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Abstract

Noncovalent interactions play a critical role in chemistry and biochemistry. Understanding
how to modulate closely situated noncovalent interactions is of utmost importance in the design
of functional materials, supramolecular assemblies, pharmaceuticals, and catalysts. Over the past
two decades, there has been a significant surge in research and applications on halogen bonds,
driven by their exceptional properties such as high directionality and unique tunability when
compared to hydrogen bonds. Taking inspiration from nature and other synthetic anion-binding
receptors that effectively employ multiple noncovalent interactions in a concerted manner, we
have developed an innovative preorganization strategy termed the "Hydrogen Bond Enhanced
Halogen Bond." This unique combination of hydrogen and halogen bond interactions yields an
anion-binding performance over an order of magnitude greater than that achieved with either
hydrogen bonds or halogen bonds alone. In-depth investigations, including examinations of
solvent effects and substituent impacts, have been undertaken to gain insights into this
interaction. We have also pushed the boundaries of this interaction by incorporating non-
traditional C-H hydrogen bond donors. This dissertation provides significant insights of this
interaction fueling the development of new generations of halogen bond-based anion receptors
with exciting applications in anion recognition, organocatalysis, anion transport, and anion
sensing.

The ensuing chapters provide a comprehensive overview of this study. Chapter 1 introduces
halogen bonding, tracing its evolution from hydrogen bonds, elucidating unique traits, and
exploring preorganization strategies within the Hydrogen Bond Enhanced Halogen Bond (HBeXB).
It also uncovers the captivating realm of anion binding through halogen bonds, highlighting their
significance in applications. In Chapter 2, the investigation delves into intriguing solvatochromism
and fluorescence responses to anions in halogen bonding anion receptors. Chapter 3 delves into
the intricate interplay between hydrogen and halogen bonds, with a focus on quantification of
the substituent effects in the hydrogen bond enhanced halogen bond. In Chapter 4, we delve into
unconventional approaches to enhance halogen bonds using non-traditional hydrogen bonds,
shedding light on anion binding in solution and offering innovative insights into this facet of
XB---anion interaction. Finally, Chapter 5 summarizes our findings and offers a glimpse into the
future.
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Chapter 1:
Halogen bond, the Hydrogen Bond Enhanced Halogen Bond and Halogen bond anion

binding

1.1 Introduction to the Halogen Bond

1.1.1 From Hydrogen Bond to Halogen Bond

Noncovalent interactions encompass various attractive interactions between molecules
or parts of molecules. Unlike covalent bonds, they do not rely on fully sharing or exchange of
electrons. These weaker interactions arise from various physical and chemical properties,
such as charge distribution, electron density, and molecular shape which play a crucial role in
various biological and chemical processes. Among the myriad noncovalent interactions,
hydrogen bonds (HBs) hold a privileged position due to their directional and tunable nature.
HBs occur between a hydrogen atom which is covalently bound to an electronegative atom
or group and an adjacent electron-rich acceptor (typically an oxygen, nitrogen, sulfur or
halide), leading to a strong electrostatic attraction (Figure 1 left). These interactions are crucial

in molecular recognition, solvation, and structural stability in biological systems.!

As- As-

: B o—
v A vy A
o+ A "
EWG s+4—: As- EWG 5+ €— : As-
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Figure 1. Schematic of HB interaction (left) and XB interaction (right).

In addition to the HB, another noteworthy noncovalent interaction is the halogen bond



(XB). The XB shares similarities with the HB but exhibits distinct characteristics. Unlike the HB
where the hydrogen atom acts as the electron-deficient donor, the XB contains an electron-
deficient halogen atom (such as chlorine, bromine, or iodine) that acts as an electron acceptor
and forms a noncovalent interaction by accepting electron density from an electron-rich
species (Figure 1, right). Higher directionality, tunability and enhanced binding with “soft”
Lewis bases by polarized halogen atoms, makes the XB unique and complimentary to the HB.
The XB was first noted in l:-:NHs complexes reported by J. J. Colin in 1814.2 Much later,
Mulliken introduced the concept of charge transfer complexes in the 1950s, where the
l,---Et,0 complexes was stabilized by charge transfer forces.? With the development of X-ray
crystallography, Hassel discovered that halogens can act as electron acceptors, and self-
assemble into charge transfer complexes in the presence of electron donors and was awarded
the 1969 Nobel prize in chemistry.* More recently, P. Politzer and J. S. Murray provided
computational studies in the early 1990s on the distribution of the electron density in halogen
atoms contributing to the understanding of the XB.>® Many crucial concepts like the “o-hole”
(a region of depleted and often positive electrostatic potential on the surface of halogen
atoms) have since been introduced.” With much debate, the XB was finally defined by IUPAC
in 2013: “A halogen bond occurs when there is evidence of a net attractive interaction
between an electrophilic region associated with a halogen atom in a molecular entity and a
nucleophilic region in another, or the same, molecular entity.”®
1.1.2 Nature of the Halogen Bond

A XB can be described as R-X--Y, where X is the donor which is a halogen atom that has

an electrophilic region due to an attached electron withdrawing group (EWG) R. Y is the



acceptor which is electron-rich, usually a Lewis base, like an anion. The XB has several
characteristic features: the interaction strength is in the range of 10 — 200 kJ mol?, the X--Y
distance is shorter than the sum of van der Waals radii of the involved atoms, the R—X--Y angle
is close to 180°, the strength of the interactions increase with decreasing electronegativity
and increasing polarizability of the halogen atom X (I > Br > Cl >> F).”

The XB can be understood in term of electrostatics’® and covalency®!?, An electrostatic
description suggests that due to the polarizability of the halogen, its electron density can
become anisotropic. Unshared electrons on the halogen atom X form a belt of negative
electrostatic potential around its central region, generating a positive “o-hole” along the
extension of the R—X o bond axis. The positive region termed the “o-hole” can be quantified
and compared by computing the maximum electrostatic potential (Vsmax) on the halogen. For
instance, in the electrostatic potential (ESP) mapping of trifluoromethyl halides, it is observed
that heavier halogen atoms have a larger “o-hole” which act as a stronger XB donor (Figure

2).
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Figure 2. Electrostatic potential surfaces of molecules CF3X (X = F, Cl, Br, 1). Electron deficient
regions are blue and electron rich regions are red (see scale). Copyright © 2006, Springer-Verlag.



The purely electrostatic o-hole model is enriched by additional considerations. Analysis
using density functional theory (DFT) has revealed that the halogen bond (XB) exhibits a
significant covalent component, arising from interactions between the highest occupied
molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO). Specifically,
the p-orbital lone pair on the XB acceptor interacts with the antibonding o* LUMO on the

halogen of the XB donor (Figure 3).1°
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Figure 3. Kohn—Sham MO analysis of halogen-bonded complexes DX:--A". (a) HOMO-
LUMO orbital interaction of XB. (b) Simplified orbital-interaction diagrams for DX:--A".
Copyright © 2012 Wolters & Bickelhaupt.

As the comprehensive understanding of the XB incorporating principles of electrostatics,

charge-transfer, and covalency has been improved, applications of this noncovalent



interaction are appearing at a rapid pace.'? For example, strong XBing can assist the self-
assembly of supramolecules.!* Additionally, XB organocatalysts are being developed by
researchers as an alternative to HB catalysts, and have successful examples been reported in
recent years.'* The charge transfer characteristics of the XB, along with its different solvent
dependencies (more insensitive to water than HB)°%, make it highly advantageous and serves
as a useful complement to other noncovalent interactions in the field of anion recognition
and the design of anion sensors.?®

1.2 The Hydrogen Bond Enhanced Halogen Bond (HBeXB) Preorganization

Understanding how to modulate both the strength of the XB and the structure of these
molecules is of broad importance for the continued development of functional halogenated
species. To this end, altering substituents proximal the XB donor and altering the halogen
donor and remains the leading strategy. Understanding new ways to control preorganization
and fine-tune XB strength will greatly aid in the development of functional XBing systems.

1.2.1 Preorganization strategy

Preorganization is an essential strategy of supramolecular chemistry which engenders
natural and synthetic molecules with remarkable functions using noncovalent forces (e.g.
HBing, steric effects, ion-pairing, and rt-mt stacking).'®® The principle of preorganization was
stated by Cram as “the more highly hosts and guests are organized for binding and low
solvation prior to their complexation, the more stable will be their complexes.”®
Intramolecular HBing has proven to be successful in preorganizing structure, such as

21-23

helicies'®?°, cavitands?!23 and ion transporters?*. Two primary strategies employed for HB

preorganization are internal®® and external®®?’ intramolecular HBing. For example, as an



established method, “Polarization enhanced HBing”, was used to preorganize a HB receptor
and result in a 8-fold increase for CI~ binding by the through-bond polarization due to the

external intramolecular amido NH---N3 (triazole) HBings (Figure 4).%’
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Figure 4. Example of stronger binding and more effective transport ability for fully preoganized
HB receptor due to the intramolecular HBing preorgization.

1.2.2 The origin of the hydrogen bond enhanced halogen bond (HBeXB)

Recent studies have compared the XB and HB, but systematic studies to understand and
qguantify the effect of how they influence each other are critically lacking. Hence, our lab
noticed the electronegative belt around the halogen atom due to the formation of the o-hole.
We came up with a new strategy which has an adjacent HB interact directly with the electron-
rich belt of the halogen atom. In our published initial studies, intramolecular HBing from an
amine polarizes the iodopyridinium XB donors of a bidentate anion receptor G2XB (Figure
5).28 This interaction, which we coined “the hydrogen bond enhanced halogen bond” (HBeXB),
can increase halide binding in solution by nearly 9-fold over G1XB which lacks intramolecular
HBeXB. Additional crystal data shows a notable reduction in XB distance and better planarity
of G2XB, confirming that HBeXB can preorganize the receptor while simultaneously

strengthening the XB and keeping the receptors in more rigid, planar bidentate conformations



in the solid state. Furthermore, G2XB derivatives are fluorescent, solvatochromic and have
photophysical response to anions (elaborated below in Chapter 2).2° The HBeXB has also been
used to improve the function of organocatalysts in a halide abstraction reaction.?° In a parallel
study, P. Shing Ho's lab showed that the HBeXB interaction can be used to increase enzyme
stability and activity. Enhancing the relatively weak chlorine XB donor at just one amino acid
residue of T4 lysozyme resulted in an increase of both thermal stability and enzymatic activity
at elevated temperatures.31-34

Based on the aforementioned examples, the HBeXB has the potential to extend the
utility of these interactions in chemistry and biochemistry, providing compelling alternative
approaches to the classic HB and XB in the realm of molecular engineering. Ongoing research
efforts are dedicated to gaining a more comprehensive understanding of the HBeXB, with the
aim of devising a rational design methodology for its utilization in various applications,
including self-assembly in synthetic anion channels, bolstering the binding strength in anion

sensors, and enhancing the performance of organocatalysts.
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Figure 5. ChemDraw representations of first generation XB receptor G1XB (left) and second
generation XB receptor that utilized the HBeXB strategy G2XB (right).

1.2.3 Computational insight of HBeXB interactions
The HBeXB interaction has garnered considerable attention from chemists ever since it

was discovered. Over the past two years, several computational studies have been conducted



to gain a deeper understanding of these interactions. One noteworthy study was conducted
by Dan Decato, who designed a series of trityl amide iodopyridinum XB donors featuring
isolated HBeXBs.3> Theoretical analysis revealed that the Vsmax of the iodine XB donors for
HBeXB derivatives ( with an adjacent monodentate amide HB) are more positive by 3.58—-3.89
kcal mol! compared to the isostructural non-HBing ester controls. Additionally, this HBeXB
amplification tends to be more pronounced in electron-rich systems, where the iodine
halogen is less polarized. Moreover, investigations into interaction energies with Cl~ showed
that monodentate iodine XB donors can be strengthened by up to 3 kcal mol™? when they
simultaneously accept a single intramolecular amide HB. The study by Susana Portela3®
confirms this XB strength enhancement and provides evidence that this enhancement is
attributable to intensified electrostatic and orbital attractions between the XB donor and the
anion. These findings suggest a significant degree of covalency in these XBs. Quantum
calculations by Steve Scheiner®” indicate that the introduction of external molecules capable
of forming a HB to the halogen atom of a molecule significantly augments its capacity to
participate in a XB with a nucleophile. Each such HB raises the XB energy by an increment of
more than a kcal mol. These combined results lay the groundwork for future investigations
concerning the interplay between HBs and XBs in close proximity. In the upcoming section,
there will be an extended exploration of the practical uses and applications of the XB in anion
binding.

1.3 Anion binding by Halogen Bonding

Anions hold significant importance in the modern world, as they play vital roles in

chemistry, biology, medicine, and the environment.3® With their electron-rich characteristics,



anions can be anticipated to form robust attractive interactions when serving as XB acceptors.
The distinctive properties of the XB have led to a notable increase in research dedicated to
exploring the fundamental and practical aspects of XB---anion interactions in the past two
decades.? Various neutral or cationic XB donor motifs have been developed and incorporated
into the design of synthetic anion receptors, such as neutral haloperfluoroarenes344,
halotriazoles*>>3, charged halotriazoliums>*>7, haloimidazoliums>%%3 and
halopyridiniums'3286469 The advantageous directionality of the XB---anion interactions make
XB receptors often have superior binding affinities and provides them with the potential to
selectively recognize and bind specific anions when compared to their analogous HB
receptors.’°
1.3.1 XB anion recognition

According to the Hard-Soft Acid-Base (HSAB) theory, the XB utilizes a soft Lewis acidic
halogen as the electrophilic source. As a result, soft Lewis base acceptors are expected to
have more favorable interactions with soft XB donors. Numerous experimental studies of XB
receptors displayed a clear selectivity preference for halides (Cl, Br’, I".) over oxoanions (NOs’,
HSO4,, SO4%, H2PO4, HPO4?, AcO, ReOs, etc.)**47L72 The proposed reasons for this
selectivity include potential charge transfer/dispersion contributions to the XB interactions,
along with a significant electrostatic component, as well as the differences in receptor design.
These findings provide insights into the design of selective receptors for “soft” anions. While
the investigations into the factors influencing the binding trend of halides (Hofmeister
bias®%7377 [anti-Hofmeister bias’®7°) are still ongoing, there have been notable advancements

in various areas. Examples include enantioselective anion recognition®°-2, the recognition of



biologically significant anions®3, and anion recognition in aqueous solvent media®*8, which
have emerged in recent years.
1.3.2 XB---anion interactions in organocatalysis

Inspired by the success of HBing in noncovalent organocatalysis®’, chemists have
consistently become interested in exploring the use of XBing in organic synthesis and
catalysis.?880 Building on the established halide recognition properties of haloimidazolium
salts, the group of Huber has employed these compounds as halide-abstracting promoters of
the Ritter reaction of benzhydryl bromide with acetonitrile in 2011.°? Since then, several
different types of XB donors were successfully used in halide abstraction reactions including
the Ritter type reaction®?, the Koenigs-Knorr type glycosylation®3, the Friedel-Crafts alkylation
reaction®*, the semipinacol rearrangement® and a controlled cationic living polymerization
of isobutyl vinyl ether (IBVE)®®°8, Meanwhile, the strong coordination of the XB donor to the
anion also poses a potential risk of catalyst inhibition, which is an intrinsic challenge in halide
abstraction reactions.'* Hence, exploring novel approaches to modulate the XB and
understand the interplay between binding affinity and catalysis efficiency becomes crucial.
1.3.3 XB---anion interactions in ion transport

XBing has shown potential for enhancing the mobility and selectivity of ions in various
materials and systems. While the application of XBing in ion transport is a promising avenue,
it is still a relatively new area of research, and further exploration is needed to fully
understand and optimize its potential in practical use. As researchers delve deeper into this
field, we can expect to see exciting advancements that may revolutionize ion transport-

related technologies: (1) The exploration of XBing as a design strategy for ion-selective
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membranes to amplify binding affinity for specific ions. This enhancement facilitates more
efficient and selective ion transport across membranes.?1% (2) Incorporating XBing into ionic
liquids and electrolytes can improve their ion mobility and conductivity, making them more
effective for energy storage devices like batteries and supercapacitors.193-103 (3) More
efficient drug carriers that deliver therapeutic agents to targeted cells or tissues can be
designed by exploiting XBing between drug molecules and cell receptors.’0419> (4) The
utilization of XBing in nanofluidic devices and nanotechnology allows for precise control and
manipulation of ions at the nanoscale, leading to the development of advanced sensors,
nanofluidic circuits, and nano-electromechanical systems (NEMS) with highly efficient ion
transport and detection capabilities.103:106
1.3.4 XB anion sensing

The charge transfer nature of the XB allows the incorporation of XB interactions to
provide an optical or electrochemical sensing response to anion guest binding. Due to its
simplicity and ubiquity, the use of UV-Vis spectroscopy has received attention in the study of
XB:---anion interactions. Many examples of XB anion receptors have been shown to undergo
changes in absorbance upon anion recognition but very few simple receptors undergo
significant changes.13404552107 The Beer group introduced and employed a Mechanically
Interlocked Molecules (MIMs) strategy in XB anion sensing, resulting in large scale, naked-eye
colorimetric changes upon anion recognition.1®11° |n contrast to colorimetric sensors, the
exploration of luminescent (particularly fluorescent) sensors utilizing XB interactions has been
undertaken to enhance sensor readout sensitivity and utility.2>°%%* The inherent traits of the

XB, such as lower solvent dependency, higher hydrophobicity and stricter geometric binding

11



preferences make XB receptors potentially capable of anion sensing in increasingly
competitive media and real-time sensing systems.

Bridge to Chapter 2:

The main approach to enhancing XBing is the utilization of substituent effects to modify
the electronics of the halogen donors. Our lab has developed a novel design strategy called
“Hydrogen bond enhanced Halogen bond”, which was inspired by successful preorganization
in supramolecular chemistry through the use of intramolecular HBs. This strategy takes
advantage of the polarizbaility of halogen atoms and as a result, linear XB interactions benefit
more from preorganization than other less directional interactions.

In our initial studies of HBeXB anion receptors, this interaction has been proved to
significantly enhance the anion binding. Along with the charge transfer characteristics of the
XB, this finding suggests that the HBeXB interaction could be utilized in the development of
colorimetric and fluorescent anion sensors. However, there were still relatively few
spectroscopic studies devoted to XBing anion receptors. Chapter 2 focuses on our exploration
of the influence of XBing on the spectrophotometric properties of HBeXB anion receptors.
This study expands our understanding of solvent dependency and anion induced fluorescence
response for XB anion receptors and provides valuable insights for future design of anion

sensors.
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Chapter 2:

Solvatochromism and fluorescence response of a halogen bonding anion receptor

2.1 Preface

This chapter includes work that was published in New Journal of Chemistry, (2018, 42(13):
10489-10492.) which was co-authored by Asia Marie Riel and Prof. Orion B. Berryman. Asia Marie
Riel aided in synthesis and assisted in computations. Prof. Orion B. Berryman assisted in data
interpretation, provided editorial assistance and created the TOC and cover artwork. Jiyu Sun,
first author, synthesized the molecules, conducted UV-Vis and fluorescence spectroscopic analysis,
ran computations, performed data compilation and interpretation, wrote the manuscript and

prepared the supporting information for the publication.
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Figure 6. Table of contents photo from New Journal of Chemistry.

2.2 Introduction

A halogen bond (XB) is an attractive noncovalent interaction between an electron-deficient

halogen atom and a Lewis base. XBs are more directional and display different solvent
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dependencies!!'1?? compared to hydrogen bonds (HB), and can be applied in anion recognition
and sensing.12113114 Recently, Beer’s macrocycles®4, rotaxanes'> and catenanes®®; Molina and
Alkorta’s halotriazolium®>; and Taylor’s urea®® were reported as leading examples of fluorescent
and colorimetric anion sensors that employ XBs.!''® However, there are still relatively few
spectroscopic studies devoted to XBing anion receptors. Herein we report a new UV-
Vis/fluorescence responsive XB receptor that explores how XBing influences spectrophotometric
properties in this system.

2.3 Results and Discussion

2.3.1 Design and Synthesis of XB Receptors
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Scheme 1: Synthetic pathways of G2XB derivatives.

Building on previous studies conducted in our laboratory®>%%117 we designed and
synthesized a pair of 2,6-bis(4-ethynylpyridinyl)-4-fluoroaniline receptors (Scheme 1).
Starting from 2,6-dibromo-4-fluoroaniline, a typical Sonogashira cross coupling reaction
and following deprotection of trimethylsilyl groups were conducted to produce 2,6-

bis(ethynyl)-4-fluoroaniline. By the second Sonogashira reaction with 3-bromo-4-
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iodopyridine or 4-iodopyridine, respectively, neutral dibromo XB donor and HB donor (1b)
were synthesized. To switch to better XB donor atoms, microwave halogen exchange
reactions of the dibromo scaffold was performed producing the diiodo derivative (1a).
Octlyating the pyridines of the neutral scaffolds activated the XB and HB donors. To
increase solubility in organic solvent and minimize competitive intramolecular
interactions, triflate counteranions were exchanged by metathesis for noncoordinating
[BArf4] anions. Methyl derivatives were made in a similar way for X-ray diffraction studies.

Solution studies, crystal structures and computations supported our hypothesis that
the intramolecular HB between the electron-deficient aniline and the two XB donoriodine
atoms enhance the electrophilicity of the XB donors and preorganizes the bidentate XBing
conformation.?® We refer to this new preorganization strategy as intramolecular HBeXB.
Receptor 2b, lacks XB donors and was prepared to quantify C—H HBing and serve as a
control. While synthesizing and characterizing the receptors, solvent dependent color
changes were observed, especially under ultraviolet light. To better understand this
solvatochromism, UV-Visible absorption and fluorescence emission studies were

conducted for 1a, 1b and octyl derivatives 2a and 2b (Figure 7).
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Figure 7. Structures of 2,6-bis(4-ethynylpyridinyl)-4-fluoroaniline XB donor 1a, HB donor 1b
and octyl derivatives 2a, 2b.

2.3.2 Solvatochromism of neutral XB Receptors

Building on previous studies conduct Solvent dependence of both the absorption and
emission spectra was observed for 1a and 1b (Figure 8). Receptors 1a and 1b exhibited a
major absorbance band in the range of 300-600 nm (Figure S23 and S25). The absorption
band of 1a is red shifted from 405 nm to 416 nm as the dielectric constant of the solvent
is increased with the exception of MeCN (Figure S31). A similar roughly linear correlation
of bathochromic shift with increasing solvent dielectric constant was obtained for 1b

(Figure S25). Soret bands from m—m* transitions exhibit significant charge-transfer
DCM  CHCls Acetone MeOH MeCN  DMF  DMSO DCM  CHCLs Acetone MeOH MeCN DMF  DMSO
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Figure 8. Solvatochromism of 1ImM 1a (top left: under sunlight; bottom left: under 365nm UV
light) and 1b (top right: under sunlight; bottom right: under 365nm UV light) in a set of solvents.
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character resulting from the electron-deficient pyridine and electron donating
aniline.**®119 Other solvent parameters!?° (dipole moment, Et(30) and rt* scale) were also
analysed for both the neutral and charged receptors. However, no clear correlation
between dipole moment, E1(30) or m*scale and absorbance vmax (Figure S32-S34) was
observed suggesting that nonspecific solvent polarity effects are not strong determinants
of the HOMO and LUMO energy levels. This lack of correlation and solvents that deviate
from the trend may be due to the Lewis acidic nature of the studied receptors. Taken
together, these results suggest that the dielectric constant of the solvent most influences
the HOMO and LUMO energy levels of the receptors. High dielectric solvents stabilize the
excited state more than the ground state of the receptor. As a result, the energy for the
HOMO to LUMO electron transition is lowered producing a bathochromic shift of the
spectra with increasing solvent dielectric constant. The Amax of 1a is always red shifted
when compared to 1b in the same solvent, a result of the auxochrome iodine groups in
1a.121

The solvatochromic effect on fluorescence was also investigated for 1a and 1b. The
iodine atoms of 1a produce a “heavy atom effect” that enhances the probability of
intersystem crossing leading to reduced fluorescence of 1a compared to 1b (Figure 9).122
The emission spectra of 1a and 1b obey the same direct correlation between solvent
polarity and Amax shift. However, methanol deviates from this trend for both 1a and 1b
(Figure S24 and S26). For instance, the emission band of 1b in methanol has a Amax at 475
nm which is 15 nm and 14 nm longer than in acetone and acetonitrile, respectively, and is

even close to dimethylformamide (DMF, Amax = 476 nm) (Figure S26). This deviation could
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result from the HB ability of the protic methanol. HBing to the amine of the fluoroaniline
through an NH:--O type HB or to a pyridine nitrogen through an OH---N HB could stabilize
the excited state and shift the emission. Additionally, a drop in emission is observed for

1b, perhaps due to HB enhanced internal conversion and intersystem crossing.'?3
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Figure 9. Normalized fluorescence emission spectra of 1a (20 uM, solid line) and 1b (20 uM, dashed
line) in various solvents.

2.3.3 Solvatochromism of charged XB Receptors

To investigate the XB interaction and how it influences solvatochromism and fluorescence,
the receptors were alkylated to increase their electron-deficiency and their binding affinity for
anionic guests. Alkylation of the pyridines with octyl chains activated the XB and HB donors of 2a
and 2b, respectively, while also enabling solubility in organic solvents.

The UV-Vis absorption and fluorescence emission spectra of 2a and 2b in various solvents
are reported in Figure 10. A negative solvatochromism was observed in DCM, acetone, MeCN and
DMF for the absorption of both 2a and 2b which has also been observed in other pyridinium

systems.?4#12> This phenomenon has been explained by the ground state being more polar than
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Figure 10. Absorption spectra of 2a (a) and 2b (b) in various solvents. Fluorescence emission spectra
of 2a (c) and 2b (d) in various solvents (for excitation wavelengths and details see Experimental
section). All spectra were recorded at 20 uM of receptor.

the excited state!?® and intramolecular charge transfer being favored by polar solvents.*?4#12> This
produces a larger energy difference between the ground and excited states as the polarity of the
solvent increases. Chloroform, MeOH and DMSO deviate from this trend, perhaps, due to the
binding between the receptors and solvents or environment effect which give rise to
conformational changes in the receptor molecule.!®* Additionally, an obvious difference between
2a and 2b is the large blue shifting of 2a in DMF. A linear free energy relationship between the
absorbance (vmax) of 2a and 2b showed that the absorbance of 2a is shifted more in DMF
compared to 2b (Figure S35b). We have solution and crystallographic evidence that derivatives of
2a can XB to the DMF carbonyl oxygen.®® This binding interaction may further stabilize the ground

state. Ultimately, an 80 nm blue shift of absorbance in DMF is observed compared to DCM (Figure
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10a). The HB in 2b has a similar but weaker effect, shifting the absorption peak from 472 nm in
DCM to 466 nm in DMF (Figure 10b).

2a was only fluorescent in nonpolar solvents (DCM and chloroform) and was nearly
guenched in all other solvents (Figure 10c). In contrast, 2b had stronger fluorescence than 2a due
to lack of the heavy atom effect, but was also quenched in polar solvents (Figure 10d). The
fluorescence quenching is consistent with other probes that are weakly fluorescent in hydrophilic
environments but strongly fluorescent in hydrophobic environments.?’
2.3.4 Anion induced fluorescence response of charged XB Receptors

Qualitative evaluation of the anion sensing capability of 2a and 2b in DCM was performed
with a series of anions as their tetrabutylammonium salts (Cl~, Br~, I7, SCN~, NO3~, HSO4~, H,PO4~
and ReQs7). Considering both solubility and polarity which may affect the noncovalent interaction
between receptor and anion, we chose DCM as the solvent for these studies. The results are
illustrated in Figure 11 (see Experimental section for full details). In general, the absorption band
of XB receptor 2a at Amax 507 nm is red shifted from 509 to 535 nm when one molar equivalent
of anion is added, and hypochromically blue shifted after the addition of excess anion (50 molar
equivalents). Additionally, the absorption band of HB receptor 2b at 472 nm behaves similarly to
2a which is red shifted from 479 to 513 nm in the presence of one equivalent of anion and

hypochromically blue shifted upon addition of excess anion (50 molar equivalents).
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Figure 11. Absorption spectra of 2a with TBA*I" (top left) and with TBA*CI- (top middle-left), 2b with TBA*I
(top middle-right) and with TBA*CI (top right); followed by fluorescence emission spectra of 2a with TBA*I
(bottom left) and with TBA*Cl (bottom middle-left), 2b with TBA*I" (bottom middle-right) and with TBA*CI
(bottom right). All spectra were recorded at 20 uM of receptor in DCM solution (for excitation wavelengths
and details see Experimental section).

In the emission spectra, halides quenched the fluorescence of both 2a and 2b from 0
equivalent to 50 equivalents. For instance, fluorescence of 2a decreased by 20% after adding one
equivalent of TBA*Cl and declined to 50% of the initial value after 50 equivalents (Figure 11,
bottom middle-left). However, the receptor is more sensitive to iodide (Figure 11, bottom left).
The intensity significantly dropped to 2% of the original level at just one equivalent of iodide.
Inter and intramolecular HBing have been shown to facilitate fluorescence quenching.?812° The
efficient fluorescence “turn-off” in 2a correlates with previous NMR studies?® that illustrate
stronger binding between 2a and I~ compared to other halide anions.?® Specifically, the K11 values
determined by titrations of 2a with I-, Br~ and CI~ were 36,569 M, 34,145 M and 23,622 M
respectively in 40% CDCl3/60% CD3NOs.. In the current system, the formation of strong XBs (C-I--:I7)

in the 2a:I~ complex could allow the necessary spin-orbital coupling for fluorescence quenching
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to occur.3® Moreover, the iodine®3! and iodide!3? present can act as heavy-atom quenchers.
Considering these effects, intersystem crossing could be favored which leads to fluorescence
guenching. Compared to 2a, fluorescence quenching of 2b is more efficient with chloride and
bromide, and similar with iodide. These results could partially be explained by the weaker binding
ability of 2b (K11 for I, Br- and CI~ are 1,820 M}, 2,122 M and 2,326 M7, respectively in 40%
CDCl3/60% CD3NO>).28 In addition, thiocyanate (SCN-) quenched the fluorescence of both 2a and
2b. SCN™ decreased fluorescence intensity of 2a to less than 35% of the original level at one
equivalent but changed very little at 50 equivalents. However, the fluorescence of 2b was almost
totally quenched after 50 equivalents.

Some of the oxoanions studied elicited different fluorescence responses compared to
halides and SCN™. NO3™ and ReOs~ induced a similar fluorescence response in 2a and 2b as SCN™
did. However, H,PO4™ produced a 51% and 60% decrease in 2a and 2b, respectively, at one
equivalent and totally quenched fluorescence when in excess. HSO4™ affected the fluorescence of
2b in a similar way to SCN-, NOs~ and ReO4". However, in 2a, the solution turned cloudy and
floccule formed, precipitating out the receptor in a couple minutes upon the addition of 50
equivalents of HSO4™. In general, 2b is quenched more than 2a with all anions, except for iodide.
One hypothesis is that XB between 2a and the anions rigidifies the structure of the 2a-anion
complex. The more planar/rigid structure which has less vibrational modes to absorb the excess
energy leads to less efficient internal conversion. Thus, the more efficient internal conversion of

2b causes the lower quantum yield, and correspondingly lower fluorescence intensity.!33
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2.3.5 Density Functional Theory (DFT) calculations

Table 1. Energy of HOMO, LUMO for receptors 1a, 1b and 2a, 2b.

1a 1b 2a 2b
HOMO Energy (eV) -2.672 -2.506 -8.268 | -8.214
LUMO Energy (eV) -6.011 -6.062 | -10.833 | -10.844
AE (eV) 3.339 3.556 2.565 | 2.630

Geometry optimizations and Frontier molecular orbital calculations were performed to
further analyse the spectrophotometric properties of the receptors. Density Functional Theory
(DFT) calculations were done using the B3LYP/6-31+G(d,p) functional. To simplify calculations,
methyl derivatives of the charged receptors were evaluated. The electron density distributions of
the HOMO and LUMO for all four receptors is depicted in Figure 12. The neutral receptors 1a and
1b have nearly equivalent HOMO and LUMO distributions. Additionally, 2a and 2b also have
analogous HOMO and LUMO maps which is consistent with the similarly shaped absorption and
emission spectra. The electron density in the HOMO is mainly populated on the central
fluoroaniline ring. In the LUMO the electron density is increased on the two flanking pyridine

rings. Such electronic configurations lead to the charge-transfer nature of the electronic

1a HOMO 1b HOMO 2a HOMO 2b HOMO

R
R

1a LUMO 1b LUMO 2aLUMO 2b LUMO

Figure 12. Calculated frontier molecular orbitals for neutral receptors 1a, 1b and charged receptors
2a, 2b.
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transitions. The energy differences of the HOMO and LUMO are listed in Table 1. Narrower energy
band gaps are predicted for the HOMO and LUMO for the halogen containing receptors (1a and
2a) compared to the HB receptors (1b and 2b) which correlate with the larger Amax (for both the
absorption and emission) observed for the halogen containing receptors 1a and 2a.

2.4 Conclusions

In summary, we have demonstrated that XB receptor 1a and HB receptor 1b exhibited similar
solvatochromism in their UV-Vis and fluorescence spectra. As compared to 1a and 1b, octyl
derivatives 2a and 2b exhibited opposite solvatochromism corresponding to their charged states
and differences in binding ability. Theoretical estimations of the electron density distributions of
the HOMOs and LUMOs highlighted the charge transfer nature of the receptors and supported
the differences observed in the soret band Amax in the UV-Vis spectra. The anion induced
fluorescence quenching of XB derivative 2a is less efficient than 2b with most anions, possibly
due to the loose bolt effect for the weaker binding 2b. Additionally, 2a can selectively sense I~
over other anions by a significant fluorescence quenching after the addition of one equivalent.
Such effects have been explored to better understand the nature of XB and may provide the
opportunity to exploit XB in fluorescent/colorimetric anion sensors.

Bridge to Chapter 3:

Chapter 2 demonstrated that XB receptors and HB receptors responded differently to the
presence of anions. Specifically, selective sensing for iodide was established for the XB receptor.
These results could be applied to the development of XBing colorimetric and fluorescent anion
sensors. To further enhance the binding strength, modifying the electronics of the halogen donors

through substituent effects is a promising approach. However, applying this approach to
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modulate the HBeXB may not be straightforward, as there may be competing electronic effects.
Therefore, in Chapter 3, we presented the first comprehensive investigation of substituent effects

and Linear Free Energy Relationships (LFERs) studies on the HBeXB interaction, in the solution,

gas, and solid phases.
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Chapter 3:

The Interplay Between Hydrogen and Halogen Bonding: Substituent Effects and their role in

3.1 Preface

the Hydrogen Bond Enhanced Halogen Bond

This chapter includes work that was published in Chemical Science, (2023) (Figure 13) which
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Figure 13. Table of contents photo from Chemical Science.

was co-authored by Daniel A. Decato, Vyacheslav S. Bryantsev, Eric A. John and Prof. Orion B.

Berryman. Daniel A. Decato assisted in computations, collected diffraction data, solved single

crystal X-ray structures, provided editorial assistance and wrote the crystal section of the

manuscript. Vyacheslav S. Bryantsev conducted computations. Eric A. John assisted in synthesis.

Orion B. Berryman assisted in conceiving this project and data interpretation and provided

editorial assistance. Jiyu Sun, first author, synthesized all the molecules, conducted literature
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the manuscript, and prepared the supporting information for the publication.
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3.2 Introduction

Understanding how to modulate noncovalent interactions that are in close proximity is

134 supramolecular assemblies'®®, drugs'3®, and

paramount to engineering functional materials
catalysts'3’. Foundational work has detailed the importance of substituent effects!33%to tune
the electronics of noncovalent interactions.4%143 Despite this pioneering work, few have looked
at substituent effects involving multiple noncovalent interactions that are spatially close. Recently,
Cockroft, and coworkers reported rare experimental data quantifying through-space substituent
effects on noncovalent interactions and presented the inadequacy of describing substituent
effects using classic Hammett parameters when through-space effects dominate.** Additionally,
Zonta, and coworkers utilized similar methods to carry out an experimental survey of aromatic
stacking interactions in solution.'*> Clearly, understanding how adjacent noncovalent interactions
influence each other by substituent effects is critically lacking.

Among the myriad noncovalent interactions, HBs are privileged for their directionality and
tunability. Halogen Bonds (XBs) share similarities with HBs, yet contain an electron deficient
donor (halogen) that forms an attractive noncovalent interaction with an electron rich species.
This interaction can be understood in term of electrostatics and covalency.!01167,146-151 Ap
electrostatic description suggests that due to the polarizability of the halogen, its electron density
can become anisotropic. In this case, a partial positive potential develops on the halogen,
opposite to the C-X o bond which has been coined the o-hole. Concurrently, an electron rich belt
is generated on the XB donor which is orthogonal to the direction of the o bond.>*2153 The high

directionality, tunability and complementarity with “soft” Lewis bases 6611915 makes XBing

accordant with HBing. Given these unique properties, exciting applications of XBing
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supramolecule  self-assembly’®,  molecular  recognition®®%>,  anion  binders?®2%66

organocatalysts!*8830 and anion transporters!>®

are appearing at a rapid pace. Understanding
how to modulate both the strength of the XB and the structure of these molecules is of broad
importance for the continued development of functional halogenated species. Using substituent
effects to alter the electronics of the halogen donors remains a leading strategy. However,
experimental substituent effects on XBing are limited (despite numerous computational
studies?®’182). Only Taylor'®3, Diederich'®4, Erdelyi'®®, Stilinovi¢!®® and Franz'®’ have explicitly
studied XBing substituent effects in solution—with different outcomes for each of their systems.

Despite the critical importance of these substituent studies, the influence of a neighbouring

noncovalent interaction has not been studied.

HB donor

l
[
nl
1

“electron-rich belt
HB acceptor

“o hole”
XB donor

Figure 14. Cooperativity between HB and XB donors and acceptors in the HBeXB interaction.
Blue dashed line: HB interaction, red dashed line: XB interaction, LB: Lewis base.

We recently introduced a new strategy—the Hydrogen Bond Enhanced Halogen Bond
(HBeXB)—that directs intramolecular HBs to the electron rich belt of XB donors for
preorganization and enhanced XB strength (Figure 14). Recently, the HBeXB interaction has been

used to increase anion binding affinity by nearly an order of magnitude and to improve the
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function of organocatalysts.?82° Similarly, Ho and his group have noted the HBeXB in biological
settings and employed it to stabilize and improve a T4 lysozyme mutant.3'3% These studies have
been complemented by fundamental studies as well.?83°>-37.168 Qyer the course of these seminal
works there are implications of reciprocity between the HB and XB, especially when considering
circumstances where augmentation and preorganization are simultaneously operating. In fact,
using substituent effects to modulate the HBeXB may not be straightforward as there are
potentially competing electronic effects. Making the halogen atom more electron rich may
decrease the XB donor ability but will increase the strength of the adjacent HB. The subtle
interplay between these two interactions naturally leads one to ask important questions. For
example, when optimizing binding, is it more efficient to tune the XB strength or the HB strength
with electronic effects? Additionally, how does this influence molecular conformations? To
address these questions and more, we present the first HBeXB substituent and LFER studies in
solution, gas, and solid phases.

3.3 Results and Discussion

3.3.1 Design and Synthesis of XB Receptors

3.3.1.1 Receptor Design

We previously developed two generations of bis-ethynyl XB receptors that presented two
charged pyridinium XB donors in a convergent manner (Figure 15 top). In the 2"%-generation
receptor we introduced an amine substituent to the core that provided intramolecular N-H--:1 HBs
to the XB donors. This innovation improved binding by nearly an order of magnitude over a
control lacking the amine.?® We coined this effect the HBeXB and showed that the enhancement

was due to both preorganization of the receptor into a bidentate binding conformation and
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strengthening of the XB. The success of the HBeXB and our experience with this scaffold
prompted us to evaluate HBeXB substituent effects using a 3"-generation anion receptor
presented here (G3XB, Figure 15 bottom). This latest iteration replaces the flanking
iodopyridinium rings with neutral aromatic rings to improve solubility in organic solvents. The
redesign also reduced the number of synthetic steps to produce the diverse range of receptors
needed to examine substituent effects. Specifically, we prepared a series of compounds that
contained substituents of varying electronic properties that were para to both the amine (R1-
G3XB) and the iodine donors (2R2-G3XB). This design permitted systematic modulation of the
electron density on both the HB and XB donor rings to test substituent effects. Controls with
trifluoromethyl substituents (the strongest electron withdrawing groups in this study) were also

prepared without the amine (nHBeXB) and without the iodine XB donors (G3HB).
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Previous work

G3XB (R1= CFs, R2= CF3.)
R1-G3XB (R1=Cl, F, H, Me, Rz2= CF3.)
2R2-G3XB (R1= CF3, R2=F, H, Me, {Bu.)

nHBeXB (no HB control) (Y = H, X = 1.)
G3HB (no XB control) (Y = NH,, X = H.)

Figure 15. ChemDraw representation of previous XB receptors and G3XB derivatives in this work.
3.3.1.2 Synthesis and Characterization
The synthesis of G3XB derivatives is outlined in Scheme 2. 2,6-bis(ethynyl)-4-Ri-aniline (2)

was synthesized by Sonogashira cross-coupling 2,6-dibromo-4-Ri-aniline (1) with

R, R,
F4C |
(a) then (b) (c) with @Er
—_— _—

Br’ Br 4 %

NH, NH,

1 2

(e) (c)

CF3

F\C &7 X CF,
O NHz O Ry=-Me, -H, -F,-Cl, -CF5

Ry=-tBu, -Me, -H, -F, -CF3
G3HB 2R,-3 2R,-G3XB

Scheme 2. Synthesis of G3XB derivatives and controls used to study HBeXB substituent effects. Reagents and
conditions: (a) TMS-acetylene, Pd(PPhs),Cl, Cu(l)l, DIPEA, DMF, overnight, N,, 80°C, ; (b) K,CO3, MeOH/DCM(1:1
v/v), 4 hours, rt, 45-96%. (c) 4-bromo-3-iodo-R;-benzene, Pd(PPhs),Cly, Cu(l)l, DIPEA, DMF, overnight, N, rt, 53-
87%; (d) Nal, Cu(l)l, trans-N,N-dimethylcyclohexane-1,2-diamine, 1,4-dioxane, microwave reactor, 12-24 hours,
150°C, 33-84%; (e) 3-bromotrifluoromethylbenzene, Pd(PPhs),Cl,, Cu(l)l, DIPEA, DMF, overnight, N, 80°C, 60%.
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trimethylsilylacetylene followed by removal of the trimethylsilyl protecting groups with
potassium carbonate. Precursor scaffolds containing bromine (R1-3, 2R2-3, and HB receptor G3HB)
were synthesized by Sonogashira cross coupling 2 at the iodo-functionality of 4-bromo-3-iodo-R;-
benzene or 3-bromotrifluoromethylbenzene, respectively. The iodine containing R1-G3XB and
2R>-G3XB were obtained by microwave assisted halogen exchange of Ri1-3 or 2Rz-3. The complete
experimental procedures can be found in the Experimental section.

3.3.1.3 Experimental Evidence of Intramolecular Hydrogen Bonding

Analysis of the amine 'H NMR resonances provided initial indication of intramolecular HBing
between the amine and the electron rich belt of the XB donor (N—H--:1). The analysis provided a
preliminary evaluation of substituent effects and provided rare experimental evidence of HBing
to larger halogens.®®16%-172 Control receptor G3HB, lacking XB donors to accept HBs, had an amine

'H chemical shift of 4.64 ppm in CsDs, whereas the chemical shift for G3XB, with iodine acceptors,

NH>

A
Y " M 2tBu-G3XB “‘m

I | v ‘
S [ ) 2Me-G3XB |

__U_JL | h A\ 2H-G3XB

v
QL__PJM o " I 2F-G3XB w
ﬂ | v -
L . i - | G3XB

7.5 7.0 6.5 6.0 5.5
ppm

Figure 16. 'H NMR spectra (C¢Ds, 500 MHz, 5mM) of 2R,-G3XB derivatives (left) highlighting the
HBing downfield shift of the amine as the halogen becomes more electron rich; ESP maps (isovalue=
0.001 a.u.) for 2R,-G3XB derivatives (right) are displayed on the same scale. Electron deficient
regions are blue and electron rich regions are red.
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was 5.53 ppm. This 0.89 ppm downfield shift is indicative of intramolecular HBing. The series of
2R»-G3XB derivatives (Figure 15, left) showed that as the para substituent on the XB donor ring
became more electron donating, the HBing amine proton shifted downfield from 5.53 ppm to
5.80 ppm. This downfield shift occurs despite the expectation that adding electron donating
substituents should shield the nuclei and would produce an upfield shift for the proton. However,
the electron donating groups in the 2R>-G3XB compounds transfer additional electron density
onto the iodine atoms (vide infra) making the iodine a better HB acceptor, resulting in the
downfield shift.§ Overall this NMR analysis suggests that the intramolecular HBing is formed and
the strength of this HBing correlates with the electron density of the halogens.
3.3.2 Computational Evaluations

To garner preliminary insight into substituent effects of HBeXBs, in silico studies were
performed. All the receptors were evaluated using Gaussian 16 at the M06-2X/def2TZVPP level
of theory (see Experimental section for further details). A systematic use of conformational
analysis and electrostatic potential (ESP) mapping provided early insight into the synergy between
the HB and XB and helped to stimulate deeper LFER analysis.

3.3.2.1 o-hole Calculations

o-hole analysis (maximum/minimum electrostatic potentials, denoted by Vs max/Vs,min)
showed several trends regarding the influence of the intramolecular HB on XB donor strength.

Consistent with our previous studies, the HB from the amine to the iodine augments the o-hole

8No clear trend was observed among R1-G3XB derivatives. The amine proton peakis 5.53 ppm for R1=CF3,
5.25 ppm R1=Cl, 5.17 ppm Ri=F, 5.40 ppm Ri;=H and 5.31 ppm Ri=Me. The deviation for the fluorine and
chlorine substituents might be a result of their it electron donating property affecting the amine. We
rationalize the trend observed of 2R,-G3XB derivatives based on how the substituents influence the
electronics on the HB acceptor (in this case the XB donor) rather than the HB donor.
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(greater Vsmax). For example, G3XB in the bidentate conformation has a Vsmax that is 4.02 kcal
mol* greater than nHBeXB—a consequence of the HBeXB (Table 2).

Table 2. Halogen Vsmax of G3XB derivatives®

S conformation
Bidentate (HBed iodine/ AVs max”
non-HBed iodine)

G3XB 32.05 31.45/24.46 6.99
nHBeXB 28.03 26.64/25.39 1.25
2F-G3XB 28.40 28.52/20.94 7.58
2H-G3XB 24.98 26.05/17.95 8.10

2Me-G3XB 23.03 24.69/16.94 7.75
2tBu-G3XB 22.41 24.37/16.15 8.22
Cl-G3XB 30.84 29.85/24.16 5.69
F-G3XB 30.12 29.33/24.61 4.72
H-G3XB 28.72 28.08/24.07 4.01
Me-G3XB 28.11 27.36/24.04 3.31

2 Vs max (kcal mol?) were calculated at 0.001 A isoelectric surface.
b Avs,max = Vs,max HBed iodine ~ Vs,max, non-HBed iodine

3.3.2.1.1 Substitution on the HB Donor Ring

Modulation of the Ry group helped determine if stronger HBs would correlate to greater XB
enhancement. Within the R series, the Vsmax values on the XB donors ranged from 32.05 kcal
mol* for the most electron withdrawing G3XB in the bidentate conformation to 28.11 kcal mol?
for Me-G3XB (Table 1). The data verify that stronger HB donors correlate with a more positive
Vs max—confirming a notion alluded to in our previous HBeXB systems.?®3> Qur results here
highlight that tuning the HB donor with a single remote substituent can influence the XB donor
Vs max by 3.94 kcal mol™.

3.3.2.1.2 Substitution on the XB Donor Ring

Next, the Vsmax of the 2R2-G3XB derivatives in the bidentate conformation was probed to

determine how substituent electronics on the XBing ring influence XB donor strength. As
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expected, the Vs max becomes larger as the substituent para to the XB donor increases in electron
withdrawing capacity. The G3XB derivative with CF3 substituents represents the upper end in this
series with a Vsmax of 32.05 kcal mol™* whereas, 2tBu-G3XB represents the lower end at 22.41 kcal
mol . These studies align with previous reports!®3164167 showing that XB donors can be directly
influenced by electronic substituent effects. For instance, the Vsmax of the XB donors in Talyor’s
4-R-CgF4l studies differ by 6.9 kcal mol* when a para fluoro substituent is changed to a piperidyl
group.1®3 However, it is notable that in this bisethynyl system the Vs max varies by 9.64 kcal mol*
by direct substitution on the XB ring.

In contrast to the above discussion on XB donor strength (i.e. Vsmax), we also considered the
Vs,min Of the iodine atoms as a measure of HB acceptor capacity. As the substituent para to the XB
donor becomes more electron donating, the iodine species becomes more electron-rich (Figure
16, right). The Vsmin of the 2R2-G3XB compounds (-1.11 to -11.14 kcal mol?, for details see
Experimental section) trend with the downfield NMR shifting—suggesting that Rz electron
donating groups strengthen the intramolecular HBing between the amine and the XB donor.

3.3.2.2 Conformational Effects on the XB donor

3.3.2.2.1 R; - Minimal through Bond Effects on the XB donor

ESP maps were calculated for the R1-G3XB derivatives in the S conformation (Figure 17). The
S conformation contains one XB donor that accepts a HB and one that does not. This S
arrangement was used to determine whether substitution on the HB donor ring has a through
bond electronic effect on the XB donor. The S conformation of R1-G3XB derivatives all exhibit
similar Vsmax values (= 24 kcal mol?) for the iodine not accepting a HB. This demonstrates that

substituents on the central HB donor ring do not directly inductively alter the electronics of the XB

35



donor.§§

Bidentate S Conformation W Conformation

Figure 17. ChemDraws and ESP maps for G3XB in all three planar conformations. The bidentate
conformation (left), where both XB donors are convergent; the S conformation (middle), where the XB
donors are on opposite sides of the molecule; and the W conformation (right), where both XBs are directed
away from the amine. All ESP maps are displayed on the same scale. Electron deficient regions are blue and
electron rich regions are red.

3.3.2.2.2 R; - Through Space Effects on the XB Donor

In contrast, the potency of the HB donor does have an influence on the XB donor strength.
The Vs max of the halogen accepting a HB has a greater ESP than the non-HB accepting iodine. The
Vs max Values for the iodine in G3XB that accepts a HB was 31.45 kcal mol™* and 27.36 kcal mol?
for Me-G3XB which has the most electron donating substituent Ri. Thus, strengthening the
intramolecular HB donor can modulate the Vs max of a single XB donor by 4.09 kcal mol?, a value

similar to the bidentate assessment described above.

§§This finding also correlates with computational data from Scheiner?’? illustrating that the through bond
influence of the electron withdrawing group on the XB properties diminishes with its distance from the
halogen atom.
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The through space influence of a HB on the XB donor was analyzed by computing the
difference (AVsmax) between the two iodine donors in the S conformation (AVs max = Vs,max HBed
iodine - Vs max non-HBed iodine). Here the weakest HB donor Me-G3XB derivative had a AVs max of
3.31 kcal mol! while the strongest HB donor G3XB had the largest AVsmax of 6.99 kcal mol™.
Collectively the AVs max values of the R1-G3XB derivatives adhere to the trend that increasing the
electron withdrawing ability of Ry, strengthens the HB which in turn has a larger influence on the
XB donor.

3.3.2.2.3 Rz - Through Bond Effects on the XB Donor Ring

Vsmax values for 2R2-G3XB derivatives in the S conformation were used to quantify how
changing the electronics of the XB donor ring influences the iodine o-hole. For example, the Vs max
of the externally directed iodine (non-HBed iodine) generally followed the trends expected from
the electronic contributions of the Rz group (i.e. Vs max values for 2R-G3XB trended in the order
CFs; > F > H > Me > tBu) ranging from 24.46 to 16.15 kcal mol™. The internally directed iodine
atoms (accepting a HB) all had larger Vsmax values ranging from 31.45 to 24.37 kcal mol* and
generally followed the same trend.

3.3.2.2.4 R; - Through Space Effects on the XB Donort

The strength of the HB donor in the 2R2-G3XB derivatives is constant (i.e. a CF3 group para

t Comparing the entire 2R,-G3XB series, we noted that the Vs max of 2Me-G3XB is smaller than 2H-G3XB which
deviates from the expected electronic trend. This is likely due to small differences in the planarity of the
structures during the calculations that affect the electronic environment of the halogens (see Experimental
section). For 2R-G3XB derivatives which have more electron donating substituents (R2 = F, H, Me, tBu), it was
observed that the iodine in the S conformation which accepts a HB has a 0.1 to 2.0 kcal mol* higher Vg max than
the iodines in the bidentate conformation (which also accept HBs). We hypothesized that the S conformation
provides more flexibility for the only N—H---I HB thus producing a stronger HB. However, when considering
receptor design, this small difference would likely be compensated by allowing two convergent XBs to be
available in the bidentate conformation.
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to the central amine). Thus, the AVsmax values here are a measure of how the Rz electronics
impact the halogen as both a XB donor and a HB acceptor. The AV max values of 6.99, 7.58, 8.10,
7.75 and 8.22 kcal mol were obtained for G3XB, 2F-G3XB, 2H-G3XB, 2Me-G3XB and 2tBu-G3XB,
respectively. The trend parallels previous evaluations and shows that generally, more electron
rich iodines experience a greater augmentation.

Comparing 2R-G3XB and R1-G3XB AV max values provides a measure of which substituent
position impacts XBing the most by a through space effect. The smaller range of values for the
2R>-G3XB series (1.23 kcal mol?), as compared to the Ri-G3XB derivatives (3.68 kcal mol?),
suggests that the influence of HBing on the halogen atom is more sensitive to substitution on the
HB donor ring. For example, altering one R1 substituent from CF3 to Me results in a 3.68 kcal mol
L AV, max difference. However, altering two Rz substituents from CF3 to Me results in a 0.76 kcal
mol! AV max difference.

3.3.2.3 Influence of R1 and Rz on Conformation

To assess the role of preorganization in G3XB derivatives, their relative stabilities were
assessed based on electronic energies from DFT. The difference between the S and bidentate
conformation energy illustrates that intramolecular HBeXBs stabilize the bidentate conformation
of the receptors (Table 3). The bidentate conformation of G3XB contains two intramolecular HBs
(N=H---1) and is more stable than the S conformation by 1.53 kcal mol™*. The W form, lacking
intramolecular HBs is 3.11 kcal mol* higher in energy than the bidentate conformation. For the
2R»-G3XB series, as R2 becomes more electron donating, the energy differences between the
bidentate and S conformation increases from 1.76 kcal mol™ for 2F-G3XB to 2.15 kcal mol? for

2tBu-G3XB. This suggests a greater stabilization when the iodine HB acceptor is more electron
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rich. These results track with the amine *H NMR chemical shift analysis for 2R,-G3XB. In contrast,
the difference between the bidentate and S conformation for the R1-G3XB series is comparatively
attenuated; however, only a single substituent group is modified. The AE is 1.42 kcal mol?, 1.33
kcal mol?, 1.43 kcal mol?, and 1.36 kcal mol? for CI-G3XB, F-G3XB, H-G3XB and Me-G3XB,
respectively. These data indicate that conformational preference is sensitive to the electronics of
both the XB and HB donor.

Table 3. Electronic energy difference (AE) between S
and bidentate conformations of G3XB derivatives

AE (kcal mol?)

G3XB 1.53
nHBeXB -0.01
2F-G3XB 1.76
2H-G3XB 1.83

2Me-G3XB 1.90
2tBu-G3XB 2.15
Cl-G3XB 1.42
F-G3XB 1.33
H-G3XB 1.43
Me-G3XB 1.36

3.3.3 Solution Studies

3.3.3.1 NMR Titrations and Association Constants

'H NMR anion binding titrations were performed to quantify HBeXB substituent effects in
solution. Titrations were conducted in CsDs with tetra-n-hexylammonium lodide (THAI) as the
guest to ensure all complexes remained in solution. The addition of THAI resulted in downfield

shifts for nearly all of the *H NMR signals on the receptors, (except for a center core singlet of
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nHBeXB). Bindfit'’4 was used to fit the changes in the 'H NMR signals to a 1:1 binding model.
Iterative and simultaneous refinement of multiple isotherms provided association constants (Ka)

for all scaffolds (Table 4).

Table 4. Measured association constants and binding energies for G3XB derivatives
with THA iodide.

Host Ka (M'1) AGpinding (kcal mol?)
G3XB 420 -3.6
G3HB 30 2.1

nHBeXB 10 -1.5
2F-G3XB 170 -3.0
2H-G3XB 70 -2.5
2Me-G3XB 50 -2.3
2tBu-G3XB 50 -2.3
CI-G3XB 330 -34
F-G3XB 250 -3.3
H-G3XB 190 -3.1
Me-G3XB 170 -3.0

The K, values are reported as the average of three titration experiments. All
titrations were performed in CsDe; Two significant figures are reported and errors are
estimated at 10%. Tetra-n-hexylammonium iodide was used and titrations were
performed at 25 °C. Bindfit was used to fit changes in chemical shift to a stepwise 1:1
host-guest binding model. The free energy of binding (AGuinding) Was calculated from
the association constant.

3.3.3.2 Role of intramolecular HBing on anion binding

G3XB (all R groups -CF3) had the strongest binding (420 M) which was nearly 14 times
greater than the isostructural no XB control (G3HB) (30 M™). The substantially lower binding
affinity of G3HB suggests that the amine doesn’t significantly HB to the iodide guest; the amine
of the G3XB derivatives largely forms intramolecular HBs with the iodine XB donors. The
considerable influence of the intramolecular N—H---1 HBs is evident when comparing G3XB to the
control lacking an amine (nHBeXB). nHBeXB exhibited very weak binding in solution with a K, =

10 ML, The nearly 50-fold difference in K, between G3XB and nHBeXB demonstrates the striking
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impact that a weak intramolecular N—H--:1 HB can have on receptor performance. The HBeXB
enhancement is far greater than our original HBeXB study using a dicationic receptor where only
a 9-fold increase was observed.?® The greater HBeXB influence in this study could be due to the
iodine XB donors of G3XB being more electron rich (i.e. neutral receptor) than the iodopyridinium
donors previously evaluated—allowing for stronger HBeXB and greater preorganization. It could
also be attributed to solvent effects as the two studies were conducted in significantly different
media (CsDs vs. 60% CD3NO2/40% CDCls). These binding studies highlight that the central amine
interacts minimally with the iodide and largely operates as an intramolecular HB donor to the
iodine XB donor atoms.

3.3.3.3 2R>-G3XB substituent effects on anion binding

The 2R2-G3XB (R; = CF3, F, H, Me, tBu) series of molecules were used to quantify how
substituents para to the XB donor influence the HBeXB. Varying these substituents resulted in
association constants for THAI ranging from 50 M-1to 420 M (Table 4). Having a stronger electron
withdrawing group para to the XB donor increases the XB strength and for this series of
compounds this generally holds true. G3XB (Rz2 = CF3) maintained the greatest affinity followed by
2F-G3XB with a Ky = 170 M, which is 60% less than G3XB. 2H-G3XB binding was further
diminished to a K, of 70 M. The most electron rich 2tBu-G3XB exhibited similar iodide binding
with the 2Me-G3XB derivative (50 vs 50 M, respectively). Nevertheless, the general trend in
substituent effects matches previous studies for XB derivatives.'63-167
3.3.3.4 R1-G3XB substituent effects on anion binding

While studies have evaluated the influence of functional groups on the XB and HB

independently none have considered their interplay. Here binding studies of R1-G3XB derivatives
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represent the first experimental consideration of this. The binding data for R1-G3XB derivatives
(R1= CF3, Cl, F, H, Me) highlights that stronger intramolecular HBing enhances the XB receptor
binding affinity. By increasing the electron withdrawing capacity of the substituent para to the
amine (strengthening the HB donor) from a Me group to a CFs group the binding increased 2.5-
fold. Me-G3XB, the most electron rich of the R1-G3XB series, had the lowest association constant
(170 M), while the most electron deficient G3XB had the highest (420 M-1). This result reveals
an effective way to increase the overall XB binding ability in a system which includes an
intramolecular HB to XB donor—electronically tuning the HB with substituents rather than the
XB.

3.3.3.5 R; and R; Interplay: Receptor performance

As noted above, the receptor performance can be modulated by either changing the
substituents para to the XB donor or para to the HB donor. To further quantify the substituent
effects on binding AGyinding Was calculated for each receptor. The binding energy for 2R2-G3XB
derivatives can be tuned by 1.3 kcal molsimply by changing out the two CF3 groups to Me groups
on the XBing rings. Intriguingly, altering only one substituent (from CF3 to Me) on the center ring
can elicit a 0.6 kcal mol™* change. This suggests that binding can be modified by a comparable
amount with a smaller structural change to the receptor. These small energetic changes can have

large implications, as previously demonstrated in a study of XB catalyst transition state binding.*°
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3.3.3.6 R; and R; Interplay: Linear Free Energy Relationships

Linear free energy relationships (LFERs) are gaining importance in understanding substituent
effects on noncovalent interactions like HBing, XBing, chalcogen bonding, cation-rt and m-rt.*>”
162,17>-180 There are surprisingly few studies that have experimentally examined substituent effects
by evaluating LFERs on the XB.%63-167 Taylor and coworkers adeptly used this approach to evaluate
the XB between para-substituted tetrafluoro-iodobenzene and tributylphosphine oxide (Figure
18a). These studies showed the best correlation of association constants with the ometa parameter
(R?(om) = 0.94 vs opara R%(0p) = 0.82) which they attributed to inductive/field effects being more
dominant.'®® In contrast, Diederich'® and Franz!®’ interestingly reported strong correlation for
the Opara parameters. Diederich evaluated XBing between 4-R-iodoethynylbenzene and
quinuclidine (R%(op) = 0.97 vs R?(om) = 0.82, Figure 18b). The strong correlation with the opara
parameter in this case indicated that substituents largely influence the halogen donor through
resonance in this conjugated system. Finally, Erdélyi®> and Stilinovi¢®® investigated substituent
effects on XB acceptors. In Erdélyi’s case, the three-center [N-I-N]* XB (Figure 18c) exhibited

linear correlation (R? = 0.97) between the calculated natural atomic populations with Opara

parameters. In all cases, substituent effects were shown to have a significant influence on XBing.

a b. c
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nBu
| — +
R | 1m O:FI>—nBu R@T| i N@
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F F
Taylor Diederich Erdelyi

Figure 18. Select previous LFER studies on halogen bonding.
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AG (keal molY)

Nevertheless, each of these examples showed great correlation with different parameters for
their LFERs. Despite these important studies, there are no experimental examples analyzing
substituent effects on adjacent noncovalent interactions. Supramolecular contacts don’t occur in
an isolated environment and as such, it is essential to understand whether traditional substituent
effects hold true in these situations. Herein, we evaluated substituent effects on the HBeXB and
used LFERs to establish whether changing the electronics of the HB donor has the same influence
on the overall binding as changing the electronics of the XB donor.

Our initial evaluation of LFERs compared the bidentate ESP values (Vs max) of receptors with
experimental AG values from titration studies. While XBing is known to encompass both covalent
and electrostatic components, plots of ESP vs AG can establish the degree of electrostatic
contribution in these particular HBeXB complexes. The following results demonstrate that in this

system, the substituent influence is largely electrostatic in nature.

2R,-G3XB AG vs V; ax R;-G3XB AG vs V; 10
-2.00 -2.9
Me : Me ® R, substituents
e @ R; substituents : 1
tBu .., ¢ 4
-9 _ .
Ho il
(=]
= .
-3.00 ° T 33
E = e
y=-0.14x+0.92 " y=-0.14x+0.76 .. CF,
R?=0.99 CF, R=0.99 @
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Figure 19. Non-normalized plots of the ESPs and binding energies for 2R,-G3XB (left) and R1-G3XB (right)
The 2R2-G3XB derivatives show strong correlation between the electrostatics (Vs max) of the
XB donor and the iodide binding in solution. The non-normalized plots (Figure 19, left) are linear

for the 2R,-G3XB derivatives (R? = 0.99). Since the modification was directly on the XBing ring,
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this finding was expected given previous LFER studies on the XB.163

In contrast, the R1-G3XB derivatives provided original insight into how the amine HB donor
augments the XB donor strength. The LFER analysis for the R1-G3XB series certainly suggests an
electrostatic origin (Figure 19, right) as the plots are again linear (R? = 0.99). Collectively the ESP
vs AG plots indicates that the HBeXB iodide binding of the G3XB derivatives is largely governed
by electrostatics and that ESP maps accurately model the influence of intramolecular HBs on the
XBs in this system.

We extended our LFER analysis by evaluating the correlation between our experimental
association constants and Hammett parameters (Ometa and Opara). While Hammett parameters
were originally used to model the ionization reaction of benzoic acid, they have been increasingly
used to study noncovalent interactions.#%14> We used Hammett parameters to analyze possible
inductive (or field effects as proposed by Wheeler and Houk'8-182) and resonance effects on the
HBeXB receptor binding—an approach recently used by Hunter to effectively assess HB
cooperativity.8

Normalized association constants (log(Kr/Kn)) and the corresponding substituent

parameters (o) were fit using the Hammett equation shown below. p represents the slope.

log(Kr/Kn) = po

The R1-G3XB derivatives show a more linear correlation with the opara parameter (R? (op) =
0.93) than with the ometa (R?(0m) = 0.87), indicating resonance effects are more important than

inductive effects on the HB donor of the HBeXB (Figure 20, left). Electron withdrawing Ri
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substituents enhance the amine donor strength, thus leading to stronger intramolecular N—H--1
HBing. A stronger HB in turn makes the XB donor more electron deficient. Thus, the resonance of

the Ry substituent work in concert with both the HB and XB donors, resulting in a linear

correlation with the opara parameters.
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Figure 20. Normalized Hammett plots of K values of R1-G3XB (left) and 2R,-G3XB (right) with Ometa (blue) and Opara

(orange).

Curiously, normalized Hammett plots of K, values for 2R>-G3XB resulted in similar linear fits
with both the ometa and opara parameters (Figure 20, right). The fit with the ometa parameters is R?
(Ometa) = 0.95 while the fit with the opara parameters is R? (opara) = 0.92, implying that inductive
effects may play a modestly more important role on substituent effects. As noted above,
substituent effects on the XB have been found to be attributed to either inductive®® or n-
resonance effects®*16> |t is atypical in LFER studies to obtain linear fits for both the opara and the
Ometa Parameters simultaneously.’®* Unlike previous LFER studies, in this case there are two
noncovalent interactions involved (N—H--:1 HBing and C—I--:I~ XBing). The halogen here functions

as both a XB donor and a HB acceptor. The electronics of the Rz substituents can have competing
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influences on the noncovalent interactions. Thus, increasing the electron density on the halogen
should weaken the XB donor but strengthen the intramolecular HBs with the amine. This
competing effect produces good correlation with both the opsra and the omets parameters. Thus,
when competing electronic influences are present, selecting an appropriate para substituent for
a XB donor could be tricky if relying on Hammett parameters. We also looked for linear
correlations between the association constants and other parameters including Taft’s o), og'*3,
sEDA and pEDA.1® However, no linear correlations were obtained (see Experimental section). The
combined LFERs herein, suggest that choosing an appropriate substituent (R1) to tune adjacent
noncovalent interactions could complement the common strategy of directly altering the
electronics of the XB donor (Rz2) to modulate binding.

Classically, the slope p in the Hammett equation describes the susceptibility of the reaction
to substituents. While studying noncovalent interactions, p provides a measure of how sensitive
the interaction is to substituent effects as compared to the ionization of benzoic acid. The p value
of the R1-G3XB Hammett plot (pR1 = 0.59) is between 0 and 1 indicating that the binding is
sensitive to electronics (although not as much as the ionization of benzoic acid). More importantly,
the p value for R1-G3XB can be compared to 2R>-G3XB (statistically taking into consideration the
number of substituents); thereby, determining quantitatively which substituent position has a
greater influence on receptor performance. There are two Rz groups affecting the anion binding
per receptor, so half the p value was used for comparison. The 1/2p value for R2-G3XB (1/2pR; =
0.79) is only modestly higher than the one obtained for the R1-G3XB series (pR1 = 0.59). This is
notable as the Ry substituents are much further from the binding site and maintain minimal

through bond electronic influence on the XB. The data here indicate that altering the electronics
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of an HB donor within the context of the HBeXB can have a similar effect on XB strength as
traditional substituent effects.

For a more thorough picture of how resonance contributes to the interaction, multivariable
linear regression of the normalized association constants (log(K./Ku)) with the field (F) and
resonance (R) parameters in the Swain—Lupton equation'3® were conducted in Matlab. The
percent resonance contribution (%R) in this equation affords a simple and meaningful way to

assess the relative importance of field (F) and resonance (R) effects.

log(Kx/Ku) = piF + p:R +1i

%R =p¢/(ps + pr)x100

Table 5. Field and Resonance Fitting

pf Or R? %R
2R,-G3XB 0.95 0.90 0.99 49%
R:1-G3XB 0.37 0.44 0.99 54%

As shown in Table 5, %R = 49 % for 2R2-G3XB which suggests that the binding is slightly more
governed by inductive/field effects from the substituents. In contrast, the substituent effects in
R1-G3XB are more dependent on resonance where %R = 54 %. However, it should be noted that
the Hammett studies employed used relatively few parameters which limits the statistical
strength of this Swain Lupton analysis. The %R for 2R2-G3XB reveals the similarity in the impacts
of resonance and inductive/field effects on the XB donor ring's Rz substituents. This similarity
aligns with the 2R2-G3XB Hammett plots, which exhibit linear relationships with both the opara

and ometa parameters due to the competing influences from the electronics of the Ra.
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3.3.4 Crystal Structures
3.3.4.1 HBeXB Impact on Solid-State Features
Crystal structures of several receptors were obtained to further evaluate substituent effects.
While previous studies have evaluated the HBeXB in the solid-state,?6:313> the HBeXB bidentate
receptors reported here are the first structures considered the structures within the context of
substituent effects.

The initial solid-state assessment of the neutral receptors focused on three species (G3XB,
G3HB, nHBeXB) to identify the influence of the HBeXB. Previous generations were charged and
thusin the solid state could be more influenced by induced fit binding. This series further confirms
that the amine HBs promote a bidentate conformation.

As shown in Figure 21 (left), the G3XB structure displays convergent bidentate XBing
conformations promoted by the intramolecular HBing with N-H---1 distances and angles of 3.12(4)
A, 163(3)° and 3.20(3) A, 165(4)°. G3XB crystalized in the monoclinic space group P21/c with a
single molecule in the asymmetric unit. The XB donors are directed towards an iodine atom of an
adjacent molecule. One of the iodine atoms forms a XB with C-I--:| distances and angles of
3.9379(6) and 167.38(11)° (Ri=0.97).%8 The other halogen while directed at an iodine, is too far

to XB with a C-I--+ distance of 4.2007(11) and 173.56(9)".

2

,LI
Figure 21. Crystal structures of G3XB molecule (left), G3HB (middle)*, and nHBeXB (right) highlighting the
importance of the intramolecular HB to produce the bidentate conformation. *Representative example
from the orthorhombic polymorph.
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Notably, the exchange of the central amine group for a CH proton results in a molecule that
adopts the W conformation (Figure 21 right), the form energetically favoured in the
computational analysis. nHBeXB crystalizes in P21/c with a single molecule in the asymmetric
unit. One of the iodine atoms forms a XB with a symmetrically equivalent species on an adjacent
molecule (C-I--+1 of 160.91(16)° and 3.8065(6) A (Ri=0.93)). The other iodine has Type Il halogen
contacts'®” with disordered fluorine atoms of an adjacent molecule, with contacts that are less
than the sum of the Van der Waals radii.

Two crystal structures were obtained of G3HB, a triclinic and orthorhombic polymorph.
Neither structure adopted a bidentate conformation. The triclinic (P-1) form has a single molecule
in the asymmetric unit, and does not adopt one of the planar forms (i.e. bidentate, S, or W). The
central amine does not play a significant role in the packing. The orthorhombic (Fdd2) structure
of G3HB has two molecules in the asymmetric unit. While each molecule adopts a W
conformation, one molecule is much less planar than the other. The distortion of one species in
the asymmetric unit may come from the arms having to deflect to maintain a head-to-tail HBing
chain.

The systematic changes of XB donors and HB donors in the G3XB, G3HB, nHBeXB series
highlights that the N—H---I intramolecular HBing plays a key role in the receptor adopting the
bidentate conformation. This is further demonstrated in the structures of derivatives containing
different substituents on the flanking iodine containing arms.

3.3.4.2 2R,-G3XB in the Solid State

To further consider the interplay between the XB and HB we obtained crystal structures of

species that modulate the electron density on the XB donating arms. Altering the functional group
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para to the iodine donor permitted us to evaluate two different features related to HBeXB within
this system. First, the ability of the N—H--:I HBing to bias the bidentate conformation was
evaluated. Second, the first solid state evaluation of substituent effects with relation to the HB
acceptor capacity of iodine donors was investigated.

Despite great efforts, only G3XB and 2H-G3XB were crystallized from the 2R2-G3XB series.
As expected, each of the molecules in this series maintains intramolecular N—H---| HBs and adopt
bidentate conformations. 2H-G3XB crystalizes in the monoclinic P21 space group with two
molecules in the unit cell. The 2H-G3XB molecules have HB parameters of 3.16(4)A 164(4)°,
3.00(7)A, 170(7)°, 3.16(7)A 165(5)°, and 2.99(6)A 169(6)°, that are shorter than G3XB.

The planarity of the molecules did not follow the expected trend. For example, despite
having shorter HB contacts 2H-G3XB was more distorted than G3XB. Angles between flanking
rings and central rings of the two unique 2H-G3XB species were 1.68° and 15.54° for one receptor
and for the other was 4.66° and 17.53°. A partial explanation for this is that the two structures
have different long range packing features (see Experimental section Fig. S158).

The angle formed by the centroids of the three rings (i.e. flanking-core-flanking angle)
provides another structural measurement that indicates HBing strength between the amine
hydrogen and more electron rich iodine atoms. For example, a smaller angle would suggest a
stronger attraction distorting the alkyne bonds linking the core to the arms. Comparing G3XB,
and 2H-G3XB, the increasing electron density on the iodine led to greater distortion with angles
of 118.94° for G3XB vs 117.18° for 2H-G3XB.

3.3.4.3 R1-G3XB in the Solid State

Several R1-G3XB derivatives (Me-G3XB, F-G3XB, and G3XB) that modulate the electron
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density of the central amine were also crystalized to evaluate the effects that these substituents
have on the solid-state structures.

Similar to the 2R>-G3XB series, initial analysis compared the HB distances. G3XB maintained
the shortest N—H---| HB contacts (see above for distances and angles) as suggested from the
electron withdrawing nature of the CF3 group. In contrast, the longest N—H---| HB contacts came
from the Me-G3XB derivative. This methyl species crystalized in the monoclinic space group P21/c
with a single receptor in the asymmetric unit that adopts the bidentate conformation. The N—H---|
HB contacts were 3.16(6)A, 154(7)°, and 3.48(5)A, 148(5)°. The longer HB contacts are attributed
to the electron donating nature of the methyl group.

Unfortunately, F-G3XB adopted the S conformation making comparisons across the series
irrelevant. However, comparison of the bidendate G3XB and Me-G3XB suggests that the
electronics of the aniline core may have some structural impact on the receptor. For example, the
weaker HBs of Me-G3XB resulted in a less planar receptor. For Me-G3XB the angles between the
planes of the core and flanking arms were 5.29° and 8.75° as compared to G3XB which was 1.06°
and 8.59°. Another parameter evaluated was the angle formed by the centroids of the three rings.
For the electron rich Me-G3XB this angle is 123.16° whereas for G3XB the angle is 118.94°. This
suggests that the amine donors are stronger in G3XB causing a slight distortion due to the
stronger HBs between the amine hydrogen atoms and the iodine atoms.

3.3.4.4 G3XB and Derivatives as Cocrystal-Salts

To probe receptor binding in the solid-state the various derivatives were crystalized with
tetraalkylammonium chloride salts. Despite our efforts only four successful cocrystal-salts were

obtained (G3XB-Cl}, 2H-G3XB-Cl!, 2Me-G3XB-Cl}, and H-G3XB-Cl'!). Unfortunately, the different
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tetraalkylammonium salts present and the crystal packing differences, made comparisons
difficult (see Experimental section). Despite this, all the structures maintain a bidentate
conformation. Additionally, the XB contacts are quite strong with reduction ratios <0.85.

3.4 Conclusions

In this work, we reported the first LFER studies for substituent effects on the HBeXB
interaction. Electrostatic Surface Potentials (ESP) were used to assess the electrostatic
contribution to the interaction. A strong correlation between computational ESP values and
solution binding data illustrated the electrostatic nature of this cooperative interaction. Hammett
plots constructed with iodide association constants for R1-G3XB and 2R>-G3XB showed that the
electronics of both the HB and XB are critically important to the binding. Resonance effects of
electron withdrawing R substituents strengthened both the HB and XB and enhanced the overall
HBeXB binding. Electron withdrawing groups of Ri substituents generated a more potent HB
donor which better polarized the XB and further promoted the bidentate conformation. In
contrast, the electronics of the Rz substituents had competing effects on the HB and XB.
Specifically, electron donating groups para to the iodine atoms (Rz) decreased the XB donor ability
but made the halogen a better HB acceptor. From a design standpoint, this implies that when
modulating electron density on the halogen one can enhance the preorganization of a receptor
by increasing electron density on the halogen (improved HB acceptor capacity) at the expense of
a slightly weakened XB. Our X-ray crystallography studies further demonstrated the role of the
HBeXB on preorganizing molecular structure. Combined, the solution experiments, computations
and crystallography provided a rare example of how substituents affect proximal noncovalent

interactions. The results from this study also provides important insights for the design of
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receptors or catalysts—altering remote substituents which electronically influence adjacent
noncovalent interactions (instead of direct para substitution) can have similar impact to
traditional substituent effects and should be considered for molecular design.

Bridge to Chapter 4:

Chapter 3 described the important role of the intramolecular HBing between amine and
iodine XB donor on the anion binding. However, as -OH or -NH HB donors have certain limitations
in biochemical contexts, like their pH sensitivity and chemical reactivity (e.g. oxidation and
glycosylation). It led us to consider pushing the boundaries of the HBeXB designs. In Chapter 4,
we investigate the effects of C—H HBs to iodine atoms and their impact on receptor performance

in anion binding.
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Chapter 4:

Anion binding using non-traditional Hydrogen Bond enhanced Halogen Bonds

4.1 Preface

This chapter includes parts of published work in Chemical Science (2022, 13(37): 11156-
11162.) which was co-authored by Daniel A. Decato, Madeleine R. Boller and Prof. Orion B.
Berryman. Daniel Decato, first author, conceptualized the project, conducted synthesis and
characterization, computational and solid-state studies, and wrote the paper. Madeleine R. Boller
aided in synthesis. Prof. Orion B. Berryman conceptualized the project, supervised the
investigation and provided editorial assistance during manuscript preparation. Jiyu Sun,
synthesized the molecules and conducted the solution studies.

4.2 Non-traditional C—H Hydrogen Bonds enhanced Halogen Bonds (HBeXBs)

4.2.1 Design Considerations

Halogen Bonds enhanced by Hydrogen Bonds (HBeXBs) have been demonstrated to
significantly increase anion binding by an order of magnitude. The influence of substituents effect
on this interaction has also been quantified in a fundamental solution study, as detailed in
Chapter 3. However, current studies have primarily focused on using "traditional" -OH or -NH HB

donors which may exhibit pH sensitivity, thereby restricting their applicability in certain situations.
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While HBs involving C-H donors are generally weaker than those involving O-H and N-H
donors, they exhibit remarkable effects in various chemical systems. Notably, C-H HBs play a
crucial role in stabilizing hydrophobic interactions, leading to the formation of hydrophobic
pockets in proteins that are essential for ligand binding and enzymatic activity. Moreover, C-H HBs
are more stable and preferred over polar interactions (HBs involving O-H and N-H donors) in lipid
bilayers and hydrophobic regions of biomolecules. Given these unique properties and the lack of
comprehensive studies, there is a compelling need to explore whether they can function similarly
to the previously studied N-H donors in preorganizing the receptor and enhancing anion binding.

To test this, a set of four bidentate halogen bond receptors was designed, all featuring a

Figure 22.The receptors designed to evaluate C—H “non-traditional” HBeXB.

bisethynyl pyridinium core and flanking benzene arms (Figure 22). Each receptor's core was
subjected to different substitutions, resulting in two receptors capable of forming C-H hydrogen
bond enhanced halogen bonds (HBeXBs) denoted as 1 and 2, a proto-control receptor denoted
as 3, and an amine control receptor forming NH, HBeXB denoted as 4. The pyridinium core of

these receptors served multiple purposes: it acted as an electron-withdrawing group to enhance
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the strength of the XB donor, it generated potent C-H HB donors in 1 and 2, and it ensured the
solid-state evaluations.

In receptor 1, the N-methylpyridinium group was positioned toward the receptor binding
pocket, enabling C-H HBing to the XB donors in the bidentate conformation. It was hypothesized
that receptor 1 would exhibit stronger XBing than 2 or 3 due to the location of the pyridinium
group, which would have a greater through-bond and through-space effect on the XB.

In receptors 2 and 3, the pyridinium methyl functionality was placed on the backside of the
receptor, away from the binding pocket. Receptor 2 had a methyl group positioned para to the
pyridinium nitrogen, directed into the binding pocket to assess C-H HBing to the XB donors.
Scaffold 3 served as a control molecule for 2, where the methyl group was replaced with a
hydrogen atom.

Receptor 4 shared structural similarities with receptors 2 and 3, with the pyridinium methyl
group directed away from the pocket. However, it included an internally directed -NH; group,
serving as a benchmark for C-H HBeXB interactions.

4.2.2 Synthesis of HBeXB receptors

The synthesis of C-H HBeXB receptors is outlined in Scheme 3. Bis-ethynyl pyridinium core
was synthesized by Sonogashira cross-coupling dibromo pyridinium core with
trimethylsilylacetylene followed by removal of the trimethylsilyl protecting groups with

| B | A | X, ot
A A . ' P (o2
(a) then (b) (c) with E:( Z d
& I N/ g I N/ o Br & N % —>( ) & N % _»(e) & ’i‘ %
Br Br 1 I | | :

Scheme 3. Synthesis pathways of C-H HBeXB receptor 1 (top) and controls 2, 3 and 4 (bottom). Reagents and
conditions: (a) TMS-acetylene, Pd(PPhs),Cl, Cu(l)l, DIPEA, DMF, overnight, N,, 80°C, ; (b) K,CO3, MeOH/DCM(1:1
v/v), 4 hours, rt. (c) 4-bromo-3-iodo-R,-benzene, Pd(PPhs),Cl,, Cu(l)l, DIPEA, DMF, overnight, Ny, rt. (d) Nal,
Cu(I)l, trans-N,N-dimethylcyclohexane-1,2-diamine, 1,4-dioxane, microwave reactor, 12 hours, 150°C; (e)
Methyl trifluoromethanesulfonate, DCM, overnight, rt.
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potassium carbonate. Precursor scaffolds containing bromine were synthesized by Sonogashira
cross coupling bis-ethynyl pyridinium core at the iodo-functionality of 1-bromo-2-iodobenzene.
The iodine containing scaffolds were obtained by microwave assisted halogen exchange.
Methylation of the iodine containing scaffolds with methyl trifluoromethanesulfonate produced
the final charge-assisted HBeXB receptors. The complete experimental procedures can be found
in the Experimental section.

4.3 Solution Binding Studies

To quantify the effectiveness of C-H HBeXBs, 'H NMR titrations was initially carried out by
Daniel A. Decato. However, minimal shifting of 'H resonances were observed upon introduction
of anions in various solvent systems (DMSO-ds, Acetonitrile-ds, etc.) Hence, we employed UV-Vis
spectroscopic titrations of HBeXB receptors 1-4. Considering both the solubilities and changes of
absorbance, the solvent mixture used in all titrations is made by 90% spectra grade
Tetrahydrofuran, 9.9% spectra grade Dimethyl sulfoxide, and 0.1% deionized water.tt Tetra-n-

butylammonium bromide (TBABr) salt was chosen as anion guest due to the measureable

11 0.1% deionized water is used to ensure a constant amount of water is present in all titration experiments.
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changes of absorbance in THF/DMSO/H,0 (90/9.9/0.1) solvent mixture at 20°C.
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Figure 23. Uv-Vis Absorption titration spectra of 1-4 with TBABr in THF-DMSO-H,0 solvent mixture at
20 °C. Top left: 1 with TBABr; top right: 2 with TBABr; bottom left: 3 with TBABr; bottom right: 4 with
TBABTr.

Upon adding TBABr to the free host solution of 1, the absorbance band around 385 nm
exhibited a hypochromic shift (Figure 23 top left). In contrast, the addition of TBABr to receptor
2 (Figure 23 top right) and 3 (Figure 23 bottom left) resulted in hyperchromic shifts of absorbance
around 365 nm and 375 nm, respectively. For NH; HBeXB control 4, absorption bands around 375
nm and 350 nm grew and decreased, respectively, upon the addition of TBABr, leading to an
isosbestic point around 363 nm (Figure 23 bottom right top left). These spectroscopic changes
were analyzed to determine the association constants (Ka) by fitting the absorbance changes to a

1:1 binding model using Bindfit. The measured K; values were listed in Table 6.

Table 6. Measured association constants for HBeXB receptors with TBA bromide.?

Receptor 1 2 3 4

Ka (M) 26000 15000 12000 18000

2The K, values are reported as the average of three titration experiments. Two significant figures
are reported and errors are estimated at 10%. Tetra-n-hexylammonium bromide was used and
titrations were performed in 90% THF/9.9% DMS0/0.1% deionized H,0 at 20 °C. Bindfit was used
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to fit changes in chemical shift to a stepwise 1:1 host-guest binding model.

Specifically, receptor 1 exhibited the strongest binding (26,000 M). When comparing the
K, values for 2 and 3, there was a slight difference in receptor performance, with 2 having a slightly
higher association constant than 3 (15,000 M vs. 12,000 M), indicating that C-H HBeXB
improved binding. This observation aligns with the theoretical evaluations and previous HBeXB
papers, suggesting a combination of preorganization and XB enhancement. In addition, receptor
4, with the amine HB donor, exhibited stronger binding (18,000 M) than 2 and 3.

4.4 Conclusions

A series of XB anion receptors was synthesized to conduct a systematic assessment of C-H
HBeXB. Consistent with the computational and solid-state analysis, the anion binding studies in
the solution phase indicate that C-H HBing to iodine atoms can enhance the performance of XB
receptors. The positioning of the charge is a crucial factor—placing the charge close to the binding
pocket can yield C-H HBeXB receptors that surpass traditional amine HB donors, where the charge
is more distant. On the other hand, weaker C-H donors might represent the limit to this

polarization-enhanced noncovalent interaction.
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Chapter 5:

Concluding marks and Future work

5.1 Conclusion

We have presented three generations of bis(ethynylpyridinium)-fluoroaniline (G2XB), and
bis(arylethynyl)-trifluoromethylaniline (G3XB) receptors and non-traditional C-H HBeXB
receptors designed for anion binding studies. Solvatochromism investigations with the G2XB
molecules revealed the charge transfer nature of these receptors. Additionally, the charged G2XB
demonstrated selective sensing for iodide, making them potential candidates for developing
colorimetric and fluorescent anion sensors (Chapter 2). To gain a deeper understanding of HBeXB
interaction, we further developed third-generation arylethynyl scaffolds (G3XB derivatives) using
a modular synthetic pathway which allowed systematic evaluation of substituent effects on both
the HB and XB donors. Our in silico, solution and solid state analysis indicated that modifying
distant substituents, which impact nearby noncovalent interactions, should be taken into account
as a viable alternative to conventional para substitution substituent effects for molecular design
(Chapter 3). To further explore the limits of the HBeXB interaction, we designed and evaluated a
series of HBeXB receptors. The anion binding studies in solution confirmed the ability of C—H HBs
to iodine atoms, which facilitated preorganization of the molecular structure and enhancement
of XBs (Chapter 4).

| take great pride in stating that the research presented in this dissertation has yielded
significant fundamental discoveries with far-reaching implications. These findings will potentially

inspire the development of new generations of XB based anion receptors, offering robust
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alternatives to the traditional XB or HB approaches in the field of supramolecular chemistry. At
the same time, | also believe fundamental studies should lead to applications. In our lab, we have
successfully showcased the first application of HBeXB in organocatalysis. Currently, we are also
conducting studies on HBeXB anion-induced high-order helicates. However, there is still a
significant dearth of research on the application of HBeXB in anion sensing, self-assembly,
catalysis, and ion transport, which represents critical areas requiring further exploration.

To achieve this objective, there are still unresolved issues to be taken into consideration. For
example, the applications of the XB have predominantly been restricted to reactions in organic
solvents, with only very few reports present in the literature that show XB interactions in water
or in aqueous media.?1/687284-86,115188 Ngnetheless, XBs have shown great potential for use in
aqueous environments. Unlike HBs, which are very sensitive to solvent polarity, XBs are not as
disrupted even by polar alcohol solvents.'!! Furthermore, the pH-independence of XBs provides
significant benefits for the binding of anions in aqueous media.®””’2 Hence, the incorporation of
HBeXB interactions into competitive aqueous media could be an important step towards the
design of functional anion receptor molecules with real world applications. The limitation
nowdays likely stems from the scarce aqueous solubility of common XB donor frameworks, such
as the XB receptors designed by Taylor, which contains polyfluoroaromatic moieties.”* While
some limited examples have demonstrated promising abilities of XB-based host systems to

84-86 in aqueous solvents, the

function effectively for anion recognition?%%%72 and anion sensing
performance of HBeXB interaction in agueous environments remains largely unknown.

A pivotal challenge lies in devising strategies to enhance the water solubility of HBeXB

receptors through thoughtful and tailored design approaches. Overcoming this challenge is
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crucial for unlocking the full potential of XB interactions in aqueous media, paving the way for
their broader application in the realm of anion recognition and sensing. Commonly utilized
approaches to enhance the water solubility of organic compounds encompass incorporating
hydrophilic functional groups, adjusting pH, forming inclusion complexes, and incorporating
water-soluble tags (e.g., PEGylation). Ongoing investigations aim to ascertain the effectiveness of
augmenting the water solubility of HBeXB receptors, as well as to evaluate how the design
impacts intramolecular HBing and the broader spectrum of HBeXB interactions.

5.2 Future work

5.2.1 Multi-charged assisted HBeXB receptors

Based on our investigations of G2XB in previous studies, we discovered that introducing a
positive charge to these molecules significantly enhances their affinity for anion binding. This
improvement is a result of the combined effects of charge assistance and stronger polarization
of the C-X halogen bond. Furthermore, higher positive charges also lead to increased solubility

of the molecules in polar solvents.

3 OTf

X =Br, I.
Figure 24. ChemDraw representation of triple-charged HBeXB receptor.

By making slight adjustments to the previous design, we can utilize a charged-assisted
methy! pyridinium as the C-H HB donor and a flanking iodopyridinium arm as the XB donor. This

modification allows us to create a triple-charged HBeXB receptor (Figure 24). Preliminary results
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of crude reaction material have shown that this receptor (X = Br) can achieve solubility in 100%
D,0 at NMR concentrations at room temperature. Quantification of the strength of XB
interactions between the developed triple-charged HBeXB receptors and both anionic and
neutral guests will be conducted in aqueous solution via NMR or UV-Vis titration methods. The
binding investigations with different halides (CI-, Br~, I".) and oxoanions (NOs~, HSO4~, H,PO4~
and ReO4") guests will be conducted to test the size selectivity of the triple-charged HBeXB
receptors. Once reasonable binding affinity was observed, catalytic screenings are planned to
delve into the prospective application of this HBeXB receptor as a catalyst for halide abstraction
type reactions. As an illustration, we will initiate the Ritter-type solvolysis of benzhydryl bromide
to serve as the benchmark reaction.®® The degree of conversion to N-benzhydryl acetamide will
be assessed using 'H NMR spectroscopy, and achieving a high yield (>90%) will be considered a
successful outcome. Additionally, efforts will be made to reduce reaction time and decrease
catalyst loading in order to evaluate the reactivity of the catalysts in comparison to existing HB
and XB catalysts. Consequently, the advancement of HBeXB catalysts with enhanced water
solubility could unveil novel outlooks within the realm of XB-driven organocatalysis.

5.2.2 Halonium HBeXB receptors

Most of the XB receptors discussed above utilize a C-X bond. However, due to the greater
polarity of the N-1 bond compared to the common C-l bond, and the increased electron deficiency
resulting from nitrogen's higher electronegativity during the elongation of the N-I bond, along

with the formal positive charge that is generated, a more potent XB can be formed.*®° The study

systems.'6>189 For example, [Bis(pyridine)iodine(l)]+ tetrafluoroborate, also known as Barluenga’s

64



reagent, has been widely applied as a catalyst for alkene related reactions such as 1,2-

iodofunctionalization®®, iodocyclizations*®! and alcohol oxidations®?, etc.

R4

R4= CF3 COOH, etc.
R,= NMe,, Me, H, F, CFj3, etc.
X=Br, I.

Figure 25. ChemDraw representations of halonium HBeXB receptors.

To the best of our knowledge, few have developed multidentate halonium XB receptors.?®3
Along with our prior experience with HBeXB preorganization, we aim to create halonium scaffolds
that incorporate HBeXB interactions. This approach will not only enhance the strength of the XBs
but also maintain the multidentate scaffolds in rigid, planar conformations. By doing so, we can
reduce the entropic cost and improve interactions with the substrate. Additionally, we will explore
macrocyclization strategy to further minimize the entropic penalty of binding, ultimately
enhancing the affinity of the receptor for the substrate. Comparing to impressive examples of
primarily HB macrocycles®*1%, there are only a few reported XB macrocycles®*8¢1%_ The unique
properties (triple charged, multidentate XB donors) of the proposed HBeXB macrocycles will
make them highly impactful and would enrich the exploitation of the XB in various practical

applications like catalysis, anion sensing, ion transport, etc.
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5.3 Final thoughts

It's worth noting that, it has been only 10 years since the official IUPAC definition was given
to the halogen bond. This timeframe is relatively short in the context of scientific progress for the
emergence of noteworthy applications. As we continue to deepen our understanding of HBeXB,
we will gain valuable insights into the specific requirements of this interaction, making it a novel
and potentially powerful variant of XBing in the fields of chemistry and biochemistry.

During the fundemental studies of the HBeXB receptors, more inquiries emerged regarding
the factors influencing intramolecular HBeXB strength. What are the most effective geometric
arrangements and configurations for achieving strong and selective HBeXB interactions? How do
different solvents and environmental conditions (e.g., polarity, temperature) influence the
strength and dynamics of HBeXB interactions? Can HBeXB interactions be effectively utilized in
aqueous or biological environments, considering the potential challenges related to solvent
effects and water interactions? By addressing these inquiries, we stand to gain comprehensive
insights that could propel advancements in applications. For instance, unraveling the function of
HBeXB interactions in biological systems, including biomolecular recognition or drug-receptor
interactions, could guide their targeted utilization. Additionally, understanding how to tailor and
apply HBeXB interactions in crafting functional materials like catalysts, sensors, or drug delivery
systems is crucial. Moreover, exploring the potential of HBeXB interactions for the innovation of

novel therapeutic agents or drug delivery systems holds significant promise.
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Experimental Section

General:

All reagents were obtained from commercial sources and were used without further
purification unless otherwise noted. Thin layer chromatography (TLC) was performed using
normal-phase silica gel glass-backed plates (0.25 mm, F-254, SiliCycle) and observed under UV
light. Flash column chromatography was performed using normal-phase silica gel (230-400
mesh, SiliaFlash®P60, SiliCycle). Activated molecular sieves were used when anhydrous solvents
were required. All compounds were dried in vacuo at room temperature as needed. High-
resolution mass spectrometry was carried out using an Agilent 6520 Accurate-Mass Q-TOF
LC/MS. Elemental analysis results were obtained from Micro Analysis, Inc. Nuclear magnetic
resonance (NMR) spectra were obtained with a VNMRS Varian 500 MHz or a Bruker Avance 400
MHz or an Agilent 400 MHz spectrometer. Chemical shifts are reported in parts per million
(ppm) from high to low frequency using the residual solvent peak as the internal reference
(CHCl3= 7.26 ppm or Ce¢Hs= 7.16 ppm). For the *°F NMR spectra hexafluorobenzene CgFs (& —
164.9 ppm) was used as an internal standard. Signal splitting patterns are indicated as s, singlet;
d, doublet; t, triplet; m, multiplet, b, broad. Coupling constants (J) are given in Hz.

Chapter 2
Synthesis of Second Generation Molecules (G2XB, G2HB)

General Procedure for Octylation. In an oven dried round bottom, 4 or 5 (1 equiv.) was
dissolved in dry DCM. Octyl triflate (4.5 equiv., prepared according to literature

procedurel) was dissolved in dry DCM. Both round bottoms were sparged with dry N2 gas for
15 min. The octyl triflate solution was then added dropwise to the solution of 4 or 5. The
solution was stirred for 16 h under inert atmosphere. Removal of the DCM by rotoevaporation
left a solid/oil that was triturated with hexanes followed by filtration.

General Procedure for Anion Metathesis. Octylated triflate salt of 4 or 5 was dissolved in the
smallest amount of acetonitrile (enough to solubilize the receptor salt but not dilute it). 2.2
equivalents of tetra-n-butylammonium chloride were added to the acetonitrile mixture. Red
precipitate formed upon addition of TBACI, reaction was stirred overnight at room
temperature. Vapor diffusion of Et20 afforded a precipitate that was isolated by filtration. To
remove excess tetra-n6 butylammonium chloride, the precipitate was washed with acetone
which left a powder/oil. *H and *°F NMR showed precipitate was clean product and no further
purification was needed.
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Figure S1. Synthetic Pathway of G2XB derivatives molecules.

™S Z NH, N ™S

4-fluoro-2,6-bis((trimethylsilyl)ethynyl)aniline (1). To an oven dried Schlenk flask was charged
with 2,6-dibromo-4-fluoroaniline (4.9787 g, 18.51 mmol), then vacuumed and backfilled with
dry N2 gas (3x). Bis(triphenylphosphine)palladium(ll) dichloride (0.778 g, 1.10 mmol) was added,
vacuumed and backfilled with dry N2 (3x). Copper (l) iodide (0.354 g, 1.86 mmol) was added,
vacuumed and backfilled with dry N2 (3x). The dry reagents were dissolved in 150 mL dry
dimethylformamide (DMF). N,N-diisopropylamine (16 mL, 91.85 mmol) and TMS-acetylene
(6.65 mL, 46.56 mmol) were added to the DMF solution. The flask was carefully vacuumed and
backfilled with dry N; (3x). The dark brown solution stirred overnight at 60°C. The reaction
mixture was first run through a silica plug with a hexane/ethyl acetate solvent mixture (50:50)
to remove any excess salts and catalysts. Subsequent removal of DMF, hexanes and ethyl
acetate by roto-evaporation left a brown solid that was purified by column chromatography
(gradient column of pure hexanes to 5% EtOAc/95% Hexanes) to afford 1 (5.04 g, 16.6 mmol,
90%) as a golden yellow colored oil. *H (400 MHz, CDCls, 25°C): 6.9916-6.9697 (2H, d, J = 8.76
Hz), 4.6717 (2H, s), 0.2598 (18H, s). 13C (125.7 MHz, CDCls, 25°C): 154.7221-152.8471 (d, J =
235.7 Hz), 146.8236, 119.3367 (d, J = 23.9 Hz), 108.0455 (d, J = 9.7 Hz), 101.5135, 100.2913,
0.1138.%°F (470.6 MHz, CDCls, 25°C): -130.7549 (1F, t, J = 8.73 Hz). HRMS (ESI pos) m/z:
304.1353 (M*+1, 100%); C16H23FNSi*+1 (304.1377).
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Figure S2. 'H NMR of spectrum of 1 (CDCls, 25°C, 400 MHz).
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Figure S3. 13C NMR of spectrum of 1 (CDCls, 25°C, 125.7 MHz).
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Figure S4. 1°F NMR of spectrum of 1 (CDCls, 25°C, 470.6 MHz).
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2,6-bisethynyl-4-fluoroaniline (2). 1 (1.59 g, 5.24 mmol) was dissolved in 15 mL methanol and
15 mL DCM in a 250 mL round bottom flask. Potassium carbonate (1.85 g, 13.11 mmol) was
added to the organic mixture. The reaction stirred vigorously for 4 hours at room temperature
and reaction progress was checked via TLC. If the reaction was not finished, it was stirred
overnight. When the reaction came to completion, water was added to quench the reaction.
The crude product was extracted with ethyl acetate, dried over magnesium sulfate and vacuum
filtered. The organic mixture was reduced under vacuum and crude product remained a brown
solid. The clean yellow solid 2 (0.610 g, 73 % yield) was obtained by column chromatography
(10% DCM/90 % Hexanes). *H (400 MHz, CDCls, 25°C): 7.0602-7.0387 (2H, d, J = 8.6 Hz), 4.7013
(2H, s), 3.4343 (2H, s). 13C (125.7 Hz, CDCls, 25°C): 154.6664-152.7916 (d, J = 235.7 Hz),
147.2792,120.1869 (d, J = 24.1 Hz), 107.0369 (d, J = 9.8 Hz), 83.8922, 79.2389. °F (470.6 MHz,
CDCls, 25°C): -130.5275 (1F, t, J = 8.66 Hz). HRMS (ESI pos) m/z: 160.0563 (M*+1, 100%);
Ci0H7FN*+1 (160.0563).
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Figure S7. 1°F NMR of spectrum of 2 (CDCls, 25°C, 470.6 MHz).

2,6-bis(4-ethynyl-3-bromopyridinyl)-4-fluoroaniline (3). To an oven dried Schlenk flask was
charged with 2 (0.300 g, 1.88 mmol) and 4-bromo-3-iodopyridine (1.125 g, 4.71 mmol) then
vacuumed and backfilled with dry N2 gas (3x). Bis(triphenylphosphine)palladium (I1) dichloride
(0.0793 g, 0.113 mmol) was added, vacuumed and backfilled with dry N; (3x). Copper (l) iodide
(0.035 g, 0.188 mmol) was added, vacuumed and backfilled with dry N2 (3x). The dry reagents
were dissolved in 60 mL dry DMF. N,N-diisopropylamine (1.6 mL, 9.4 mmol) was added to the
DMF solution. The flask was carefully vacuumed and backfilled with dry N> (3x). The dark brown
solution stirred overnight at room temperature. The reaction mixture was first run through a
silica plug with a hexane/ethyl acetate solvent mixture (50:50) to remove any excess salts and
catalysts. Subsequent removal of DMF, hexanes and ethyl acetate by roto-evaporation left and
brown solid that was purified by column chromatography (gradient from 30% EtOAc/70%
Hexanes to 75% EtOAc/25% Hexanes) to afford 3 (5.04 g, 16.6 mmol, 90%) as a bright yellow

87



solid. *H (400 MHz, CDCls, 25°C): 8.8199 (2H, s), 8.5531-8.5406 (2H, d, J = 5 Hz), 7.4405-7.4280
(2H, d, J = 5 Hz), 7.2255-7.2045 (2H, d, J = 8.4 Hz), 5.2456 (2H, s). 13C (125.7 MHz, CDCI3, 25°C):
155.42, 153.07-152.16 (d, J = 114.4 Hz), 148.43, 133.02, 132.69, 126.81, 123.06, 121.46 (d, J =
30.2 Hz), 107.77 (d, J = 43.0 Hz), 94.45, 92.76. 1°F (470.6 MHz, CDCls, 25°C): -129.9064 (1F, t, J =
8.35 Hz). HRMS (ESI pos) m/z: 471.9283 (M*+1, 100%); C20H11BroFNs*+1 (471.9350).
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Figure S8. 'H NMR of spectrum of 3 (CDCls, 25°C, 400 MHz).
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Figure S9. 13C NMR of spectrum of 3 (CDCls, 25°C, 125.7 MHz).
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Figure S10. °F NMR of spectrum of 3 (CDCls, 25°C, 470.6 MHz).

2,6-bis(4-ethynyl-3-iodopyridinyl)-4-fluoroaniline (4). 3 (0.225 g, 0.47 mmol), copper iodide
(0.009 g, 0.047 mmol), sodium iodide (0.286 g, 1.91 mmol) were added to a 10-20 mL
microwave reaction vial containing a stir bar and dissolved in 13 mL 1,4-dioxane. To the vibrant
yellow reaction mixture, trans-N,N’-dimethylcyclohexane-1,2-diamine (0.23 mL, 1.45 mmol)
was added which turned the solution color green-brown. The microwave vial was sealed and
placed in a microwave. The reaction was performed in a Biotage Initiator+ microwave reactor
for 5.5 hours at 150 °C. After cooling, an aliquot was ran through pipet silica plug with EtOAc to
remove catalysts and salts. The EtOAc crude was then ran through GCMS in order to obtain %
conversion of bromines to iodines. If the reaction was unfinished, it would be submitted again
at 30 min incriments. When the reaction ran to completion, the crude reaction was run through
a silica plug with EtOAc. The bright yellow product (0.219 g, 0.39 mmol, 81%) was purified via
column chromatography (gradient column 30% EtOAc/70% Hexanes to 70% EtOAc/30%
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Hexanes). 'H (400 MHz, CDCls, 25°C): 9.0073 (2H, s), 8.5603-8.5478 (2H, d, J = 5 Hz), 7.4334-

7.4209 (2H, d, J = 5 Hz), 7.2380-7.21770 (2H, d, J = 8.4 Hz), 5.3240 (2H, s). 13C (125.7 MHz,

CDCI3, 25°C): 157.1417, 154.7946-152.9078 (d, J = 237.2 Hz), 148.6974, 147.7629, 136.7807,
126.3512, 120.8622 (d, J = 24.0 Hz), 106.7141 (d, J = 9.7 Hz), 98.9006, 95.5187, 92.9690. °F
(470.6 MHz, CDCls, 25°C): -129.8910 (1F, t, J = 8.3 Hz). HRMS (ESI pos) m/z: 565.9026 (M*+1,

100%); Ca0H11FI2Ns*+1 (565.9040).
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Figure S11. 'H NMR of spectrum of 4 (CDCls, 25°C, 400 MHz).
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Figure S12. 3C NMR of spectrum of 4 (CDCls, 25°C, 125.7 MHz).
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Figure S13. °F NMR of spectrum of 4 (CDCls, 25°C, 470.6 MHz).

2,6-bis(4-ethynylpyridinyl)-4-fluoroaniline (5). To an oven dried Schlenk flask was charged
with 2 (0.85 g, 5.34 mmol) and 4-iodopyridine (2.5 g, 12.2 mmol) then vacuumed and backfilled
with dry N3 gas (3x). Bis(triphenylphosphine)palladium (Il) dichloride (0.226 g, 0.342 mmol) was
added, vacuumed and backfilled with dry N; (3x). Copper (l) iodide (0.101 g, 0.53 mmol) was
added, vacuumed and backfilled with dry N; (3x). The dry reagents were dissolved in 40 mL dry
DMF. N,N-diisopropylamine (4.6 mL, 26.4 mmol) was added to the DMF solution. The flask was
carefully vacuumed and backfilled with dry N; (3x). The dark brown solution stirred overnight at
150 °C. The reaction mixture was first run through a silica plug with an ethyl acetate/methanol
solvent mixture (90:10) to remove any excess salts and catalysts. Subsequent removal of DMF,
hexanes and ethyl acetate by roto-evaporation left and brown solid that was purified by column
chromatography (gradient from 30% EtOAc/70% Hexanes to 75% EtOAc/25% Hexanes) to
afford 5 (0.96 g, 3.1 mmol, 58%) as a bright yellow solid. *H (500 MHz, CDsCN, 25°C): 8.6234-
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8.6114 (2H, d, J = 6 Hz), 7.5059-74938 (4H, d, J = 6.05 Hz), 7.2422-7.2245 (2H, d, J = 8.85 Hz),
5.2600 (2H, s). 3C (125.7 MHz, CDsCN, 25°C): 155.3862, 150.9501 (d, J = 6.9 Hz), 148.4883,
131.3914, 126.2978, 121.2470 (d, J = 24.2 Hz), 107.7302 (d, J = 10.13 Hz), 93.8579, 89.3999. °F
(470.6 MHz, CDsCN, 25°C): -129.6846 (1F, t, J = 8.82 Hz). HRMS (ESI pos) m/z: 314.1094 (M*+1,

100%); Ca0H13FN3*+1 (314.1107).
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Figure S14. TH NMR of spectrum of 5 (CDsCN, 25°C, 500 MHz).
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Figure S15. 3C NMR of spectrum of 5 (CDsCN, 25°C, 125.7 MHz).
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Figure S16. °F NMR of spectrum of 5 (CDsCN, 25°C, 470.6 MHz).

G2XB (6). *H (500 MHz, CDCls, 25°C): 8.6111 (2H, s), 8.0362-8.0211 (2H, d, J = 7.55 Hz), 7.6914
(16H, b), 7.6045-7.5917 (2H, d, J = 6.54 Hz), 7.4989 (8H, b), 7.3652-7.3500 (2H, d, J = 7.65 Hz),
5.2924 (2H, s), 4.2338 (4H, t, J = 7.05 Hz), 1.9174 (4H, b), 1.3144-1.2317 (20H, b), 0.8460 (6H, t).
13C (125.7MHz, CDCls, 25°C): 162.2529 (dd, J = 99.95 Hz, J = 45.55 Hz), 149.3866, 147.4292,
141.0047, 135.1731, 129.4505 (qq, J = 34.07 Hz), 125.9575 (q, J = 272.61 Hz), 125.5778,
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125.3818, 117.9445, 106.9363, 105.1553 (d, J = 7.41 Hz), 99.6546, 95.5300, 63.1093, 31.7955,
31.7420, 29.0824, 28.9629, 26.3058, 22.8052, 14.2414. *°F (470.6 MHz, CDCls, 25°C): -126.7810
(1F, t,J=7.65 Hz), -65.3734 (48F, s). HRMS (ESI pos) m/z: 395.5805 (M*?, 100%), 1654.2257
(M*-1BArF); C3gHaqF12N3*2 (395.5814), CesHseBF2sloN3* (1654.2241).
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Figure S17. *H NMR of spectrum of 6 (CDCls, 25°C, 500 MHz).

97



PIvZ bl
250827
850£°9Z
6296'87
¥280°62

0TrLTE]
SS6.°T1¢’
£€/0T°€9
ColLT Lo
00£S°S6
9%59°66-
€SST°S0T,
/822°S0T-
SY¥6 L1T £€9€6°90T
90Z9'12T

¥882°€21"
818€'S7T
8715521
$L56°STT
8921821}
2112821

8606°8¢T

1S6T°62T
S0SY'62T [
6222621

LYO0°THT |
LY LYT
998€ 61T

18S+°191,
6TS8°TOT -
6252291
1249291’

10

60 50 40 30 20

70

80

90
f1 (ppm)

160 150 140 130 120 110 100
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Figure S19. °F NMR of spectrum of 6 (CDCls, 25°C, 470.6 MHz).

G2HB (7). 'H (500 MHz, CDCls, 25°C): 8.0731-8.0598 (4H, d, J = 6.65 Hz), 7.6842 (16H, b),
7.6559-7.6427 (4H, d, J = 6.6 Hz), 7.4937 (8H, b), 7.2376 (2H, d), 4.7532 (2H, s), 4.2531 (4H, t, J =
7.53 Hz), 1.9058 (4H, b), 1.3076 (20H, b), 0.8548 (6H, t). 13C (125.7 MHz, CDCls, 25°C): 161.9838
(dd, J = 99.24 Hz, J = 49.59 Hz), 148.6799, 142.4386, 141.5833, 134.8523, 129.6429, 129.2233
(qq, J = 29.85 Hz), 125.6782 (q, J = 272.61 Hz), 124.5287, 124.3342, 117.6843, 117.6541,
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105.0244 (d, J = 7.55 Hz), 102.6996, 91.0861, 62.9674, 31.5562, 31.4401, 28.8630, 26.0454,
22.5690. 1°F (470.6 MHz, CDCls, 25°C): -126.9895 (t, J = 7.81 Hz, 1F), -65.4280 (48F, s). HRMS
(ESI pos) m/z: 269.6838 (M*2, 100%), 1402.4325 (M*-1BArF); CssHaaFI2N3*2 (269.6840),

CesHseBF2s12N3* (1402.4325).
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Figure 520. 'H NMR of spectrum of 7 (CDCls, 25°C, 500 MHz).
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Figure S22. 'H NMR of spectrum of 7 (CDCls, 25°C, 470.6 MHz).

UV-Vis and fluorescence studies

General methods of UV-Vis and fluorescence experiments

All the solvents used for UV-Vis and fluorescence studies were spectrophotometric grade
(99.7+%). All UV-Vis spectra were collected on a Cary 60 spectrometer at 298 K. All fluorescence
spectra were collected on a Cary Eclipse spectrometer at 298 K. All spectra were collected using
a quartz cell fitted with a Teflon stopper, with a path length of 10.0 mm. In all cases, 0.02mM
was chosen as the working concentration for each receptor such that the peak absorbance
value was approximately 0.2 to 0.5. Measurements were carried out using Hamilton gastight
syringes and titrations were carried out using Hamilton microliter syringes. After each addition,
the cell was stoppered and shook for two minutes to ensure complete mixing. In order to keep
the concentration of the receptor (host) constant throughout the titration, the receptor
solution was used to prepare the anion (guest) solution. UV-Vis titrations were carried out by
adding aliquots of the anion (guest) solution to a known volume of receptor (host) solution.
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Solvatochromism of neutral receptors 1a and 1b
0.5
—CM

Chioroform

Acetone

—_—Me0H
—MeCM
—_— O F

DM 50

340 360 380 400 420 440 4g0 480 500
Wavelength (nm)

Figure S23. UV-Vis absorption spectrum of 1a in various solvents.
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Figure S24. Fluorescence emission spectrum of 1a in various solvents. Slit (excitation/emission)
=5nm.

Aex pem= 405 nm, Aex chioroform= 406 NM, Aex Acetone= 406 NM, Aex methanoi= 411 M, Aex mecn= 405 nm,
7\ex ome= 413.5 nm, }\ex pmso= 415.5 nm.
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Figure S25. UV-Vis absorption spectrum of 1b in various solvents.

500
— DT
Chloroform
400 Acetone
— — MWeOH
3
a 500 e [y 20 Y
=
o — D F
5
+ 200 —_— DM E0
100

400 420 440 460 480 SO0 520 540 560 580 600
Wavelength (nm)

Figure S26. Fluorescence emission spectrum of 1b in various solvents. Slit (excitation/emission)
=2.5nm.

AexDcv= 384.5 nm, Aex Chioroform= 382 nm, Aex Acetone= 392.5 nm, Aex methanoi= 395 nm, Aex mecn = 388
nmM, Aex omr= 401.5 nm, Aex omso= 404 nm.

Solvatochromism of charged receptors 2a and 2b

104



—_—DCM

0.8 Chioroform
Acetone
07 — MelH
— el

—DMF
—_—DME0

5325 375 4325 475 525 575
Wavelength (nm)

Figure S27. UV-Vis absorption spectrum of 2a in various solvents.
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Figure S28. Fluorescence emission spectrum of 2a in various solvents. Slit (excitation/emission)
=5nm.

Aex pem= 505.5 nm, Aex chioroform= 521 NM, Aex Acetone= 475 NM, Aex methanol= 479 NM, Aex Mecn = 472
NM, Aex omr= 425.5 nm, Aex omso= 482.5 nm.
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Figure S29. UV-Vis absorption spectrum of 2b in various solvents.
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Figure S30. Fluorescence emission spectrum of 2b in various solvents. Slit (excitation/emission)
=5nm.
Aex pem= 472 nm, Aex chioroform= 482.5 NM, Aex Acetone= 458.5 NM, Aex methanol= 463.5 NM, Aex MecN =
453.5 nm, Aex DMr= 465.5 N, Aex bmso= 468 nm.

Linear free energy relationships

Linear correlations between 1/Amax of UV-Vis spectra and solvent polarity were conducted for
neutral receptors 1a,b and charged receptors 2a,b using four solvent polarity parameters
(dielectric constant, dipole moment, Et(30)! and rt*scale?), respectively.
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Figure S31. Linear correlation between vmax and dielectric constant for neutral receptors 1a (a),
1b (b) and charged receptors 2a (c), 2b (d).
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Figure S32. Linear correlation between vmax and dipole moment for neutral receptors 1a (a), 1b
(b) and charged receptors 2a (c), 2b (d).
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Figure S33. Linear correlation between vmax and Er(30) for neutral receptors 1a (a), 1b (b) and

charged receptors 2a (c), 2b (d).

(a)

24800
MeCN
. o DCM
Acetone
-
Chloroform
24550
=
£
=
i MeOH
£ .
24300
DMF
L]
24050
0.55 0.65 0.75 0.85
-”:-v‘i
24000 DMF
L]
23000
= 722000
£
= Acetone MeCN
3 MeOH cetong Me
£21000 -
> L]
20000 pem
L]
Chloroform
.
19000
0.55 0.65 0.75 0.85

T*

(b)
Chloroform
26200 .
DCM
.
MeCN
L]
25700 .
£ Acetong ...
S . S,
é MeOH
= .
25200
DMF
DMSO ¢ DMSO
. 24700 *
0.95 1.05 0.55 0.65 0.75 0.85 0.95 1.05
T[-v‘i
(d)
22200 MeCN
.
21900 Acetone
L]
= 21600 o DME
g MeOH . DMSO
I » T .
DMSO £21300 DCM
>
- .
21000
Chloroform
20700 *
0.95 1.05 0.55 0.65 0.75 0.85 0.95 1.05

*

Figure S34. Linear correlation between vmax and t* for neutral receptors 1a (a), 1b (b) and

charged receptors 2a (c), 2b (d).
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Figure S35. Linear correlation between (a) absorbance vmax of neutral iodinated receptor 1a and
non-iodinated receptor 1b, (b) absorbance vmax of charged iodinated receptor 2a and non-
iodinated receptor 2b.

Anion binding studies

All spectra were recorded at 20 uM of receptor in dichloromethane solution. Slit of excitation
and emission for fluorescence experiment in this section is set up to 5 nm unless otherwise
noted.
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Figure S36. UV-Vis absorption spectrum of 2a upon addition of TBA*CI-.
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Figure S37. Fluorescence emission spectrum of 2a upon addition of TBA*CI".
Aexred= 506.5 nm, Aexgreen=534.5 nm, Aex blue= 514.5 nm.
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Figure S38. UV-Vis absorption spectrum of 2a upon addition of TBA*Br".
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Figure S39. Fluorescence emission spectrum of 2a upon addition of TBA*Br".
Aexred= 506.5 nm, Aexgreen= 534 nm, Aex blue= 514.5 nm.
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Figure S40. UV-Vis absorption spectrum of 2a upon addition of TBA*I".
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Figure S41. Fluorescence emission spectrum of 2a upon addition of TBA*I'.
Aexred= 506.5 nm, Aexgreen= 534 nm, Aex blue= 517.5 nm.
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Figure S42. UV-Vis absorption spectrum of 2a upon addition of TBA*SCN".
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Figure S43. Fluorescence emission spectrum of 2a upon addition of TBA*SCN".
Aexred= 506.5 nm, Aexgreen= 534 nm, Aex blue= 518.5 nm.
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Figure S44. UV-Vis absorption spectrum of 2a upon addition of TBA*NOs".
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Figure S45. Fluorescence emission spectrum of 2a upon addition of TBA*NOs".
Aexred= 506.5 nm, Aexgreen= 534 nm, Aex blue= 513 nm.
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Figure S46. UV-Vis absorption spectrum of 2a upon addition of TBA*ReQy".
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Figure S47. Fluorescence emission spectrum of 2a upon addition of TBA*ReOg".
Aexred= 506.5 nm, Aexgreen=526.5 nm, Aex blue= 514.5 nm.
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Figure S48. UV-Vis absorption spectrum of 2a upon addition of TBA*H,POg".
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Figure S49. Fluorescence emission spectrum of 2a upon addition of TBA*H,POg".
Aexred= 506.5 nm, Aexgreen= 509 nm, Aex blue= 501 nm.
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Figure S50. UV-Vis absorption spectrum of 2a upon addition of TBA*HSO4".
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Figure S51. Fluorescence emission spectrum of 2a upon addition of TBA*HSO4'.
Aexred= 506.5 nm, Aexgreen=518.5 nm.
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Figure S52. UV-Vis absorption spectrum of 2b upon addition of TBA*CI".
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Figure S53. Fluorescence emission spectrum of 2b upon addition of TBA*CI-.
Aexred= 472 nm, Aexgreen= 513 nm, Aex blue=492.5 nm.
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Figure S54. UV-Vis absorption spectrum of 2b upon addition of TBA*Br".
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Figure S55. Fluorescence emission spectrum of 2b upon addition of TBA*Br-.
Aexred= 472 nm, Aex green= 501 nm, Aex blue= 480 nm.
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Figure S56. UV-Vis absorption spectrum of 2b upon addition of TBA*I'.
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Figure S57. Fluorescence emission spectrum of 2b upon addition of TBA*I".
Aexred= 472 nm, Aexgreen=493.5 nm, Aex blue=472.5 nm.
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Figure S58. UV-Vis absorption spectrum of 2b upon addition of TBA*SCN".
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Figure S59. Fluorescence emission spectrum of 2b upon addition of TBA*SCN".
Aexred= 472 nm, Aex green= 497 nm, Aex blue= 481 nm.

0.8

—h
. Jb+1 equiv. TBANO3
— 7b+50 equiv. TEANO3

06
05
204
03
0.2
0.1
0

300 350 00 450 500 550 500 650 700

Wavelength (nm)
Figure S60. UV-Vis absorption spectrum of 2b upon addition of TBA*NOs'.
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Figure S61. Fluorescence emission spectrum of 2b upon addition of TBA*NOs'.
Aexred= 472 nm, Aexgreen= 501 nm, Aex blue=478.5 nm.
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Figure S62. UV-Vis absorption spectrum of 2b upon addition of TBA*ReO4".
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Figure S63. Fluorescence emission spectrum of 2b upon addition of TBA*ReO4".
Aexred= 472 nm, Aex green= 499 nm, Aex blue= 488 nm.
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Figure S64. UV-Vis absorption spectrum of 2b upon addition of TBA*H;PO4".
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Figure S65. Fluorescence emission spectrum of 2b upon addition of TBA*H,PO4.
Aexred= 472 nm, Aex green= 479 nm, Aex blue= 481 nm.
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Figure S66. UV-Vis absorption spectrum of 2b upon addition of TBA*HSO4".
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Figure S67. Fluorescence emission spectrum of 2b upon addition of TBA*HSO4".
Aexred= 472 nm, Aexgreen= 488 nm, Aex blue= 484 nm.

Computational methods

Computations for 1a,b and 2a,b calculations were carried out with the Gaussian ‘09 suite
of programs using B3LYP functional employing the 6-31+G(d,p) basis set for all atoms except
nitrogen and iodine. For which nitrogen—aug-cc-pVTZ basis set and iodide— LANL2DZdp and
effective core potential (ECP) were used. The LANL2DZdp ECP basis set was downloaded from
the EMSL Basis Set Exchange3. To simplify calculations, methyl derivative of charged receptors
were evaluated. Crystal structures of methyl derivative of charged XB receptor were employed
as a starting point for optimization.

Neutral XB receptor 1a

B3LYP/GEN =-1055.00099255 au
3.14731 -2.09014 -0.00006
0. 6.0774 0.00037

0. 0.55182 0.00003
0.86617 0.03944 0.00002
-0.86617 0.03944 -0.00002
7.23619 -0.71105 0.00009
4.72274 0.58018 0.00012
4.83728 -0.82734 0.00004
3.48258 1.27079 0.00014
1.22751 2.63753 0.00018
2.45708 1.93045 0.00016
6.106 -1.41582 0.00003
6.20673 -2.49817 -0.00004
0. 1.90735 0.00012

OTOO0O0O0O0O0O0OZITITZ2"T—
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-2.45708 1.93045 0.00007
1.21173 4.04473 0.00027
2.14215 4.60098 0.00032
-1.22751 2.63753 0.00014
-3.48258 1.27079 0.00001
0. 4.71583 0.00029

5.93451 1.30647 0.00018
5.90825 2.39103 0.00025
7.14417 0.62322 0.00016
8.08391 1.17093 0.00021
-1.21173 4.04473 0.00022
-2.14215 4.60098 0.00024
-7.23619 -0.71105 -0.00019
-4.72274 0.58018 -0.00006
-7.14417 0.62322 -0.00011
-8.08391 1.17093 -0.0001
-5.93451 1.30647 -0.00004
-4.83728 -0.82734 -0.00015
-6.106 -1.41582 -0.00021
-6.20673 -2.49817 -0.00027
-3.14731 -2.09014 -0.00018
-5.90825 2.39103 0.00002

Neutral HB receptor 1b
B3LYP/GEN =-1033.43979671 au

F

OOOITOOOITOOOO0O0O0OZ2IT I 2

0. 4.72839 0.0515

0. -0.80336 0.04693
-0.85694 -1.279 -0.18102
0.85694 -1.279 -0.18102
-7.21555 -2.10564 -0.02912
-4.74721 -0.7419 -0.0094
-4.81019 -2.14535 0.08701
-3.50336 -0.04691 -0.00012
-1.22643 1.2898 0.02044
-2.45977 0.58317 0.00842
-6.05776 -2.76591 0.07187
-6.12789 -3.84949 0.14559
0. 0.56622 0.01783
2.45977 0.58317 0.00842
-1.21243 2.69739 0.03204
-2.14288 3.25337 0.03433
1.22643 1.2898 0.02044
3.50336 -0.04691 -0.00012
0. 3.36725 0.03947
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-5.96769
-5.97981
-7.15688
-8.11059
1.21243
2.14289
7.21555
4.74721
7.15688
8.11059
5.96769
4.81019
6.05776
6.12789
5.97981
3.90357
-3.90357

-0.04677 -0.11509
1.03531 -0.19204
-0.77303 -0.11947
-0.25507 -0.20026
2.69739 0.03204
3.25337 0.03433
-2.10564 -0.02912
-0.7419 -0.0094

-0.77303 -0.11947
-0.25507 -0.20025
-0.04677 -0.11509
-2.14535 0.087

-2.76591 0.07186
-3.84949 0.14558
1.03531 -0.19204
-2.73497 0.17513
-2.73497 0.17514

Charged XB receptor 2a
B3LYP/GEN =-1134.32828236 au
3.5839 -2.10992 -0.00315

T OITOOOOOIT OO0 IOOO0OOO0Z2TIT ITZ™T

0.00003

5.95285 -0.00265

0. 0.4334 0.00022
0.8642 -0.08224 -0.00004

-0.86421
7.46036
4.84095
5.10564
3.54736
1.2288
2.46828
6.41736
6.66683
0.00001
-2.46827
1.20939
2.13813
-1.22879
-3.54736
0.00002
5.96936
5.82786
7.24596
8.12686

-0.08223 -0.00005
-0.26288 -0.00263
0.72302 0.00066
-0.67599 -0.00027
1.27087 0.00002
2.52038 -0.00093

1.84753 -0.00047
-1.12233 -0.00105
-2.17589 -0.00153
1.78238 -0.00059
1.84756 -0.0005

3.93058 -0.0016

4.48998 -0.00185
2.5204 -0.00094
1.27093 -0.00006
4.60678 -0.00197
1.58514 -0.00005
2.65927 -0.00135
1.07644 -0.00118
1.70708 -0.00217
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-1.20935 3.93059 -0.00162
-2.13808 4.49001 -0.00189
-7.46039 -0.26278 -0.00294
-4.84096 0.7231 0.00055

-7.24598 1.07652 -0.00145
-8.12684 1.70721 -0.00252
-5.96935 1.58521 -0.00024
8.85204 -0.77428 0.02542
9.27652 -0.61192 1.01894
9.44102 -0.24414 -0.72438
8.84678 -1.83882 -0.20391
-5.10567 -0.67593 -0.00038
-6.41737 -1.12224 -0.00123
-6.66688 -2.1758 -0.00171
-8.85188 -0.77463 0.0263

-9.27169 -0.62311 1.02355
-8.84765 -1.83659 -0.21479
-9.44443 -0.23644 -0.71483
3.58393 -2.10985 -0.00325
-5.82786 2.65934 -0.00162

Charged HB receptor 2b
B3LYP/GEN =-1112.77851060 au

OO0 ITOO0OO0ITON0O0000z2TIxT=zm7IT

4.31962 -1.41665 -0.00176
0.00003 5.95285 -0.00265
0. 0.4334 0.00022
0.8642 -0.08224 -0.00004
-0.86421 -0.08223 -0.00005
7.46036 -0.26288 -0.00263
4.84095 0.72302 0.00066
5.10564 -0.67599 -0.00027
3.54736 1.27087 0.00002
1.2288 2.52038 -0.00093
2.46828 1.84753 -0.00047
6.41736 -1.12233 -0.00105
6.66683 -2.17589 -0.00153
0.00001 1.78238 -0.00059
-2.46827 1.84756 -0.0005
1.20939 3.93058 -0.0016
2.13813 4.48998 -0.00185
-1.22879 2.5204 -0.00094
-3.54736 1.27093 -0.00006
0.00002 4.60678 -0.00197
5.96936 1.58514 -0.00005
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5.82786 2.65927 -0.00135
7.24596 1.07644 -0.00118
8.12686 1.70708 -0.00217
-1.20935 3.93059 -0.00162
-2.13808 4.49001 -0.00189
-7.46039 -0.26278 -0.00294
-4.84096 0.7231 0.00055

-7.24598 1.07652 -0.00145
-8.12684 1.70721 -0.00252
-5.96935 1.58521 -0.00024
8.85204 -0.77428 0.02542
9.27652 -0.61192 1.01894
9.44102 -0.24414 -0.72438
8.84678 -1.83882 -0.20391
-5.10567 -0.67593 -0.00038
-6.41737 -1.12224 -0.00123
-6.66688 -2.1758 -0.00171
-8.85188 -0.77463 0.0263

-9.27169 -0.62311 1.02355
-8.84765 -1.83659 -0.21479
-9.44443 -0.23644 -0.71483
-4.31965 -1.41659 -0.00186
-5.82786 2.65934 -0.00162

T T T T T OITOOITITITOOITIOOZTITTO0OIOT
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Chapter 3
Synthesis of Third Generation Molecules (G3XB derivatives)
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Figure S68. ChemDraw schematic of all G3XB derivatives molecules.

2,6-bisethynyl-4-(trifluoromethyl)aniline (2a). To an oven dried Schlenk flask was charged with
2,6-dibromo-4-(trifluoromethyl)aniline (1a)(0.638 g, 2 mmol), then vacuumed and backfilled
with dry N2 gas (3x). Bis(triphenylphosphine)palladium(ll) dichloride (0.07 g, 0.1 mmol) was
added, vacuumed and backfilled with dry N2 (3x). Copper (I) iodide (0.038 g, 0.2 mmol) was
added, vacuumed, and backfilled with dry N2 (3x). The dry reagents were dissolved in 60 mL dry
dimethylformamide (DMF). N,N-diisopropylethylamine (1.74 mL, 10 mmol) and TMS-acetylene
(0.692 mL, 5 mmol) were added to the DMF solution. The flask was carefully vacuumed and
backfilled with dry N2 (3x). The dark brown solution stirred overnight at 85 C. The reaction
mixture was run through a silica plug with a hexane/ethyl acetate solvent mixture (50:50) to
remove any excess salts and catalysts. Subsequent removal of DMF, hexanes and ethyl acetate
by rotary evaporation left a brown liquid that was used directly in the next step with no
purification. The brown liquid was dissolved in 50 mL methanol and 50 mL DCM in a 250 mL
round bottom flask. Potassium carbonate (0.69 g, 0.5 mmol) was added to the organic mixture.
The reaction stirred vigorously for 4 hours at room temperature and reaction progress was
monitored via TLC. Upon completion, water was added to quench the reaction. The crude
product was extracted with ethyl acetate, dried over magnesium sulfate and gravity filtered.
The organic mixture was reduced under vacuum and crude product was purified by column
chromatography (gradient from 5% EtOAc/95% Hexanes to 30% EtOAc/70% Hexanes) to afford
a dark yellow solid (0.343 g, 85 % yield).

14 NMR (400 MHz, CDCls): & (ppm) = 7.55 (s, 2H), 5.17 (s, 2H), 3.46 (s, 2H).

13C NMR (125 MHz, CDCls): & (ppm) = 152.38, 130.42 (g, J = 3.8 Hz), 123.88 (q, J = 269.3 Hz),
119.28 (q, J = 33.5 Hz), 106.19, 84.23, 78.78.

19F NMR (470 MHz, CDCl3): & (ppm) = —59.86.

Elemental analysis, Found: C, 60.7; H, 2.66; N, 6.70%. Calc. for C11HsF3N: C, 63.1; H, 2.89; N,
6.55%.
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Figure S69. 'H NMR of 2a (400 MHz, CDCls).
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Figure S71. °F NMR of 2a (376 MHz, CDCls). Hexafluorobenzene (CeFs) internal reference.

2,6-bisethynyl-4-chloroaniline (2b). To an oven dried Schlenk flask was charged with 2,6-
dibromo-4-chloroaniline (1b)(0.571 g, 2 mmol), then vacuumed and backfilled with dry N2 gas
(3x). Bis(triphenylphosphine)palladium(ll) dichloride (0.07 g, 0.1 mmol) was added, vacuumed
and backfilled with dry N2 (3x). Copper (I) iodide (0.038 g, 0.2 mmol) was added, vacuumed,
and backfilled with dry N2 (3x). The dry reagents were dissolved in 60 mL dry
dimethylformamide (DMF). N,N-diisopropylethylamine (1.74 mL, 10 mmol) and TMS-acetylene
(0.692 mL, 5 mmol) were added to the DMF solution. The flask was carefully vacuumed and
backfilled with dry N2 (3x). The dark brown solution stirred overnight at 75 C. The reaction
mixture was run through a silica plug with a hexane/ethyl acetate solvent mixture (50:50) to
remove any excess salts and catalysts. Subsequent removal of DMF, hexanes and ethyl acetate
by rotary evaporation left a brown liquid that was used directly in the next step with no
purification. The brown liquid was dissolved in 50 mL methanol and 50 mL DCM in a 250 mL
round bottom flask. Potassium carbonate (0.69 g, 0.5 mmol) was added to the organic mixture.
The reaction stirred vigorously for 2 hours at room temperature and reaction progress was
monitored via TLC. Upon completion, water was added to quench the reaction. The crude
product was extracted with ethyl acetate, dried over magnesium sulfate and gravity filtered.
The organic mixture was reduced under vacuum and crude product was purified by column
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chromatography (gradient from 5% EtOAc/95% Hexanes to 30% EtOAc/70% Hexanes) to afford
a brown solid (0.295 g, 84 % yield).

1H NMR (400 MHz, CDCls): 6 (ppm) = 7.28 (s, 2H), 4.84 (s, 2H), 3.44 (s, 2H).

13C NMR (125 MHz, CDCls): § (ppm) = 149.08, 139.92, 121.06, 107.63, 84.11, 78.95.

Elemental analysis, Found: C, 67.85; H, 2.93; N, 8.55%. Calc. for C10HsCIN: C, 68.39; H, 3.44; N,
7.98%.
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Figure S72. 'H NMR of 2b (400 MHz, CDCls).
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Figure S73. 33C NMR of 2b (100 MHz, CDCl3).

2,6-bisethynyl-4-fluoroaniline (2c). To an oven dried Schlenk flask was charged with 2,6-
dibromo-4-fluoroaniline (1c¢)(0.534 g, 2 mmol), then vacuumed and backfilled with dry N2 gas
(3x). Bis(triphenylphosphine)palladium(ll) dichloride (0.07 g, 0.1 mmol) was added, vacuumed
and backfilled with dry N2 (3x). Copper (I) iodide (0.038 g, 0.2 mmol) was added, vacuumed,
and backfilled with dry N2 (3x). The dry reagents were dissolved in 60 mL dry
dimethylformamide (DMF). N,N-diisopropylethylamine (1.74 mL, 10 mmol) and TMS-acetylene
(0.692 mL, 5 mmol) were added to the DMF solution. The flask was carefully vacuumed and
backfilled with dry N2 (3x). The dark brown solution stirred overnight at 75 C. The reaction
mixture was run through a silica plug with a hexane/ethyl acetate solvent mixture (50:50) to
remove any excess salts and catalysts. Subsequent removal of DMF, hexanes and ethyl acetate
by rotary evaporation left a brown liquid that was used directly in the next step with no
purification. The brown liquid was dissolved in 50 mL methanol and 50 mL DCM in a 250 mL
round bottom flask. Potassium carbonate (0.69 g, 0.5 mmol) was added to the organic mixture.
The reaction stirred vigorously for 4 hours at room temperature and reaction progress was
monitored via TLC. Upon completion, water was added to quench the reaction. The crude
product was extracted with ethyl acetate, dried over magnesium sulfate and gravity filtered.
The organic mixture was reduced under vacuum and crude product was purified by column
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chromatography (gradient from 5% EtOAc/95% Hexanes to 30% EtOAc/70% Hexanes) to afford
a yellow solid (0.251 g, 79 % yield). Molecule 2c spectra in accordance with previously
reported.!

2,6-bisethynylaniline (2d). To an oven dried Schlenk flask was charged with 2,6-dibromoaniline
(1d) (0.502 g, 2 mmol), then vacuumed and backfilled with dry N2 gas (3x).
Bis(triphenylphosphine)palladium(ll) dichloride (0.07 g, 0.1 mmol) was added, vacuumed and
backfilled with dry N2 (3x). Copper (1) iodide (0.038 g, 0.2 mmol) was added, vacuumed, and
backfilled with dry N2 (3x). The dry reagents were dissolved in 60 mL dry dimethylformamide
(DMF) at 0’ C and stirred for 1 hour. Tetraethylamine (50 mL, excess) and TMS-acetylene (0.692
mL, 5 mmol) were added to the DMF solution. The flask was carefully vacuumed and backfilled
with dry N2 (3x). The dark brown solution stirred overnight at 60°C. The reaction mixture was
run through a silica plug with a hexane/ethyl acetate solvent mixture (50:50) to remove any
excess salts and catalysts. Subsequent removal of DMF, hexanes and ethyl acetate by rotary
evaporation left a brown liquid that was used directly in the next step with no purification. The
brown liquid was dissolved in 50 mL methanol and 50 mL DCM in a 250 mL round bottom flask.
Potassium carbonate (0.69 g, 0.5 mmol) was added to the organic mixture. The reaction stirred
vigorously for 4 hours at room temperature and reaction progress was monitored via TLC. Upon
completion, water was added to quench the reaction. The crude product was extracted with
ethyl acetate, dried over magnesium sulfate and gravity filtered. The organic mixture was
reduced under vacuum and crude product was purified by column chromatography (gradient
from 100% Hexanes to 5% EtOAc/95% Hexanes) to afford a yellow solid (0.152 g, 54 % vyield).
Molecule 2d spectra in accordance with previously reported.?

2,6-bisethynyl-4-methylaniline (2e). To an oven dried Schlenk flask was charged with 2,6-
dibromo-4-methylaniline (1e) (0.530 g, 2 mmol), then vacuumed and backfilled with dry N2 gas
(3x). Bis(triphenylphosphine)palladium(ll) dichloride (0.07 g, 0.1 mmol) was added, vacuumed
and backfilled with dry N2 (3x). Copper (I) iodide (0.038 g, 0.2 mmol) was added, vacuumed,
and backfilled with dry N2 (3x). The dry reagents were dissolved in 60 mL dry
dimethylformamide (DMF) at 0 C and stirred for 1 hour. Tetraethylamine (50 mL, excess) and
TMS-acetylene (0.692 mL, 5 mmol) were added to the DMF solution. The flask was carefully
vacuumed and backfilled with dry N2 (3x). The dark brown solution stirred overnight at 60°C.
The reaction mixture was run through a silica plug with a hexane/ethyl acetate solvent mixture
(50:50) to remove any excess salts and catalysts. Subsequent removal of DMF, hexanes and
ethyl acetate by rotary evaporation left a brown liquid that was used directly in the next step
with no purification. The brown liquid was dissolved in 50 mL methanol and 50 mL DCM in a
250 mL round bottom flask. Potassium carbonate (0.69 g, 0.5 mmol) was added to the organic
mixture. The reaction stirred vigorously for 4 hours at room temperature and reaction progress
was monitored via TLC. Upon completion, water was added to quench the reaction. The crude
product was extracted with ethyl acetate, dried over magnesium sulfate and gravity filtered.
The organic mixture was reduced under vacuum and crude product was purified by column
chromatography (gradient from 100% Hexanes to 3% EtOAc/97% Hexanes) to afford a brown
solid (0.139 g, 45 % yield). Molecule 2e spectra in accordance with previously reported.3
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3,5-bisethynyl-trifluoromethylbenzene (2f). To an oven dried Schlenk flask was charged with
Bis(triphenylphosphine)palladium(ll) dichloride (0.231 g, 0.33 mmol) and then vacuumed and
backfilled with dry N2 (3x). Copper (l) iodide (0.125 g, 0.66 mmol) was added, vacuumed, and
backfilled with dry N2 (3x). The dry reagents were dissolved in 150 mL dry dimethylformamide
(DMF). 3,5-dibromo-trifluoromethylbenzne (1f) (1.0 mL, 6.6 mmol), N,N-diisopropylethylamine
(5.66 mL, 33 mmol) and TMS-acetylene (2.28 mL, 16.5 mmol) were added to the DMF solution.
The flask was carefully vacuumed and backfilled with dry N2 (3x). The dark brown solution
stirred overnight at 85’ C. The reaction mixture was run through a silica plug with hexane to
remove any excess salts and catalysts. Subsequent removal of DMF and hexane by rotary
evaporation left a brown liquid that was used directly in the next step with no purification. The
brown liquid was dissolved in 50 mL methanol and 50 mL DCM in a 250 mL round bottom flask.
Potassium carbonate (2.28 g, 16.5 mmol) was added to the organic mixture. The reaction
stirred vigorously for one hour at room temperature and reaction progress was monitored via
TLC. Upon completion, water was added to quench the reaction. The crude product was
extracted with ethyl acetate, dried over magnesium sulfate and gravity filtered. The organic
mixture was reduced under vacuum and crude product was purified by column
chromatography (gradient from 5% EtOAc/95% Hexanes to 30% EtOAc/70% Hexanes) to afford
a light orange oil (1.232 g, 96 % yield). Molecule 4 spectra in accordance with previously
reported.*

2,6-bis(2-ethynyl-4-(trifluoromethyl)bromophenyl)-4-(trifluoromethyl)aniline (G3HB). To an
oven dried Schlenk flask was charged with 2,6-bisethynyl-4-(trifluoromethyl)aniline (2a) (0.211g
1mmol), then vacuumed and backfilled with dry N2 gas (3x). Bis(triphenylphosphine)palladium
(1) dichloride (0.035 g, 0. 05 mmol) was added, vacuumed and backfilled with dry N2 gas (3x).
Copper (l) iodide (0.019 g, 0.1 mmol) was added, vacuumed and backfilled with dry N2 (3x). The
dry reagents were dissolved in 60 mL dry DMF. 3-iodo-trifluoromethylbenzene (0.36 mL, 2.5
mmol) and N,N-diisopropylethylamine (0.86 mL, 5 mmol) were added to the DMF solution. The
flask was carefully vacuumed and backfilled with dry N2 (3x). The dark brown solution stirred
overnight at room temperature. The reaction mixture was extracted with ethyl acetate then
washed with water to remove any excess salts and catalysts, then was dried over magnesium
sulfate and gravity filtered. Subsequent removal of DMF, hexanes and ethyl acetate by rotary
evaporation left and brown solid that was purified by column chromatography (gradient from
5% DCM/95% Hexanes to 10% DCM/95% Hexanes) to afford G3HB (0.395 g, 60%) as a dull
yellow solid.

1H NMR (400 MHz, CDCls): 6 (ppm) = 7.81 (s, 2H), 7.72 (d, ) = 7.8 Hz, 2H), 7.64 (d, ) = 6.1 Hz, 2H),
7.63 (s, 1H), 7.52 (t, ) = 7.7 Hz, 2H), 5.22 (s, 2H).

13C NMR (100 MHz, CDCl3): & (ppm) = 151.13, 134.78, 131.40 (q, J = 35.8 Hz), 130.03 (q, ) = 4.6
Hz), 129.29, 128.51 (q, J = 3.6 Hz), 125.58 (q, J = 4.0 Hz), 123.96 (q, = 268.9 Hz), 123.76 (q, J =
271.1 Hz), 123.50, 120.10 (g, J = 33.2 Hz), 107.01, 95.65, 85.53.

19F NMR (376 MHz, CDCl3): 6 (ppm) = —60.19, -61.37.

HRMS (ESI neg) m/z for CasH11FsN- [M-H*]": calculated: 496.0753; found: 496.0758.
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Figure S74. 'H NMR of G3HB (400 MHz, CDCls).
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Figure S76. °F NMR of G3HB (376 MHz, CDCls). Hexafluorobenzene (CsFs) internal reference.

2,6-bis(2-ethynyl-4-(trifluoromethyl)bromophenyl)-4-(trifluoromethyl)aniline (G3XBBr). To an
oven dried Schlenk flask was charged with 2,6-bisethynyl-4-(trifluoromethyl)aniline (2a) (0.211g
1mmol), then vacuumed and backfilled with dry N2 gas (3x). Bis(triphenylphosphine)palladium
() dichloride (0.034 g, 0. 05 mmol) was added, vacuumed and backfilled with dry N2 gas (3x).
Copper (l) iodide (0.019 g, 0.1 mmol) was added, vacuumed and backfilled with dry N2 (3x). The
dry reagents were dissolved in 60 mL dry DMF. 1-Bromo-2-iodo-4-(trifluoromethyl)benzene (0.4
mL, 2.5 mmol) and N,N-diisopropylethylamine (0.86 mL, 5 mmol) were added to the DMF
solution. The flask was carefully vacuumed and backfilled with dry N2 (3x). The dark brown
solution stirred overnight at room temperature. The reaction mixture was extracted with ethyl
acetate then washed with water to remove any excess salts and catalysts, then was dried over
magnesium sulfate and gravity filtered. Subsequent removal of DMF, hexanes and ethyl acetate
by rotary evaporation left and brown solid that was purified by column chromatography
(gradient from 100% Hexanes to 5% EtOAc/95% Hexanes) to afford G3XBBr (0.492 g, 75%) as a
dull yellow solid.

1H NMR (400 MHz, CDCl3): 6 (ppm) = 7.84 (s, 2H), 7.79 (d, ) = 7.8 Hz, 2H), 7.67 (s, 2H), 7.47 (d, )
= 6.1 Hz, 2H), 5.65 (s, 2H).

13C NMR (100 MHz, CDCl3): 6 (ppm) = 152.09, 133.24, 130.57 (q, J = 33.5 Hz), 130.36 (g, ) = 3.7
Hz), 129.99 (q, ) = 3.7 Hz), 128.98, 126.36 (q, J = 3.7 Hz), 125.82, 123.89 (q, J = 265.4 Hz), 123.47
(g, =269.7 Hz), 119.89 (q, J = 34.1 Hz), 106.46, 93.57, 90.49.
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19 NMR (376 MHz, CDCl3): 6 (ppm) = —60.14, -61.33.
HRMS (ESI neg) m/z for CasHoF9BroN" [M-H*]: calculated: 653.8943; found: 653.8943.
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Figure S77. 'H NMR of G3XBBr (400 MHz, CDCls).

141



¥9sv'901L

SESS6LL
6888°611 -
vzLLzzL
Z9v5'ZZL -
80Z8'vZL
00v2'SZL

9618'sZL

1z9e°9z1L 7
0086°8Z1
1686°621
si9g 0el
62257051

N
.

7=

1 (ppm)

Figure S78. 13C NMR of G3XBBr (100 MHz, CDCls).
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Figure S79. °F NMR of G3XBBr (376 MHz, CDCls). Hexafluorobenzene (CeFs) internal reference.

2,6-bis(2-ethynyl-4-(trifluoromethyl)iodophenyl)-4-(trifluoromethyl)aniline (G3XB). G3XBBr
(0.200 g, 0.305 mmol), copper iodide (0.006 g, 0.030 mmol), sodium iodide (0.183 g, 1.22
mmol) were added to a 10-20 mL microwave reaction vial containing a stir bar and dissolved in
13 mL 1,4-dioxane. To the vibrant yellow reaction mixture, trans-N,N’-dimethylcyclohexane-1,2-
diamine (0.1 mL) was added. The microwave vial was sealed and placed in a Biotage Initiator+
microwave reactor for 12.5 hours at 150 °C. After cooling, the reaction was run through pipet
silica plug with EtOAc to remove catalysts and salts. The EtOAc crude was then ran through
GCMS in order to obtain % conversion of bromines to iodines. If the conversion from bromine
to iodine was 99% or greater, then the reaction was concentrated. The beige/yellow product
(0.13 g, 58%) was obtained after purified via high performance liquid chromatography (reverse
phase column gradient from 80% water/20% acetonitrile to 100% acetonitrile).

1H NMR (400 MHz, CDCls): 6 (ppm) = 8.04 (d, J = 8.2 Hz, 2H), 7.81 (s, 2H), 7.69 (s, 2H), 7.29 (d, J
= 8.4 Hz, 2H), 5.73 (s, 2H).

13C NMR (100 MHz, CDCl3): 6 (ppm) = 152.16, 145.84, 139.54, 131.05 (q, J = 33.5 Hz), 130.36 (q,
J=3.6 Hz),129.23 (q,) =4.0 Hz), 126.15 (q, ) = 4.0 Hz), 123.91 (g, ) = 269.4 Hz), 123.60 (q, J =
270.5 Hz), 119.63 (q, J = 33.2 Hz), 106.50, 104.78, 96.85, 89.67.

19F NMR (376 MHz, CDCl3): 6 (ppm) = —60.15, -61.56.

HRMS (ESI neg) m/z for CasHoFsloN™ [M-H*]: calculated: 747.8686; found: 747.8689.
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Figure S82. °F NMR of G3XB (376 MHz, CDCls). Hexafluorobenzene (CeFs) internal reference.

2,6-bis(2-ethynyl-4-(trifluoromethyl)bromophenyl)-4-(trifluoromethyl)aniline (2F-G3XBBr). To
an oven dried Schlenk flask was charged with 2,6-bisethynyl-4-(trifluoromethyl)aniline (2a)
(0.211g 1mmol), then vacuumed and backfilled with dry N2 gas (3x).
Bis(triphenylphosphine)palladium (l1) dichloride (0.035 g, 0. 05 mmol) was added, vacuumed
and backfilled with dry N2 gas (3x). Copper (l) iodide (0.019 g, 0.1 mmol) was added, vacuumed
and backfilled with dry N2 (3x). The dry reagents were dissolved in 60 mL dry DMF. 1-Bromo-2-
iodo-4-fluorobenzene (0.33 mL, 2.5 mmol) and N,N-diisopropylethylamine (0.86 mL, 5 mmol)
were added to the DMF solution. The flask was carefully vacuumed and backfilled with dry N2
(3x). The dark brown solution stirred overnight at room temperature. The reaction mixture was
extracted with ethyl acetate then washed with water to remove any excess salts and catalysts,
then was dried over magnesium sulfate and gravity filtered. Subsequent removal of DMF,
hexanes and ethyl acetate by rotary evaporation left and brown solid that was purified by
column chromatography (gradient from 100% Hexanes to 3% EtOAc/97% Hexanes) to afford 2F-
G3XBBr (0.480 g, 87%) as a dull yellow solid.

1H NMR (400 MHz, CDCls): 6 (ppm) = 7.82 (dd, J = 8.8 Hz, 2H), 7.65 (s, 2H), 7.30 (dd, J = 8.9 Hz,
2H), 6.87-7.82 (dt, J = 8.1 Hz, 2H), 5.76 (s, 2H).

13C NMR (100 MHz, CDCl3): 6 (ppm) = 162.64 (d, ) = 247.5 Hz), 152.19, 140.18 (d, J = 8.4 Hz),
130.96 (d, J =9.5 Hz), 130.26 (q, J = 3.6 Hz), 123.96 (q, J = 269.4 Hz), 119.80 (d, J = 23.7 Hz),
119.73 (g, J =33.5 Hz), 117.99 (d, J = 21.9 Hz), 106.53, 96.99, 98.93, 89.15.
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6 (ppm) =—60.08, -111.79.

HRMS (ESI neg) m/z for C23HoFsBroN- [M-H*]: calculated: 553.9007; found: 553.9007.

19F NMR (376 MHz, CDCls)
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Figure S83. 'H NMR of 2F-G3XBBr (400 MHz, CDCl3).
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Figure S84. 13C NMR of 2F-G3XBBr (100 MHz, CDCls).
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Figure S85. °F NMR of 2F-G3XBBr (376 MHz, CDCls). Hexafluorobenzene (CsFg) internal
reference.

2,6-bis(2-ethynyl-4-fluoro-iodophenyl)-4-(trifluoromethyl)aniline (2F-G3XB). 2F-G3XBBr
(0.200 g, 0.360 mmol), copper iodide (0.006 g, 0.036 mmol), sodium iodide (0.216 g, 1.44

mmol) were added to a 10-20 mL microwave reaction vial containing a stir bar and dissolved in
13 mL 1,4-dioxane. To the vibrant yellow reaction mixture, trans-N,N’-dimethylcyclohexane-1,2-
diamine (0.1 mL) was added. The microwave vial was sealed and placed in a Biotage Initiator+
microwave reactor for 16 hours at 150 °C. After cooling, the reaction was run through pipet
silica plug with EtOAc to remove catalysts and salts. The EtOAc crude was then ran through
GCMS in order to obtain % conversion of bromines to iodines. If the conversion from bromine
to iodine was 99% or greater, then the reaction was concentrated. The beige/yellow product
(0.187 g, 80%) was obtained after purified via high performance liquid chromatography (reverse
phase column gradient from 80% water/20% acetonitrile to 100% acetonitrile).

1H NMR (400 MHz, CDCls): 6 (ppm) = 7.82 (dd, J = 5.5 Hz, 2H), 7.65 (s, 2H), 7.30 (dd, J = 6.0 Hz,
2H), 6.87-6.82 (dt, J = 8.0 Hz, 2H), 5.76 (s, 2H).

13C NMR (100 MHz, CDCl3): 6 (ppm) = 162.63 (d, J = 247.5 Hz), 152.18, 140.17 (d, ) = 8.4 Hz),
130.95 (d, J =9.1 Hz), 130.21 (q, J = 3.6 Hz), 123.95 (q, J = 269.4 Hz), 119.80 (d, J = 23.7 Hz)
119.72 (g, =33.5 Hz), 117.98 (d, J = 21.9 Hz), 106.52, 96.95, 93.92, 89.14.

15F NMR (376 MHz, CDCls3): 6 (ppm) = —60.08, -111.80.

HRMS (ESI neg) m/z for C23HoFsI:N" [M-H*]: calculated: 647.8750; found: 647.8750.

149



8159°L

819L°G I\J Tm.r
0818’9
€528'9 /
0ov8'9 = .
zsvee = Freoz
6658'9
62989
= Fooz
TseeL
6v08°L~\
9818'L F= Fooz
69282 \
90v8L

60 58 56

6.2

6.6

6.8
1 (ppm)

6.4

Q
B
N
F N
N
[N
©
F N
@
[N
o
)

€100D 0092'L

v6.2'L

0.82°L

0zo€'L

£60€°L

aseaib z6SZ' L ——

J9)eM 625S°L —

2u0}99€ L6102 ——

819L°S I\IL

0818’9
€628'9
oove’9
518’9
6658'9
§.98°9

8159°L /

6v08°L
9818°L
6928°L

90v8’L

Feer

86°L
ooz

1.0

1.5

3.0

1 (ppm)

Figure S86. 'H NMR of 2F-G3XB (400 MHz, CDCl3).
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Figure S88. °F NMR of 2F-G3XB (376 MHz, CDCls). Hexafluorobenzene (CsFs) internal reference.

2,6-bis(2-ethynyl-bromophenyl)-4-(trifluoromethyl)aniline (2H-G3XBBr). To an oven dried
Schlenk flask was charged with 2,6-bisethynyl-4-(trifluoromethyl)aniline (2a) (0.375g
1.78mmol), then vacuumed and backfilled with dry N2 gas (3x).
Bis(triphenylphosphine)palladium (l1) dichloride (0.063 g, 0. 089 mmol) was added, vacuumed
and backfilled with dry N2 gas (3x). Copper (l) iodide (0.034 g, 0.178 mmol) was added,
vacuumed and backfilled with dry N2 (3x). The dry reagents were dissolved in 100 mL dry DMF.
1-Bromo-2-iodo-benzene (0.57 mL, 4.45 mmol) and N,N-diisopropylethylamine (1.53 mL, 8.9
mmol) were added to the DMF solution. The flask was carefully vacuumed and backfilled with
dry N2 (3x). The dark brown solution stirred overnight at room temperature. The reaction
mixture was extracted with ethyl acetate then washed with water to remove any excess salts
and catalysts, then was dried over magnesium sulfate and gravity filtered. Subsequent removal
of DMF, hexanes and ethyl acetate by rotary evaporation left and brown solid that was purified
by column chromatography (gradient from 100% Hexanes to 5% EtOAc/95% Hexanes) to afford
2H-G3XBBr (0.647 g, 70%) as a yellow solid.

1H NMR (400 MHz, CDCls): 6 (ppm) = 7.65 (d, J = 8.0 Hz, 2H), 7.63 (s, 2H), 7.59 (d, J = 7.7 Hz, 2H),
7.35(t,J =7.6 Hz, 2H), 7.23 (t,J = 7.6 Hz, 2H), 5.70 (s, 2H).

13C NMR (100 MHz, CDCl3): 6 (ppm) = 152.02, 133.29, 132.57, 129.99, 129.61 (g, J = 3.7 Hz),
127.49, 125.33,124.91, 124.11 (q, J = 269.4 Hz), 119.47 (q, J = 33.4 Hz), 106.91, 94.74, 89.09.
19F NMR (376 MHz, CDCls3): § (ppm) = —59.99.
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HRMS (ESI neg) m/z for Ca3H11F3BraN" [M-H*]: calculated: 517.9195; found: 517.9196.
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Figure S89. 'H NMR of 2H-G3XBBr (400 MHz, CDCls).
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Figure S91. °F NMR of 2H-G3XBBr (376 MHz, CDCls). Hexafluorobenzene (CsFs) internal
reference.

2,6-bis(2-ethynyl-iodophenyl)-4-(trifluoromethyl)aniline (2H-G3XB). 2H-G3XBBr (0.121 g,
0.233 mmol), copper iodide (0.005 g, 0.026 mmol), sodium iodide (0.140 g, 0.93 mmol) were
added to a 10-20 mL microwave reaction vial containing a stir bar and dissolved in 13 mL 1,4-
dioxane. To the vibrant yellow reaction mixture, trans-N,N’-dimethylcyclohexane-1,2-diamine
(0.1 mL) was added. The microwave vial was sealed and placed in a Biotage Initiator+
microwave reactor for 12 hours at 150 °C. After cooling, the reaction was run through pipet
silica plug with EtOAc to remove catalysts and salts. The EtOAc crude was then ran through
GCMS in order to obtain % conversion of bromines to iodines. If the conversion from bromine
to iodine was 99% or greater, then the reaction was concentrated. The beige/yellow product
(0.100 g, 70%) was obtained after purified via high performance liquid chromatography (reverse
phase column gradient from 80% water/20% acetonitrile to 100% acetonitrile).

1H NMR (400 MHz, CDCls): 6 (ppm) = 7.90 (d, J = 8.0 Hz, 2H), 7.64 (s, 2H), 7.57 (d, ) = 7.7 Hz, 2H),
7.38 (t,J = 8.8 Hz, 2H), 7.06 (t, ) = 5.8 Hz, 2H), 5.78 (s, 2H).

13C NMR (100 MHz, CDCl3): 6 (ppm) = 152.08, 138.83, 132.85, 129.97, 129.72 (q, J = 3.9 Hz),
129.38, 128.25, 124.10 (g, J = 269.4 Hz), 119.35 (q, J = 33.5 Hz), 106.91, 100.71, 97.93, 88.27.
15F NMR (376 MHz, CDCls): § (ppm) = —60.00.

HRMS (ESI neg) m/z for C23H11F3l:N" [M-H*]: calculated: 611.8938; found: 611.8938.
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Figure S94. °F NMR of 2H-G3XB (376 MHz, CDCl3). Hexafluorobenzene (CgFs) internal
reference.

2,6-bis(2-ethynyl-4-methyl-bromophenyl)-4-(trifluoromethyl)aniline (2Me-G3XBBr). To an
oven dried Schlenk flask was charged with 2,6-bisethynyl-4-(trifluoromethyl)aniline (2a) (0.211g
1mmol), then vacuumed and backfilled with dry N2 gas (3x). Bis(triphenylphosphine)palladium
(1) dichloride (0.035 g, 0. 05 mmol) was added, vacuumed and backfilled with dry N2 gas (3x).
Copper (l) iodide (0.019 g, 0.1 mmol) was added, vacuumed and backfilled with dry N2 (3x). 1-
Bromo-2-iodo-4-methylbenzene (0.742 g, 2.5 mmol) was added, vacuumed and backfilled with
dry N2 gas (3x). The dry reagents were dissolved in 60 mL dry DMF. N,N-diisopropylethylamine
(0.86 mL, 5 mmol) were added to the DMF solution. The flask was carefully vacuumed and
backfilled with dry N2 (3x). The dark brown solution stirred for 20 hours at room temperature.
The reaction mixture was extracted with ethyl acetate then washed with water to remove any
excess salts and catalysts, then was dried over magnesium sulfate and gravity filtered.
Subsequent removal of DMF, hexanes and ethyl acetate by rotary evaporation left and brown
solid that was purified by column chromatography (gradient from 100% Hexanes to 3%
EtOAc/97% Hexanes) to afford 2Me-G3XBBr (0.375 g, 69%) as a dull yellow solid.

1H NMR (400 MHz, CDCls): 6 (ppm) = 7.61 (s, 2H), 7.52-7.50 (d, J = 8.3 Hz, 2H), 7.41 (s, 2H), 7.04-
7.02 (d, J =8.2 Hz, 2H), 5.69 (s, 2H), 2.33 (s, 6H).

13C NMR (100 MHz, CDCl3): § (ppm) = 152.00, 137.53, 133.80, 132.24, 131.04, 129.47 (q,) = 3.7
Hz), 124.53, 124.13 (q, J = 269.4 Hz), 121.96, 119.40 (g, J = 34.0 Hz), 106.96, 94.90, 88.67, 20.92.
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19F NMR (376 MHz, CDCl3): § (ppm) = —59.99.
HRMS (ESI neg) m/z for CasHisF3BraN- [M-H*]: calculated: 545.9508; found: 545.9508.
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Figure S15. 'H NMR of 2Me-G3XBBr (400 MHz, CDCls).
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Figure S96. 3C NMR of 2Me-G3XBBr (100 MHz, CDCls).
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Figure S97. °F NMR of 2Me-G3XBBr (376 MHz, CDCl3). Hexafluorobenzene (CsFs) internal
reference.

2,6-bis(2-ethynyl-4-methyl-iodophenyl)-4-(trifluoromethyl)aniline (2Me-G3XB). 2Me-G3XBBr
(0.100 g, 0.183 mmol), copper iodide (0.0035 g, 0.018 mmol), sodium iodide (0.110 g, 0.732
mmol) were added to a 10-20 mL microwave reaction vial containing a stir bar and dissolved in
13 mL 1,4-dioxane. To the vibrant yellow reaction mixture, trans-N,N’-dimethylcyclohexane-1,2-
diamine (0.1 mL) was added. The microwave vial was sealed and placed in a Biotage Initiator+
microwave reactor for 24 hours at 150 °C. After cooling, the reaction was run through pipet
silica plug with EtOAc to remove catalysts and salts. The EtOAc crude was then ran through
GCMS in order to obtain % conversion of bromines to iodines. If the conversion from bromine
to iodine was 99% or greater, then the reaction was concentrated. The beige/yellow product
(0.081 g, 69%) was obtained after purified via high performance liquid chromatography (reverse
phase column gradient from 80% water/20% acetonitrile to 100% acetonitrile).

1H NMR (400 MHz, CDCls): 6 (ppm) = 7.74 (d, J = 8.2 Hz, 2H), 7.62 (s, 2H), 7.41 (s, 2H), 6.88 (d, J
=10.7 Hz, 2H), 5.78 (s, 2H), 2.32 (s, 6H).

13C NMR (100 MHz, CDCl3): 6 (ppm) = 152.08, 138.54, 138.38, 133.55, 131.20, 129.62 (q,J = 3.9
Hz), 129.09, 124.13 (q, J = 269.4 Hz), 119.46 (q, J = 33.9 Hz), 106.97, 98.03, 96.60, 87.88, 20.98.
15F NMR (376 MHz, CDCls): § (ppm) = —59.99.

HRMS (ESI neg) m/z for CasHisF3l:N [M-H*]: calculated: 639.9251; found: 639.9252.
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Figure S99. 13C NMR of 2Me-G3XB (100 MHz, CDCls).
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Figure S100. °F NMR of 2Me-G3XB (376 MHz, CDCl3). Hexafluorobenzene (CsF¢) internal
reference.

2,6-bis(2-ethynyl-4-tert-butyl-bromophenyl)-4-(trifluoromethyl)aniline (2tBu-G3XBBr). To an
oven dried Schlenk flask was charged with 2,6-bisethynyl-4-(trifluoromethyl)aniline (2a) (0.633g
3mmol), then vacuumed and backfilled with dry N2 gas (3x). Bis(triphenylphosphine)palladium
(I1) dichloride (0.105 g, 0. 15 mmol) was added, vacuumed and backfilled with dry N2 gas (3x).
Copper (l) iodide (0.057 g, 0.3 mmol) was added, vacuumed and backfilled with dry N2 (3x). 1-
Bromo-2-iodo-4-tert-butylbenzene (1.015 g, 7.5 mmol) was added, vacuumed and backfilled
with dry N2 gas (3x). The dry reagents were dissolved in 60 mL dry DMF. N,N-
diisopropylethylamine (2.58 mL, 15 mmol) were added to the DMF solution. The flask was
carefully vacuumed and backfilled with dry N2 (3x). The dark brown solution stirred for 24
hours at room temperature. The reaction mixture was extracted with ethyl acetate then
washed with water to remove any excess salts and catalysts, then was dried over magnesium
sulfate and gravity filtered. Subsequent removal of DMF, hexanes and ethyl acetate by rotary
evaporation left and brown solid that was purified by column chromatography (gradient from
100% Hexanes to 3% EtOAc/97% Hexanes) to afford 2tBu-G3XBBr (0.9 g, 50%) as a white solid.
1H NMR (400 MHz, CDCls): 6 (ppm) = 7.65 (s, 2H), 7.59 (d, J = 2.3 Hz, 2H), 7. 55 (d, ) = 8.5 Hz,
2H), 7. 26 (dd, J = 8.5 Hz, 2H), 5.72 (s, 2H), 1.34 (s, 18H).
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13C NMR (100 MHz, CDCl3): 6 (ppm) = 152.01, 150.89, 132.08, 130.42, 129.47 (q, J = 3.7 Hz),
127.60, 124.28, 124.15 (q, J = 269.3 Hz), 122.07, 119.38 (q, J = 33.2 Hz), 106.97, 95.25, 88.41,
34.80, 31.25.
19F NMR (376 MHz, CDCls): 6 (ppm) = —59.95.
HRMS (ESI neg) m/z for C31H27F3BraN- [M-H*]": calculated: 545.9508; found: 545.9508.
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Figure S101. 'H NMR of 2tBu-G3XBBr (400 MHz, CDCls).
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Figure S103. °F NMR of 2tBu-G3XBBr (376 MHz, CDCls). Hexafluorobenzene (CeFs) internal
reference.

2,6-bis(2-ethynyl-4-tert-butyl-iodophenyl)-4-(trifluoromethyl)aniline (2tBu-G3XB). 2tBu-
G3XBBr (0.200 g, 0.317 mmol), copper iodide (0.0060 g, 0.032 mmol), sodium iodide (0.190 g,
1.267 mmol) were added to a 10-20 mL microwave reaction vial containing a stir bar and
dissolved in 13 mL 1,4-dioxane. To the vibrant yellow reaction mixture, trans-N,N’-
dimethylcyclohexane-1,2-diamine (0.1 mL) was added. The microwave vial was sealed and
placed in a Biotage Initiator+ microwave reactor for 64 hours at 160°C. After cooling, the
reaction was run through pipet silica plug with EtOAc to remove catalysts and salts. The EtOAc
crude was then ran through GCMS in order to obtain % conversion of bromines to iodines. If
the conversion from bromine to iodine was 99% or greater, then the reaction was
concentrated. The white product (0.154 g, 67%) was obtained after purified via high
performance liquid chromatography (reverse phase column gradient from 80% water/20%
acetonitrile to 100% acetonitrile).

1H NMR (400 MHz, CDCls): 6 (ppm) = 7.79 (d, J = 8.4 Hz, 2H), 7.66 (s, 2H), 7.59 (d, J = 2.2 Hz, 2H),
7.10 (dd, J = 8.4 Hz, 2H), 5.81 (s, 2H), 1.33 (s, 18H).
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13C NMR (100 MHz, CDCls): & (ppm) = 152.10, 151.77, 138.39, 130.15, 129.63 (q, J = 3.7 Hz),
128.86, 127.73, 124.15 (q, J = 269.3 Hz), 119.42 (g, ) = 33.2 Hz), 106.97, 98.35, 96.93, 87.61,
34.83, 31.20.

19F NMR (376 MHz, CDCls): 6 (ppm) = -59.92.

HRMS (ESI neg) m/z for C31H27F31aN [M-H*]: calculated: 724.0190; found: 724.0194.
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Figure S104. H NMR of 2tBu-G3XB (400 MHz, CDCl3).
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Figure S105. 13C NMR of 2tBu-G3XB (100 MHz, CDCls).
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Figure S106. 1°F NMR of 2tBu-G3XB (376 MHz, CDCls). Hexafluorobenzene (CeFs) internal
reference.

2,6-bis(2-ethynyl-4-methoxy-bromophenyl)-4-(trifluoromethyl)aniline (2MeO-G3XBBr). To an
oven dried Schlenk flask was charged with 2,6-bisethynyl-4-(trifluoromethyl)aniline (2a) (0.211g
1mmol), then vacuumed and backfilled with dry N2 gas (3x). Bis(triphenylphosphine)palladium
(1) dichloride (0.035 g, 0. 05 mmol) was added, vacuumed and backfilled with dry N2 gas (3x).
Copper (l) iodide (0.019 g, 0.1 mmol) was added, vacuumed and backfilled with dry N2 (3x). The
dry reagents were dissolved in 60 mL dry DMF. 1-Bromo-2-iodo-4-methoxybenzene (0.38 mL,
2.5 mmol) and N,N-diisopropylethylamine (0.86 mL, 5 mmol) were added to the DMF solution.
The flask was carefully vacuumed and backfilled with dry N2 (3x). The dark brown solution
stirred for 20 hours at room temperature. The reaction mixture was extracted with ethyl
acetate then washed with water to remove any excess salts and catalysts, then was dried over
magnesium sulfate and gravity filtered. Subsequent removal of DMF, hexanes and ethyl acetate
by rotary evaporation left and brown solid that was purified by column chromatography
(gradient from 100% Hexanes to 3% EtOAc/97% Hexanes) to afford 2MeO-G3XBBr (0.357 g,
62%) as a dull yellow solid.

1H NMR (400 MHz, CDCls): 6 (ppm) = 7.63 (s, 2H), 7.50 (d, J = 8.9 Hz, 2H), 7.110 (d, J = 3.0 Hz,
2H), 6.81 (dd, J = 8.9 Hz, 2H), 5.72 (s, 2H), 3.83 (s, 6H).
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13C NMR (100 MHz, CDCl3): 6 (ppm) = 158.82, 152.11, 133.20, 129.62 (q, J = 3.6 Hz), 125.39,
124.09 (g, J = 269.3 Hz), 119.26 (g, ) = 33.0 Hz), 117.68, 117.18, 115.97, 106.80, 94.80, 88.83,
55.80.

19 NMR (376 MHz, CDCl3): § (ppm) = —59.99.

HRMS (ESI neg) m/z for Ca5H1sF3BrNO2 [M-H*]: calculated: 577.9407; found: 577.9406.
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Figure S107. 'H NMR of 2Me0O-G3XBBr (400 MHz, CDCls).
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Figure S108. 3C NMR of 2Me0O-G3XBBr (100 MHz, CDCls).

172



-164.9000 C6F6

)
<
o
4]
-]
[r:]
?

-40 -50 -60 -70 -80 -90 -100 110 -120 -130 -140 -150 -160 -170 -180  -190
1 (ppm)

Figure S109. °F NMR of 2Me0O-G3XBBr (376 MHz, CDCls). Hexafluorobenzene (CsFs) internal
reference.

2,6-bis(2-ethynyl-4-methoxy-iodophenyl)-4-(trifluoromethyl)aniline (2MeO-G3XB). 2MeO-
G3XBBr (0.100 g, 0.173 mmol), copper iodide (0.0033 g, 0.017 mmol), sodium iodide (0.104 g,
0.692 mmol) were added to a 10-20 mL microwave reaction vial containing a stir bar and
dissolved in 13 mL 1,4-dioxane. To the vibrant yellow reaction mixture, trans-N,N’-
dimethylcyclohexane-1,2-diamine (0.1 mL) was added. The microwave vial was sealed and
placed in a Biotage Initiator+ microwave reactor for 12 hours at 150 °C. After cooling, the
reaction was run through pipet silica plug with EtOAc to remove catalysts and salts. The EtOAc
crude was then ran through GCMS in order to obtain % conversion of bromines to iodines. If
the conversion from bromine to iodine was 99% or greater, then the reaction was
concentrated. The beige/yellow product (0.98 g, 84.4%) was obtained after purified via high
performance liquid chromatography (reverse phase column gradient from 80% water/20%
acetonitrile to 100% acetonitrile).

1H NMR (400 MHz, CDCls): 6 (ppm) = 7.72 (d, J = 8.9 Hz, 2H), 7.64 (s, 2H), 7.12 (d, J = 3.0 Hz, 2H),
6.68 (dd, J = 8.8 Hz, 2H), 5.81 (s, 2H), 3.83 (s, 6H).

13C NMR (100 MHz, CDCl3): 6 (ppm) = 159.76, 152.19, 139.38, 129.96, 129.78 (q, J = 3.6 Hz),
124.10 (q, J =269.4 Hz), 119.46 (q, ) = 33.4 Hz), 117.71, 117.54, 106.80, 97.86, 89.40, 88.03,
55.69.

19F NMR (376 MHz, CDCls3): § (ppm) = —59.98.
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HRMS (ESI neg) m/z for CasHisF3lNO>” [M-H*]: calculated: 671.9150; found: 671.9150.
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Figure S110. 'H NMR of 2MeO-G3XB (400 MHz, CDCls).
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Figure S111. 13C NMR of 2MeO-G3XB (100 MHz, CDCls).
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Figure S112. 1°F NMR of 2Me0O-G3XB (376 MHz, CDCls). Hexafluorobenzene (CsFs) internal
reference.

2,6-bis(2-ethynyl-4-(trifluoromethyl)bromophenyl)-4-chloroaniline (CI-G3XBBr). To an oven
dried Schlenk flask was charged with 2,6-bisethynyl-4-chloroaniline (2b) (0.43g 2.45mmol), then
vacuumed and backfilled with dry N2 gas (3x). Bis(triphenylphosphine)palladium (II) dichloride
(0.086 g, 0. 125 mmol) was added, vacuumed and backfilled with dry N2 gas (3x). Copper (I)
iodide (0.047 g, 0.245 mmol) was added, vacuumed and backfilled with dry N2 (3x). The dry
reagents were dissolved in 100 mL dry DMF. 1-Bromo-2-iodo-4-(trifluoromethyl)benzene (0.98
mL, 6.1 mmol) and N,N-diisopropylethylamine (2.11 mL, 12.25 mmol) were added to the DMF
solution. The flask was carefully vacuumed and backfilled with dry N2 (3x). The dark brown
solution stirred overnight at room temperature. The reaction mixture was extracted with ethyl
acetate then washed with water to remove any excess salts and catalysts, then was dried over
magnesium sulfate and gravity filtered. Subsequent removal of DMF, hexanes and ethyl acetate
by rotary evaporation left and brown solid that was purified by column chromatography
(gradient from 100% Hexanes to 10% EtOAc/90% Hexanes) to afford CI-G3XBBr (1.18 g, 78%) as
a dull yellow solid.

1H NMR (400 MHz, CDCls): 6 (ppm) = 7.82 (s, 2H), 7.78 (d, ) = 8.2 Hz, 2H), 7.46 (d, J = 8.5 Hz, 2H),
7.41 (s, 2H), 5.32 (s, 2H).

176



13C NMR (100 MHz, CDCl3): 6 (ppm) = 148.91, 133.24, 132.87, 130.50 (q, J = 33.2 Hz), 129.93 (q,
J=3.7Hz), 129.00, 126.22 (q, J = 3.7 Hz), 125.95, 123.95 (q, J = 270.0 Hz), 121.50, 107.82, 93.55,
90.75.

19F NMR (376 MHz, CDCl3): 6 (ppm) = —61.31.

HRMS (ESI neg) m/z for C24HoF¢BroCIN" [M-H*]": calculated: 619.8680; found: 619.8680.
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Figure S113. *H NMR of CI-G3XBBr (400 MHz, CDCl3).
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Figure S114. 13C NMR of CI-G3XBBr (100 MHz, CDCls).
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Figure S115. 1F NMR of CI-G3XBBr (376 MHz, CDCls). Hexafluorobenzene (CsFs) internal
reference.

2,6-bis(2-ethynyl-4-(trifluoromethyl)iodophenyl)-4-chloroaniline (CI-G3XB). CI-G3XBBr (0.200
g, 0.323 mmol), copper iodide (0.006 g, 0.030 mmol), sodium iodide (0.193 g, 1.29 mmol) were
added to a 10-20 mL microwave reaction vial containing a stir bar and dissolved in 13 mL 1,4-
dioxane. To the vibrant yellow reaction mixture, trans-N,N’-dimethylcyclohexane-1,2-diamine
(0.15 mL) was added. The microwave vial was sealed and placed in a Biotage Initiator+
microwave reactor for 12.5 hours at 150 °C. After cooling, the reaction was run through pipet
silica plug with EtOAc to remove catalysts and salts. The EtOAc crude was then ran through
GCMS in order to obtain % conversion of bromines to iodines. If the conversion from bromine
to iodine was 99% or greater, then the reaction was concentrated. The beige/yellow product
(0.076 g, 33%) was obtained after purified via high performance liquid chromatography (reverse
phase column gradient from 80% water/20% acetonitrile to 100% acetonitrile).

1H NMR (400 MHz, CDCls): 6 (ppm) = 8.03 (d, J = 8.2 Hz, 2H), 7.77 (s, 2H), 7.42 (s, 2H), 7.28 (d, J
=9.2 Hz, 2H), 5.39 (s, 2H).

13C NMR (100 MHz, CDCl3): § (ppm) = 148.96, 139.53, 132.97, 131.29 (q, ) = 42.7 Hz), 130.46,
129.17 (g, J =5.9 Hz), 126.01 (q, ) = 3.5 Hz), 123.62 (q, J = 270.8 Hz), 121.53, 107.84, 104.83,
96.84, 89.91.

19F NMR (376 MHz, CDCl3): 6 (ppm) = —61.52.

HRMS (ESI neg) m/z for C24HoFel2CIN" [M-H*]": calculated: 713.8423; found: 713.8422.
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Figure S116. *H NMR of CI-G3XB (400 MHz, CDCls).
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Figure S117. 13C NMR of CI-G3XB (100 MHz, CDCls).
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Figure S118. 1°F NMR of CI-G3XB (376 MHz, CDCls). Hexafluorobenzene (CeFs) internal
reference.

2,6-bis(2-ethynyl-4-(trifluoromethyl)bromophenyl)-4-fluoroaniline (F-G3XBBr). To an oven
dried Schlenk flask was charged with 2,6-bisethynyl-4-fluoroaniline (2c) (0.159g 1mmol), then
vacuumed and backfilled with dry N2 gas (3x). Bis(triphenylphosphine)palladium (II) dichloride
(0.035 g, 0. 05 mmol) was added, vacuumed and backfilled with dry N2 gas (3x). Copper (l)
iodide (0.019 g, 0.1 mmol) was added, vacuumed and backfilled with dry N2 (3x). The dry
reagents were dissolved in 60 mL dry DMF. 1-Bromo-2-iodo-4-(trifluoromethyl)benzene (0.4
mL, 2.5 mmol) and N,N-diisopropylethylamine (0.86 mL, 5 mmol) were added to the DMF
solution. The flask was carefully vacuumed and backfilled with dry N2 (3x). The dark brown
solution stirred overnight at room temperature. The reaction mixture was extracted with ethyl
acetate then washed with water to remove any excess salts and catalysts, then was dried over
magnesium sulfate and gravity filtered. Subsequent removal of DMF, hexanes and ethyl acetate
by rotary evaporation left and brown solid that was purified by column chromatography
(gradient from 100% Hexanes to 3% EtOAc/97% Hexanes) to afford F-G3XBBr (0.28 g, 53%) as a
dull yellow solid.

1H NMR (400 MHz, CDCls): 6 (ppm) = 7.82 (s, 2H), 7.78 (d, ) = 8.4 Hz, 2H), 7.45 (d, ) = 8.4 Hz, 2H),
7.18 (d, J = 8.4 Hz, 2H), 5.16 (s, 2H).
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13C NMR (100 MHz, CDCls): 6 (ppm) = 153.95 (d, J = 235.2 Hz), 147.23, 133.23, 130.48 (g, ) =
33.2 Hz), 129.95 (g, J = 4.0 Hz), 129.00, 126.21 (q, ) = 3.6 Hz), 125.96, 123.50 (q, J = 272.1 Hz),
120.18 (d, ) = 24.0 Hz), 107.23 (d, J = 9.8 Hz), 93.33, 91.08 (d, J = 3.4 Hz).

19F NMR (376 MHz, CDCl3): & (ppm) = —61.31, -125.31.
HRMS (ESI neg) m/z for C2aHoF7BroN" [M-H*]": calculated: 603.8975; found: 603.8976.
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Figure S119. 'H NMR of F-G3XBBr (400 MHz, CDCl3).
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Figure S121. °F NMR of F-G3XBBr (376 MHz, CDCls). Hexafluorobenzene (CsFg) internal
reference.

2,6-bis(2-ethynyl-4-(trifluoromethyl)iodophenyl)-4-fluoroaniline (F-G3XB). F-G3XBBr (0.100 g,
0.165 mmol), copper iodide (0.003 g, 0.016 mmol), sodium iodide (0.102 g, 0.68 mmol) were
added to a 10-20 mL microwave reaction vial containing a stir bar and dissolved in 13 mL 1,4-
dioxane. To the vibrant yellow reaction mixture, trans-N,N’-dimethylcyclohexane-1,2-diamine
(0.1 mL) was added. The microwave vial was sealed and placed in a Biotage Initiator+
microwave reactor for 13 hours at 150 °C. After cooling, the reaction was run through pipet
silica plug with EtOAc to remove catalysts and salts. The EtOAc crude was then ran through
GCMS in order to obtain % conversion of bromines to iodines. If the conversion from bromine
to iodine was 99% or greater, then the reaction was concentrated. The beige/yellow product
(0.099 g, 86%) was obtained after purified via high performance liquid chromatography (reverse
phase column gradient from 80% water/20% acetonitrile to 100% acetonitrile).

1H NMR (400 MHz, CDCls): 6 (ppm) = 8.03 (d, J = 8.2 Hz, 2H), 7.79 (s, 2H), 7.28 (d, J = 8.0 Hz, 2H),
7.20 (d, J = 6.4 Hz, 2H), 5.25 (s, 2H).

13C NMR (100 MHz, CDCl3): 6 (ppm) = 153.99 (d, J = 235.1 Hz), 147.26, 139.54, 131.28 (q, J =
33.3 Hz), 130.47, 129.20(q, J = 3.8 Hz), 126.01 (q, J = 3.7 Hz), 123.62 (q, ) = 270.0 Hz), 120.29 (d,
J=23.3 Hz), 107.27 (d, J = 11.9 Hz), 104.83, 96.62, 90.23 (d, J = 3.3 Hz).

15F NMR (376 MHz, CDCl3): 6 (ppm) = —61.51, -125.30.

HRMS (ESI neg) m/z for C24HoF71:N" [M-H*]: calculated: 697.8718; found: 697.8718.
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Figure S124. 1°F NMR of F-G3XB (376 MHz, CDCls). Hexafluorobenzene (CsFg) internal reference.

2,6-bis(2-ethynyl-4-(trifluoromethyl)bromophenyl)-aniline (H-G3XBBr). To an oven dried
Schlenk flask was charged with 2,6-bisethynyl-aniline (2d) (0.305g 2.16 mmol), then vacuumed
and backfilled with dry N2 gas (3x). Bis(triphenylphosphine)palladium (1) dichloride (0.077 g, O.
11 mmol) was added, vacuumed and backfilled with dry N2 gas (3x). Copper (l) iodide (0.042 g,
0.22 mmol) was added, vacuumed and backfilled with dry N2 (3x). The dry reagents were
dissolved in 60 mL dry DMF. 1-Bromo-2-iodo-4-(trifluoromethyl)benzene (0.86 mL, 5.4 mmol)
and N,N-diisopropylethylamine (1.86 mL, 10.8 mmol) were added to the DMF solution. The
flask was carefully vacuumed and backfilled with dry N2 (3x). The dark brown solution stirred
for 48 hours at room temperature. The reaction mixture was extracted with ethyl acetate then
washed with water to remove any excess salts and catalysts, then was dried over magnesium
sulfate and gravity filtered. Subsequent removal of DMF, hexanes and ethyl acetate by rotary
evaporation left and brown solid that was purified by column chromatography (gradient from
100% Hexanes to 3% EtOAc/97% Hexanes) to afford H-G3XBBr (0.773 g, 61%) as a dull yellow
solid.

1H NMR (400 MHz, CDCl3): 6 (ppm) = 7.83 (s, 2H), 7.78 (d, ) = 8.3 Hz, 2H), 7.44 (d, ) = 7.6 Hz, 2H),
7.44 (d,) =7.2 Hz, 2H), 7.73 (t, ) = 7.7 Hz, 1H), 5.30 (s, 2H).

13C NMR (100 MHz, CDCl3): & (ppm) = 150.34, 134.68, 133.17, 130.43 (q, J = 33.2 Hz), 129.82 (q,
J=4.0Hz), 128.91, 126.42, 125.84 (q, ) = 3.6 Hz), 123.57 (q, J =270.8 Hz), 117.41, 106.54, 92.78,
92.14.
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19F NMR (376 MHz, CDCl3): § (ppm) = —61.29.
HRMS (ESI neg) m/z for C24H10F6BraN- [M-H*]": calculated: 585.9069; found: 585.9069.
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Figure S125. 'H NMR of H-G3XBBr (400 MHz, CDCls).
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Figure $126. 13C NMR of H-G3XBBr (100 MHz, CDCl).
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Figure S127. 1°F NMR of H-G3XBBr (376 MHz, CDCls). Hexafluorobenzene (CsFs) internal
reference.

2,6-bis(2-ethynyl-4-(trifluoromethyl)iodophenyl)-aniline (H-G3XB). H-G3XBBr (0.200 g, 0.341
mmol), copper iodide (0.006 g, 0.030 mmol), sodium iodide (0.183 g, 1.22 mmol) were added to
a 10-20 mL microwave reaction vial containing a stir bar and dissolved in 13 mL 1,4-dioxane. To
the vibrant yellow reaction mixture, trans-N,N’-dimethylcyclohexane-1,2-diamine (0.15 mL) was
added. The microwave vial was sealed and placed in a Biotage Initiator+ microwave reactor for
16 hours at 150 °C. After cooling, the reaction was run through pipet silica plug with EtOAc to
remove catalysts and salts. The EtOAc crude was then ran through GCMS in order to obtain %
conversion of bromines to iodines. If the conversion from bromine to iodine was 99% or
greater, then the reaction was concentrated. The beige/yellow product (0.103 g, 44%) was
obtained after purified via high performance liquid chromatography (reverse phase column
gradient from 80% water/20% acetonitrile to 100% acetonitrile).

1H NMR (400 MHz, CDCls): 6 (ppm) = 8.02 (d, J = 8.3 Hz, 2H), 7.78 (s, 2H), 7.46 (d, ) = 7.7 Hz, 2H),
7.25(d,J=7.4 Hz, 2H), 6.73 (t,J = 7.7 Hz, 1H), 5.35 (s, 2H).

13C NMR (100 MHz, CDCl3): 6 (ppm) = 150.37, 139.46, 133.80, 131.04 (g, J = 33.0 Hz), 130.02,
128.99 (q, J =3.7 Hz), 125.65 (q, J = 3.7 Hz), 123.69 (g, ) = 270.8 Hz), 117.44, 106.53, 104.79,
96.09, 91.30.

19F NMR (376 MHz, CDCls3): 6 (ppm) = —61.50.

HRMS (ESI neg) m/z for C24H1oFsl2N" [M-H*]: calculated: 679.8812; found: 679.8812.
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Figure $128. 'H NMR of H-G3XB (400 MHz, CDCls).
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Figure $129. 13C NMR of H-G3XB (100 MHz, CDCls).

193



)
]
@
A
-
@
I

o 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210
1 (ppm)

Figure S130. 1°F NMR of H-G3XB (376 MHz, CDCl3). Hexafluorobenzene (CgFs) internal
reference.

2,6-bis(2-ethynyl-4-(trifluoromethyl)bromophenyl)-4-methylaniline (Me-G3XBBr). To an oven
dried Schlenk flask was charged with 2,6-bisethynyl-4-methylaniline (2e) (0.133 g 0.86 mmol),
then vacuumed and backfilled with dry N2 gas (3x). Bis(triphenylphosphine)palladium (lI)
dichloride (0.035 g, 0. 05 mmol) was added, vacuumed and backfilled with dry N2 gas (3x).
Copper (l) iodide (0.019 g, 0.1 mmol) was added, vacuumed and backfilled with dry N2 (3x). The
dry reagents were dissolved in 60 mL dry DMF. 1-Bromo-2-iodo-4-(trifluoromethyl)benzene (0.4
mL, 2.5 mmol) and N,N-diisopropylethylamine (0.86 mL, 5 mmol) were added to the DMF
solution. The flask was carefully vacuumed and backfilled with dry N2 (3x). The dark brown
solution stirred overnight at room temperature. The reaction mixture was extracted with ethyl
acetate then washed with water to remove any excess salts and catalysts, then was dried over
magnesium sulfate and gravity filtered. Subsequent removal of DMF, hexanes and ethyl acetate
by rotary evaporation left and brown solid that was purified by column chromatography
(gradient from 100% Hexanes to 3% EtOAc/97% Hexanes) to afford Me-G3XBBr (0.344 g, 67%)
as a dull yellow solid.

1H NMR (400 MHz, CDCls): 6 (ppm) = 7.80 (s, 2H), 7.75 (d, ) = 8.4 Hz, 2H), 7.41 (d, ) = 8.4 Hz, 2H),
7.25 (s, 2H), 5.13 (s, 2H), 2.25 (s, 3H).
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13C NMR (100 MHz, CDCl3): & (ppm) = 148.35, 139.45, 134.27, 131.01 (g, J = 32.8 Hz), 131.00,
128.98 (g, J = 4.0 Hz), 126.72, 125.57 (g, J = 3.7 Hz), 123.70 (q, ) = 270.8 Hz), 106.57, 104.79,
95.85, 91.54, 20.24.

19 NMR (376 MHz, CDCl3): 6 (ppm) = -61.209.

HRMS (ESI neg) m/z for CasH12FeBraN- [M-H*]": calculated: 599.9226; found: 599.9224.
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Figure S131. *H NMR of Me-G3XBBr (400 MHz, CDCls).
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Figure $132. 13C NMR of Me-G3XBBr (100 MHz, CDCls).
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Figure S133. 1°F NMR of Me-G3XBBr (376 MHz, CDCl3). Hexafluorobenzene (CsFs) internal
reference.

2,6-bis(2-ethynyl-4-(trifluoromethyl)iodophenyl)-4-methylaniline (Me-G3XB). Me-G3XBBr
(0.200 g, 0.332 mmol), copper iodide (0.006 g, 0.033 mmol), sodium iodide (0.200 g, 1.33
mmol) were added to a 10-20 mL microwave reaction vial containing a stir bar and dissolved in
13 mL 1,4-dioxane. To the vibrant yellow reaction mixture, trans-N,N’-dimethylcyclohexane-1,2-
diamine (0.15 mL) was added. The microwave vial was sealed and placed in a Biotage Initiator+
microwave reactor for 17 hours at 150 °C. After cooling, the reaction was run through pipet
silica plug with EtOAc to remove catalysts and salts. The EtOAc crude was then ran through
GCMS in order to obtain % conversion of bromines to iodines. If the conversion from bromine
to iodine was 99% or greater, then the reaction was concentrated. The beige/yellow product
(0.100 g, 43%) was obtained after purified via high performance liquid chromatography (reverse
phase column gradient from 80% water/20% acetonitrile to 100% acetonitrile).

1H NMR (400 MHz, CDCls): 6 (ppm) = 8.02 (d, J = 8.2 Hz, 2H), 7.77 (s, 2H), 7.29 (s, 2H), 7.64 (d, J
=6.1 Hz, 2H), 7.25 (d, J = 5.8 Hz, 2H), 5.20 (s, 2H), 2.27 (s, 3H).

13C NMR (100 MHz, CDCl3): 6 (ppm) = 148.35, 139.45, 134.27, 131.01 (g, J = 32.8 Hz), 131.00,
128.98 (g, J = 4.0 Hz), 126.72, 125.57 (q, ) = 3.7 Hz), 123.70 (q, J = 270.8 Hz), 106.57, 104.79,
95.85, 91.54, 20.24.

19F NMR (376 MHz, CDCls3): 6 (ppm) = —61.50.

HRMS (ESI neg) m/z for C2sH12FsBrN- [M-H*]": calculated: 693.8969; found: 693.8968.
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Figure S134. 'H NMR of Me-G3XB (400 MHz, CDCls).
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Figure S135. 3C NMR of Me-G3XB (100 MHz, CDCls).
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Figure S136. 1°F NMR of Me-G3XB (376 MHz, CDCls). Hexafluorobenzene (CsFg) internal
reference.

3,5-bis(2-ethynyl-4-(trifluoromethyl)bromophenyl)-(trifluoromethyl)benzene (nHBeXBBr). To
an oven dried Schlenk flask was charged with 3,5-bisethynyl-trifluoromethylbenzene (2f)
(0.234g 1.2 mmol), then vacuumed and backfilled with dry N2 gas (3x).
Bis(triphenylphosphine)palladium (II) dichloride (0.042 g, 0. 06 mmol) was added, vacuumed
and backfilled with dry N2 gas (3x). Copper (l) iodide (0.023 g, 0.12 mmol) was added,
vacuumed and backfilled with dry N2 (3x). The dry reagents were dissolved in 60 mL dry DMF.
1-Bromo-2-iodo-4-(trifluoromethyl)benzene (0.48 mL, 3 mmol) and N,N-diisopropylethylamine
(1.03 mL, 6 mmol) were added to the DMF solution. The flask was carefully vacuumed and
backfilled with dry N2 (3x). The dark brown solution stirred overnight at room temperature. The
reaction mixture was extracted with ethyl acetate then washed with water to remove any
excess salts and catalysts, then was dried over magnesium sulfate and gravity filtered.
Subsequent removal of DMF, hexanes and ethyl acetate by rotary evaporation left and brown
solid that was purified by column chromatography (gradient from 100% Hexanes to 5%
EtOAc/95% Hexanes) to afford nHBeXBBr (0.466 g, 60%) as a dull yellow solid.

1H NMR (400 MHz, CDCls): 6 (ppm) = 7.94 (s, 1H), 7.83 (s, 4H), 7.78 (d, ) = 8.3 Hz, 2H), 7.48 (d, J
= 8.4 Hz, 2H).
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13C NMR (100 MHz, CDCl3): & (ppm) = 137.73, 133.42, 132.12 (q, J = 33.2 Hz), 130.221 (q, J =
33.2 Hz), 130.37 (g, J =4.0 Hz), 129.72, 128.82 (q, ) = 3.7 Hz), 126.64 (q, ) = 3.6 Hz), 125.62,
123.49 (q, ) = 270.8 Hz), 124.07, 123.25 (q, J = 271.2 Hz), 92.71, 89.03.

19F NMR (376 MHz, CDCl3): 6 (ppm) = —61.32, -61.48.

Elemental analysis, Found: C, 47.02; H, 1.39%. Calc. for CasH9BraFq: C, 46.91; H, 1.42%.
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Figure S137. 'H NMR of nHBeXBBr (400 MHz, CDCl3).
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Figure S138. 13C NMR of nHBeXBBr (100 MHz, CDCls).
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Figure S139. 1F NMR of nHBeXBBr (376 MHz, CDCls3). Hexafluorobenzene (CsFs) internal
reference.

2,6-bis(2-ethynyl-4-(trifluoromethyl)iodophenyl)-4-trifluoromethylbenzene (nHBeXB).
nHBeXBBr (0.200 g, 0.313 mmol), copper iodide (0.006 g, 0.030 mmol), sodium iodide (0.200 g,
1.33 mmol) were added to a 10-20 mL microwave reaction vial containing a stir bar and
dissolved in 13 mL 1,4-dioxane. To the vibrant yellow reaction mixture, trans-N,N’-
dimethylcyclohexane-1,2-diamine (0.1 mL) was added. The microwave vial was sealed and
placed in a Biotage Initiator+ microwave reactor for 17 hours at 150 °C. After cooling, the
reaction was run through pipet silica plug with EtOAc to remove catalysts and salts. The EtOAc
crude was then ran through GCMS in order to obtain % conversion of bromines to iodines. If
the conversion from bromine to iodine was 99% or greater, then the reaction was
concentrated. The beige/yellow product (0.144 g, 63%) was obtained after purified via high
performance liquid chromatography (reverse phase column gradient from 80% water/20%
acetonitrile to 100% acetonitrile).

1H NMR (400 MHz, CDCls): 6 (ppm) = 8.04 (d, J = 8.3 Hz, 2H), 7.97 (s, 1H), 7.84 (s, 2H), 7.79 (s,
2H), 7.30 (d, J = 8.3 Hz, 2H).

13C NMR (100 MHz, CDCl3): § (ppm) = 139.73, 137.58, 132.15 (q, ) = 34.2 Hz), 131.21 (q, J = 32.8
Hz), 130.04, 129.32 (q, J = 3.7 Hz), 128.72(q, ) = 4.0 Hz), 126.42 (q, ) = 3.7 Hz), 124.12, 123.62 (q,
J=270.5Hz), 123.27 (g, ) = 271.6 Hz), 105.46, 92.62, 91.82.

15F NMR (376 MHz, CDCl3): 6 (ppm) = —61.51, -61.57.
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Elemental analysis, Found: C, 42.29; H, 1.14%. Calc. for CasHsl2Fg: C, 40.90; H, 1.24%.
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Figure S140. *H NMR of nHBeXB (400 MHz, CDCls).
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Figure S141. 13C NMR of nHBeXB (100 MHz, CDCls).
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Figure S142. 1°F NMR of nHBeXB (376 MHz, CDCls). Hexafluorobenzene (CeFs) internal
reference.

NMR titration Details and Data

All experiments were performed on a Varian Drive Direct 500 MHz NMR Spectrometer. C¢De
was dried over 3 A molecular sieves. THA* salts (CI-, Br-, I") was dried under vacuum and stored
in a desiccator.

Stock solutions of all receptors (3.993-5.745 mM) were prepared in 1.4 mL of deuterated
benzene (CsDs). 0.500 mL aliquots from each stock solution were syringed into three separate
NMR tubes with screw caps and septa. The stock solution of each host was then used to make
guest solutions. After obtaining free-host spectra of each receptor, aliquots of corresponding
guest solution were added to their respective NMR tubes. Spectra were obtained after each
addition (20x). A constant host concentration was maintained, while THA iodide salt
concentrations gradually increased throughout titration (see data below). Intuitions of
stoichiometric displacement led to the stepwise anion exchange model:

H + G = HG, K11 = [HG]/[H][G]

Dimerization and higher order binding were ruled out due to the emergence of an obvious
pattern in residuals, unrealistic assigned shifts, poor convergence, and/or larger standard
deviations. Bindfit> was used to refine the isothermal fits of multiple signals simultaneously.
Association constants for binding of THA iodide to all receptors are shown in Table S1. Full
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binding data and fitting parameters for each titration can be obtained from the Bindfit> using
the following links.

Table S1. Association constants for binding of THA iodide to all receptors in CsDs at 298 K.

Receptor Assay 1 (M) Assay 2 (M) Assay 3 (M) | Average (M)
G3XB 428.8 406.5 410.8 415.6
2F-G3XB 152.9 177.4 179.6 170.0
2H-G3XB 69.9 75.5 70.3 71.9
2Me-G3XB 51.1 44.9 46.6 47.5
2tBu-G3XB 54.1 51.0 49.2 51.4
2MeO-G3XB 60.2 63.6 63.2 62.4
Cl-G3XB 330.0 317.7 345.4 331.1
F-G3XB 236.4 274.4 241.1 250.7
H-G3XB 194.6 199.1 188.8 194.2
Me-G3XB 182.0 171.7 170.2 174.6
nHBeXB 12.4 4.4 8.0 8.3
G3HB 36.7 22.5 23.2 27.5

G3XB with THA iodide
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Assay 1 K,=428.8 M http://app.supramolecular.org/bindfit/view/d05dc4b3-cdea-4bc5-a05a-
cf9ff564b20e
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3 eq.

' -1

L3 L] T L] T L L] T L] T L] L L L] T L] L L3 L] T L] L L L T L] L
80 79 T8 FF 7TE TS T4 TI T2 TA 7O 60 68 67 66 65 64 63 6.2 61 60 59 58 5.7 546 5.5 54
1 (ppm})

Figure S143-1. 'H NMR spectra of G3XB upon addition of increasing equivalents of THA:I (CsDs,
298 K, 500 MHz).
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Assay 2 K,=406.5 M http://app.supramolecular.org/bindfit/view/f6b13944-604f-4a0d-89a6-
894a7605e731
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M {ppm}

Figure S143-2. 'H NMR spectra of G3XB upon addition of increasing equivalents of THA:1 (CsDs,
298 K, 500 MHz).

Assay 3 K,=410.8 M http://app.supramolecular.org/bindfit/view/d6cdf7b6-4e20-40a2-8af2-
91b2beade8cO
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Figure S143-3. 'H NMR spectra of G3XB upon addition of increasing equivalents of THA:I (CsDs,
298 K, 500 MHz).

2F-G3XB with THA iodide
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Assay 1 Ko= 152.9 M http://app.supramolecular.org/bindfit/view/e2455db7-87fd-4a8d-b961-
b6d6f52084b5
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Figure S144-1. 'H NMR spectra of 2F-G3XB upon addition of increasing equivalents of THA:|
(CeDe, 298 K, 500 MHz).
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Assay 2 Ko= 177.4 M http://app.supramolecular.org/bindfit/view/2bf8af11-212f-4434-809e-
b11fe57f9649

— T T T
=Rk B otho@m oW @

0eq.

T T T T T T T T T T T T T T T T T T T T T T T T T T
30 TR TR VY OTE 7O TA VI T2 T TO B B BT BE 65 64 B3 62 8 B0 59 5B 57 58 LS
1 {ppm)

Figure S144-2. 'H NMR spectra of 2F-G3XB upon addition of increasing equivalents of THA:|
(CeDe, 298 K, 500 MHz).

Assay 3 Ko=179.6 M http://app.supramolecular.org/bindfit/view/3646ae56-682e-467c-8f3f-
Oclelcfcb685
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Figure S144-3. 'H NMR spectra of 2F-G3XB upon addition of increasing equivalents of THA:|
(CéDs, 298 K, 500 MHz).

2H-G3XB with THA iodide
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Assay 1 Ko=69.9 M http://app.supramolecular.org/bindfit/view/4e544414-0f49-474d-b021-
4730b8a315ea
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Figure S145-1. 'H NMR spectra of 2H-G3XB upon addition of increasing equivalents of THA:|
(CeDe, 298 K, 500 MHz).
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Assay 2 Ko=75.5 M http://app.supramolecular.org/bindfit/view/31ef807a-a956-4372-9614-
45f31dd9c034
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Figure S145-2. 'H NMR spectra of 2H-G3XB upon addition of increasing equivalents of THA:|
(CeDe, 298 K, 500 MHz).

Assay 3 Ka= 70.3 M http://app.supramolecular.org/bindfit/view/f27bf235-649a-45d9-a5f8-
97a8130e9fcc
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Figure S145-3. 'H NMR spectra of 2H-G3XB upon addition of increasing equivalents of THA:|
(CéDs, 298 K, 500 MHz).

2Me-G3XB with THA iodide

Assay 1 Ko=51.1 M http://app.supramolecular.org/bindfit/view/f3b0725c-ef3b-4907-9ccO-
439160c61860
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Figure S146-1. 'H NMR spectra of 2Me-G3XB upon addition of increasing equivalents of THA:I
(CéDs, 298 K, 500 MHz).

Assay 2 Ko=44.9 M http://app.supramolecular.org/bindfit/view/a83b6928-477¢c-47d9-b2ef-
a5bb372d5e63
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Figure S146-2. 'H NMR spectra of 2Me-G3XB upon addition of increasing equivalents of THA:I
(CéDs, 298 K, 500 MHz).

Assay 3 Ko=46.6 M http://app.supramolecular.org/bindfit/view/54c86164-8816-47ad-b588-
8eaad5e20311
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Figure S146-3. 'H NMR spectra of 2Me-G3XB upon addition of increasing equivalents of THA:I
(CéDs, 298 K, 500 MHz).

2tBu-G3XB with THA iodide

Assay 1 Ko=54.1 M http://app.supramolecular.org/bindfit/view/683b035e-6918-4f6e-8995-
c7laca7c4dcd
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Figure S147-1. 'H NMR spectra of 2tBu-G3XB upon addition of increasing equivalents of THA:|
(CéDs, 298 K, 400 MHz).

Assay 2 Ko=51.0 M http://app.supramolecular.org/bindfit/view/fd255dc6-e87a-4e8c-84ca-
b1f17ef54f0a
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Figure S147-2. 'H NMR spectra of 2tBu-G3XB upon addition of increasing equivalents of THA:|

(CsDs, 298 K, 400 MHz).
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Assay 3 Ko=49.2 M http://app.supramolecular.org/bindfit/view/429c33a3-777b-42b5-b81f-
4d1995dc04bd
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Figure S147-3. 'H NMR spectra of 2tBu-G3XB upon addition of increasing equivalents of THA:|
(CsDe, 298 K, 400 MHz).

2MeO-G3XB with THA iodide

Assay 1 Ko= 60.2 M http://app.supramolecular.org/bindfit/view/e2d156d9-6430-4b9a-8181-
8ba092d2dc8a
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Figure S148-1. 'H NMR spectra of 2MeO-G3XB upon addition of increasing equivalents of THA'|
(CéDs, 298 K, 500 MHz).
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Assay 2 Ko= 63.6 M http://app.supramolecular.org/bindfit/view/911973d0-3399-4738-92a4-
fa05f18e5959
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Figure S148-2. 'H NMR spectra of 2MeO-G3XB upon addition of increasing equivalents of THA:|
(CéDs, 298 K, 500 MHz).

Assay 3 Ko= 63.2 M http://app.supramolecular.org/bindfit/view/c15738b4-3ebf-430b-95e8-
2cb0a3388a03
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Figure S148-3. 'H NMR spectra of 2MeO-G3XB upon addition of increasing equivalents of THA:|
(CeDe, 298 K, 500 MHz).

CI-G3XB with THA iodide

Assay 1 K;=330.0 M http://app.supramolecular.org/bindfit/view/75f56ee4-d8a9-4703-9cae-
0c7493e2cala
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Figure S149-1. 'H NMR spectra of CI-G3XB upon addition of increasing equivalents of THA:I

(CsDs, 298 K, 500 MHz).

Assay 2 K,=317.7 M http://app.supramolecular.org/bindfit/view/f0c61398-8b18-4b85-89cf-

594c0491549e
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Figure S149-2. 'H NMR spectra of CI-G3XB upon addition of increasing equivalents of THA:I
(CeDe, 298 K, 500 MHz).

Assay 3 Ko=345.4 M? http://app.supramolecular.org/bindfit/view/1cb0201b-3798-4796-9753-
9e3bc55ccd83
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Figure S149-3. 'H NMR spectra of CI-G3XB upon addition of increasing equivalents of THA:I
(CéDs, 298 K, 500 MHz).

F-G3XB with THA iodide
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Assay 1 Ko=236.4 M http://app.supramolecular.org/bindfit/view/7b565776-3cc2-4956-ae6e-
249daldc7eeb
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Figure S150-1. 'H NMR spectra of F-G3XB upon addition of increasing equivalents of THA'|
(CsDe, 298 K, 500 MHz).

Assay 2 Ko=274.4 M http://app.supramolecular.org/bindfit/view/a5ed5e27-8f4b-43a7-975b-
1f0fb3b071b8
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Figure S150-2. 'H NMR spectra of F-G3XB upon addition of increasing equivalents of THA'|
(CeDe, 298 K, 500 MHz).

Assay 3 Ko=241.1 M http://app.supramolecular.org/bindfit/view/ed534960-85cd-4a81-bb80-
9e35b275c¢9d0
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Figure S150-3. 'H NMR spectra of F-G3XB upon addition of increasing equivalents of THA'|
(CeDe, 298 K, 500 MHz).

H-G3XB with THA iodide

Assay 1 Ko=194.6 M http://app.supramolecular.org/bindfit/view/17befb01-d3f6-4d27-bf34-
4c9c67c9ca8c

231



™ I\_ﬂ " " L 20
6 eq. M t:i_ o " . 12
A, i, M, i8
> Eq' "-._I'l M k ™ . 17
A M. " ~ L1
4 eq. | -} " N A 15
A I " —_ 14
3 eq. - - " o L1a
| l\___‘l - . " F12
H_‘I' " m - 11
9 | 1 m i . o
o Lo
A I : : " ' A &
A ﬁ 1 L I | o -7
leq N La
. -5
a o . La
A 3
A =2
0 eq. iy L1

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

BEO 7O 78 77 78 75 74 T3 72 71 70 6.9 66 6.7 66 E|5 El.d- E|3 62 61 60 5P 5B 57 58 55 54 5.3 52

1 {ppm)
Figure S151-1. 'H NMR spectra of H-G3XB upon addition of increasing equivalents of THA:|
(CéDs, 298 K, 500 MHz).

Assay 2 Ko=199.1 M http://app.supramolecular.org/bindfit/view/8c81c119-d5b1-408a-a314-
c9c82af2eac8
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Figure S151-2. 'H NMR spectra of H-G3XB upon addition of increasing equivalents of THA:|
(CéDs, 298 K, 500 MHz).

Assay 3 K,= 188.8 M! http://app.supramolecular.org/bindfit/view/fo9dda397-b6ad-4f30-9b80-
56fea76e0b2c
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Figure S151-3. 'H NMR spectra of H-G3XB upon addition of increasing equivalents of THA:|
(CéDs, 298 K, 500 MHz).

Me-G3XB with THA iodide

Assay 1 Ko= 182.0 M http://app.supramolecular.org/bindfit/view/c2346362-48e8-41e3-90c1-
53aaeleb5eeb
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Figure S152-1. 'H NMR spectra of Me-G3XB upon addition of increasing equivalents of THA'|
(CéDs, 298 K, 500 MHz).

Assay 2 Ko=171.7 M http://app.supramolecular.org/bindfit/view/d3632f46-0Oeea-411e-9b0f-
4a90ccbbbed8
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Figure S152-2. 'H NMR spectra of Me-G3XB upon addition of increasing equivalents of THA'|
(CeDe, 298 K, 500 MHz).

Assay 3 Ko=170.2 M http://app.supramolecular.org/bindfit/view/74be5d95-2df8-47cf-905a-
4cda87ec7d65
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Figure S153-3. 'H NMR spectra of Me-G3XB upon addition of increasing equivalents of THA'|
(CéDs, 298 K, 500 MHz).

nHBeXB with THA iodide

Assay 1 Ko= 12.4 M http://app.supramolecular.org/bindfit/view/7e08d321-604f-45b4-869d-
2dd0451a9fea
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Figure S154-1. 'H NMR spectra of nHBeXB upon addition of increasing equivalents of THA:I
(CsDe, 298 K, 500 MHz).

Assay 2 Ko= 4.4 M http://app.supramolecular.org/bindfit/view/29d125a6-7c77-4292-83bb-
9e8b03dbcdlb
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Figure S154-2. 'H NMR spectra of nHBeXB upon addition of increasing equivalents of THA:I
(CsDe, 298 K, 500 MHz).

Assay 3 Ko= 8.0 M http://app.supramolecular.org/bindfit/view/da8fec06-3b2f-4e26-8bd9-
0b9467705ec2
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Figure S154-3. 'H NMR spectra of nHBeXB upon addition of increasing equivalents of THA:I
(CsDe, 298 K, 500 MHz).

G3HB with THA iodide
Assay 1 Ko=36.8 M http://app.supramolecular.org/bindfit/view/6847ebbe-5e75-417¢c-a18f-
3b9e06f6c3fe
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Figure S155-1. 'H NMR spectra of G3HB upon addition of increasing equivalents of THA:I (CeDs,
298 K, 500 MHz).

Assay 2 Ko=22.5 M http://app.supramolecular.org/bindfit/view/29553f62-9021-445b-85b1-
32¢d17529328
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Figure S155-2. 'H NMR spectra of G3HB upon addition of increasing equivalents of THA:I (CeDs,
298 K, 500 MHz).

Assay 3 Ko=23.2 M http://app.supramolecular.org/bindfit/view/ff9ef97c-9dea-47c3-865d-
9a8fab9e4b50
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Figure S155-3. 'H NMR spectra of G3HB upon addition of increasing equivalents of THA:I (C¢Ds,
298 K, 500 MHz).

Linear free energy relationships

Besides Hammett parameters, we also plotted the association constants obtained from NMR
titrations with other parameters including Taft’s o), or® and Dobrowolski’s SEDA, pEDA’.
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Figure S156. Normalized Hammett plots of K values of 2R>-G3XB (Left) and R1-G3XB (Right) with
ol (Blue) and oR (Orange).
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Figure S157. Normalized Hammett plots of K values of 2R2-G3XB (Left) and R1-G3XB (Right) with
SEDA (Blue) and pEDA (Orange).

Computaions
Calculations were carried out with the Gaussian 16 suite of programs using M062X functional

employing the def2TZVPP basis set for all atoms except iodine. For iodine LANL2DZdp and
effective core potential (ECP) were used. The LANL2DZdp ECP basis set was downloaded from
the EMSL Basis Set Exchange (https://bse.pnl.gov/bse/portal).
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Table S3-1. Computation results summary

Vs, max Vs, min SPE Vs,max(HBed) Vs,max(non‘ SPE AV max Vs, max SPE
(kcal/mol) | (kcal/mol) | (kcal/mol) (kcal/mol) HBed) (kcal/mol) (kcal/mol) (kcal/mol) | (kcal/mol)
(kcal/mol)
G3XB 32.05 -1.11 - G3XB-S 31.45 24.46 - 6.99 G3XB-W | 24.64 -
1573352.23 1573350.70 1573349.12
2F-G3XB 28.40 -4.14 - 2F-G3XB-S 28.52 20.94 - 7.58
1274864.51 1274862.74
2H-G3XB 24.98 -7.22 - 2H-G3XB-S 26.05 17.95 - 8.10
1150303.91 1150302.08
2Me-G3XB | 23.03 -9.43 - 2Me-G3XB-S | 24.69 16.94 - 7.75
1199640.14 1199638.23
2MeO- 22.96 -8.87 - 2MeO-G3XB- | 23.25 15.73 - 7.52
G3XB 1294035.26 | S 1294032.74
2tBu-G3XB | 22.41 -11.14 - 2tBu-G3XB-S | 24.37 16.15 - 8.18
1347636.51 1347634.36
Cl-G3XB 30.84 - CI-G3XB-S 29.85 24.16 - 5.69
1650226.19 1650224.76
F-G3XB 30.12 - F-G3XB-S 29.33 24.61 - 4.72
1424105.19 1424103.85
H-G3XB 28.72 - H-G3XB-S 28.08 24.07 - 4.01
1361826.55 1361825.11
Me-G3XB 28.11 - Me-G3XB-S 27.36 24.04 - 3.32
1386493.72 1386492.36
G3HB
nHBeXB 28.03 - nHBeXB-S 26.64 25.39 -
1538603.60 1538603.61

Table $3-2. Computation results summary continued
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Dihedral Vs,max(HBed) | Vsmax(non- AV max
Freeze (kcal/mol) HBed) (kcal/mol)
(kcal/mol)

G3XB-S 31.62 24.98 6.65
2F-G3XB-S 28.67 20.85 7.82
2H-G3XB-S 26.17 18.28 7.89
2Me-G3XB-S 24.99 16.46 8.53
2MeO-G3XB-S | 23.31 15.73 7.58
2tBu-G3XB-S 24.67 16.06 8.61
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G3XB bidentate

Coordinates for G3XB bidentate:

01

M I T T OOOOOOOOO0OOITOOITI OO0 I OOOIT OOOOO0O0O0OITITZ2O0

2.9778167
0.0111348
-0.0015477
0.8673365
-0.8707141
7.1194457
4.6677710
4.7227050
3.4442640
1.2154129
2.4390423
5.9388684
5.9607287
-0.0013717
-2.4408280
1.1989788
2.1385803
-1.2164467
-3.4466567
-0.0003083
5.8756692
5.8469550
7.0796411
-1.1993217
-2.1383377
-7.1234836
-4.6706862
-7.0823230
-5.8778614
-4.7270483
-5.9436998
-5.9665497
-2.9834987
-5.8481493
-1.1200125

-2.7396896
5.4783418
-0.1739476
-0.6824503
-0.6820348
-1.5729951
-0.2193214
-1.6123268
0.5082846
1.8974180
1.1733689
-2.2829825
-3.3588905
1.1717394
1.1761420
3.2861319
3.8209328
1.8986306
0.5119105
3.9813980
0.4830954
1.5588241
-0.1883958
3.2885593
3.8237698
-1.5665715
-0.2146754
-0.1828566
0.4877231
-1.6067718
-2.2765372
-3.3517460
-2.7341139
1.5627551
6.0004797

-0.3462496
0.0113884
0.0079975
-0.0002460
0.0141493
-0.0511001
-0.0446361
-0.1631284
-0.0371995
-0.0178372
-0.0288475
-0.1661045
-0.2585033
-0.0009224
0.0156468
-0.0272539
-0.0446999
0.0030879
0.0269671
-0.0247885
0.0708923
0.1636559
0.0670550
-0.0086554
-0.0105614
0.0470892
0.0368664
-0.0807222
-0.0864855
0.1652057
0.1699948
0.2700410
0.3608386
-0.1867250
-0.4758799
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T T M T T O ™M T T O 7T m

G3XB S conformation

1.0265030
0.1470914
8.3797316
9.0773888
8.2008776
9.1590296
-8.3815398
-9.1653657
-9.0750252
-8.2015954
-8.0729711
8.0685407

5.9863056
5.9512746
0.5576216
0.1473314
1.8736697
0.3556154
0.5632183
0.3660315
0.1488289
1.8786786
-2.0848137
-2.0919666

Coordinates for G3XB-S:

01

OO0 ITOOOITOOO0OO0O0OITIITZ20

5.8844208
-0.0025468
-0.2235464
0.6267284
-1.1073377
6.8446987
4.4999818
5.7405074
3.2878308
1.0678897
2.2728584
6.9022619
7.8513904
-0.1732938
-2.6096540
1.1013429
2.0613276
-1.3610290
-3.6366992
-0.0729893

2.0037635
5.1285307
-0.5121546
-1.0358890
-0.9827150
-2.1653467
-0.6388215
-0.0419894
0.1085954
1.5134913
0.7575554
-0.8037983
-0.3291387
0.8345333
0.9244354
2.8999388
3.3975793
1.6019768
0.2958869
3.6372025

-0.6986026
1.2605097
0.1893799
1.2558848
0.3106732
-0.8804797
-0.2115550
0.8558880
-1.2792251
-0.3376366
0.0502089
-0.0527297

-0.5392262
0.3759551
0.0530508
-0.0541402
-0.0545641
0.0392177
0.0831043
-0.1748174
0.1105293
0.1633647
0.1357951
-0.1948461
-0.3961245
0.1141673
0.0797011
0.2324677
0.2625916
0.1394670
0.0243188
0.2567611
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C
H
C
C
H
C
C
C
C
C
C
H
I

H
F
F
F
C
F
F
F
C
F
F
F
H
H

4.4611658
3.5110193
5.6187313
-1.2953604
-2.2147987
-7.3803795
-4.8841405
-7.2956429
-6.0695248
-4.9842454
-6.2226152
-6.2796082
-3.2755106
-6.0058239
-1.1350405
0.9949368
0.2164197
5.5846423
6.1107013
4.3430003
6.2961695
-8.5719170
-9.3032817
-9.3368225
-8.3509605
-8.3466211
7.7489691

-2.0186659
-2.4890095
-2.7675189
2.9894890
3.5571948
-1.6514901
-0.3871513
-0.2724157
0.3552330
-1.7741656
-2.4005317
-3.4725296
-2.9595048
1.4267480
5.7184721
5.6395134
5.5225369
-4.2480977
-4.9340413
-4.7020505
-4.5720520
0.5161626
0.1192128
0.3513998
1.8240859
-2.1359236
-2.7588730

G3XB W conformation

Coordinates for G3XB-W:

6.0338196
-0.0000747
-0.0000173
0.8626034
-0.8626316
7.1234483

-1.9098178
-4.7563945
0.8796073
1.3512258
1.3512086
2.2619556

0.3211809
0.5280224
0.2968443
0.2128494
0.2266763
-0.1501949
-0.0373253
0.0037775
0.0599181
-0.1918396
-0.2478627
-0.3675508
-0.3452188
0.1799622
-0.0214132
-0.3574748
1.6402318
0.5545520
-0.4677333
0.7419466
1.6412130
0.1092875
1.1581073
-0.9771048
0.2480959
-0.1932057
0.0215081

-0.3151856
0.5001288

-0.0021362
-0.2112487
-0.2113135
-0.1139124
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T I MmO T O™ T I - ITOO0O0O0O0O0O0O0OIIO0OO0OIIOO0OO0O0OII OO0 IOO0OOOOn

4.7237799
5.9499326
3.4847547
1.2142877
2.4461322
7.1390129
8.0766035
-0.0000015
-2.4461363
1.1993217
2.1407764
-1.2142948
-3.4847510
0.0000185
4.7273031
3.7883215
5.9119160
-1.1993062
-2.1407546
-7.1233777
-4.7237637
-5.9118321
-4.7272425
-5.9499306
-7.1389833
-8.0765872
-6.0338764
-3.7882464
-1.0784994
-0.0013405
1.0794411
5.9234656
6.6260139
4.6950073
6.4913166
-5.9233239
-6.6256816
-6.4913363
-4.6948296
-8.0491313
8.0492237

2F-G3XB bidentate

0.8261936
0.1657121
0.1259633
-1.1919612
-0.4826213
0.8827485
0.3587948
-0.4720600
-0.4826292
-2.5773791
-3.1077903
-1.1919793
0.1259659
-3.2683616
2.2234881
2.7437158
2.9272739
-2.5773802
-3.1078109
2.2620633
0.8262240
2.9273404
2.2235122
0.1657778
0.8828591
0.3589414
-1.9097454
2.7437017
-5.3239887
-5.1107000
-5.3239090
4.4267691
4.8361829
4.9369365
49876123
4.4268293
4.8361926
4.9877758
4.9369516
2.8204041
2.8202630

-0.0152305
-0.1626960
0.0388682
0.1538317
0.0909674
-0.2102806
-0.3237636
0.0921002
0.0909844
0.2697405
0.3089121
0.1538481
0.0388738
0.3257243
0.0838454
0.2042417
0.0331116
0.2697573
0.3089402
-0.1139382
-0.0152312
0.0331504
0.0839026
-0.1627585
-0.2103556
-0.3238974
-0.3152982
0.2043530
-0.0527250
1.7945725
-0.0506414
0.1392399
1.2025530
0.2528794
-0.9357204
0.1394079
1.2028662
-0.9354082
0.2528886
-0.1527745
-0.1527130
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Coordinates for 2F-G3XB bidentate:

01
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2.9677784
-0.0147241
0.0020129
0.8715768
-0.8667414
7.1244145
4.6699090
4.7182853
3.4466610
1.2158940
2.4407665
5.9337938
5.9542695
0.0010596
-2.4397475
1.1977193
2.1364724
-1.2165082
-3.4442405
-0.0017449
5.8768192
5.8753414
7.0686742
-1.2007024
-2.1407883
-7.1179839
-4.6661360
-7.0648298
-5.8742437
-4.7118292
-5.9261052
-5.9446414
-2.9592432
-5.8746975
-1.0292758
1.1167248

-2.6096644
5.6193306
-0.0321476
-0.5401546
-0.5415180
-1.4338020
-0.0741043
-1.4743409
0.6547417
2.0407521
1.3188937
-2.1423149
-3.2223508
1.3129797
1.3133005
3.4305876
3.9661488
2.0381743
0.6471380
4.1228952
0.6351977
1.7152623
-0.0526774
3.4266915
3.9608306
-1.4482646
-0.0840712
-0.0671212
0.6229661
-1.4842945
-2.1545094
-3.2345131
-2.6161293
1.7029679
6.1273713
6.1437852

-0.0150579
0.0098570
0.0043696
0.0075899
0.0056261
0.0010375
-0.0031239
-0.0064263
-0.0051574
-0.0086576
-0.0071285
-0.0043189
-0.0068891
-0.0034724
-0.0110250
-0.0186170
-0.0268314
-0.0107773
-0.0103856
-0.0267773
0.0023162
0.0050325
0.0042329
-0.0213990
-0.0320697
-0.0128230
-0.0106436
-0.0277227
-0.0269558
0.0045026
0.0033706
0.0151471
0.0294302
-0.0389505
-0.7019700
-0.4748658
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-0.1540425
8.2115926
-8.2089796
-8.0740805
8.0814508

6.0929048
0.6409132
0.6242227
-1.9512497
-1.9349903

2F-G3XB S conformation

Coordinates for 2F-G3XB-S:

01
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5.8126004
0.6187000
-0.6557000
0.0816000
-1.6112001
6.0593004
3.9917003
5.3222004
2.9212002
0.9948001
2.0378001
6.3401005
7.3613005
-0.3516000
-2.7271002
1.2903001
2.3271002
-1.3730001
-3.8546003
0.2769000
3.7147003
2.7017002
4.7450003
-1.0460001
-1.8414001
-7.9019006
-5.2086004
-7.5368006

0.6646000
4.7595003
-0.7445001
-1.4201001
-1.0415001
-3.6182003
-1.7247001
-1.3347001
-0.7848001
1.0024001
0.0347000
-2.2775002
-1.9645001
0.5697000
1.1188001
2.3590002
2.6653002
1.5484001
0.6969001
3.3050002
-3.0792002
-3.4126002
-3.9917003
2.8991002
3.6308003
-0.5111000
0.2616000
0.8220001

1.2587817
0.0094714
-0.0435438
-0.0140364
0.0027674

-0.3983000
0.2964000
0.0725000
-0.0214000
-0.0426000
0.1490000
0.1415000
-0.0686000
0.1447000
0.1536000
0.1499000
-0.0620000
-0.2234000
0.1056000
0.0389000
0.1984000
0.2292000
0.1021000
-0.0203000
0.1965000
0.3563000
0.5278000
0.3542000
0.1498000
0.1418000
-0.2342000
-0.0915000
-0.2301000
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2H-G3XB bidentate

Coordinates for 2H-G3XB bidentate:

01
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-6.2226005
-5.5708004
-6.9035005
-7.1670005
-4.1227003
-5.9777005
-0.3439000
1.7543001
0.7940001
4.4611003
-8.4923006
-8.9457006
6.8395005

2.9426820
0.0537267
-0.0054434
0.8619398
-0.8768550
7.1026303
4.6607494
4.7025736
3.4415281
1.2215016
2.4414556
5.9120313
5.9230406
-0.0004917
-2.4391833
1.2100301
2.1524162
-1.2118200
-3.4463038
0.0124647
5.8775993

1.2243001
-1.0918001
-1.4695001
-2.5171002
-2.5903002
2.2762002
5.5370004
5.0515004
5.1501004
-5.2828004
1.7546001
-0.7842001
-4.3655003

-2.5931106
5.6561503
0.0063102
-0.5053422
-0.4985523
-1.4359426
-0.0691552
-1.4686389
0.6672594
2.0716491
1.3402750
-2.1464922
-3.2268269
1.3517605
1.3650370
3.4587429
3.9901014
2.0831568
0.7023031
4.1605091
0.6260023

-0.1611000
-0.0954000
-0.1660000
-0.1676000
0.0109000
-0.1606000
-0.2134000
-0.3498000
1.5690001
0.5602000
-0.2960000
-0.2898000
0.1564000

0.0094086

0.0038087

-0.0011298
-0.0006533
0.0003256

-0.0081033
-0.0060041
-0.0005650
-0.0052509
-0.0042247
-0.0049052
-0.0016011
0.0026466

-0.0023412
-0.0024905
-0.0065101
-0.0094792
-0.0029889
-0.0018485
-0.0072319
-0.0125307

253



H
C
C
H
C
C
C
C
C
C
H
|
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F
F
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H
H
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5.8497631

7.0838541

-1.1888030
-2.1254253
-7.1272979
-4.6724313
-7.0954051
-5.8829462
-4.7276720
-5.9433516
-5.9643320
-2.9782384
-5.8451085
-1.1637956
0.7916855

0.6028271

8.0099384

-8.0162228
-8.0718953
8.0422436

1.7066081
-0.0476061
3.4742246
4.0126222
-1.3664638
-0.0222894
0.0216743
0.6840371
-1.4213718
-2.0880292
-3.1682461
-2.5622915
1.7643482
6.1986178
6.1438931
6.1355054
0.5100541
0.5880377
-1.8926147
-1.9709514

2H-G3XB S conformation

Coordinates for 2H-G3XB-S:

01

T OO0 0O0O0O0OITIITZ20

5.7577752
0.8348525
-0.8212901
-0.1329341
-1.7951003
5.5973291
3.7166931
5.0818538
2.7335314
0.9493517
1.9182475
6.0125579
7.0612629

0.1164299

4.6384819

-0.7660395
-1.4926216
-0.9962522
-4.1674755
-2.0995743
-1.8327834
-1.0685560
0.8607832

-0.1812681
-2.8603577
-2.6376597

-0.0167827
-0.0135682
-0.0048484
-0.0062681
0.0003494

-0.0011295
0.0007117

-0.0000124
-0.0015008
-0.0007567
-0.0010486
-0.0032899
0.0002785

-0.0993220
-1.0053999
1.1314933

-0.0187005
0.0015772

0.0009286

-0.0088971

-0.2900239
0.1563167
0.0963505
0.0108011
-0.0187599
0.2638444
0.1945547
0.0227992
0.1654104
0.1212577
0.1448006
0.0581235
-0.0755699
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C
C
C
H
C
C
C
C
H
C
C
H
C
C
C
C
C
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H
I

H
F
F
F
H
H
H
H

2Me-G3XB bidentate

-0.4244874
-2.7568786
1.3402424
2.3960014
-1.3751882
-3.9116800
0.3958978
3.3217610
2.2699396
4.2493238
-0.9532178
-1.6948937
-8.0325750
-5.2947147
-7.5996349
-6.2476746
-5.7532289
-7.1093439
-7.4428006
-4.4095310
-5.8980626
-0.0487017
2.0142747
0.9814303
3.9218406
-8.3162749
-9.0887356
6.3307090

0.5243828
1.2362211
2.1939585
2.4274420
1.5715642
0.8921236
3.2084139
-3.4269955
-3.6357201
-4.4507049
2.8960150
3.6818611
-0.0194733
0.5542360
1.2995766
1.5816040
-0.7684578
-1.0538144
-2.0813310
-2.3675363
2.6043495
5.4582224
4.8255347
5.0721710
-5.4680729
2.1087877
-0.2489382
-4.9616801

0.0896781
0.0219528
0.1256194
0.1441448
0.0629372
-0.0132446
0.0991379
0.4028819
0.5418272
0.4366729
0.0699043
0.0437797
-0.1352774
-0.0543816
-0.1159863
-0.0760893
-0.0744427
-0.1146393
-0.1296276
-0.0443393
-0.0607076
-0.4271377
-0.4485516
1.4190234
0.5991456
-0.1320334
-0.1665894
0.2893967

Coordinates for 2Me-G3XB bidentate:

2.9646706
-0.0155659
0.0020403
0.8717356
-0.8668330
7.1065439

-2.6111428
5.6095114

-0.0402137
-0.5479056
-0.5492489
-1.4399278

0.2748366
0.0091426
0.0039999
-0.0030146
0.0117484
-0.0780195
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4.6646825
4.7117459
3.4443037
1.2163168
2.4407327
5.9280851
5.9527768
0.0010311
-2.4399649
1.1977753
2.1364356
-1.2172152
-3.4420193
-0.0020021
5.8759268
5.8357362
7.0974553
-1.2011943
-2.1413904
-7.1000867
-4.6609456
-7.0940902
-5.8737973
-4.7048496
-5.9199157
-5.9422959
-2.9550177
-5.8359316
-1.0308044
1.1152121
-0.1548202
8.3850132
-8.3834831
-8.0421659
8.0496542
8.2053320
8.9206363
9.0400353
-8.2062456
-8.9194084
-9.0371437

-0.0943323
-1.4863778
0.6403480
2.0320002
1.3084176
-2.1534363
-3.2299736
1.3051223
1.3027857
3.4217009
3.9570894
2.0294290
0.6325938
4.1138914
0.6004649
1.6781813
-0.0501808
3.4177109
3.9517579
-1.4545932
-0.1045283
-0.0639182
0.5889812
-1.4975709
-2.1668587
-3.2441444
-2.6204575
1.6674811
6.1189763
6.1363366
6.0848282
0.7117449
0.6965527
-1.9886893
-1.9722427
1.7827826
0.4011645
0.5272024
1.7685861
0.3938342
0.5019806

2Me-G3XB S conformation

-0.0458859
0.0690729
-0.0351364
-0.0208486
-0.0294344
0.0526407
0.1423342
-0.0043221
0.0099320
-0.0318000
-0.0492461
-0.0002776
0.0190759
-0.0277889
-0.1766051
-0.2654624
-0.1945672
-0.0099859
-0.0111707
0.0707880
0.0332803
0.1757394
0.1552572
-0.0700570
-0.0509850
-0.1317258
-0.2622128
0.2351322
-0.7019032
-0.4759412
1.2581794
-0.3370439
0.3090428
0.0844441
-0.0895318
-0.4022574
-1.2347435
0.5149550
0.3636898
1.2092520
-0.5417642

256



Coordinates for 2Me-G3XB-S:

01
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5.8345231
0.5767275
-0.6309208
0.1158566
-1.5816062
6.0441560
4.0072774
5.3342308
2.9377601
0.9986276
2.0507825
6.3448491
7.3680179
-0.3428269
-2.7254430
1.2778709
2.3109366
-1.3765582
-3.8471296
0.2527485
3.7337286
2.7064128
4.7317470
-1.0654475
-1.8695678
-7.8683475
-5.1958724
-7.5607714
-6.2286212
-5.5410819
-6.8716261
-7.1274478
-4.0767430
-5.9576061
-0.3958500

0.6955690
4.7861550
-0.7315336
-1.3941142
-1.0374442
-3.5811449
-1.6811573
-1.2986090
-0.7393765
1.0347786
0.0764866
-2.2495899
-1.9463347
0.5873410
1.1057136
2.3945874
2.7132100
1.5526140
0.6679899
3.3283351
-3.0363007
-3.3266973
-3.9954329
2.9069623
3.6290499
-0.5669017
0.2152892
0.7933577
1.1625997
-1.1387258
-1.5255184
-2.5753208
-2.6248140
2.2101156
5.5540572

-0.4249696
0.3105710
0.0804033
-0.0318829
-0.0514047
0.1669379
0.1494180
-0.0730139
0.1514153
0.1620502
0.1573423
-0.0614307
-0.2310427
0.1130972
0.0471676
0.2089635
0.2402373
0.1111258
-0.0125924
0.2083265
0.3801934
0.5593796
0.3908632
0.1611412
0.1542743
-0.2219119
-0.0831246
-0.2047174
-0.1359642
-0.1021581
-0.1713859
-0.1852736
-0.0215110
-0.1211871
-0.1963879
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2tBu-G3XB bidentate

1.7078124
0.7489060
4.4193384
4.6618725
3.3652494
5.0050520
-8.6539194
-9.3339176
-9.2430970
-8.2478589
-8.9033382
6.8441292

5.0948122
5.1780148
-5.4454892
-6.0446848
-5.5902651
-5.8347696
1.8231585
1.7104601
1.7132192
2.8322323
-0.8813269
-4.3113012

-0.3362573
1.5837449
0.6328456
-0.2456690
0.8608066
1.4658932
-0.2598087
0.5851582
-1.1707764
-0.2372509
-0.2755849
0.1729672

Coordinates for 2tBuG3XB bidentate:

01
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2.9590790
-0.0117364
0.0017177
0.8711138
-0.8674337
7.1032327
4.6643910
4.7073447
3.4443828
1.2173905
2.4413872
5.9258016
5.9533306
0.0014986
-2.4393781
1.1997417
2.1388438
-1.2162114
-3.4418492
0.0003798
5.8772629
5.8154914

-2.7471867
5.4754927
-0.1741229
-0.6821653
-0.6826595
-1.5688572
-0.2317019
-1.6212303
0.5041539
1.8974380
1.1730661
-2.2843465
-3.3604582
1.1713165
1.1700854
3.2870691
3.8220140
1.8961391
0.5004139
3.9799558
0.4664167
1.5403520

0.3474641
0.0109845
0.0049849
0.0182635
-0.0009859
0.0509412
0.0420982
0.1636017
0.0311886
0.0039260
0.0184128
0.1676250
0.2620500
-0.0025240
-0.0334309
-0.0075549
-0.0073003
-0.0212773
-0.0422280
-0.0262690
-0.0743548
-0.1674658
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7.1045465
-1.1992744
-2.1389844
-7.0989417
-4.6612748
-7.1015944
-5.8748027
-4.7028290
-5.9207789
-5.9473456
-2.9532959
-5.8139921
-1.0222941
1.1224834
-0.1568615
8.4293470
-8.4271864
-8.0339675
8.0386876
8.2293995
-8.2285679
9.2009987
7.7284439
7.6463860
-9.2006741
-7.7264354
-7.6472667
-0.2819543
-9.1695710
-8.5791272
-9.3804632
-10.1206630
9.2867081
9.1696958
8.7788933
10.2381134
9.5016360
8.5773602
9.3814663
10.1202017
-8.7726222
-10.2338532
-9.4959739

-0.1762623
3.2844956
3.8190021
-1.5755657
-0.2365422
-0.1821307
0.4615000
-1.6269355
-2.2909985
-3.3677804
-2.7526196
1.5361228
5.9865853
6.0011496
5.9509297
0.5717438
0.5657191
-2.1202993
-2.1128352
2.0816655
2.0765867
2.5684543
2.4940827
2.3386732
2.5632170
2.4835577
2.3398964
0.2808325
0.0779045
0.2665304
-0.9903028
0.6040112
0.2958561
0.0760811
0.6364115
0.8242918
-0.7666764
0.2582231
-0.9916257
0.6022332
0.6156039
0.8091623
-0.7825883

-0.0727046
-0.0308226
-0.0498165
-0.0528319
-0.0495904
0.0608539
0.0598767
-0.1610928
-0.1623637
-0.2490491
-0.3339462
0.1453278
-0.7054682
-0.4676540
1.2594062
-0.2003671
0.1809900
-0.0562001
0.0566464
-0.3241367
0.2950205
-0.4123214
0.5527754
-1.2095869
0.3783159
-0.5837598
1.1797463
-1.0618022
1.4329107
2.3303003
1.3846944
1.5299606
1.0426648
-1.4504140
1.9458117
0.9628725
1.1553416
-2.3478974
-1.3954250
-1.5528373
-1.9662561
-0.9874064
-1.1676745
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2tBu-G3XB S conformation

Coordinates for 2tBu-G3XB-S:

01
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5.8759896
-0.0257677
-0.1990384
0.6576898
-1.0757009
6.8399465
4.5141474
5.7445564
3.2983503
1.0699166
2.2812228
6.8948156
7.8428832
-0.1653366
-2.6024720
1.0881406
2.0430208
-1.3609941
-3.6222142
-0.0955996
4.4907780
3.5329787
5.6371149
-1.3103272
-2.2357906
-7.3371625
-4.8609613
-7.3041877
-6.0551379
-4.9376469
-6.1678626
-6.2218618
-3.2122314
-1.2306512

2.0307369
5.1286818
-0.5058303
-1.0069796
-0.9781869
-2.1334158
-0.6047665
-0.0072930
0.1393872
1.5312695
0.7846030
-0.7739150
-0.3130226
0.8418934
0.9031064
2.9147954
3.4218857
1.5935821
0.2638814
3.6389277
-1.9726706
-2.4135283
-2.7606717
2.9805511
3.5370058
-1.7077051
-0.4363369
-0.3277187
0.2811086
-1.8229665
-2.4490326
-3.5191159
-2.9852093
5.7023495

-0.6482970
0.4635703
0.0399261
-0.1161618
-0.1127251
0.0347702
0.0821772
-0.2247456
0.1178569
0.1931960
0.1530378
-0.2465707
-0.4844519
0.1262005
0.0943354
0.2947365
0.3406577
0.1691325
0.0246133
0.3364080
0.3633136
0.6070349
0.3471436
0.2755856
0.3053947
-0.1879428
-0.0520901
-0.0060763
0.0581345
-0.2346955
-0.3014534
-0.4424286
-0.4130537
0.3757535
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0.7441374
0.5044260
5.5330078
-8.5644273
-8.2797192
7.7614160
6.8909020
-9.8372216
-10.7070715
-9.8858960
-9.9112780
6.7666254
7.5969706
7.3264237
-8.5542568
-8.5334075
-9.4515136
-7.6883169
-8.5883996

5.6763096
5.5082811
-4.2496851
0.5255278
-2.2319922
-2.6962920
-4.9475144
-0.3154906
0.3345210
-1.0590590
-0.8292020
-6.0042555
-4.5254431
-4.8793415
1.2433526
0.5229522
1.8557116
1.8969520
1.5668326

2MeO-G3XB bidentate

-0.4885545
1.6368344
0.6712711
0.1227306
-0.2449313
0.0066486
0.6008458
0.0308714
0.1284735
0.8276951
-0.9287043
0.8388816
1.3173191
-0.3970457
1.4794907
2.2981286
1.5828289
1.5821168
-1.0047808

Coordinates for 2MeO-G3XB bidentate:

01
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2.9505845
-0.0130552
0.0022144
0.8717900
-0.8667688
7.1055209
4.6642964
4.7020424
3.4443698
1.2171430
2.4414562
5.9226193
5.9449465
0.0015541
-2.4394399

-2.7223297
5.5124485
-0.1372898
-0.6456915
-0.6466719
-1.5471748
-0.1942129
-1.5885701
0.5420916
1.9346256
1.2110668
-2.2549464
-3.3352170
1.2074791
1.2065928

0.0140013
0.0125191
0.0058355
0.0066149
0.0065441
-0.0050216
-0.0055345
0.0023808
-0.0062896
-0.0081017
-0.0074879
0.0025869
0.0087211
-0.0020983
-0.0079615
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H
C
C
C
C
H
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C
H
C
C
C
C
C
C
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I

H
F
F
F
0
0
H
H
C
C
H
H
H
H
H
H

1.1988502
2.1376776
-1.2164387
-3.4413406
-0.0006602
5.8737762
5.8242049
7.0861093
-1.1999177
-2.1398498
-7.1001553
-4.6604679
-7.0822868
-5.8706456
-4.6966097
-5.9164986
-5.9377097
-2.9439152
-5.8222246
-1.0294265
1.1172233
-0.1486409
8.2919767
-8.2887858
-8.0542253
8.0601335
8.3174975
-8.3158317
9.3651783
7.8337955
7.8283974
-9.3638266
-7.8293710
-7.8303727

3.3241880
3.8595235
1.9325986
0.5362029
4.0169443
0.5193043
1.5969514
-0.1508996
3.3208618
3.8552166
-1.5569650
-0.2014937
-0.1606582
0.5108221
-1.5958990
-2.2635383
-3.3438309
-2.7277489
1.5885346
6.0231083
6.0385064
5.9876282
0.4589672
0.4479369
-2.0648703
-2.0540574
1.8702218
1.8591982
2.1543211
2.2778259
2.2669972
2.1421883
2.2600504
2.2637728

2MeO-G3XB S conformation

Coordinates for 2MeO-G3XB-S:

-0.0179647
-0.0268314
-0.0083826
-0.0067369
-0.0251291
-0.0132695
-0.0193406
-0.0130222
-0.0187028
-0.0284983
-0.0041618
-0.0057221
-0.0071783
-0.0079475
-0.0027139
-0.0019523
0.0003736

0.0005196

-0.0102327
-0.6959916
-0.4749420
1.2620135

-0.0201468
-0.0091545
-0.0035895
-0.0049576
-0.0287750
-0.0121224
-0.0336675
0.8617383

-0.9212254
-0.0133047
-0.9041844
0.8788158
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5.8855740
0.3458913
-0.4852575
0.3039796
-1.4160340
6.3905553
4.2083992
5.5181012
3.0748526
1.0205659
2.1356071
6.5866704
7.5929509
-0.2879156
-2.7018128
1.2065830
2.2158349
-1.3851796
-3.7941852
0.1200831
4.0194426
3.0219976
5.0979950
-1.1668018
-2.0186603
-7.7349446
-5.1114190
-7.5034169
-6.1982082
-5.3584316
-6.6558404
-6.8395613
-3.7908790
-6.0335379
-0.6885336
1.4375918
0.5220179
4.7924460
-8.4761534
-8.7367052
7.2479754
5.8582137
-9.8164448

1.2594806
4.9379282
-0.6515994
-1.2686033
-1.0287447
-3.0332719
-1.2811686
-0.7858852
-0.4166420
1.2220578
0.3380800
-1.6619617
-1.2789718
0.6826873
1.0379452
2.5982753
2.9871564
1.5755416
0.5293014
3.4599382
-2.6554677
-3.0596034
-3.5326143
2.9484943
3.6136616
-0.9935512
-0.0142148
0.3779626
0.8564900
-1.3962271
-1.8691547
-2.9336291
-2.7740702
1.9240099
5.6288668
5.3109106
5.3632856
-4.8453001
1.3165579
-1.3943495
-3.6887514
-5.7696466
0.8764701

-0.2342502
0.1711974
0.0514540
-0.0205578
-0.0240516
0.0544009
0.0605672
-0.0593281
0.0669589
0.0800895
0.0732302
-0.0608278
-0.1532059
0.0624731
0.0363787
0.0994386
0.1072555
0.0636184
0.0110331
0.1007837
0.1769670
0.2748801
0.1743349
0.0847067
0.0806109
-0.0761072
-0.0183358
-0.0421868
-0.0138344
-0.0523524
-0.0808567
-0.1071846
-0.0598207
0.0121993
-0.3233757
-0.5089021
1.4330768
0.2936510
-0.0344174
-0.0986169
0.0494280
0.3010762
-0.0612986
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-10.4297803
-10.0481475
-10.0254496
5.4075117
6.5323235
6.4230865

CI-G3XB bidentate

Coordinates for CI-G3XB bidentate:

01

o
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3.0044819
0.0000345
-0.0000139
0.8671318
-0.8671607
7.1409464
4.6771222
4.7426461
3.4482801
1.2120720
2.4385806
5.9647389
5.9944558
-0.0000078
-2.4385876
1.1994054
2.1355505
-1.2120738
-3.4482868
0.0000146
5.8809511
5.8442388
7.0907218
-1.1993825
-2.1355223
-7.1409422
-4.6771243
-7.0907207

1.7720756
0.2655453
0.3050041
-6.7516411
-5.5870162
-5.7275210

-2.4755100
5.9789710
0.0873892
-0.4144874
-0.4144883
-1.2592923
0.0724899
-1.3252391
0.7897829
2.1662339
1.4481646
-1.9848127
-3.0645325
1.4386190
1.4481946
3.5588488
4.0982115
2.1662529
0.7898114
4.2467277
0.7905711
1.8700271
0.1300995
3.5588700
4.0982427
-1.2592892
0.0725140
0.1301081

-0.0493298
0.8141629
-0.9685260
0.4066215
1.1410839
-0.6330135

-0.0549749
-0.1222959
-0.0417882
0.0548511
0.0548365
0.0659764
0.0111693
0.0028969
-0.0148094
-0.0547692
-0.0356368
0.0303863
0.0235876
-0.0450889
-0.0356610
-0.0787814
-0.0862587
-0.0547833
-0.0148469
-0.0919868
0.0473660
0.0540583
0.0739892
-0.0787947
-0.0862829
0.0658828
0.0111152
0.0740933
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F
F
H
H

-5.8809598
-4.7426451
-5.9647377
-5.9944420
-3.0044897
-5.8442470
8.3856977
9.0958393
8.1978365
9.1580769
-8.3857012
-9.0957953
-9.1581202
-8.1978514
-8.0944556
8.0944585

0.7905857
-1.3252084
-1.9847961
-3.0645151
-2.4754821
1.8700411
0.8933359
0.5912504
2.2139457
0.5967110
0.8933259
0.5910385
0.5968814
2.2139386
-1.7697103
-1.7697149

CI-G3XB S conformation

Coordinates for CI-G3XB-S:

01
I

o

OO0 ITOOO0OO0O0O0OIIITZZ2

-5.8875688
0.0251806
0.2108299
-0.6357400
1.0880358
-6.8456652
-4.5052239
-5.7437700
-3.2947436
-1.0667300
-2.2771735
-6.9034166
-7.8508023
0.1662405
2.6024520
-1.0988226

2.2829669
5.6145805
-0.2577320
-0.7520566
-0.7064947
-1.8905321
-0.3580744
0.2360744
0.3906438
1.7798960
1.0344391
-0.5281609
-0.0548528
1.0957232
1.1810071
3.1671544

0.0474892
0.0026526
0.0301196
0.0231683
-0.0554770
0.0543338
0.1134548
1.2077749
0.1114674
-0.9393402
0.1137475
1.2080414
-0.9390695
0.1119867
0.0871304
0.0872413

0.5330351
-0.5743805
-0.0851129
0.1362036
0.1245467
-0.0161655
-0.0986216
0.1739884
-0.1466916
-0.2469099
-0.1937884
0.2129281
0.4252386
-0.1750790
-0.1458678
-0.3674427
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-2.0530597
1.3542643
3.6308613
0.0789270
-4.4664347
-3.5177782
-5.6216814
1.2990358
2.2179052
7.3776227
4.8790973
7.2908689
6.0637093
4.9811749
6.2207181
6.2791265
3.2737279
5.9984374
-5.5877014
-6.1106933
-4.3467385
-6.3025796
8.5657564
9.2947663
9.3345126
8.3430502
8.3445574
-7.7480470

F-G3XB bidentate

Coordinates for F-G3XB bidentate:

-2.9988322
0.0010717
0.0001995
-0.8627843
0.8628595
-7.1310854

3.6716254
1.8569944
0.5572272
3.8899119
-1.7389866
-2.2069611
-2.4905696
3.2437340
3.8105319
-1.3765699
-0.1212290
-0.0016264
0.6213775
-1.5041557
-2.1257545
-3.1945299
-2.6890541
1.6896720
-3.9718101
-4.6551325
-4.4260812
-4.2992999
0.7873001
0.3822498
0.6334563
2.0938835
-1.8575552
-2.4862697

-2.3109140
5.7267431
0.2426987
-0.2397408
-0.2399958
-1.1084790

-0.4199502
-0.2288618
-0.0661419
-0.4216046
-0.3317759
-0.5507524
-0.2880773
-0.3533924
-0.3934106
0.1826384
0.0212513
-0.0039767
-0.0840908
0.2089775
0.2890480
0.4342284
0.3752127
-0.2292480
-0.5416778
0.4841495
-0.7315907
-1.6252847
-0.1203746
-1.1679339
0.9649970
-0.2704057
0.2445357
0.0166023

-0.1456544
-0.3540432
-0.0613461
0.1296771
0.1306220
0.1461332
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-4.6739969
-4.7365414
-3.4475924
-1.2118090
-2.4379427
-5.9554730
-5.9829556
0.0003627
2.4386155
-1.2016101
-2.1297845
1.2127782
3.4480189
0.0008572
-5.8770966
-5.8424044
-7.0836529
1.2030831
2.1314536
7.1318295
4.6743972
7.0856337
5.8789098
4.7357633
5.9548234
5.9813869
2.9963527
5.8454449
-8.3782436
-9.1521197
-8.1898351
-9.0872549
8.3804047
9.2216010
9.0109832
8.2025788
8.0829096
-8.0819331

0.2303227
-1.1675114
0.9500164
2.3241595
1.6067568
-1.8303328
-2.9099419
1.5992847
1.6058458
3.7160337
4.2680636
2.3237165
0.9487348
4.3862331
0.9447371
2.0240621
0.2807615
3.7155961
4.2672683
-1.1091934
0.2291568
0.2802919
0.9440178
-1.1689411
-1.8315010
-2.9113085
-2.3138953
2.0236046
1.0403010
0.8130444
2.3583224
0.6683576
1.0406239
0.6760866
0.8065047
2.3591644
-1.6221548
-1.6216540

F-G3XB S conformation

0.0177584
-0.0065678
-0.0437706
-0.1474108
-0.0953698
0.0574398
0.0381050
-0.1080204
-0.0960375
-0.2302779
-0.2612098
-0.1478915
-0.0442359
-0.2726935
0.1079967
0.1290924
0.1708998
-0.2309740
-0.2623827
0.1468215
0.0182673
0.1445485
0.0820025
0.0203314
0.0844542
0.0847429
-0.0786417
0.0804295
0.2612149
-0.8078677
0.3436770
1.3343011
0.2252115
-0.7503271
1.3832872
0.1282625
0.1958292
0.1976198
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Coordinates for F-G3XB-S:

01
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5.8868596
-0.0425510
-0.2072426
0.6348264
-1.0810458
6.8393775
4.5032670
5.7411495
3.2947603
1.0671115
2.2776315
6.8987658
7.8456900
-0.1650101
-2.6011771
1.0999998
2.0462346
-1.3544486
-3.6291561
-0.0823364
4.4627870
3.5144235
5.6159369
-1.3039416
-2.2154660
-7.3744836
-4.8768287
-7.2887451
-6.0619673
-4.9777496
-6.2170169
-6.2746679
-3.2692413
-5.9974411
5.5804125

-2.4347896
-5.3493153
0.1134535
0.5860607
0.5441350
1.7466239
0.2099318
-0.3844060
-0.5404456
-1.9268020
-1.1833120
0.3817786
-0.0918642
-1.2440997
-1.3239457
-3.3122299
-3.8301839
-2.0002066
-0.7020059
-4.0156719
1.5934478
2.0613884
2.3470718
-3.3853609
-3.9626061
1.2261504
-0.0253414
-0.1457187
-0.7667552
1.3545499
1.9740708
3.0404354
2.5368406
-1.8326750
3.8310975

0.5038344
-0.6871336
-0.1137311
0.1667350
0.1443116
0.0080451
-0.1094972
0.1654304
-0.1758205
-0.3133905
-0.2402270
0.2215383
0.4350793
-0.2276385
-0.1991191
-0.4661709
-0.5303683
-0.2996269
-0.1016037
-0.5374411
-0.3266692
-0.5471371
-0.2654595
-0.4568116
-0.5118924
0.2052259
0.0054589
-0.0032454
-0.1023206
0.2153642
0.3144370
0.4766349
0.3860503
-0.2642242
-0.5020766
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6.1009517
4.3392935
6.2967018
-8.5640183
-9.2952740
-9.3305862
-8.3419342
-8.3410519
7.7400918

H-G3XB bidentate

Coordinates for H-G3XB bidentate:

01
I

N
H
H
C
C
C
C
C
C
C
H
C
C
C
H
C
C
C
C
H
C
C
H
C

-2.9972002
0.0000000
-0.8685001
0.8687001
-7.1335005
-4.6734003
-4.7366003
-3.4471002
-1.2134001
-2.4381002
-5.9560004
-5.9825004
0.0000000
2.4381002
-1.1943001
-2.1393002
1.2134001
3.4471002
0.0000000
-5.8790004
-5.8450004
-7.0863005
1.1942001
2.1392002
7.1335005

4.5031753
4.2859369
4.1719904
-0.9333734
-0.5201334
-0.7880688
-2.2388678
1.7057115
2.3439764

-2.1570002
0.3969000
-0.1107000
-0.1107000
-0.9727001
0.3703000
-1.0223001
1.0920001
2.4740002
1.7526001
-1.6872001
-2.7627002
1.7470001
1.7527001
3.8673003
4.3929003
2.4740002
1.0921001
4.5687003
1.0769001
2.1521002
0.4114000
3.8673003
4.3930003
-0.9727001

0.5324325
-0.6888183
-1.5806626
-0.1231853
-1.1660308
0.9648914
-0.2840831
0.2821085
0.0544424

0.3511000
-0.0016000
0.0063000
-0.0042000
0.0492000
0.0398000
0.1629000
0.0306000
0.0088000
0.0204000
0.1673000
0.2633000
-0.0008000
-0.0214000
0.0073000
0.0141000
-0.0102000
-0.0312000
-0.0006000
-0.0788000
-0.1752000
-0.0735000
-0.0085000
-0.0150000
-0.0482000
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4.6734003
7.0863005
5.8790004
4.7366003
5.9560004
5.9825004
2.9972002
5.8451004
-8.3821006
-8.1974006
-9.1648007
-9.0813007
8.3820006
9.1650006
9.0811006
8.1974006
8.0850006
-8.0850006
-0.0001000

0.3704000
0.4114000
1.0769001
-1.0222001
-1.6872001
-2.7627002
-2.1569002
2.1521002
1.1634001
2.4789002
0.9683001
0.7551001
1.1633001
0.9685001
0.7548001
2.4788002
-1.4872001
-1.4871001
5.6485004

H-G3XB S conformation

Coordinates for H-G3XB-S:

01
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5.8856302
-0.0492608
-0.2092416
0.6378872
-1.0860889
6.8417493
4.5026911
5.7409925
3.2938507
1.0671669
2.2767577
6.8995858
7.8461232

-2.5753849
-5.2372218
-0.0251502
0.4584852
0.4151574
1.6131372
0.0800328
-0.5190687
-0.6680473
-2.0544309
-1.3106386
0.2445323
-0.2341849

-0.0398000
0.0743000
0.0791000
-0.1628000
-0.1666000
-0.2625000
-0.3516000
0.1754000
-0.1991000
-0.3230000
0.8699001
-1.2658001
0.2004000
-0.8685001
1.2671001
0.3246000
-0.0505000
0.0520000
-0.0005000

0.4409753
-0.7767792
-0.1157810
0.1258917
0.1120381
0.0186682
-0.1248143
0.1382203
-0.2040016
-0.3656379
-0.2794109
0.2069028
0.4105881
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Me-G3XB bidentate

Coordinates for Me-G3XB bidentate:

01
I

C
N

-0.1661368
-2.6022971
1.0914697
2.0533913
-1.3562488
-3.6305788
-0.0816744
4.4644555
3.5165036
5.6182864
-1.2963544
-2.2251772
-7.3778544
-4.8782382
-7.2908889
-6.0637867
-4.9811018
-6.2204960
-6.2783438
-3.2731196
-5.9986977
5.5834793
6.1041924
4.3427129
6.3001903
-8.5653469
-9.2924207
-9.3373681
-8.3428668
-8.3446068
7.7430484

-3.0128835
0.0013383
0.0000786

-1.3735008
-1.4538426
-3.4360217
-3.9253105
-2.1293684
-0.8332380
-4.1672321
1.4676282
1.9407053
2.2191005
-3.5099343
-4.0600031
1.0885174
-0.1591264
-0.2799351
-0.8986420
1.2172974
1.8348819
2.8985989
2.3979568
-1.9618975
3.7071513
4.3599341
4.1665075
4.0683315
-1.0664939
-0.6446193
-0.9311560
-2.3707900
1.5662954
2.2086967

-2.3252616
5.9118906
0.2192494

-0.2652604
-0.2396925
-0.5462406
-0.6178395
-0.3524164
-0.1320592
-0.6346458
-0.3162983
-0.5272143
-0.2422243
-0.5371968
-0.6003874
0.2056969

-0.0142590
-0.0238209
-0.1330058
0.2169799

0.3259128

0.5046536

0.4070787

-0.3111755
-0.4509774
0.5959286

-0.6295277
-1.5228969
-0.1563721
-1.1989634
0.9293151

-0.3278549
0.2905146

0.0750242

-0.1553788
-0.4032012
-0.0610367
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-0.8639668
0.8637942
-7.1403483
-4.6774740
-4.7462850
-3.4490637
-1.2080826
-2.4365595
-5.9672433
-5.9981525
0.0003150
2.4371915
-1.1860971
-2.1334645
1.2090471
3.4494689
0.0009545
-5.8786823
-5.8400969
-7.0874032
1.1876956
2.1353033
7.1411609
4.6778871
7.0894616
5.8805442
4.7455135
5.9666233
5.9966022
3.0103090
5.8432171
0.8824052
-0.8811267
0.0030671
-8.3786615
-9.1563051
-8.1857552
-9.0875423
8.3808652
9.2273292
9.0091735
8.1991271
8.0938714
-8.0927917

-0.2658666
-0.2662246
-1.1100450
0.2215368
-1.1761141
0.9368319
2.3032873
1.5899360
-1.8351456
-2.9146109
1.5739539
1.5888132
3.6947303
4.2185652
2.3027188
0.9353631
4.4128823
0.9388867
2.0179649
0.2789624
3.6941523
4.2175273
-1.1107767
0.2202399
0.2785751
0.9381963
-1.1777732
-1.8364881
-2.9162260
-2.3286430
2.0176235
6.3444208
6.3446163
6.2190716
1.0428470
0.8237292
2.3601514
0.6693453
1.0433299
0.6851554
0.8087955
2.3618507
-1.6205603
-1.6201019

0.1172965
0.1180285
0.1525313
0.0218470
-0.0072159
-0.0408726
-0.1494467
-0.0938517
0.0578893
0.0346921
-0.1119804
-0.0947814
-0.2311459
-0.2552940
-0.1500982
-0.0416401
-0.2787879
0.1180831
0.1429673
0.1820823
-0.2320389
-0.2568556
0.1530031
0.0220829
0.1555135
0.0918757
0.0193976
0.0846498
0.0810663
-0.0887905
0.0940635
0.0689138
0.0660938
-1.4505657
0.2784755
-0.7899005
0.3663535
1.3513837
0.2426404
-0.7310412
1.4021443
0.1488387
0.2028625
0.2048950
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Me-G3XB S conformation

CF3

Coordinates for Me-G3XB-S:
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5.8875365
-0.0360083
-0.2063570
0.6374890
-1.0810333
6.8487751
4.5072950
5.7450883
3.2970532
1.0636570
2.2771916
6.9048278
7.8508110
-0.1648316
-2.5991894
1.0839337
2.0479018
-1.3506431
-3.6298222
-0.0822083
4.4709619
3.5233803
5.6259208
-1.2891630
-2.2210007
-7.3827375
-4.8793918
-7.2917608
-6.0629046
-4.9863209
-6.2275525
-6.2883804
-3.2817765

-2.4305623
-5.5357503
0.1367434
0.6148334
0.5731583
1.7493698
0.2172846
-0.3789615
-0.5295988
-1.9079034
-1.1690310
0.3839655
-0.0926865
-1.2192839
-1.3062846
-3.2939469
-3.7849765
-1.9793925
-0.6875282
-4.0444557
1.6017453
2.0724533
2.3526104
-3.3650874
-3.9146427
1.2290591
-0.0151389
-0.1442528
-0.7612225
1.3662328
1.9819453
3.0495219
2.5570366

0.5031895
-0.7164516
-0.1190666
0.1456681
0.1253353
0.0138411
-0.1029610
0.1685873
-0.1687559
-0.3070430
-0.2330491
0.2243267
0.4353681
-0.2283515
-0.1952500
-0.4503677
-0.5023012
-0.2950881
-0.0994159
-0.5260250
-0.3170379
-0.5348512
-0.2562537
-0.4429742
-0.4876023
0.2052852
0.0064553
0.0083317
-0.0901236
0.2045579
0.3031981
0.4561551
0.3570557
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-5.9947404
5.5932740
6.1161986
4.3532091
6.3096330
-8.5640091
-9.3052284
-9.3241187
-8.3378450
-8.3508649
7.7508885
-0.9308226
0.8296763
0.0306663

nHBeXB bidentate

Coordinates for nHBeXB bidentate:
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-2.9050544
-0.0129098
-7.0794848
-4.6667739
-4.6810610
-3.4568216
-1.2090578
-2.4386620
-5.8815459
-5.8769319
0.0014586

2.4406745

-1.2053855
-2.1406911
1.2102676

3.4597423

0.0011059

-5.8894641
-5.8872931
-7.0766626

-1.8281984
3.8370309
4.5063448
4.2955367
4.1791227
-0.9380064
-0.5327727
-0.7922462
-2.2435266
1.7054758
2.3445735
-6.0098534
-5.9682281
-5.7942913

-2.6853110
5.4799344
-1.6307811
-0.2176083
-1.6117128
0.5337664
1.8989397
1.1741947
-2.3106993
-3.3862454
1.2067987
1.1761761
3.2941913
3.8356239
1.8994335
0.5372366
3.9752432
0.4550551
1.5307517
-0.2463947

-0.2431312
-0.4896961
0.5456817

-0.6746666
-1.5681885
-0.0992824
-1.1385189
0.9935864

-0.2565053
0.2817154

0.0599401

-0.3158931
-0.2164465
-1.7747287

0.3614407
-0.0057602
0.0529380
0.0440308
0.1702748
0.0347393
0.0180800
0.0257591
0.1739383
0.2720601
0.0047972
-0.0094684
0.0284566
0.0447996
0.0028167
-0.0233615
0.0276180
-0.0771059
-0.1749154
-0.0721687
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1.2068012
2.1418699
7.0846895
4.6704738
7.0805675
5.8926391
4.6860835
5.8872966
5.8836733
2.9109997
5.8894866
1.1265560
-1.0115438
-0.1794049
-8.3949163
-9.0793143
-8.2494658
-9.1724206
8.3981945
9.1769719
9.0817847
8.2517056
0.0016980
-8.0150382
8.0208115

3.2963454
3.8372987
-1.6233295
-0.2127457
-0.2396877
0.4604754
-1.6061075
-2.3037856
-3.3787531
-2.6805740
1.5356028
6.0015688
5.9808659
5.9379472
0.4651719
0.0355395
1.7854797
0.2460969
0.4725111
0.2562536
0.0410929
1.7924604
0.1257466
-2.1740345
-2.1655586

nHBeXB S conformation

Coordinates for nHBeXB-S:

-5.9082569
0.0162489

-6.8703310
-4.5105461
-5.7603749
-3.2890882
-1.0484802

2.0431822
5.0831801
-2.1639413
-0.6641656
-0.0342647
0.0684531
1.4453545

0.0140478
0.0176644
-0.0585965
-0.0384604
0.0744555
0.0849449
-0.1726733
-0.1819511
-0.2862945
-0.3675284
0.1888196
0.4552051
0.7281263
-1.2532665
-0.1999361
-1.2675281
-0.3236268
0.8680214
0.2051181
-0.8624630
1.2725254
0.3315378
-0.0013476
0.0558051
-0.0659254

0.0788376
-0.0627421
0.0013421
-0.0099292
0.0281485
-0.0167376
-0.0281618
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-2.2541751
-6.9306107
-7.8876669
0.1913150
2.6312049
-1.1143705
-2.0768261
1.3679388
3.6785466
0.0550517
-4.4679124
-3.5076068
-5.6344966
1.2949679
2.2026376
7.3995860
4.9228279
7.3339176
6.1148021
5.0002905
6.2325752
6.2768149
3.2735629
6.0639457
0.7340194
-1.2253948
0.5328853
-5.5999150
-6.1392956
-4.3579692
-6.3011139
8.6192420
9.4198950
9.3064245
8.4162488
8.3598068
-7.7811934
0.2482856

G3HB bidentate

0.6816007
-0.7829169
-0.2832661
0.8136766
0.9009191
2.8429525
3.3334956
1.5652520
0.3093585
3.5788640
-2.0637975
-2.5572788
-2.7991056
2.9568368
3.5446816
-1.6812679
-0.3838194
-0.2929444
0.3516690
-1.7816167
-2.4228774
-3.5020137
-2.9477679
1.4305352
5.6047943
5.5591963
5.5669594
-4.3018274
-4.8221565
-4.7794757
-4.7877323
0.4871144
0.1164977
0.2847541
1.8008868
-2.1795395
-2.7476417
-0.2655621

-0.0223746
0.0336917
0.0631667
-0.0238649
-0.0198380
-0.0367216
-0.0384502
-0.0275476
-0.0115429
-0.0404535
-0.0423085
-0.0728235
-0.0369276
-0.0362791
-0.0374335
0.0233770
0.0000895
0.0061911
-0.0049971
0.0169342
0.0284809
0.0408356
0.0242326
-0.0192238
0.9391348
0.0443120
-1.1992621
-0.0637940
1.0460248
-0.1644451
-1.0955260
0.0126693
-0.9941007
1.1441751
-0.1001384
0.0309704
0.0047008
-0.0162549
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Coordinates for G3HB bidentate:

01

T

M M T T T OOOOOOO0OO0OOIOO0OITOOOOO0O I OO0 I OOOO0OO0O0OITIZ2O0

3.8211248
0.0111564
-0.0028983
0.8581874
-0.8641657
7.0760756
4.6842477
4.7265440
3.4601091
1.2132361
2.4413588
5.9162103
5.9381755
-0.0028651
-2.4458732
1.1978373
2.1376493
-1.2170550
-3.4651021
-0.0019231
5.8557349
5.8311244
7.0350839
-1.2012088
-2.1403743
-7.0820993
-4.6895849
-7.0408607
-5.8612092
-4.7321710
-5.9221161
-5.9442233
-3.8266868
-5.8364662
-1.1249129
1.0182553

-3.0153264
4.4211812
-1.2371315
-1.7159598
-1.7157593
-2.6971833
-1.2615903
-2.5670085
-0.5252114
0.8406200
0.1186766
-3.2778106
-4.2883111
0.1205861
0.1209860
2.2299460
2.7645197
0.8415387
-0.5222438
2.9238266
-0.6765136
0.3319153
-1.3969542
2.2323524
2.7670015
-2.6926696
-1.2579955
-1.3916465
-0.6716767
-2.5642394
-3.2745560
-4.2856929
-3.0135909
0.3373745
4.9488809
4.9343152

-1.1781052
-0.2321958
-0.3090547
-0.1073313
-0.1075718
-0.3088310
-0.2998216
-0.7930016
-0.2925763
-0.2838152
-0.2874817
-0.7949257
-1.1782063
-0.2822737
-0.2865454
-0.2814591
-0.2863635
-0.2833336
-0.2913698
-0.2815358
0.1895434

0.5758339

0.1805169

-0.2805305
-0.2843677
-0.3065565
-0.2982914
0.1806316

0.1892758

-0.7893357
-0.7908819
-1.1724810
-1.1730820
0.5739258

-0.7005473
-0.9499093
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G3XB S conformation

0.1636239
8.3119129
8.9691047
8.0994481
9.1463571
-8.3177437
-8.9764198
-9.1509695
-8.1051515
-8.0144321
8.0081860

4.8808036

-0.7763597
-1.6005728
0.3642757

-0.4998111
-0.7696121
-1.5924436
-0.4934983
0.3715874

-3.2409187
-3.2458201

1.0197713
0.6770681
1.5022003
1.3367108
-0.3341397
0.6752059
1.5005402
-0.3371465
1.3338643
-0.3016378
-0.3042037

dihedral freeze

CF,

Coordinates for G3XB-S-dhf:
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-5.9080738
-0.0142076
0.2354904
-0.6123821
1.1236114
-6.8692945
-4.5072034
-5.7584542
-3.2880497
-1.0683595
-2.2705841
-6.9283533
-7.8854151
0.1766432
2.6132429
-1.1100279
-2.0730976
1.3602015
3.6450722
0.0594759
-4.4667772
-3.5082315

2.0521259
5.1148793
-0.5332595
-1.0706734
-1.0071396
-2.1561894
-0.6551999
-0.0255032
0.0806676
1.4867714
0.7263583
-0.7747504
-0.2742433
0.8134351
0.9168292
2.8751879
3.3673863
1.5886573
0.2936965
3.6195360
-2.0553118
-2.5530653

0.0306599
-0.0353816
-0.0200982
0.0018482
-0.0008309
0.0060159
0.0040620
0.0150666
0.0014693
-0.0053965
-0.0015279
0.0161921
0.0245626
-0.0115903
-0.0072846
0.0023097
0.0125514
-0.0084396
-0.0058428
0.0048920
-0.0063954
-0.0167088
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-5.6329272
1.2860016
2.2022385
7.4055199
4.8983356
7.3088058
6.0771550
5.0104265
6.2541314
6.3204773
3.3114184
6.0041359
1.0947375
-1.0489753
-0.1708015
-5.5961016
-6.1444266
-4.3515257
-6.2854125
8.5773313
9.3947930
9.2570714
8.3473476
8.3759428
-7.7802649

-2.7910904
2.9772250
3.5504462
-1.6288292
-0.3812879
-0.2420347
0.3774124
-1.7759984
-2.3940427
-3.4721716
-2.9852374
1.4550657
5.6848849
5.5822266
5.5775738
-4.2938196
-4.7983626
-4.7709661
-4.7976574
0.5655398
0.2175137
0.3704256
1.8749785
-2.1066735
-2.7395872

-0.0056764
-0.0020416
0.0046178
0.0076891
-0.0019319
0.0114348
0.0070996
-0.0059774
-0.0012487
-0.0051804
-0.0200732
0.0090940
0.4491953
0.6742308
-1.2857653
-0.0087527
1.1037030
-0.0897277
-1.0395182
0.0348848
-0.9662181
1.1720131
-0.0720855
0.0097844
0.0056331

2F-G3XB S conformation dihedral freeze

Coordinates for 2F-G3XB-S-dhf:
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5.8511034
0.6289491
-0.6618586
0.0721927
-1.6226708
6.0298416
3.9777834
5.3238820

0.6698532

4.7631124

-0.7403989
-1.4254366
-1.0416940
-3.6509700
-1.7400724
-1.3471248

-0.0188525
0.0226575
0.0079139
0.0041807
0.0026787
0.0052489
0.0010200
-0.0057661
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2.9138597
0.9945737
2.0344348
6.3335860
7.3668420
-0.3538219
-2.7291238
1.2938562
2.3317449
-1.3731142
-3.8583727
0.2829393
3.6774854
2.6514903
4.7004273
-1.0418189
-1.8355479
-7.9131114
-5.2147300
-7.5462150
-6.2295685
-5.5787858
-6.9139537
-7.1787256
-4.1306980
-5.9834517
-0.3398124
1.7552557
0.8232512
4.3937903
-8.5024075
-8.9587468
6.8036879

-0.7928893
1.0017980
0.0309399
-2.2986829
-1.9834802
0.5718514
1.1253664
2.3583306
2.6624071
1.5533097
0.7039051
3.3068608
-3.1066710
-3.4443023
-4.0272426
2.9035491
3.6371236
-0.4984393
0.2702045
0.8342321
1.2343645
-1.0826364
-1.4582485
-2.5055756
-2.5844831
2.2859836
5.5237869
5.0288808
5.1994868
-5.3294957
1.7683387
-0.7700230
-4.4048816

-0.0007831
-0.0035004
-0.0022856
-0.0035839
-0.0087213
0.0003713

-0.0089729
-0.0118805
-0.0194103
-0.0066699
-0.0102404
-0.0189136
0.0099489

0.0154935

0.0118484

-0.0149145
-0.0247772
-0.0163747
-0.0121696
-0.0246928
-0.0227882
-0.0035637
-0.0056973
0.0011200

0.0138977

-0.0295545
-0.5008145
-0.6502640
1.2775631

0.0204499

-0.0349896
-0.0181973
0.0071025

2H-G3XB S conformation dihedral freeze

Coordinates for 2H-G3XB-S-dhf:

01
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5.7651500
0.8569622
-0.8315873
-0.1491979
-1.8120227
5.6160807
3.7190429
5.0904277
2.7293709
0.9492882
1.9134554
6.0288873
7.0819219
-0.4270839
-2.7560168
1.3484216
2.4057893
-1.3716917
-3.9136914
0.4103998
3.3265702
2.2697193
4.2621869
-0.9411483
-1.6782643
-8.0429002
-5.2997094
-7.5999515
-6.2454050
-5.7683100
-7.1270114
-7.4682671
-4.4357824
-5.8880422
-0.0219736
2.0378896
1.0034239
3.9362068
-8.3108317
-9.1011586
6.3556766

0.1406116
4.6138160
-0.7798549
-1.5163654
-1.0088086
-4.1785427
-2.1240517
-1.8337565
-1.0990229
0.8345410
-0.2119911
-2.8546903
-2.6134386
0.5065234
1.2337087
2.1653927
2.3919480
1.5601872
0.8974847
3.1857021
-3.4683383
-3.6968043
-4.4852990
2.8815566
3.6721381
0.0158057
0.5696003
1.3316372
1.6038377
-0.7496623
-1.0252311
-2.0502646
-2.3584483
2.6239910
5.4315407
4.7882805
5.0612857
-5.5159956
2.1460377
-0.2059626
-4.9673548

-0.0155438
0.0175916
0.0073546
-0.0037167
-0.0055894
0.0146770
0.0047434
-0.0006726
0.0000796
-0.0065077
-0.0035176
0.0042660
0.0001004
-0.0028416
-0.0128162
-0.0158867
-0.0234114
-0.0110694
-0.0129524
-0.0240998
0.0153621
0.0199520
0.0203033
-0.0199438
-0.0307185
-0.0136422
-0.0131060
-0.0233566
-0.0231436
-0.0038889
-0.0040167
0.0033384
0.0098211
-0.0305626
-0.5760491
-0.5877149
1.2756153
0.0285797
-0.0310670
-0.0136324
0.0185212

2Me-G3XB S conformation dihedral freeze
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Coordinates for 2Me-G3XB-S-dhf:
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5.8749014
0.5912602
-0.6393423
0.1035159
-1.5967990
6.0132989
3.9918615
5.3357384
2.9288127
0.9982693
2.0462344
6.3382077
7.3741997
-0.3458214
-2.7275519
1.2829884
2.3175527
-1.3762688
-3.8512066
0.2614660
3.6938573
2.6527974
4.6837231
-1.0591097
-1.8606446
-7.8796758
-5.2023366
-7.5696086
-6.2351925
-5.5502174
-6.8830649
-7.1407382
-4.0869937
-5.9623086
-0.3853364

0.7024849
4.7883561
-0.7274005
-1.4028172
-1.0388845
-3.6174651
-1.7003311
-1.3124212
-0.7514920
1.0319441
0.0693039
-2.2721714
-1.9650105
0.5887476
1.1142187
2.3914489
2.7065311
1.5581881
0.6773962
3.3289840
-3.0700027
-3.3665210
-4.0373875
2.9117688
3.6367580
-0.5521179
0.2263557
0.8076600
1.1749934
-1.1270820
-1.5120264
-2.5614474
-2.6161763
2.2221049
5.5398013

-0.0205846
0.0244101

0.0110345

-0.0033907
-0.0031151
0.0051613

0.0003902

-0.0068199
-0.0014015
-0.0030941
-0.0025321
-0.0043872
-0.0098271
0.0014610

-0.0077843
-0.0115635
-0.0196053
-0.0052697
-0.0096135
-0.0179821
0.0101093

0.0161233

0.0126103

-0.0133876
-0.0228687
-0.0179821
-0.0122593
-0.0262755
-0.0232981
-0.0040267
-0.0069488
-0.0004198
0.0143622

-0.0295762
-0.4995228
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1.7151770
0.7795618
4.3457185
4.7555835
3.2690826
4.7678745
-8.6627115
-9.3014401
-9.2951028
-8.2546619
-8.9164897
6.8072243

5.0684660
5.2280890
-5.5017770
-5.9997974
-5.6592744
-5.9901736
1.8388927
1.7349142
1.7218365
2.8473922
-0.8650654
-4.3542073

-0.6471869
1.2796773
0.0230061
-0.8562665
0.0313669
0.9018396
-0.0379525
0.8397067
-0.9185423
-0.0439583
-0.0200885
0.0070433

2tBu-G3XB S conformation dihedral freeze

Coordinates for 2tBu-G3XB-S-dhf:

01

OOOOOOITOOOITOOO0OO0O0O0O0OITITZO0

5.9143222
-0.0126361
-0.2156995
0.6380126
-1.0993485
6.8661697
4.5214839
5.7692027
3.2979427
1.0716457
2.2785865
6.9283380
7.8893769
-0.1685883
-2.6062552
1.1022353
2.0615282
-1.3590074
-3.6310350
-0.0740427
4.4910951

2.0948356
5.1210064
-0.5269675
-1.0530850
-1.0076437
-2.1270159
-0.6254910
0.0140856
0.1059133
1.5030572
0.7488702
-0.7390809
-0.2450725
0.8211888
0.9010054
2.8915163
3.3910894
1.5850703
0.2660638
3.6260872
-2.0218160

-0.0311834
0.0367022
0.0233032
-0.0293484
-0.0248304
-0.0077946
-0.0062726
-0.0163388
-0.0041634
0.0037203
-0.0008529
-0.0170475
-0.0249110
0.0098461
0.0039115
-0.0028107
-0.0126746
0.0067952
0.0006931
-0.0050541
0.0032010

283



I I T I T T T T T OOO0OII I I I I IIITITOOOOII I TTTm T I - TOOO000O0OIIOO0n>IT

3.5194470
5.6461166
-1.2956054
-2.2164257
-7.3626802
-4.8757430
-7.3179770
-6.0636775
-4.9642321
-6.1997381
-6.2629097
-3.2483964
-5.9765682
-1.1302744
1.0123216
0.1489542
-8.3097397
7.7951804
-8.5709625
-8.5780413
-8.5626538
-9.8510739
-8.5801839
-7.7069975
-9.4702319
-8.5531880
-9.4549462
-7.6915181
-10.7152279
-9.9126029
-9.9234937
5.5319976
4.7747357
4.7626892
6.9022711
5.3012067
3.7684292
4.6881314
5.2803967
4.6760305
3.7560477
6.7704981
7.4771298
7.4854177

-2.4980979
-2.7971106
2.9740761
3.5397436
-1.6849760
-0.4277234
-0.2933933
0.3080463
-1.8256042
-2.4446952
-3.5235292
-3.0155375
1.3862958
5.6842347
5.6005042
5.5859567
-2.2041828
-2.6780183
0.5798354
1.4716265
1.4621271
-0.2551165
0.8663176
2.1257595
2.0999094
0.8499526
2.0899707
2.1164019
0.4096241
-0.8917719
-0.8850374
-4.3202625
-4.7641071
-4.7804426
-4.9971800
-4.4453547
-4.3467428
-5.8517983
-4.4733525
-5.8682806
-4.3635496
-6.0795024
-4.7373493
-4.7263444

0.0120061
0.0025376
0.0010939
-0.0056251
-0.0133389
-0.0035845
-0.0183845
-0.0132532
0.0013986
-0.0035325
0.0002676
0.0169931
-0.0169074
-0.4386988
-0.6796904
1.2865194
-0.0170353
-0.0087423
-0.0293594
1.2199682
-1.2854183
-0.0340700
2.1272647
1.2519185
1.2233773
-2.1880553
-1.3048124
-1.3114025
-0.0418950
-0.9178531
0.8537002
0.0130922
1.2722846
-1.2328773
0.0108586
2.1726789
1.3041524
1.2909371
-2.1423755
-1.2366305
-1.2603186
0.0182087
-0.8791199
0.8921164
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2MeO-G3XB S conformation dihedral freeze

Coordinates for 2MeO-G3XB-S-dhf:

01
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5.8845788
0.3546521
-0.4901411
0.2974790
-1.4233076
6.4053185
4.2126796
5.5233941
3.0749023
1.0205667
2.1342597
6.5970580
7.6039639
-0.2892782
-2.7025689
1.2099894
2.2202360
-1.3844264
-3.7966037
0.1257810
4.0281064
3.0299456
5.1118283
-1.1624855
-2.0127635
-7.7429891
-5.1157517
-7.5065452
-6.1995575
-5.3677506
-6.6669082
-6.8544171
-3.8047782

1.2724940
4.9278865
-0.6604340
-1.2828766
-1.0381010
-3.0277214
-1.2884571
-0.7811981
-0.4296410
1.2090611
0.3234171
-1.6509885
-1.2586411
0.6727502
1.0340470
2.5850085
2.9711984
1.5685087
0.5283697
3.4493601
-2.6681940
-3.0822257
-3.5389420
2.9409036
3.6081037
-0.9822963
-0.0111595
0.3887793
0.8632160
-1.3926973
-1.8615994
-2.9257170
-2.7756818

-0.0293463
0.0313147
0.0153164
-0.0100163
-0.0083632
0.0043669
-0.0015796
-0.0100342
-0.0026104
0.0001427
-0.0017550
-0.0070416
-0.0136432
0.0052833
-0.0023364
-0.0076635
-0.0165934
0.0003114
-0.0048941
-0.0118266
0.0097939
0.0170238
0.0126675
-0.0063381
-0.0141263
-0.0164341
-0.0085071
-0.0225240
-0.0185498
-0.0023988
-0.0064233
-0.0016323
0.0136308
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X-ray Diffraction Data

H -6.0311212  1.9304511 -0.0234232
F -0.6772554  5.6115889 -0.4785329
F 1.4487203 5.2860137 -0.6527652
F 0.5281515 5.3763325 1.2856051
o) 4.8099997 -4.8578808  0.0240625
o) -8.4759996  1.3307747 -0.0322799
H -8.7462523  -1.3799312  -0.0192647
H 7.2665967 -3.6781280 0.0065776
C 5.8806193 -5.7766408  0.0249127
C -9.8179728  0.8950352 -0.0369884
H -10.4280850 1.7928754  -0.0450215
H -10.0451732 0.3092618  0.8566320
H -10.0357891 0.2996444  -0.9265846
H 5.4320708  -6.7652532  0.0323902
H 6.5045241 -5.6539890 0.9131952
H 6.4971935 -5.6640923  -0.8697946

Single Crystal X-ray Diffraction Methods and Refinement
X-ray diffraction data were collected at 100 K (unless noted below) on a Bruker D8 Venture
using MoKa-radiation (A=0.71073 A). Data have been corrected for absorption using SADABS®
area detector absorption correction program. Using Olex2°, the structure was solved with the
SHELXT?? structure solution program using Direct Methods and refined with the SHELXL!?
refinement package using least squares minimization. All non-hydrogen atoms were refined
with anisotropic thermal parameters. Hydrogen atoms of the investigated structure were
located from difference Fourier maps but finally their positions were placed in geometrically
calculated positions and refined using a riding model. Isotropic thermal parameters of the
placed hydrogen atoms were fixed to 1.2 times the U value of the atoms they are linked to (1.5
for methyl groups). Hydrogen atoms connected to heteroatoms were located from difference
maps placed and refined. Calculations and refinement of structures were carried out using

APEX3'2, SHELXTL'3, and Olex2 software. Specific and/or unique individual structure
refinement details and crystal growth conditions are presented below.

Table S4-1. Crystallographic Data

'C‘iznet'f'cat'on UMT_OB112 | UMT OB218 | UMT_OB162 | UMT OB144 | UMT OB220
Manu G3XB NHBeXB G3HB-triclinic | S>HE" | 2H-G3XB
Reference orthorhombic
CCDC Number | 2023091 2238833 2023092 2023003 2238834
Empirical

pir! CasHioFol2N CasHoFol2 CasHi12FoN CasHi12FoN CasH12F3l2N
formula
Formula 749.14 734.12 49736 49736 613.14
weight
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Temperature/K | 105 100 100 100 100
Crystal system | monoclinic monoclinic triclinic orthorhombic monoclinic
Space group P21/c P2i/c P-1 Fdd2 P2;
a/A 17.0483(14) | 18.7496(16) | 7.9820(4) 37.842(3) 8.4061(3)
b/A 4.7023(4) 4.7821(4) 7.9889(4) 50.545(4) 20.5959(7)
c/A 30.687(3) 25.949(2) 17.3963(9) | 8.9837(6) 12.3043(4)
a/° 90 90 84.337(2) 90 90
B/° 103.370(2) | 94.215(2) 89.492(2) 90 108.6440(10)
v/ 90 90 70.559(2) 90 90
Volume/A3 2393.4(3) 2320.4(3) 1040.62(9) 17183(2) 2018.47(12)
z 4 4 2 32 4
Pealcg/cm? 2.079 2.101 1.587 1.538 2.018
u/mm-t 2.714 2.796 0.150 0.145 3.152
F(000) 1416.0 1384.0 500.0 8000.0 1160.0
Crystal 0.46x0.02x |0.46x0.02x |0.39x0.07x | 0.55%x0.32x 0.12 x0.07 x
size/mm?3 0.01 0.01 0.02 0.09 0.01
Radiation MoKa (A = MoKa (A = MoKa (A = MoKa (A = MoKa (A =
0.71073) 0.71073) 0.71073) 0.71073) 0.71073)
jaot;a”ge for 16146t 5.184 to 5.414 to 25 1o 50 03 | 311410
. e 55.072 50.118 55.106 55.074
collection/
-21<h<22, |-22<h<22,- |-10ch<10,-|-47<h<47,-62 |-10£h<10, -
Index ranges -6<k<6, - 5<k<s5,-28 10<k<10,- |<k<63,-11<| |26<k<26,-15
39<1<39 <1<30 22<1<22 <11 <1<15
Reflections 51830 15943 47574 130424 75201
collected
5489 [Rpe= | J089 [Rime= | 4794 = [ go/01p _ 9280 [Rint =
Independent 0.0771, 0.0459,
reflections 0.0667, Rsigma Reigra = Ruigra = 0.0464, Rsigma = | 0.0447, Rsigma =
=0.0419] 0.0770] 0.0252] 0.0232] 0.0250]
Data/restraints
/parameters 5489/2/342 4089/21/353 | 4794/15/352 | 8847/37/703 9280/5/540
Goodness-of- | 4 g9 1.022 1.017 1.054 1.086
fit on F?
Final Rindexes | Ry =0.0364, R1=0.0441, R1=0.0390, R1=0.0564, R1=0.0254,
[1>=20 (1)] WR> = 0.0734 | wR, = 0.0690 | wR»=0.0892 | wR; =0.1408 WR; = 0.0559
Final R indexes | R1=0.0598, R1 =0.0806, R1 =0.0600, R1 =0.0660, R1=0.0312,
[all data] wR> =0.0805 | wR, =0.0776 | wR>=0.0991 | wR,=0.1475 wRz =0.0579
Largest diff.
peak/hole / e 1.08/-0.81 0.66/-0.63 0.46/-0.31 0.64/-0.38 1.71/-0.36
A3

Table S4-2. Crystallographic Data Continued
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Identification

code UMT_0OB229 UMT _0B227 | UMT_OB129 UMT_0OB148 UMT_OB196
Manu i i i
Me-G3XB F-G3XB G3XB-Cl 2H-G3XB-Cl 2Me-G3XB-Cl
Reference
CCDC number | 2238835 2238836 2238837 2238838 2238839
fmplrlcal CasHisFsl2N Ca4H10F712N Ca1H46ClIFol2N2 CsoHer soCla.2sFs Ca1Hs2ClIF312N2
ormula 12N2.25
Formula 695.16 699.13 1027.05 1055.37 919.09
weight
lemperat“re/ 100 100 105 100 100
Crystal system | monoclinic monoclinic triclinic tetragonal triclinic
Space group P21/n C2/c P-1 I-4 P-1
a/A 18.182(4) 7.3702(7) 8.0763(5) 36.9115(18) 12.2702(5)
b/A 4.5894(10) 18.1535(18) | 15.6429(11) | 36.9115(18) 13.0397(5)
/A 29.337(6) 34.027(3) 17.8668(12) | 8.3724(4) 14.4541(6)
o/° 90 90 73.593(2) a0 107.965(2)
B/° 106.945(4) | 94.009(2) 87.048(2) 90 108.3600(10)
v/° 90 90 88.270(2) 90 93.925(2)
Volume/A3 2341.8(9) 4541.5(8) 2162.2(3) 11407.0(12) 2052.49(15)
Z 4 8 2 8 2
Pealcg/cm3 1.972 2.045 1.578 1.229 1.487
u/mm-t 2.747 2.840 1.586 1.201 1.641
F(000) 1320.0 2640.0 1020.0 4302.0 924.0
Crystal 0.41 x0.12 x 0.19x0.05x | 0.38x0.31x 0.66 x 0.06 x 0.81 x0.21 x
size/mm?3 0.01 0.01 0.09 0.04 0.11
Radiation MoKa (A = MoKa (A = MoKa (A = MoKa (A = MoKa (A =
0.71073) 0.71073) 0.71073) 0.71073) 0.71073)
jgt;a”ge for |ss14t0 5.09 to 6.036 to 4.936 to 5.308 to
C e 50.156 50.198 54.968 50.094 54.966
collection/
-20€h<21,- |-8<h<8§,- -10<h<10,- |-43<h<43,- -15<h <15, -
Index ranges 5<k<5,-34 21<k<21,- |20<k<20, - 43<k<43,-9 |16<k<1s,-
<1<34 40<1<40 23<1<23 <1<8 18<1<18
Reflections 19640 47545 134813 86060 119487
collected
4155 [Rint = 4043 [Rint = 9902 [Rint = 9379 [Rint =
Independent | 0.0532, 0.0621, 0.0633, 10071 [Rine = | ) 5733,
, 0.0551, Rsigma =
reflections Rsigma = Rsigma = Rsigma = 0.0288] Rsigma =
0.0463] 0.0319] 0.0268] 0.0093]
Data/restraints | oo 51316 | 4043/2/315 | 9902/2/508 | 10071/92/578 | 9379/97/524

/parameters
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Goodness-of- |, ;g 1.183 1.146 1.052 1.152

fit on F2

Final R indexes | R1= 0.0413, | Ri=0.0404, | Ri=0.0507, |Ri1=00334, |Ri=0.0232,
[1>=2 (I)] WR>=0.0775 | wR, = 0.0634 | wR2 = 0.1202 | wR>=0.0697 | wR; = 0.0532
Final R indexes | R1=0.0587, | Ri=0.0556, | Ri=0.0654, |Ri=0.0408, |Ri=0.0287,
[all data] WR>=0.0817 | wR, =0.0667 | wR2 = 0.1324 | wR»=0.0736 | wR» = 0.0590
Largest diff.

peak/hole /e | 1.38/-0.97 0.72/-0.64 | 2.37/-0.99 0.74/-0.38 1.37/-0.51
A-3

Table S4-3. Crystallographic Data Continued

Identification

UMT_OB219
code
Manu H-G3XB-Cl"
Reference
CCDC number | 2238840
Empirical CagHesCIF el
formula
Formula 1071.25
weight
Eemperature/ 100
Crystal system | monoclinic
Space group P21/c
a/A 8.2189(5)
b/A 22.0601(14)
c/A 26.8587(18)
a/° 90
B/° 93.235(2)
v/° 90
Volume/A3 4862.0(5)
z 4
[:)calcg/crn3 1.463
u/mm-?t 1.405
F(000) 2168.0
Crystal 0.26 x 0.21 x 0.2
size/mm?3
Radiation MoKa (A =0.71073)

20 range for
data
collection/®

5.296 t0 61.15

Index ranges

-11<h<11,-31
31,-38<1<38

<k<
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Reflections 181343

collected

Independent 14933 [Rint = 0.0493,
reflections Rsigma = 0.0237]
Data/restraints 14933/0/544
/parameters

Goodness-of-

fit on F? 1.080

Final R indexes | R1=0.0293, wR; =
[1>=20 (I)] 0.0665

Final R indexes | R1 =0.0405, wR; =
[all data] 0.0707

Largest diff.

peak/hole / e 1.25/-0.72

i3

Crystal Growth Conditions and Additional Refinement Details

G3XB
Diffraction quality crystals of G3XB were grown by vapor diffusion of diethyl ether into an ethyl
acetate solution of G3XB resulting in yellow needles.

Diffraction data were collected at 105 K. The hydrogen atom locations of the aniline amine
were found from the difference maps, placed, and refined with isotropic thermal parameters.
Upon refinement the N—H bond distances reduced to an unreasonable length necessitating the
use of bond distance restraints (DFIX 0.87 0.02).

nHBeXB
Colorless needles were obtained by slow evaporation of a methanol solution of the parent
compound.

After initial refinement, it was apparent the trifluoromethyl (CF3) group on the central benzene
ring was disordered. The disorder was modeled over two positions using a PART instruction and
tied to an individual free variable. Refinement of the free variable showed an approximate
70:30 disorder for the CF3 group. The disorder model incorporated both bond length and
thermal ellipsoid similarity restraints (SADI 0.02 and SIMU 0.08).

G3HB-triclinic

Diffraction quality crystals of G3HB were grown by slow evaporation of a benzene solution of
G3HB resulting in colorless rods.
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During anisotropic refinement, the fluorine atoms of one CF3 group exhibited elongated
ellipsoids suggesting disorder. The fluorine atoms of the CF3 group were subsequently modeled
over two positions using a PART instruction and tied to an individual free variable. Refinement
of the free variable shows an approximate 57:43 disorder for the CF3 group. In modeling the
disorder, additional bond length (SADI 0.02) and thermal ellipsoid (SIMU 0.04 0.08) similarity
restraints were utilized.

G3HB-orthorhombic
Diffraction quality crystals of G3HB were grown by vapor diffusion of diethyl ether into an ethyl
acetate solution of G3HB resulting in colorless plates.

Several CF3 groups displayed disorder. Two of the groups were modeled over two positions
using a PART instruction and tied to an individual free variable. Refinement of the free variables
shows an approximate 55:45 and 57:43 disorder for the CF3 groups. The disorder of these CF3
groups is likely dynamic in nature, and there was no improvement in the model by modeling
this disorder of this group over 3 or more sites. One fluorine atom in the model presented has
an elongated ellipsoid causing Level B Alert in the checkCIF suggesting further disorder.
Attempts at producing suitable disorder model were unsuccessful. Contributing to the difficulty
of finding was suitable model was the lack of observable secondary sites for the other fluorine
atoms in the CF3 group containing fluorine F8A. As such a model of simplicity was chosen for as
a more complex disorder model would not significantly enhance the results and would
necessitate several geometrical and thermal constraints.

2H-G3XB
Light yellow plates were grown from by slow evaporation of a acetone solution of 2H-G3XB.

The hydrogen atoms of the amine required a N—H bond distance restraint (DFIX 0.87 0.02) due
to unreasonable lengthening of the N—H bond upon initial refinement.

Me-G3XB
Yellow plank-like crystals of Me-G3XB were grown by slow evaporation of an diethyl ether and
methanol solution of Me-G3XB and tetraphenylphosphonium chloride.

The hydrogen atoms of the amine required a N—H bond distance restraint (DFIX 0.87 0.02) due
to unreasonable shortening of the N—H bond upon refinement.

F-G3XB
Yellow plates were grown by slow evaporation of an ethyl acetate and hexanes solution of F-
G3XB and tetraphenylphosphonium iodide.

The hydrogen atoms of the amine required a N—H bond distance restraint (DFIX 0.87 0.02) due
to unreasonable shortening of the N—H bond upon refinement.

G3XB-CI
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Colorless plates of G3XB-CI- were grown by vapor diffusion of hexanes into a benzene solution
of G3XB and tetra-n-butyl ammonium chloride.

Diffraction data were collected at 105 K. The hydrogen atoms of the amine required a N—H
bond distance restraint (DFIX 0.87 0.02) due to unreasonable shortening of the N—H bond
upon refinement.

2H-G3XB-CI
Colorless needles of 2H-G3XB-CI- were grown by vapor diffusion of hexanes into a benzene
solution of 2H-G3XB and tetra-n-hexyl ammonium chloride.

Upon initial solution of the data, it was evident that one of the hexyl groups of the tetra-n-
hexylammonium (THA) molecules was severely disordered. Subsequent modeling and
refinement indicated that proximal to the hexyl disordered region a benzene molecule had
partial occupancy. After several hours of considering disorder models we conceded. The various
models we came up with to describe this region were not completely satisfactory, as the
benzene molecule and the hexyl groups were always too close to each other, meaning the
models were not chemically reasonable. All this despite evidence from the difference map the
presence of a partially occupied benzene is present*, and the existence of THA hexyl group is
undeniable. Our best overall disorder model described three locations of the disordered alkyl
portion of the THA that were modeled and refined using free variables tied to a SUMP
command to ensure full occupancy. To ensure a stable refinement here, various bond length
and angle (1,3 distances) similarity restraints as well as thermal ellipsoids restraints and
constraints were employed. The benzene molecule was geometrically constrained to a
hexagonal shape, treated with a PART -1 command, and refined freely using a free variable.
After treating the data in this manner there remained some diffuse electron density located in a
channel that can be viewed by viewing a packing diagram down the crystallographic c axis. The
disordered solvent in this channel was most likely hexane, considering the crystals were grown
from a benzene/hexanes vapor diffusion. The SQUEEZE'* routine within PLATON?® was utilized
to account for the residual, diffuse electron density and the model is refined against these data.
A total of 78 electrons per unit cell were corrected for. Collectively this data led to an R
statistic (I > 20(l)) of 3.46%.

Considering the extensive use of restraints and constraints to model the disorder in a manner
not fully chemically reasonable and the fact that no additional information is gained by
modeling this region we ultimately decided to treat the disorder of hexyl chain and the benzene
molecule using the SQUEEZE program. The program accounted for 412 electrons per unit cell
(this included the diffuse solvent molecules found in the channels that propagate along the
crystallographic c axis). Treating the data in this manner led to a minor improvement in the R
statistic to 3.35 % (I > 20(l)) over the model described in the previous paragraph.

*We considered that the benzene might not be located here and that potentially it could be

intertwined hexyl disorder and the Q-peaks are just coincidentally in a roughly hexagonal
shape. However, we feel this is unlikely. First, the crystals were grown using benzene, so the
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presence of this species would be understandable. Second, for the hexyl group to reach several
of the residual electron density peaks (of the benzene) the cation would need an additional
carbon atom on the alkyl chain or the entire cation would need to be translated which the data
do not support.

2Me-G3XB-CI
Colorless prisms of 2Me-G3XB-Cl- were grown by vapor diffusion of hexanes into a benzene
solution of 2Me-G3XB and tetra-n-butyl ammonium chloride.

H-G3XB-CI
Yellow Rods of H-G3XB-CI- were obtained by vapor diffusion of hexanes into a benzene solution
of H-G3XB and tetra-n-butyl ammonium chloride.

2H-G3XB G3XB

Figure S158. Crystal packing diagram showing one example of the long-range packing
differences between G3XB and 2H-G3XB. Thermal ellipsoids are drawn at the 50% probability
level.

Figure S159. Image of G3XB showing the angle formed by the centroids of the three rings (i.e.
flanking-core-flanking angle). Thermal ellipsoids are drawn at the 50% probability level.
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Table S5. Intramolecular HBing N-H...I distances of G3XB derivatives

Space group | N-H-I; (A) N-H-15 (A) Average (A)
G3XB P21/c 3.12 3.20 3.16
2H-G3XB P21 3.16/3.16 3.00/2.99 3.08/3.08
Me-G3XB P21/n 3.16 3.48 3.32
F-G3XB . C2/c 313
(S conformation)

Methoxy derivative

We also evaluated the 2R;-G3XB receptor containing methoxy substituent. The methoxy group
at the para position is considered an electron withdrawing substituent by inductive/field effect,
but electron-releasing by resonance effect. We initially assumed the para methoxy substituent
would decrease the XB donor ability the most according to its Hammet parameter (Gpara = -
0.268). However, noticed that the 2MeO-G3XB derivative deviated from the expected
electronic trend several times. For example, the difference between AVsmax of G3XB and AVs max
of 2Me0O-G3XB when ruling out the differences in planarity should tell us how R affect the
iodine Vs max via intramolecular HBing. However, this value was not the highest as expected.
Additionally, the 2Me0O-G3XB did not have the lowest association constant (K, = 62 M) among
2R>-G3XB derivatives. With this derivative included in the LFER analysis, a poor correlation is
obtained for both Gmeta (R?=0.88) and opara (R?=0.89). This deviation from the expected trend
potentially indicates a subtle interplay between preorganization and maximizing the XB donor
strength and makes us question the utility of using the methoxy Hammett parameters for
interpreting molecular recognition.
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Chapter 4
Synthesis of C-H HBeXB receptors

Br Br

A flame dried Schlenk flask was charged with 2,6-diethynylpyridine (1CoreDePro) (0.2 g, 1.57
mmol), Bis(triphenylphosphine)palladium (II) dichloride (0.044 g, 0.06 mmol) and Copper (I)
iodide (0.011 g, 0.06 mmol) and then sealed with a rubber septum. The Schlenk flask was then
evacuated and backfilled with dry nitrogen gas three times. To a flame dried 50 ml round
bottom flask was added tetrahydrofuran and triethylamine. The round bottom was sealed with
a rubber septum and then sparged with dry nitrogen gas for 20 minutes, after which 2-bromo-
iodobenzene (1.11 g, 3.93 mmol) was added and sparging resumed for 2 minutes. The 2-bromo-
iodobenzene solution was then canula transferred to the Schlenk flask and stirred at room
temperature overnight. The crude reaction mixture was concentrated and purified by silica gel
column chromatography (5% ethyl acetate in hexanes) to afford 1Br (0.448 g, 1.02 mmol, 65 %
yield) as a white solid.

14 NMR (500 MHz, CDCl3) § 7.71 (t, J = 7.4 Hz, 1H), 7.66 — 7.61 (m, 4H) (overlap of two
doublets), 7.57 (d, J = 7.8 Hz, 2H), 7.32 (td, J = 7.6, 1.2 Hz, 2H), 7.23 (td, J = 7.8, 1.7 Hz, 2H).

13C NMR (126 MHz, CDCl3) 6 143.76, 136.59, 134.04, 132.65, 130.38, 127.26, 127.09, 126.07,
124.50, 92.47, 88.24.

HRMS (ESI pos) m/z for C1H12BroN* [M+H]* : calculated:437.9311; found:437.9354
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An oven dried round bottom (50 mL) was charged with 1Br (0.10 g, 0.228 mmol) was
subsequently dissolved in 20 mL of dry tetrahydrofuran and cooled to -67 C (dry ice and
acetone bath). N-butyllithium (1.6 M in hexanes, 0.36 mL, 0.57 mmol) was added dropwise to
the colorless solution producing a yellow solution that darkened overtime. The mixture was
stirred for 30 min at -67 C. lodine (0.29 g, 1.14 mmol) in 5 mL of tetrahydrofuran was cooled to
-67 C then added dropwise. The resulting blood red solution was allowed to gradually warm to
room temperature and stirred overnight. The crude reaction mixture was washed with a
saturated aqueous sodium thiosulfate solution and extracted with diethyl ether. The organic
layers were combined and dried with magnesium sulfate. The crude product was loaded onto
C18silica gel and subsequently purified via prep-HPLC to afford 1Neu (0.1 g, 0.188 mmol, 82 %

yield) as a beige solid.

14 NMR (500 MHz, CDCls) & 7.89 (d, J = 8.1 Hz, 1H), 7.73 (t, J = 7.2 Hz, 1H), 7.62 (dd, J = 7.8, 1.8
Hz, 2H), 7.61 (d, J = 7.8 Hz, 2H), 7.36 (t, J = 7.6 Hz, 1H), 7.07 (td, J = 7.8, 1.7 Hz, 2H).
13C NMR (126 MHz, CDCls) 6 143.80, 138.95, 136.59, 133.39, 130.36, 128.87, 128.07, 127.06,

101.30, 91.74, 91.62.

HRMS (ESI pos) m/z for C21H121oN* [M+H]* : calculated: 531.9054 found:531.9112
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$163. 3C NMR spectrum of 1Neu (126 MHz, CDCls)

To a flame dried scintillation vial, 1Neu (0.1 g, 0.188 mmol) was dissolved in 12ml of dry
dichloromethane. Methyl trifluoromethanesulfonate(0.046 g, 0.28 mmol) was added dropwise
to the solution, after which the vial was capped then allowed to stir at room temperature for 1-
2 days. A light yellow precipitate formed, addition of diethyl ether facilitated further
precipitation allowing 1 to be isolated by filtration. The solid was then washed with diethyl
ether to afford 1 (0.12 g, 0.172 mmol, 91 % yield) as a light yellow solid.

1H NMR (500 MHz, DMSO-d6) 6 8.63 (t, J = 8.0 Hz, 1H), 8.41 (d, J = 8.0 Hz, 2H), 8.10 (dd, J = 8.0,
1.1 Hz, 2H), 7.93 (dd, J = 7.7, 1.6 Hz, 2H), 7.63 (td, J = 7.6, 1.1 Hz, 2H), 7.39 (td, J = 7.8, 1.7 Hz,
2H), 4.71 (s, 3H).

13C NMR (126 MHz, DMSO-d6) 6 144.12, 139.22, 138.28, 134.83, 133.24, 131.28, 128.78,
125.52, 106.53, 101.90, 83.37, 46.62. The 13C resonance of the triflate anion (quartet with
relative intensities of 1:3:3:1) was not observed)

19F NMR (470 MHz, CD3CN) & -77.55
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HRMS (ESI pos) m/z for C2;H1aloN* [M]*

: calculated: 545.9210 found: 545.9232
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Figure S166 °F NMR spectrum of 1 (470 MHz, CDsCN). CgHsF (monofluorobenzene) internal
reference.

Z X
TMS Me TMS

2CorePro synthesis and spectroscopic data in accordance with previously reported material.
CrystEngComm (2017), 19, (23), 3094-3097.

2CoreDePro synthesis and spectroscopic data in accordance with previously reported material.
CrystEngComm (2017), 19, (23), 3094-3097.
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A flame dried Schlenk flask was charged with 3,5-diethynyl-4-methyl-pyridine (2CoreDePro)
(0.3 g, 2.12 mmol), Bis(triphenylphosphine)palladium (ll) dichloride (0.06 g, 0.085 mmol) and
Copper (l) iodide (0.016 g, 0.085 mmol) and then sealed with a rubber septum. The Schlenk
flask was then evacuated and backfilled with dry nitrogen gas three times. To a flame dried 50
ml round bottom flask was added tetrahydrofuran and triethylamine. The round bottom was
sealed with a rubber septum and then sparged with dry nitrogen gas for 20 minutes, after
which 2-bromo-iodobenzene (1.5 g, 5.31mmol) was added and sparging resumed for 2 minutes.
The 2-bromo-iodobenzene solution was then canula transferred to the Schlenk flask and stirred
at room temperature overnight. The crude reaction mixture was concentrated and purified by
silica gel column chromatography (10% ethyl acetate in hexanes) to afford 2Br (0.787 g, 1.74
mmol, 82 % yield) as a beige solid.

1H NMR (500 MHz, CDCls) 6 8.67 (s, 2H), 7.65 (dd, J = 8.1, 1.2 Hz, 2H), 7.61 (dd, J = 7.7, 1.7 Hz,
2H), 7.34 (td, J= 7.6, 1.2 Hz, 2H), 7.24 (td, /= 7.8, 1.7 Hz, 2H), 2.81 (s, 3H).

13C NMR (126 MHz, CDCl3) 6 151.50, 151.04, 133.60, 132.74, 130.13, 127.31, 125.75, 124.97,
120.41, 94.98, 89.17, 19.46.

HRMS (ESI pos) m/z for C22H14BroN* [M+H]* : calculated: 451.9467 found: 451.9479
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An oven dried round bottom (50 mL) was charged with 2Br (0.2 g, 0.44 mmol) was subsequently
dissolved in 20 mL of dry tetrahydrofuran and cooled to -67 C (dry ice and acetone bath). N-
butyllithium (1.6 M in hexanes, 0.7 mL, 1.12 mmol) was added dropwise producing a deep beet
red colored solution. The mixture was stirred for 30 min at -67'C. lodine (0.56 g, 2.22 mmol) in 5
mL of tetrahydrofuran was cooled to -67 C then added dropwise. The resulting dark red
solution was allowed to gradually warm to room temperature and stirred overnight. The crude
reaction mixture was washed with a saturated agueous sodium thiosulfate solution and
extracted with diethyl ether. The organic layers were combined and dried with magnesium
sulfate. The crude product was loaded onto C18 silica gel and subsequently purified via prep-
HPLC to afford 2Neu (0.089 g, 0.163 mmol, 37 %) as a light yellow solid.

1H NMR (500 MHz, CDCls) 6 8.70 (s, 2H), 7.91 (dd, /= 7.9, 1.2 Hz, 2H), 7.59 (dd, J = 7.7, 1.6 Hz,
2H), 7.38 (td, J = 7.6, 1.1 Hz, 2H), 7.07 (td, J = 7.6, 1.7 Hz, 2H), 2.85 (s, 3H).

13C NMR (126 MHz, CDCls, 50°C) § 151.61, 150.84, 139.14, 133.08, 130.07, 129.60, 128.07,
120.50, 100.78, 98.28, 88.46, 19.86.

HRMS (ESI pos) m/z for C2;H1alaN* [M+H]* : calculated:545.9210 found: 545.9189
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To a flame dried scintillation vial, 2Neu (0.089 g, 0.163 mmol) was dissolved in 12ml of dry
dichloromethane. Methyl trifluoromethanesulfonate (0.032 g, 0.2 mmol) was added dropwise
to the solution, after which the vial was capped then allowed to stir at room temperature for 1-
2 days. A white precipitate formed; diethyl ether was added to further the precipitation. The
precipitate was isolated by filtration and washed with additional diethyl ether to afford 2 (0.105
g, 0.148 mmol, 91 % yield) as a white solid.

14 NMR (500 MHz, CDsCN) 6 8.73 (s, 2H), 8.02 (dd, J = 8.0, 1.2 Hz, 2H), 7.72 (dd, J = 7.7, 1.6 Hz,
2H), 7.52 (td, J = 7.6, 1.2 Hz, 2H), 7.26 (td, J = 7.8, 1.6 Hz, 2H), 4.27 (s, 4H), 3.07 (s, 3H).

13C NMR (126 MHz, CD3CN) & 162.01, 146.27, 140.31, 134.74, 132.82, 129.64, 128.36, 125.27,
103.09, 101.01, 84.66, 49.09, 21.76. The 13C resonance of the triflate anion (quartet with
relative intensities of 1:3:3:1) was not observed)

19 NMR (470 MHz, CDsCN) & -77.56.

HRMS (ESI pos) m/z for Ca3Higl2N* [M]* : calculated: 559.9367 found: 559.9342
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Figure S173. 1°F NMR spectrum of 2 (470 MHz, CD3CN). CgHsF (monofluorobenzene) internal
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305



N
| AN
=
Z X
TMS H TMS

3CorePro Synthesis conducted according to previously reported procedure.

N
|\
Z
4H%

3CoreDePro Synthesis conducted according to previously reported procedure.

Br Br

A flame dried Schlenk flask was charged with 3,5-diethynylpyridine (3CoreDePro) (0.16 g, 1.26
mmol), Bis(triphenylphosphine)palladium (II) dichloride (0.035 g, 0.05 mmol) and Copper (I)
iodide (0.01 g, 0.05 mmol) and then sealed with a rubber septum. The Schlenk flask was then
evacuated and backfilled with dry nitrogen gas three times. To a flame dried 50 ml round
bottom flask was added tetrahydrofuran and triethylamine. The round bottom was sealed with
a rubber septum and then sparged with dry nitrogen gas for 20 minutes, after which 2-bromo-
iodobenzene (0.89 g, 3.14 mmol) was added and sparging resumed for 2 minutes. The 2-bromo-
iodobenzene solution was then canula transferred to the Schlenk flask and stirred at room
temperature overnight. The crude reaction mixture was concentrated and purified by silica gel
column chromatography (5% ethyl acetate in hexanes) to afford 3Br (0.433 g, 0.99 mmol, 79 %)
as a white solid.

1H NMR (500 MHz, CDCls) 6 8.75 (d, J = 2.0 Hz, 2H), 8.02 (t, J = 2.0 Hz, 1H), 7.65 (dd, J = 8.1, 1.2
Hz, 2H), 7.58 (dd, J = 7.7, 1.7 Hz, 2H), 7.33 (td, J = 7.6, 1.2 Hz, 2H), 7.24 (td, J = 7.7, 1.6 Hz, 2H).
13C NMR (126 MHz, CDCl3) § 151.31, 140.79, 133.58, 132.76, 130.29, 127.32, 125.91, 124.66,
120.00, 91.96, 89.64.

HRMS (ESI pos) m/z for C21H12Br2N* [M+H]* : calculated: 437.9311 found: 437.9307
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An oven dried round bottom (50 mL) was charged with 3Br (0.2 g, 0.46 mmol) was subsequently
dissolved in 20 mL of dry tetrahydrofuran and cooled to -67 C (dry ice and acetone bath). N-
butyllithium (1.6 M in hexanes, 0.072 mL, 1.14 mmol) was added dropwise producing a red
solution. The mixture was stirred for 30 min at -67 C. lodine (0.58 g, 2.29 mmol) in 5 mL of
tetrahydrofuran was cooled to -67 C then added dropwise. The resulting red solution was
allowed to gradually warm to room temperature and stirred overnight. The crude reaction
mixture was washed with a saturated aqueous sodium thiosulfate solution and extracted with
diethyl ether. The organic layers were combined and dried with magnesium sulfate. The crude
product was loaded onto C18 silica gel and subsequently purified via prep-HPLC to afford 3Neu
(0.103 g, 0.194mmol, 42%) as a very light yellow solid.

1H NMR (500 MHz, CDCls) 6 8.77 (s, 2H), 8.04 (s, 1H), 7.91 (dd, J = 8.1, 1.2 Hz, 2H), 7.56 (dd, J =
7.7, 1.6 Hz, 2H), 7.37 (t, /= 7.6 Hz, 2H), 7.07 (td, J = 7.7, 1.7 Hz, 2H).

13C NMR (126 MHz, CDCls, 50°) 6 151.31, 140.56, 139.15, 132.89, 130.22, 129.23, 128.10,
120.17, 101.24, 95.57, 88.96.

HRMS (ESI pos) m/z for C21H121:N* [M+H]* : calculated: 531.9054 found: 531.9018
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Figure S176. *H NMR spectrum of 3Neu (500 MHz, CDCls)
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S177. 3C NMR spectrum of 3Neu (126 MHz, CDCls, 50°C)

To a flame dried scintillation vial, 3Neu (0.05 g, 0.094 mmol) was dissolved in 12ml of dry
dichloromethane. Methyl trifluoromethanesulfonate(0.023 g, 0.141 mmol) was added dropwise
to the solution, after which the vial was capped then allowed to stir at room temperature for 1-
2 days. A white precipitate formed; diethyl ether was added to further the precipitation. The
precipitate was isolated by filtration and washed with additional diethyl ether to afford 3 (0.06
g, 0.086 mmol, 91 % yield) as a white solid.

14 NMR (500 MHz, CDsCN) 6 8.81 (s, 2H), 8.68 (s, 1H), 8.02 (dd, J = 8.0, 1.1 Hz, 2H), 7.69 (dd, J =
7.7,1.7 Hz, 2H), 7.52 (td, J = 7.6, 1.2 Hz, 2H), 7.26 (td, J = 7.8, 1.7 Hz, 2H).

13C NMR (126 MHz, CDsCN) & 147.84, 146.09, 139.34, 133.55, 131.93, 128.68, 127.05, 124.22,
100.30, 99.53, 84.13, 48.87. The 3C resonance of the triflate anion (quartet with relative
intensities of 1:3:3:1) was not observed)

19F NMR (470 MHz, CD3CN) & -77.55.
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HRMS (ESI pos) m/z for C22H14l2N* [M]* : calculated: 545.9210 found: 545.9233
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Figure S179. 13C NMR spectrum of 3 (126 MHz, CD3CN)
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Synthesis adopted from.1°

An oven dried Schlenk flask was charged with 3,5-dibromo-4-amino-pyridine (9.022 g, 35.7
mmol), bis(triphenylphosphine)palladium(ll) dichloride (1.5 g, 2.14 mmol), and copper (l)
iodide (0.68 g, 3.7 mmol) and subsequently vacuumed and backfilled with dry N2 gas three
times. While under nitrogen, the solid reagents were then dissolved in 180ml of
dimethylformamide (DMF). To this stirring solution was added N,N-Diisopropylethylamine
(31ml, 178.6 mmol) and trimethylsilylacetylene (10.52 g 107.2 mmol). The brown solution was
then heated to 60°C and stirred for up to 2 days. Reaction progress was monitored by TLC and
the reaction was pulled when consumption of starting material was observed. The reaction
mixture was then run through a silica plug with a hexane/ethyl acetate solvent mixture (50:50)
to remove any excess salts and catalysts. Subsequent removal of DMF, hexanes and ethyl
acetate by roto-evaporation left a brown solid that was purified by silica gel column
chromatography (15% ethyl acetate in hexanes) to afford 4CorePro (5.54 g, 19.33 mmol, 54 %
yield) as an off-white solid.

14 NMR (500 MHz, CDCls) 6 8.27 (s, 2H), 5.20 (s, 2H), 0.27 (s, 18H).

13C NMR (126 MHz, CDCl3) 6§ 154.24, 151.77, 103.92, 103.55, 97.85, 0.07.
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HRMS (ESI pos) m/z for CisH23N»Si>* [M+H]* : calculated:287.1394 found: 287.1409
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Figure S181. 'H NMR spectrum of 4CorePro (500 MHz, CDCls)
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Figure S182. 13C NMR spectrum of 4CorePro (126 MHz, CDCls)
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NH,

4CorePro (1.5 g, 5.24 mmol) was dissolved in 20 mL methanol and 20 mL DCM in a 250 mL
round bottom flask. Potassium carbonate (1.81 g, 13.09 mmol) was added to the organic
mixture. The reaction stirred vigorously for 4 hours at room temperature. The reaction
progress was checked via TLC. When the reaction came to completion, water was added to
quench the reaction. The crude product was extracted with ethyl acetate/hexanes (1:1) mix.
The organic fractions were then dried over magnesium sulfate and vacuum filtered. The organic
solution was reduced under vacuum producing an off-white solid of 4CoreDePro (0.621 g, 4.37
mmol, 83%). Often the material can then be used in the next step without further purification.
If further purification is needed, sublimation is suggested which will produce colorless crystals.

14 NMR (500 MHz, CDCls) § 8.34 (s, 2H), 5.25 (s, 2H), 3.50 (s, 2H).
13C NMR (126 MHz, DMSO) & 154.98, 151.89, 102.32, 88.62, 77.11.
HRMS (ESI pos) m/z for CoH;N2* [M+H]* : calculated: 143.0604 found

8.34
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Figure S183. 'H NMR spectrum of 4CoreDePro (500 MHz, CDCl3)
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Figure S184. 13C NMR spectrum of 4CoreDePro (126 MHz, CDCls)

Br Br

A flame dried Schlenk flask was charged with 4CoreDePro (0.25 g, 1.76 mmol),
Bis(triphenylphosphine)palladium (l1) dichloride (0.05 g, 0.07 mmol) and Copper (I) iodide
(0.013 g, 0.07 mmol) and then sealed with a rubber septum. The Schlenk flask was then
evacuated and backfilled with dry nitrogen gas three times. To a flame dried 50 ml round
bottom flask was added tetrahydrofuran and triethylamine. The round bottom was sealed with
a rubber septum and then sparged with dry nitrogen gas for 20 minutes, after which 2-bromo-
iodobenzene (1.24 g, 4.39 mmol) was added and sparging resumed for 2 minutes. The 2-bromo-
iodobenzene solution was then canula transferred to the Schlenk flask and stirred at room
temperature overnight. The crude reaction mixture was concentrated and purified by silica gel
column chromatography (30% ethyl acetate in hexanes) to afford 4Br (0.48 g, 1.06 mmol, 60 %)
as a white solid.

14 NMR (500 MHz, CDCl3) & 8.42 (s, 2H), 7.65 (d, J = 7.9 Hz, 2H), 7.60 (d, J = 7.9 Hz, 2H), 7.35 (t, J
= 7.6 Hz, 2H), 7.23 (t, J = 7.8 Hz, 2H), 5.77 (s, 2H).

13C NMR (126 MHz, CDCl5) 6 154.32, 151.69, 133.15, 132.54, 129.98, 127.49, 125.33, 124.91,
103.78, 96.28, 87.25.

HRMS (ESI pos) m/z for C21H13Br2N2* [M+H]* : calculated:452.9420 found:452.9448
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4Br (0.1 g, 0.22 mmol), copper iodide (0.004 g, 0.022 mmol), sodium iodide (0.13 g, 0.88 mmol)
were added to a 10-20 mL microwave reaction vial containing a stir bar and dissolved in 10-
15ml 1,4-dioxane. To the reaction mixture, transN,N’-dimethylcyclohexane-1,2-diamine (0.15
mL, 0.95 mmol) was added. The microwave vial was sealed and placed in a microwave. The
reaction was performed in a Biotage Initiator+ microwave reactor for 16 hours at 150 °C. After
cooling, an aliquot was run through pipet silica plug with EtOAc to remove catalysts and salts.
The EtOAc crude was then ran through GCMS in order to obtain % conversion of bromines to
iodines. If the reaction was unfinished, it would be submitted again at 30 min increments.
When the reaction ran to completion, the crude reaction was run through a silica plug with
EtOAc. The crude product was loaded onto C18 silica gel and subsequently purified via prep-

HPLC to afford 4Neu (0.028 g, 0.051 mmol, 23 % yield) as a beige solid.

'H NMR (500 MHz, CDCl3) 6 8.44 (s, 2H), 7.90 (dd, J = 8.1, 1.2 Hz, 2H), 7.58 (dd, J = 7.8, 1.6 Hz,

2H), 7.38 (td, J = 7.6, 1.2 Hz, 2H), 7.07 (td, J = 7.9, 1.7 Hz, 2H), 5.86 (s, 2H).

13C NMR (126 MHz, CDCls, 45°C) 6 154.39, 151.91, 138.87, 132.74, 129.93, 129.52, 128.24,

103.89, 100.77, 99.49, 86.57.
HRMS (ESI pos) m/z for C21H13l2N2* [M+H]* : calculated: 546.9163 found: 546.9183
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Figure S187. *H NMR spectrum of 4Neu (500 MHz, CDCls)
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Figure S188. 13C NMR spectrum of 4Neu (126 MHz, CDCls, 45°C)

To a flame dried scintillation vial, 4Neu (0.07 g, 0.128 mmol) was dissolved in 5 ml of dry
dichloromethane. Methyl trifluoromethanesulfonate(0.033 g, 0.2 mmol) was added dropwise
to the solution, after which the vial was capped then allowed to stir at room temperature for 1-
2 days. A white precipitate formed; diethyl ether was added to further the precipitation. The
precipitate was isolated by filtration and washed with additional diethyl ether to afford 4 (0.063
g, 0.089 mmol, 69 % yield) as a white solid.

1H NMR (500 MHz, DMSO) & 8.66 (s, 2H), 8.47 (s, 2H), 8.02 (dt, J = 8.1, 1.2 Hz, 2H), 7.82 (dt, J =
7.8, 1.4 Hz, 2H), 7.54 (tt,J = 7.6, 1.3 Hz, 2H), 7.25 (tt, J = 7.5, 1.5 Hz, 2H), 3.99 (s, 3H).

13C NMR (126 MHz, DMSO) & 156.71, 145.78, 138.70, 133.70, 131.37, 128.33, 127.41, 104.18,
101.46, 100.43, 82.09, 45.17. The 13C resonance of the triflate anion (quartet with relative
intensities of 1:3:3:1) was not observed)

19F NMR (470 MHz, CDsCN) & -77.57.

HRMS (ESI pos) m/z for C22H1s512N2* [M]* : calculated:560.9319 found: 560.9288
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Figure S189. 'H NMR spectrum of 4 (500 MHz, DMSO)
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Figure S191. °F NMR spectrum of 4 (470 MHz, CD3CN). CsHsF (monofluorobenzene) internal
reference.

UV-Vis Titration Details and Data

UV-vis titrations were carried out on an Agilent Cary 60 UV-Vis spectrometer equipped with a
Peltier 1x1 Cell Holder Accessory which can control the liquid sample temperature at 20 °C
during the titrations. Association constants were determined by non-linear regression in
Bindfit” 18 fitting the complete spectrum simultaneously. Hamilton gas-tight micro-syringes
were used during serial dilutions and titrations. The reported association constants and errors
were obtained from the average and standard deviation of three repeated titrations. Full
binding data and fitting parameters for each titration can be obtained from the Bindfit using the
links found below figures below.

Considering both the solubilities and changes of absorbance, the solvent mixture used in all
titrations is made by 90% spectra grade Tetrahydrofuran, 9.9% spectra grade Dimethyl
sulfoxide, and 0.1% deionized water. A stock solution of 1-4 was prepared with the solvent
mixture. The stock solution of each host was then used to make TBA Bromide guest solutions.
An aliquot (2.0 mL) of the stock host solution was transferred to a quartz cuvette with cap and a
magnetic stir bar as the starting volume. Aliquots of guest solution were added to the cuvette,
after each addition and stirring for three minutes, a spectrum was recorded.

Table S6. Association constants for binding of TBA bromide to all receptors in 90% THF/9.9%
DMS0/0.1% deionized H20 solvent system at 293 K.

Receptor | Assay 1 (M) | Assay 2 (M) | Assay 3 (M) | Average (M)
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1 25516 27268 25182 25989 +915

2 16940 11189 16181 14700 2551
3 12511 10300 13529 12113 +1348
4 19417 16997 18654 18356 £1010

1 with TBA bromide

Assay 1 Ko= 25516 M1 http://app.supramolecular.org/bindfit/view/bc8348fa-c18f-4738-a858-
6afee54be274

Assay 2 Ka= 27268 M1 http://app.supramolecular.org/bindfit/view/d0db7fb8-e521-422a-89f9-
65a8afc351dd

Assay 3 Ko= 25182 M1 http://app.supramolecular.org/bindfit/view/80d9e25a-a4a8-4829-ab9e-
ab413d6650cf

2 with TBA bromide

Assay 1 Ko= 16940 M1 http://app.supramolecular.org/bindfit/view/67f16bc8-3f4f-40b6-a488-
Oe53de34ae04

Assay 2 K,= 11189 M http://app.supramolecular.org/bindfit/view/f35feff3-f714-4875-92ae-
a7e9fc66cf5¢

Assay 3 Ko= 16181 M http://app.supramolecular.org/bindfit/view/0134f156-85a4-492a-90c9-
51c19ab9d406

3 with TBA bromide

Assay 1 Ko= 12511 M http://app.supramolecular.org/bindfit/view/25834360-3d81-4204-abda-
afb68c0b3b57

Assay 2 Ko= 10300 M http://app.supramolecular.org/bindfit/view/78e57c1c-3dde-48e2-8601-
Oecbb7e80fc5

Assay 3 Ko= 13529 M1 http://app.supramolecular.org/bindfit/view/9a833e73-82cd-40fc-aadc-
1c983a81025e

4 with TBA bromide

Assay 1 Ko= 19417 M1 http://app.supramolecular.org/bindfit/view/339d3d49-a9e4-4c6f-b716-
2b9bc59a0c02

Assay 2 Ko= 16997 M1 http://app.supramolecular.org/bindfit/view/b56dd4e1-3cc5-494f-8772-
4b704f48alda

Assay 3 K= 18654 M http://app.supramolecular.org/bindfit/view/16b0f1e1-2ff0-4b28-b7f5-
6454fab4b65f
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