus, they do not add any extra context

to the papers and as such should be applied accordingly. Given the time constraint in completing

these experiments, updating the stop words list and re-running the experiments would require extra

weeks of experimentation. Below we take a deeper look at the performance of the different models

when we compare the papers in subsections.

5.2.1 TF-IDF

 Figure 5 shows the references in the paper “Uni-Perceiver-MoE: Learning Sparse

Generalist Models with Conditional MoEs”. After running the TF-IDF model, the top

hundred (100) similar papers to the input paper are shown below:

69

Figure 18. Top 100 Similar Documents for Uni-Perceiver-MoE: Learning Sparse

Generalist Models with Conditional MoEs Using TF-IDF II

70

 As with the previous sections, we show the references in our paper that are part of

the top fifty (50), and hundred (100) similar documents as predicted by our TF-IDF model.

In each figure, we show the reference and its similarity score to the input paper. Finally,

we calculate the percentage of references accurately predicted.

Figure 19. TF-IDF II Performance on Sample Paper I

Figure 20. TF-IDF II Performance on Sample Paper II

As shown above, our TF-IDF model predicted 17.65% of the references as part of

the top fifty (50), and 29.41% when considering the top hundred(100) similar documents.

Shown below is a table of all the documents and their related scores.

71

Table 15

TF-IDF II Model Performance on Corpus

Paper Category Score (Top 50) Score (Top 100)

Functional Code Building Genetic

Programming

AI 12.5% 12.5%

TwiBot-22: Towards Graph-Based

Twitter Bot Detection

AI 0% 11.11%

Jewelry Shop Conversational Chatbot AI 0% 0%

Uni-Perceiver-MoE: Learning Sparse

Generalist

Models with Conditional MoEs

AI 17.65% 29.41%

Visualization in virtual reality: a

systematic review

VR 15% 45%

Joint Compute-Caching-

Communication Control

for Online Data-Intensive Service

Delivery

VR 31.58% 47.37%

6G Survey on Challenges,

Requirements,

Applications, Key Enabling

Technologies, Use

Cases, AI integration issues and

Security aspects

VR 6.67% 6.67%

72

Paper Category Score (Top 50) Score (Top 100)

Quantifying the Effects of Working in

VR for One Week

VR 22.22% 33.33%

Neo-GNNs: Neighborhood Overlap-

aware

Graph Neural Networks for Link

Prediction

NN 10% 10%

Learning Vehicle Trajectory

Uncertainty

NN 20% 20%

Early Transferability of Adversarial

Examples in

Deep Neural Networks

NN 29.41% 35.29%

Face-Dubbing++: Lip-Synchronous,

Voice Preserving Translation of Videos

NN 27.78% 33.33%

NLU for Game-based Learning in

Real: Initial Evaluations

NLP 6.25% 6.25%

Multi-Agent Reinforcement Learning is

A Sequence Modeling Problem

NLP 35.29% 47.05%

Differentially Private Model

Compression

NLP 0% 0%

Quantum Neural Network Classifiers:

A Tutorial

NLP 5.56% 5.56%

73

Based on Table 15, the category with the highest average score is VR, with an

average score of 18.89% for the top 50 papers and 33.10% for the top 100 papers. This is

higher than the average scores for the other categories, which are NN (21.80% and 24.66%

for the top 50 and top 100, respectively), NLP (11.78% and 14.71% for the top 50 and top

100, respectively), and AI (7.53% and 13.25% for the top 50 and top 100 papers,

respectively).

5.2.2 BERT

 Partial comparison using BERT was not possible due to resource constraints. The

partial comparison model was only able to process the first five (5) documents against the

corpus (9, 088 documents) in twenty-four (24) hours. While Google Colab was faster, the

projected cost of running the model would’ve exceeded seven thousand US dollars

($7000).

5.2.3 Doc2Vec

 Like the partial comparison for BERT, the doc2vec partial comparison model

wasn’t successful due to its processing speed. During experimentation, we were able to

compare a hundred and fifteen (115) documents against the corpus in twenty-one days.

Thus, we estimated that it would take approximately fifty (50) months to complete the

experiment at its current pace. Like BERT, our Google Colab estimate for completing the

comparison is approximately eight thousand US dollars ($8000).

74

5.2.4 Word2Vec

Shown below is a table of all test documents and their related scores when

partially compared using Word2Vec.

Table 16

Word2Vec-II Model Performance on Corpus

Paper Category Score (Top 50) Score (Top 100)

Functional Code Building Genetic

Programming

AI 25% 25%

TwiBot-22: Towards Graph-Based

Twitter Bot Detection

AI 0% 0%

Jewelry Shop Conversational Chatbot AI 0% 0%

Uni-Perceiver-MoE: Learning Sparse

Generalist

Models with Conditional MoEs

AI 5.88% 23.5%

Visualization in virtual reality: a

systematic review

VR 50% 75%

Joint Compute-Caching-

Communication Control

for Online Data-Intensive Service

Delivery

VR 57.89% 63.16%

75

Paper Category Score (Top 50) Score (Top 100)

6G Survey on Challenges,

Requirements,

Applications, Key Enabling

Technologies, Use

Cases, AI integration issues and

Security aspects

VR 33.33% 40%

Quantifying the Effects of Working in

VR for One Week

VR 27.78% 44.44%

Neo-GNNs: Neighborhood Overlap-

aware

Graph Neural Networks for Link

Prediction

NN 10% 15%

Learning Vehicle Trajectory

Uncertainty

NN 20% 20%

Early Transferability of Adversarial

Examples in

Deep Neural Networks

NN 41.17% 47.08%

Face-Dubbing++: Lip-Synchronous,

Voice Preserving Translation of

Videos

NN 33.33% 38.89%

NLU for Game-based Learning in

Real: Initial Evaluations

NLP 6.25% 12.50%

76

Paper Category Score (Top 50) Score (Top 100)

Multi-Agent Reinforcement Learning

is

A Sequence Modeling Problem

NLP 47.06% 52.94%

Differentially Private Model

Compression

NLP 0% 0%

Quantum Neural Network Classifiers:

A Tutorial

NLP 0% 0%

Based on Table 16, the category with the highest average score is VR, with an

average score of 42.5% for the top 50 papers and 55.54% for the top 100 papers. This is

higher than the average scores for the other categories, which are NN (26.125% and

30.24% for the top 50 and top 100, respectively), NLP (13.27% and 16.36% for the top 50

and top 100, respectively), and AI (7.72% and 12.125% for the top 50 and top 100 papers,

respectively).

5.2.5 GloVe

Like Doc2Vec, and BERT, partial comparison for GloVe was also not successful

due to limited resource and time constraints. Similarly, using Google Colab promised to

complete the experiments, however. The cost of completing the experiment using Colab

was estimated to be eight thousand US dollars ($8000).

77

Chapter 6

Analysis And Discussion

 In this chapter, we will begin by analyzing the results of our experiment(s), and

consequently our contribution to the current IR landscape.

6.1 Performance Analysis

 Firstly, we will discuss the results of TF-IDF. Below is a table of the average

performance of the two approaches on our test documents.

Table 17

TF-IDF and TF-IDF II Comparison

Category TF-IDF (50) TF-IDF II (50) TF-IDF (100) TF-IDF II (100)

VR 24.49% 18.89% 31.29% 33.10%

AI 15.17% 7.53% 20.99% 13.25%

NLP 9.01% 11.78% 15.07% 14.71%

NN

5.42% 21.80% 10.55% 24.66%

 Although not significant, there is a slight increase in the average performance of

TF-IDF II (when we compare documents in part). The most noticeable difference is in the

performance of TF-IDF II on Neural Networks, a 300% increase for the top fifty (50)

papers (from 5.42% to 21.80%) and over 130% performance improvement for the top

hundred (100) papers (from 10.55% to 24.66%). Another point of interest is the negative

performance of TF-IDF II on the Artificial Intelligence category. As shown by Table 10,

78

there’s a slight decrease in the number of references returned as part of similar documents

across both experiment sizes. A 50.38% decrease when comparing the top fifty papers,

and a 36.88% decrease when comparing the average of the top hundred papers. Based on

their average performance, we can conclude that when comparing entire documents, TF-

IDF performed better on the VR category. However, when comparing the documents in

chunks, TF-IDF performed better on the NN category.

 Next, we look at the performance of word2vec when the papers are compared in

parts.

Table 18

Word2Vec and Word2Vec II Comparison

Category W2Vec (50) W2Vec II (50) W2Vec (100) W2Vec II (100)

AI 12.13% 7.72% 17.94% 12.125%

VR 20.32% 42.5% 24.69% 55.54%

NN 8.05% 26.125% 9.31% 30.24%

NLP

7.54% 13.27% 7.54% 16.36%

 Based on Table 18, we can see that comparing the documents in chunks provides

a higher performance by average across three (3) of the four (4) categories. The most

visible difference is in VR and NN, with the performance improvement on NN going as

high as 200% when considering the top hundred (100) documents. Like TF-IDF II, there

is a slight decrease in the performance of Word2Vec II on Artificial Intelligence. We

79

notice a 44.4% decrease in the top fifty (50) similar documents and a 32.39% decrease in

the top one hundred (100) similar documents.

 The consistency in negative performance of the models in Artificial Intelligence

can be attributed to the overlapping content of the documents as most of the documents in

the corpus are related to Artificial Intelligence. Due to the high accuracy in the relevant

documents recommended by partial comparison, other documents in the corpus that are

not selected as part of the references for the test documents are returned as the most

similar documents.

6.2 Vector and Matrix Size Variations

The performance of each model varies depending on the vector size

(max_features for TF-IDF) used to run the model. For models such as Doc2Vec and

Word2Vec, the processing time varies directly proportional to the vector size i.e higher

values of vector size would significantly increase the processing time of the models. In

our initial experiment, TF-IDF was executed with a max_features of sixty-four (64). We

further experimented with other values: one thousand (1,000), two thousand (2,000), five

thousand (5000), ten thousand (10,000), and fifteen thousand (15,000). At 18,0000, the

system goes out of memory due to the large matrix size. As shown in the attached charts,

we can see that the performance grows as we go towards 10000 but flattens afterwards.

At its peak, its performance is comparable to the recorded values for Doc2Vec (vector

size 100). Below is a chart showing the performance of TF-IDF against their

max_features on AI.

80

Figure 21. Performance of TF-IDF on AI Against Varying max_features I

Figure 22. Performance of TF-IDF on AI Against Varying max_features II

81

Below are the vector sizes of the other models used in the experiment:

1. Doc2Vec: The vector_size for Doc2Vec determines the dimensionality of both

word vectors(embeddings) and document vectors. For the initial experiment, we

set this value to 100. A higher value can increase the performance but also

significantly increase the computational requirements.

2. Word2Vec: The vector_size for Word2Vec determines the dimensionality of

each word vector. This value was 64 for the initial experiment.

3. GloVe: The vector size was 100.

4. BERT: The default size for BERT (128) was used. The transformer model used

was `sentence-transformers/all-mpnet-base-v2`.

 Based on the performance of TF-IDF with max_features >= 10,0000 being nearly

as good as Doc2Vec (with 100 as the vector size) and Word2Vec (with 64 as vector size),

we can imply that fine tuning Doc2Vec and Word2Vec with higher vector sizes will lead

to an improved performance of those models, however, we lack the resources to do that

currently. While we were able to run multiple experiments with TF-IDF using different

values of max_features, we were unable to replicate the same feat with the other models

due to their runtime. We intended to test several values, including thirty-two (32), sixty-

four (64), one hundred and twenty-eight (128), and two hundred and fifty-six(256).

However, due to the limitations of our current resources, conducting such experiments

would exceed the time available for the current thesis.

82

6.3. The Contribution of This Work and How it Fits into The Current Information

Retrieval Landscape

 The Systematic Literature Review (SLR) (Feng et al. 2018), as discussed in

Chapter 3, is a manual and labor-intensive process of compiling papers that are related to

a specific topic. Our work improves this by attempting to automatically detect similar

papers that should be referenced by an author when conducting literature reviews. Using

the different machine learning models, we attempted to match a given paper with other

similar papers in our corpus. By comparing the documents in whole, and in parts, we can

conclude that comparing the documents in parts (subsections) more accurately identifies

the similar (referenced) documents to a given paper. While Erekhinskaya et al. 2016

summarized the documents to automate literature reviews, our approach takes a step

further by accurately selecting referenced papers in a medium sized corpus. We also

show that the result of comparing two documents in whole and in parts can provide

varying results in terms of similarity but more importantly, we enable researchers to

search for similar documents without a structured Boolean query.

83

Chapter 7

Conclusion and Future Work

While comparing documents in parts proved to provide more accurate results, it is

worthy to note that it is relatively slower than comparing the documents as single entities.

Running on a 2.60Ghz CPU with four (4) cores, each of the original models generated a

similarity matrix for the corpus within seventy-two (72) hours, asides from Doc2Vec

which took another twenty-four (24) hours to complete. The processing time for

comparing the documents in part was exponentially greater than comparing the

documents as single entities. TF-IDF(II), when we compared the documents in part using

TF-IDF, created the pairwise similarity matrix in approximately two weeks (2) on the

same computer, while Word2Vec (II) did the same in three (3). Although these are long

waiting times for the algorithms to execute, we show that the execution time can be

reduced by using higher GPUs as provided by Google Colab.

Based on our experiments, Doc2Vec proved to be the most promising model for

document similarity as it has the highest similarity score on the corpus. However, we also

learned that it is the slowest model. Below are some of the other derived conclusions

from the experiment:

• In a distinctive corpus, partial comparison is more accurate in selecting

relevant similar documents.

• Partial comparison, while more accurate, is more intensive and requires

higher processing power.

• Word2Vec and Doc2Vec are the most accurate models for recommending

similar documents.

84

• TF-IDF is the least accurate when used in partial comparison but it is also

the fastest.

• The most relevant part used by partial comparison to determine similar

documents is their references.

• Similar documents can be suggested for an input document (text) without

a query.

• Doc2Vec, GloVe, and BERT cannot be partially compared without

significant computing resources beyond what’s available in the current

research environment.

 For future work, the algorithm for comparing the documents in part can be

improved to ensure that it is more efficient and performant on a larger corpus. The

current implementation uses memoization and dynamic programming to avoid

recalculating the similarity between two document pairs (i,j and j,i), however, we believe

that the algorithm can be optimized for parallel execution or multi-threading. Another

possible avenue for improvement is the application of large language models (LLM) to

the tasks.

85

References

H. P. Luhn, "A Statistical Approach to Mechanized Encoding and Searching of Literary

Information," in IBM Journal of Research and Development, vol. 1, no. 4, pp. 309-317,

Oct. 1957, doi: 10.1147/rd.14.0309.

Vannevar Bush. As We May Think. Atlantic Monthly, 176:101–108, July 1945.

Christopher D. Manning, Schtze, H., P. R., (2009, April 7). Introduction to information

retrieval.

Paul, C., Rettinger, A., Mogadala, A., Knoblock, C.A., Szekely, P. (2016). Efficient

Graph-Based Document Similarity. In: Sack, H., Blomqvist, E., d'Aquin, M., Ghidini, C.,

Ponzetto, S., Lange, C. (eds) The Semantic Web. Latest Advances and New Domains.

ESWC 2016. Lecture Notes in Computer Science(), vol 9678. Springer, Cham.

https://doi.org/10.1007/978-3-319-34129-3_21

Elsayed, T., Lin, J., & Oard, D. W. (2008, June). Pairwise document similarity in large

collections with mapreduce. In Proceedings of ACL-08: HLT, short papers (pp. 265-268).

Lee, M. D., Pincombe, B., & Welsh, M. (2005). An empirical evaluation of models of

text document similarity. In Proceedings of the annual meeting of the cognitive science

society (Vol. 27, No. 27).

Deerwester, S. C., Dumais, S. T., Landauer, T. K., Furnas, G. W., and Harshman, R. A.

(1990). Indexing by latent semantic analysis. Journal of the American Society of

Information Science, 41(6):391–407.

Salton, G. (1989). Automatic Text Processing: The Transformation, Analysis, and

Retrieval of Information by Computer. Addison-Wesley, Boston, MA.

Damashek, M. (1995). Gauging similarity with n-grams: Language-independent

categorization of text. Science, 267:843–848

Nelson Goodman. 1972. Seven strictures on similarity. Problems and Projects.

Daniel Bar, Torsten Zesch, and Iryna Gurevych. 2011. A Reflective View on Text

Similarity. ¨ International Conference Recent Advances in Natural Language Processing

(RANLP), pages 515–520..

Joeran Beel, Bela Gipp, Stefan Langer, and Corinna Breitinger. 2016. Research-paper

recommender systems: a literature survey. International Journal on Digital Libraries,

17(4):305–338.

https://doi.org/10.1007/978-3-319-34129-3_21

86

Ting-Hao ’Kenneth’ Huang, Chieh-Yang Huang, Chien-Kuang Cornelia Ding, Yen-Chia

Hsu, and C. Lee Giles. 2020. CODA-19: Reliably Annotating Research Aspects on

10,000+ CORD-19 Abstracts Using a Non-Expert Crowd. arXiv:2005.02367

Yigal Attali and Jill Burstein. 2006. Automated essay scoring with e-rater v.2.0. Journal

of Technology, Learning, and Assessment, 4(3).

G. Salton, A. Wong, and C.S. Yang, “A Vector Space Model for Automatic Indexing,”

Comm. ACM, vol. 18, no. 11, pp. 613-620, 1975.

Li, B., & Han, L. (2013, October). Distance weighted cosine similarity measure for text

classification. In International conference on intelligent data engineering and automated

learning (pp. 611-618). Springer, Berlin, Heidelberg.

Qaiser, S., & Ali, R. (2018). Text mining: Use of TF-IDF to examine the relevance of

words to documents. International Journal of Computer Applications, 181(1), 25–29.

https://doi.org/10.5120/ijca2018917395

Hakim, A. A., Erwin, A., Eng, K. I., Galinium, M., & Muliady, W. (2015). “Automated

document classification for news article in Bahasa Indonesia based on term frequency

inverse document frequency (TF-IDF) approach,” 6th International Conference on

Information Technology and Electrical Engineering: Leveraging Research and

Technology, (ICITEE), 2014

Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019, May 24). Bert: Pre-training

of deep bidirectional Transformers for language understanding. arXiv.org. Retrieved

November 16, 2022, from https://arxiv.org/abs/1810.04805

Pennington, J., Socher, R., & Manning, C. D. (2014, October). Glove: Global vectors for

word representation. In Proceedings of the 2014 conference on empirical methods in

natural language processing (EMNLP) (pp. 1532-1543).

Quoc Le and Tomas Mikolov. 2014. Distributed representations of sentences and

documents. In Proceedings of the 31st International Conference on Machine Learning

(ICML 2014), pages 1188–1196, Beijing, China.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013a. Efficient estimation

of word representations in vector space. In Proceedings of Workshop at the International

Conference on Learning Representations, 2013, Scottsdale, USA.

Rumelhart, David E, Hinton, Geoffrey E, and Williams, Ronald J. Learning

representations by back-propagating errors. Nature, 323(6088):533–536, 1986.

T. Mikolov, W.T. Yih, G. Zweig. Linguistic Regularities in Continuous Space Word

Representations. NAACL HLT 2013.

https://doi.org/10.5120/ijca2018917395

87

Harris, Zellig. Distributional structure. Word, 1954.

Raulji, J. K., & Saini, J. R. (2016). Stop-word removal algorithm and its implementation

for Sanskrit language. International Journal of Computer Applications, 150(2), 15-17.

Reimers, N., & Gurevych, I. (2019). Sentence-bert: Sentence embeddings using Siamese

Bert-Networks. Proceedings of the 2019 Conference on Empirical Methods in Natural

Language Processing and the 9th International Joint Conference on Natural Language

Processing (EMNLP-IJCNLP). https://doi.org/10.18653/v1/d19-1410

A. M. P. Braşoveanu and R. Andonie, "Visualizing Transformers for NLP: A Brief

Survey," 2020 24th International Conference Information Visualisation (IV), 2020, pp.

270-279, doi: 10.1109/IV51561.2020.00051.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... &

Polosukhin, I. (2017). Attention is all you need. Advances in neural information

processing systems, 30.

Carpineto, C., & Romano, G. (2012). A survey of automatic query expansion in

information retrieval. ACM Computing Surveys.

https://doi.org/10.1145/2071389.2071390

Crouch, C., McGill, M., Lesk, M., Jones, K. S., Fox, E. A., Harman, D., & Kraft, D. H.

(1996). In Memorium: Gerald Salton, March 8, 1927-August 28, 1995. Journal of the

American Society for Information Science, 47(2), 108–115.

https://doi.org/10.1002/(sici)1097-4571(199602)47:2<108::aid-asi2>3.0.co;2-2

Dubin, D. (2004). The most influential paper gerard salton never wrote. Library Trends.

Erekhinskaya, T., Balakrishna, M., Tatu, M., Werner, S., & Moldovan, D. (2016).

Knowledge extraction for literature review. In Proceedings of the ACM/IEEE Joint

Conference on Digital Libraries. https://doi.org/10.1145/2910896.2925441

Feng, L., Chiam, Y. K., & Lo, S. K. (2018). Text-Mining Techniques and Tools for

Systematic Literature Reviews: A Systematic Literature Review. In Proceedings - Asia-

Pacific Software Engineering Conference, APSEC.

https://doi.org/10.1109/APSEC.2017.10

Jones, K. S. (1972). A statistical interpretation of term specificity and its application in

retrieval. Journal of Documentation. https://doi.org/10.1108/eb026526

Kelly, D., & Sugimoto, C. R. (2013). A systematic review of interactive information

retrieval evaluation studies, 1967-2006. Journal of the American Society for Information

Science and Technology. https://doi.org/10.1002/asi.22799

https://doi.org/10.18653/v1/d19-1410
https://doi.org/10.1145/2071389.2071390
https://doi.org/10.1145/2910896.2925441
https://doi.org/10.1109/APSEC.2017.10
https://doi.org/10.1108/eb026526
https://doi.org/10.1002/asi.22799

88

Luhn, H. P. (1958). The Automatic Creation of Literature Abstracts. IBM Journal of

Research and Development, 159–165. https://doi.org/10.1147/rd.22.0159

Rocchio., J. J. (1965). Relevance Feedback in Information Retrieval, Report No. ISR-9 to

the National Science Foundation.

Salton, G. (1971). The SMART Retrieval System Experiments in Automatic Text

Processing. Prenticetice-Hall.

Sanderson, M., & Croft, W. B. (2012). The history of information retrieval research. In

Proceedings of the IEEE. https://doi.org/10.1109/JPROC.2012.2189916

Turtle, H. (1994). Natural language vs. Boolean query evaluation: A comparison of

retrieval performance. In Proceedings of the 17th annual international ACM SIGIR

conference on Research and development in information retrieval (pp. 212–220).

Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, et al., "Roberta: A robustly optimized

BERT pretraining approach", CoRR, vol. abs/1907.11692, 2019, [online] Available:

http://arxiv.org/abs/1907.11692.

Z. Lan, M. Chen, S. Goodman, K. Gimpel, P. Sharma and R. Soricut, "ALBERT: A lite

BERT for self-supervised learning of language representations", 8th International

Conference on Learning Representations ICLR 2020, April 26-30, 2020, [online]

Available: https://openreview.net/forum?id=H1eA7AEtvS.

https://doi.org/10.1147/rd.22.0159
https://doi.org/10.1109/JPROC.2012.2189916
http://arxiv.org/abs/1907.11692
https://openreview.net/forum?id=H1eA7AEtvS

89

Appendix A

Arxiv File Download Code

Submitted with this thesis is a copy of the python used in downloading the

documents from arxiv and converting the documents to PDF.

90

Appendix B

Document Similarity Code

Submitted with this thesis is a copy of the python used in the model experiments.

91

Appendix C

Model Reports Code

 Submitted with this thesis is a copy of the python code used in calculating the

similarity of documents using the data/result from Appendix B.

	Enhancing Inter-Document Similarity Using Sub Max
	Recommended Citation

	tmp.1701098283.pdf.pRe2p

