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Abstract: Research on smart environments saturated with ubiquitous computing devices is
rapidly advancing while raising serious privacy issues. According to recent studies, privacy
concerns significantly hinder widespread adoption of smart home technologies. Previous
work has shown that it is possible to infer the activities of daily living within environments
equipped with wireless sensors by monitoring radio fingerprints and traffic patterns. Since
data encryption cannot prevent privacy invasions exploiting transmission pattern analysis and
statistical inference, various methods based on fake data generation for concealing traffic
patterns have been studied. In this paper, we describe an energy-efficient, light-weight,
low-latency algorithm for creating dummy activities that are semantically similar to the
observed phenomena. By using these cloaking activities, the amount of fake data
transmissions can be flexibly controlled to support a trade-off between energy efficiency
and privacy protection. According to the experiments using real data collected from a smart
home environment, our proposed method can extend the lifetime of the network by more than
2× compared to the previous methods in the literature. Furthermore, the activity cloaking
method supports low latency transmission of real data while also significantly reducing the
accuracy of the wireless snooping attacks.
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1. Introduction

Smart home research and development, although initiated in the late 90s, has been advancing rapidly
over the last few years as the sensors get smarter, smaller and cheaper. It is now possible to monitor most
of the phenomena associated with the activities of daily living (ADL) with a small cost. As such, various
smart home systems can be found in the domains of healthcare, activity automation, energy conservation
and remote access services [1,2]. Parallel to these advancements, problems regarding privacy for
residents are also being raised and addressed. Wireless sensors deployed in residential environments
introduce vulnerabilities that can leak private information about the residents; hence, privacy protection
becomes critical. According to recent studies, one of the major obstacles to the adoption of smart home
systems is privacy concerns [3]. This work focuses on protecting confidential information in the smart
home environments where battery-powered wireless sensors are deployed to monitor and analyze the
behavioral patterns of the residents for various smart services.

The activities within a smart home environment can be identified by analyzing the transmission
behavior of the wireless sensors, e.g., using WiFi, Bluetooth (low energy) and ZigBee technologies,
without even looking into the information being transmitted [4]. This method can be used by an attacker
(with highly sensitive eavesdropping devices) to breach the privacy of individuals living in environments
that are deployed with wireless sensors. The state-of-the-art protection mechanisms against such attacks
mainly hide the data traffic patterns by sending sensor data at uniform transmission slots. This creates
the problem of having to generate fake readings in order to ensure uniformity when no sensor data is
available at a scheduled transmission slot. Additionally, real data packets that arrive between slots have
to be delayed for the same reason. Although it is possible to protect against attacks based on traffic
analysis by concealing the actual transmission patterns, protection schemes decrease the usability of the
smart home technologies. For example, fake data transmissions incur considerable energy overhead and
increase the maintenance costs for battery-powered devices, while arbitrary data injection delays increase
the response time of the system, and this may neither be acceptable in mission critical healthcare systems
nor desirable due to significant negative impact on the user experience. Therefore, it is necessary to
improve the overhead of privacy protection mechanisms in order to increase the value of smart services.
We claim that latency and energy efficiency are two important performance metrics that can be improved
while not increasing the vulnerability of the privacy of smart home inhabitants.

We propose an energy-efficient, light-weight, low-latency privacy protection scheme based on
generating a small amount of fake data to protect the activity information. Inspired by [5,6], which use
the concept of semantic similarity, a selected group of sensors generate fake data that are semantically
similar to the real phenomena that is being observed. These dummy activities together form an activity
cloak that hides the actual private activities. Methods based on fake data injection make frequent
transmissions without considering the semantics of the information visible to the adversary [7,8].
However, the distribution of activities throughout the day are generally similar in home environments,
and this fact can be exploited by the adversary; hence, the attack does not start with zero information,
and fake data flooding may not reduce the information leakage below this statistical level. For example,
in the early hours of the day, the adversary expects activities in the bathroom, kitchen and the bedroom.
With some additional knowledge, such as the job of the residents, the adversary can further reduce the
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number of possibilities. Generating fake data from all of the sensors may result in excessive dissipation of
precious energy without any additional benefit. The proposed method tries to hide the actual phenomena
by cloaking it with other activities that have high expectancy of occurrence, considering the habits of
the inhabitants of a particular environment, within the time window of measurement. This approach
significantly reduces the energy overhead of privacy protection. In our experiments, we observe up to a
50% reduction in the energy consumption overhead compared to earlier studies, while keeping the level
of ADL leakages to a minimum.

The approach described in this paper exploits the difference between probabilistic distributions of
activities over a 24-h period. These distributions depend on the habits and behavioral patterns of the
individuals. Since changes in the measurements are consequences of one or more activities, we assume,
and experimentally show that data transmission patterns follow activity distributions, which is, in fact, the
basis of a side channel attack, which refers to an indirect or statistical/analytic attack to exploit leaked
information, i.e., activity distributions, rather than directly using the main source of communication [4]. For
example, the probability of a contact sensor deployed on the refrigerator door transmitting data is higher
just before or during lunch or dinner time, compared to midnight. We use the earth mover’s distance
(EMD) metric [9,10] to determine the difference between probabilistic distributions of different sensors
and interpret this distance as the semantic difference between sensors, sensor clusters and activities.
That is, two distributions with a small EMD are semantically similar. During an activity, the proposed
approach generates fake data from semantically similar sensor clusters, so as to limit the information
leakage to the attacker by what is already known before the attack. We evaluate this method in terms
of the amount of the information leakage, delay overhead and energy consumption of the system, as
well as the level of privacy protection, which is measured by the accuracy of attacks. According to
our experiments on data collected from smart home testbeds, our proposed privacy protection method
increases the network lifetime by more than two-folds, while also providing better privacy protection.
Moreover, we observe up to an order of magnitude reduction in real-data latency compared to the
state-of-the-art methods.

The main contributions of this work is as follows.

• We propose a novel privacy protection mechanism based on mimicking fake activities that have
similar characteristics to the observed set of activities.
• The proposed method exposes the trade-off between energy dissipation and privacy protection

via the system parameter θ. Various values for θ can be used depending on the necessity of the
environment or inhabitants to bias towards privacy or energy efficiency.
• The proposed method provides activity-level protection with very little overhead by exploiting

the nature of data traffic obfuscation techniques to abstract out an activity as a set of sensors. This
abstraction allows us to reflect fake activities without applying any activity recognition algorithms.

The rest of this paper is organized as follows. In Section 2, we explain the process of activity
detection via snooping wireless data transmissions. Section 3 illustrates the proposed semantic privacy
preservation method in detail. Section 4 presents the experimental settings and evaluation results.
In Section 5, we summarize the related work, and in Section 6, we discuss our conclusions and possible
future directions.
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2. A Side Channel Attack for ADL Detection

A side channel attack is an indirect or statistical/analytic attack that exploits information leaked by
means of supporting the main source of communication rather than depending on it directly. We assume
that the sensor data is protected by a sufficiently secure and lightweight encryption [11,12], so the
adversary collects radio fingerprints and timing information in order to infer events and activities within
the environment of interest. The attack we describe here is the fingerprint and timing-based snooping
(FATS) attack [4], which is a multi-tier scheme consisting of four tiers:

Tier 0 detects unique data sources based on their radio fingerprints. This tier depends on
the differences in the radio signatures of different radio transmitters to single out each unique
sensor [13].
Tier 1 clusters sensor nodes by analyzing time intervals between radio transmissions. This tier
assumes that sensors that are spatially or logically close together fire at close proximity in the time
domain. These clusters form logical groups by their locations, e.g., a room, or by their purpose.
For example, a group containing the washing machine and the detergent box is formed by purpose,
i.e., laundry, and this cluster will be formed even if the washing machine is actually located in
the kitchen. The adversary can detect the presence of the individuals by analyzing outputs from
Tiers 0 and 1.
Tier 2 analyses the features of the extracted clusters in order to label each cluster. These labels,
such as kitchen and bathroom, refer to a logical categorization rather than referring to a strictly
physical location, such that the washing machine from the previous example will go into the
laundry cluster. After Tier 2, the attacker can predict the location of the residents within the
environment with high accuracy [4].
Tier 3 labels each individual sensor based on the feature vectors of sensors extracted from the
training data and the cluster labels from Tier 2. For example, the adversary expects to find a
refrigerator sensor in the kitchen cluster and compares the features of the sensors classified to be
in the kitchen with the features of the refrigerator sensor from the training data. After successfully
labeling of clusters and sensors, most of the activities can be detected in real-time [4].

Figure 1 summarizes the process followed by the FATS attack. In our FATS implementation, we used
one week training data collected from the Aruba smart home testbed [14]. We assume that the Tier 0
attack has been successful, and each unique data source has already been identified. We support this
assumption with the previous work on radio fingerprinting [15–17]. For Tier 1, we form sensor clusters
based on the temporal distance between the transmission of different sensors. The average time intervals
between any pair of sensor transmissions form elements in the Euclidean distance matrix. By applying
multi-dimensional scaling (MDS) [18] on the distance matrix, we project the time domain information
onto an imaginary two-dimensional plane and obtain x, y coordinates for the sensors on this plane.
Application of k-means clustering on these coordinates forms logical clusters [4,19]. For Tier 2, we first
extract feature vectors of the cluster formations. As features, we use:

• median inter-transmission delay (ITD) in the cluster;
• median ITD per sensor in the cluster;
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• the number of cluster activities over different periods;
• mean time interval between cluster activities;
• the mean time distance to the next activity of another cluster.

Figure 1. Four tiers of the fingerprint and timing-based snooping (FATS) attack.
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We compute a min-cost bipartite matching between the feature vectors extracted from the Tier 1
clusters and the training data set where the cost of a matching is defined by the Euclidean distance
between feature vectors. For Tier 3, sensor pairs from the Tier 2 clusters and the training data are matched
based on their features via a linear discriminant analysis (LDA) classifier [20]. The classification process
only considers sensors forming the clusters with the same label from the two data sets. Through this
process, we annotate each sensor in each cluster with labels, such as a kitchen-doorway sensor, or a
bathroom-sink sensor.

In order to recognize activities, we individually process each labeled cluster and apply the LDA
classifier on feature vectors summarizing them. These features include information specific to certain
sensors, thus making use of the sensor labels generated for the observed environment. As activity feature
vectors, we use the mean inter-transmission time, transmission start and end times and activity duration.
These features are extracted from both clusters and sensors in clusters.

The method we propose to protect against the aforementioned FATS attack mainly targets the last
tier. We claim that activity level protection is both cost effective and safer compared to possible methods
working at lower levels. It is safer, because if lower-level information is obtained by other means, e.g.,
physical inspection of a facility, activity information can be extracted with relative ease. In contrast,
activity-level protection does not depend on the physical structure being unknown. The cost efficiency
of activity-level protection will be discussed in detail in Section 4.

3. Semantic Privacy Preservation via Energy-Efficient Traffic Generation

We define an activity cloak (AC) as a set of activities, including predicted, sensed and fake activities.
Since lots of activities happen regularly, each incurring bursty radio transmissions, we are able to
pre-compute a set of activities that will soon take place, by both: (1) predicting them from the past history
of residents’ behavior (predicted activities); and (2) considering subsequent transmissions of current
sensor firing (sensed activities). An AC hides these activities in the smart home from the eavesdroppers
by tainting them with fake, i.e., cloaking, activities. Since sensor-based activity identification depends
on the behavior of a group of sensors, we frequently use the term AC to refer to a set of sensors. Our
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proposed scheme periodically recalculates and updates the active AC. The interval between two updates
is called a time window, w. For the kth time window wk, the system uses ACwk

. The length of a time
window is a system parameter, and it is fixed during run-time. Accordingly, the number of time windows
in a day is fixed, andwk+1 = w0 for the last time window of the day. Withinwk, only the sensors included
in the ACwk

are allowed to transmit sensor data. By enforcing this transmission behavior, our scheme
aims to increase privacy in an energy-efficient manner. We denote the sensed activity in the environment
during wk by awk

and the set of predicted activities by a∗wk
(awk

⊂ a∗wk
⊂ ACwk

), as shown in Figure 2.
We introduce and define the term awk

to clarify the subsequent definitions, when, in fact, awk
is a part of

the prediction process. The generation of the activity cloak is completed in three steps:

Figure 2. Formation of ACwk
.
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Step 1: Activity prediction based on the long term history: the long-term resident behavior is
analyzed to create a list of sensors that are expected to detect and report an event during wk, thus
to be added to the prediction set a∗wk

. We use a threshold to infer sensors that will likely sense an
event during wk, i.e., each sensor with a probability higher than the threshold is added to a∗wk

. We
set this threshold to a fixed value beforehand. The prediction accuracy of a∗wk

highly depends on a
control parameter, wk, since introducing more time resolution by decreasing wk lowers the probability
of each time window, as shown in Figure 3a and Figure 3e. This performance degradation is due
mainly to the fact that predicting actual sensor utilization during a shorter period (e.g., 10 min) is
relatively harder than that during longer periods (e.g., 1 h). Comprehensive performance evaluation
results to support this observation will be presented in Section 4. To illustrate the likelihood of sensor
emission for each time window, Figure 3a and Figure 3e show the probability of motion sensors in the
kitchen and the dining room, respectively, firing throughout the day based on the data collected from the
CASAS (Center for Advanced Studies in Adaptive Systems) project Aruba smart home testbed [14]. The
similarity between two different sensors indicates their relatedness. Note that our system does not try
to identify activities online; it simply assumes that sensors that are added to a∗wk

indicate either a single
activity or multiple activities. We assume that an attacker is expecting to see these activities before the
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attack. For example, in the morning hours, the adversary may expect to see events in the kitchen or
in the bathroom.

Figure 3. Probability mass functions (PMF) for kitchen and dining room sensors.
(a) PMF for the kitchen sensor with wk = 1 h; (b) normalized PMF for the kitchen sensor
with wk = 1 h; (c) PMF for the dining sensor with wk = 1 h; (d) normalized PMF for
the dining sensor with wk = 1 h; (e) PMF for the kitchen sensor with wk = 10 min;
(f) normalized PMF for the kitchen sensor with wk = 10 min; (g) PMF for the dining sensor
with wk = 10 min; (h) normalized PMF for the dining sensor with wk = 10 min.
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Step 2: Expanding the prediction set with the sensed activities: The a∗wk
set from Step 1 is not

guaranteed to contain all sensed activities, because there exist unusual activities; in the early hours of
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the day, the residents may unexpectedly be watching television. We thus use the awk
set to accumulate

sensors that are actively detecting such events. In order to create the awk
set, the central controller (CC)

polls sensors at the end of each time window. If a sensor si has detected an event during wk, it requests to
be included in the new cloak, ACwk+1

; otherwise, a negative response is sent to the CC. Upon receiving
a request message from si in the polling period, CC adds si to the awk+1

. The polling period enforces a
uniform transmission pattern, so that an attacker eavesdropping on wireless transmissions does not see
any irregularities as a result of ongoing activities. At the end of the polling period, awk+1

is added to
a∗wk+1

. Note that Step 2 ensures that all of the residents’ activities are protected by our scheme at the
expense of additional energy; it is important to make better activity prediction to further save energy.

Step 3: Addition of the cloaking activities: following Step 2, the a∗wk
set contains all sensors predicted

to detect an event for wk+1. Sensors in a∗wk
are then placed in ACwk+1

, so that the activity cloak includes
predicted activities (Figure 2). Next, ACwk+1

is expanded with fake activities that are semantically
similar to those indicated by the items in ACwk+1

. Instead of adding individual sensors to the cloak, the
system adds them in clusters. For this purpose, a list of identified activities is kept, where each activity
is defined by a set of sensors. To create the list of activities, we cluster long-term sensor histories using
a naive Bayesian classifier. However, classifiers based on the hidden Markov model, conditional random
fields or similar classifiers can be used for the same purpose [21,22]. Adding sensors in clusters results
in a semantically-sound cloak. For example, the motion sensor in the kitchen is coupled with the one in
the dining room, so that they form a fake activity. The process of selecting semantically similar activities
is explained in Section 3.1.

After generating the ACwk+1
, CC broadcasts this information to the sensor nodes. During wk+1,

si ∈ ACwk+1
transmits data according to a Fit Probe Rate (FPR) schedule [23], such that an eavesdropper

sees a uniform transmission pattern according to some exponential distribution that is independent of the
activities. According to FPR, each transmission has to follow this exponential distribution while low
latency transmissions are supported by scheduling actual data packets with the minimum possible delay
that fits into the distribution. During wk, the sensors in ACwk

follow the steps given in Algorithm 1,
while all other sensors only record any detected events to prepare themselves for the next AC, ACwk+2

.

Algorithm 1: The algorithm executed by si ∈ ACwk
.

at each FPR slot do
send fake data;

end
at each sensing event do

∆t = getMinRequiredDelay();
sleep for ∆t;
send real data;

end

Since our method only allows sensors in the ACwk
to transmit data during the wk, a reading from

a sensor that is not included in the ACwk
is delayed until wk+1. Any such sensor reading is called an

unexpected event. Since our method handles sensed activity requests while forming the cloak, the upper
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bound for the delay suffered by an unexpected event will be the time window size. We expect these
unexpected transmission requests to be rare because of the long-term predictions and, also, because we
keep active sensors in the cloak as long as they are active.

3.1. Semantic Distance between Sensors

CC determines the fake activities in ACwk
based on their semantic similarity to a∗wk

. We use the
EMD metric to measure the semantic similarity between activities. Since activity detection is based on
clustering readings from different sensors, the semantic distance between two activities is a function
of the difference of transmission behaviors of sensors in these activities. Let us denote the probability
function of si by Pi(wk) = pik, such that pik is the probability of si sensing an event in wk. The plot of
Pkitchen(wk) is given in Figure 3a and Figure 3e. EMD requires its inputs to be normalized histograms
in order for the relation to be reflexive. Therefore, we define P̂i(wk) = p̂ik as the normalized Pi(wk),
such that:

p̂ik =
pik∑

k∈n
pik

(1)

where n is equal to the number of time windows in a day. Given two input probability mass functions
(PMFs), e.g., Figure 3b and Figure 3f, assume that one of them is a collection of piles of mud, while
the other is a collection of holes in the same space. EMD measures the minimum work required to fill
the holes with earth, where the work is defined as transporting a unit of earth over a unit of ground
distance. Each such move from point k1 of the mud piles to the point k2 of the holes is called a flow,
F (k1, k2) = fk1k2 , of mud. We use the magnitude of the difference between points k1 and k2 as the
distance, i.e., D(k1, k2) = dk1k2 = |k1− k2|. Given a pair of PMFs, P̂1 and P̂2, and a set of flows, F , the
work due to F is computed as follows:

W (P̂1, P̂2, F ) =
∑

k1,k2∈n

fk1k2 × dk1k2 (2)

subject to constraints:

fk1k2 > 0 (3)

fk1k2 ≤ p̂1k1 (4)

fk1k2 ≤ p̂2k2 (5)∑
k1,k2∈n

fk1k2 = min(
∑
k1∈n

p̂1k1 ,
∑
k2∈n

p̂2k2) (6)

The first constraint ensures that a flow transfers a positive amount of earth. The second and the third
constraints limit the transfer size by the available mass of earth in a given pile and the capacity of the
hole at the destination. The last constraint specifies that either the total mass is moved or all of the holes
are filled. Based on Equation (2), EMD finds the set of flows, F ∗(k1, k2), that fills the holes with the
minimum amount of work and returns the distance between inputs:

EMD(P̂1, P̂2) =

∑
k1,k2∈n

f ∗k1k2 × dk1k2∑
k1,k2∈n

f ∗k1k2
(7)
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The semantic distance between two sensors can be used to define the semantic distance between sets
of sensors, i.e., activities. Let a1 and a2 be two different activities defined by a set of sensors of size |a1|
and |a2|, respectively. We define the EMD between a1 and a2 as follows:

EMD(a1, a2) =
∑

s1∈a1,s2∈a2

EMD(P̂s1 , P̂s2)

|a1| × |a2|
(8)

3.2. Semantic Similarity Graph (SSG)

The EMD between a sensor pair is only computed when the probability functions of these sensors
change significantly. Pairwise EMD results are stored in a complete graph called the semantic similarity
graph (SSG). By means of SSG, the semantic similarity between two sensors can be fetched in constant
time without performing any run-time computation. SSG stabilizes as the coverage of the accumulated
long-term history increases. In order to allow system adaptation, we use the exponentially weighted
moving average (EWMA) to accumulate the long-term behavior of sensors rather using a simple mean
calculation. Figure 4 shows an example of an SSG instance containing four sensors, where each node
represents a sensor and each edge between two sensors is the EMD between those sensors. SSG is
updated if the behavior of a sensor changes significantly, for that specific sensor, and when the system
is idle. According to our evaluations, our algorithm is not sensitive to inaccuracies in the SSG; thus,
real-time updates are not necessary.

Figure 4. An example instance of the semantic similarity graph (SSG).
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3.3. Cloaking Activities and Privacy

After the sensors in a∗wk
are determined based on predictions from the long-term history and the

request messages received during the polling period, SSG is used to generate a cloak ACwk
to be

used during wk. The level of protection due to ACwk
is measured in terms of the semantic difference

between ACwk
and ACG = {s1, s2, . . . , sn}, i.e., an activity cloak, including all sensors. We define

θ = EMD(ACwk
, ACG) as a metric to measure the information leakage due to energy savings [5]. If the

activity cloak is extended to include all sensors, i.e.,ACwk
= ACG, then θ = 0 and the privacy protection

is maximum, because all of sensors are included in the cloak. Reducing the number of elements in ACwk

increases the θ value and reduces the energy consumption. For our experiments, we determine the θ
value by using one-week training data to find the θ value that corresponds to the intersection of energy
and privacy curves as explained in Section 4. We assume that both ACwk

and ACG refer to activities.
Specifically, neither the fact that ACwk

contains sensors indicating one or more activities, nor the labels
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for them are relevant from the perspective of the algorithm. Based on the θ value and Equation (8), an
activity cloak ACwk

with the maximum number of sensors is generated, such that:

∑
s1∈ACwk

,s2∈ACG

EMD(P̂1, P̂2)

|ACwk
| × |ACG|

≤ θ (9)

The pseudo code for activity cloak generation is given in Algorithm 2. At the beginning of each
time window, wk, CC adds sets of sensors defining one of the activities identified by the naive Bayesian
classifier until the semantic distance between the ACwk

and ACG exceeds the predefined θ value.

Algorithm 2: The algorithm for generating activity cloaks.

Let ACwk
= {a∗wk

};
Let emd = 0;
repeat

Choose activity a with smallest EMD(ACwk
, a);

Add a to ACwk
;

Let emd = EMD(ACwk
, ACG);

until emd ≤ θ;

3.4. Lower Layer Considerations

The proposed algorithm does not make assumptions on the MAC or network layer protocols on the
sensor nodes. This allows our scheme to work with different types of radios supported by various sensor
boards. However, if the underlying MAC protocol supports TDMA, such as the case with the Bluetooth
or ZigBee devices, then more energy can be saved by getting rid of the polling. On the other hand, since
we reduce the number of active sensors substantially, the packet collusion probability is smaller relative
to semantic blind traffic cloaking techniques [23].

4. Evaluation

4.1. Experimental Setting

We use a publicly available ADL monitoring data set [14]. The data set is annotated with activity
labels and contains sensor readings and corresponding timestamps. The resident is an elderly woman
who lives by herself, and her relatives visit the apartment regularly. The sensor data have been
accumulated for about a year using 31 sensors deployed according to a topology in Figure 5.

To evaluate the performance of proposed privacy protection scheme, we compare our method against
existing state-of-the-art privacy protection methods:

(1) Periodic transmission (P): all sensors transmit real or fake data according to a predefined period,
at a constant rate. At each transmission period, the sensor sends real data if it senses an event since
the last period.
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(2) Exponential FPRtransmission (E): sensors follow an exponential distribution according to a
predefined mean value. Real data packets are handled with shorter delay according to the algorithm
given by Shao et al. [23].

Figure 5. The floor and sensor deployment plan in a smart home environment.
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We measure and compare the energy efficiency and privacy level of each protection scheme. We
measure the transmission overhead of each approach by computing the ratio of the total number of fake
data packets to the total number of real data packets and use this metric, called fake data ratio (FDR), as
an indication of the energy overhead. Since the number of radio transmissions is inversely proportional
to the network lifetime and the amount of real data transmissions are equal for all approaches, FDR is
a fair and clear indication of the energy efficiency of the tested approaches. We use the FATS attack
accuracy as a metric to evaluate the privacy benefits of tested approaches. For this purpose, we have
implemented the FATS attack as described in Section 2. In these experiments, the adversary tries to
identify each activity in real time and labels these activities using the FATS attack. The accuracy of the
attack, then, is defined as the ratio of total number of actual activities observed during the experiment
to the total number of activities correctly labeled by the attacker. Additionally, we also measure the
maximum and average real data latency to show the overhead of privacy protection in the time domain.

4.2. Evaluation Results

We first evaluate the coverage of our activity cloaks. We use, as a metric, an unexpected event rate
(UR), which is computed by dividing the number of unexpected events by the total number of events
occurring during a day and, hence, is inversely proportional to the coverage; the higher the UR, the
lower the coverage, and vice versa. For statistically meaningful results, we randomly select one hundred
dates from the data set and apply the proposed method by varying the size ofwk under 3 different choices
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for the training period. Furthermore, ACs are generated using θ = 1.0, which restricts each AC to only
carry the predicted ADLs and sensed activity requests that are made in the previous time window. By
excluding the cloaking activities, we can directly evaluate the performance of ADL prediction.

As shown in Figure 6a, where each data point represents an average UR from 100 random days, while
each bar indicates a standard deviation, UR decreases as wk increases. While a larger wk is preferred for
better coverage, one should consider the fact that the maximum latency suffered by an unexpected event
is equal to the size of wk. On the other hand, the training period has little impact on the performance
when the behavioral pattern of a resident is fairly regular. Please note that the best training period would
depend on the lifestyle of a resident. For comparative evaluations, we also select and evaluate a specific
day, 169th; as shown in Figure 6b, a specific behavioral pattern from a certain day does not deviate much
from the general patterns that the resident has. These evaluation results demonstrate that wk should be at
least 5 min to achieve the ADL prediction accuracy of 95% or higher and that it can meet this accuracy
requirement after one week of training. Note that under the actual scenario, θ will be lower than 1,
causing more sensors to be included in AC, thus leading to almost zero UR.

Figure 6. Activity cloak coverage: the unexpected event rate (UR) vs. the time window size.
(a) 100 random days; (b) Day 169.
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A smaller wk causes higher overhead, since the computational complexity of EMD is O(N3logN),
where N equals the number of time windows throughout a day [24]; e.g., using a 10-min window
requires approximately 330-times higher computational costs than a one-hour window. However, this
computational cost is acceptable when EMD and AC computations are done off-line at the central server.
To further optimize the computational cost, a kernel distance metric [25] may be used as an alternative
to EMD.

Unlike the exponential-based approach, the proposed method has non-zero probability of having
unexpected events, which may incur additional delay. To evaluate this, we observe the latency of all three
methods for the 169th day. For this experiment, θ is fixed at 1.0, while a transmission interval varies. The
transmission interval represents a period for P or a mean value for the probabilistic distribution used in E
and AC. Figure 7a plots the result of latency evaluation, which demonstrates that periodic transmission
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has the highest latency proportional to the period reaching up to 6.5 min. On the other hand, the latency
of transmitting according to an exponential distribution is constant and slightly over one second. The AC
method behaves like E in that the latency is constant regardless of the mean interval, and the observed
maximum latency is 16 s with one-hour time windows. Figure 7b compares AC for 1-min and 1-h
time window sizes with E by varying transmission intervals. According to the experimental results, the
average delay per packet is 1 s when the window size is 1 min. We conclude that the proposed privacy
protection method using the AC mechanism delivers an order of magnitude smaller latency than the
periodic-based method while suffering from slightly longer delays than that of the exponential-based
one. The latency is closely related to the coverage of the activity cloak, and it continuously improves
after system start-up.

Figure 7. Latency of privacy protection methods.
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We next compare the energy efficiency of baselines P and E, against AC by varying transmission
intervals. Two baselines have very similar energy characteristics when the test duration is sufficiently
longer than the transmission interval. This is expected because E uniformly distributes inter-transmission
delay over the interval, and the average number of packets is equal to the amount of packets sent when
transmissions are made at equidistant intervals, which is the behavior of P. Figure 8 shows the average
change in FDR when the transmission interval is varied from 1 min to 14 min for P, E and AC. We
plot the performance of AC with various values of θ to show the effects of this variable on the energy
overhead. According to Figure 8, the FDR value decreases logarithmically in all tested approaches when
the transmission interval is increased. We observe that the energy overhead of AC (θ = 0.2) is very
similar to P and E. For such a low value of θ, all of the sensors are included in the cloak, so essentially,
the AC algorithm becomes virtually the same as the E algorithm. Increasing the θ to 0.5 reduces the
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energy overhead by 45% regardless of the transmission interval, due to the reduced number of cloaking
activities in the AC. The energy overheads of P and E are more than twice compared to that of AC
(θ = 0.9). These observations indicate that by controlling the θ, we can control the energy overhead of
our algorithm.

Figure 8. Energy overhead of the tested approaches.
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We then compare the privacy level provided by the tested approaches. For this experiment, we again
vary the transmission interval from 1 min to 14 min and compare the Tier 3 accuracy of P, E and AC
(θ = 0.2, θ = 0.4, θ = 0.6). Figure 9 summarizes the results of this experiment, where the y-axis
denotes the average ratio of successful ADL identifications to the total attempts of the adversary. We
observe that P provides the highest level of protection under FATS attack with a prediction accuracy
close to 0 regardless of the transmission interval. This is because every possible sensor uniformly
transmits data, and the FATS attack can neither cluster nor label any sensors. The Tier 3 accuracy of
the FATS attack under E is 40%, which is slightly better than the performance of AC (θ = 0.6), yielding
a FATS accuracy of 42%. When the protection method is AC, the prediction accuracy of the FATS
attack is 16% and 29% for θ values of 0.2 and 0.4, respectively. Although transmitting according to
an exponential distribution significantly reduces the real-data latency, the prioritization of these packets
also reveals more information on the ADLs, due to behavioral changes in the sensors detecting events.
This observation confirms the findings of Shao et al. [23]. The accuracy of the FATS attack under AC is
proportional to the value of θ, while the performance of AC counter intuitively lies somewhere in between
P and E. Before the experiments, we expected AC to perform at most as good as E, since the underlying
transmission mechanism is identical; however, FATS attack accuracy is significantly higher with E than
it is with AC. The reason for this behavior is that the FATS attack fails to do accurate classification when
some of the sensors, i.e., those that are excluded from the cloak, disrupt the exponential distribution,
which significantly hinders clustering accuracy.
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Figure 9. Privacy level of different protection methods.
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Figure 10. Activity cloak (AC) method privacy level dynamics.
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We further investigate the relationship between θ and FATS attack Tier 3 accuracy in a separate
experiment. In this experiment, we vary the θ in the range [0.2, 0.9] and measure the Tier 3 accuracy
as the ratio of successful activity predictions over total predictions. For each value of θ, we randomly
select 100 days from the data set and report the mean accuracy of these runs. Experiment results, as
summarized in Figure 10, confirm that the information leaked to the intelligent adversaries is inversely
proportional to the changes in θ. Moreover, the accuracy of the attack saturates at 44% for θ ≥ 0.6. Such
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saturation depends on the number of sensors deployed in an environment. The granularity and range of θ
will increase as the number and variety of sensors in the environment increases. In Figure 10, the relative
performance of AC when compared to that of P and E indicates that AC performs almost as good as E
independent of the value of θ, while P always provides better protection.

In Figure 11, we summarize the privacy and energy gains due to the AC method when the baseline
is E. The maximum privacy benefit is achieved for smaller values of θ. Specifically, when θ = 0.2, the
relative privacy benefit compared to E is 60% (Figure 11a). When θ = 0.3, the benefit reduces to 40%,
and this trend continues until θ = 0.57, at which point the AC method starts to perform slightly worse
than E, until it eventually saturates at θ = 0.6. Figure 11b shows the energy benefit of AC compared to E.
In this case, AC performs better than E for all tested values of θ with a maximum of approximately 50%
less energy dissipation when θ ≥ 0.6. As we decrease the value of θ, the proposed method increases the
number of sensors in the activity cloak; therefore, the energy benefit decreases. The minimum relative
gain of 0.3% over E is observed when θ = 0.2. Since both privacy and energy gains saturate for θ ≥ 0.6,
we conclude that the feasible range for θ is [0.2, 0.6]. However, it is worth repeating that this range
depends on the number and variety of sensors in the environment.

Figure 11. Privacy and energy benefits of AC over Exponential FPR transmission (E).
(a) Privacy benefit; (b) Energy benefit.
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4.3. Discussions

According to the experimental results, θ can control the energy efficiency and the privacy protection
level of our algorithm. Although periodic transmission seems to provide the best protection, it is worth
noting that, given the limited number of possible activities in a smart home environment, the accuracy
of ADL prediction can never be zero, and the results we provide depend heavily on the mechanisms of
the FATS attack. Furthermore, a prediction accuracy of 50% is too low to be actually useful.

Our contribution focuses on generating privacy-aware activity cloaks to maximize the energy
efficiency, and hence, our proposed method is orthogonal to an underlying mechanism of packet
scheduling. In our implementation, we prefer the exponential FPR scheduling to the periodic scheduling
to minimize the per-packet latency. It is noted that the computational cost of exponential FPR scheduling
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is higher than that of periodic scheduling. While the periodic mechanism simply delays the real data
transmissions according to a predefined period, the exponential FPR uses a procedure to determine
a proper value of delay, not violating the predetermined probabilistic distribution, which requires
O(nlogn) computations, where n is the number of previous transmissions.

The activity cloaking method can still conceal the actual activities under the assumption that the
adversary has accurate information on the habitual patterns of the inhabitants along with the sensor
locations by means of, e.g., social engineering or some advanced filtering mechanism. This is because
cloaking activities are selected based on their semantic similarities to the actual activity. For example,
during our experiments, we observe that the system starts pairing shower and bedroom activities together
in the early hours of the day. This is due to the small EMD value between these activities. Since
EMD is a reflexive relation, the existence of one of these activities in the activity cloak implies the
existence of the other activity. Therefore, the adversary will not be able to identify the actual activity
between equally-likely activities in the cloak. We observe the same relationship, for example, between
watching TV and dining, sleeping and bathroom activities. Furthermore, most of the time, there are
multiple activities in the cloak paired together, and these pairings adapt to changes in the daily lives of
the residents, due to the updates to the SSG.

Internet-enabled devices and appliances, such as TV sets and fridges, may also expose certain activity
information. Although we specifically focus on wireless sensor nodes in this work, the proposed scheme
can be implemented on such devices with minimal cost. Furthermore, these devices are generally not
battery-powered, so traditional traffic obfuscation techniques can also be applied to them.

5. Related Work

The privacy and security of wireless sensor networks (WSNs) have been studied extensively [26–29].
Specifically, data eavesdropping [30], source anonymity [28] and false data injection [7] attacks have
been addressed. Increased research efforts on smart environments brought about different concerns for
privacy, such that these concerns have been identified as an obstacle against widespread adoption of
smart home systems [3]. The privacy protection method described in this paper protects against a side
channel attack that depends on time signatures and radio fingerprints rather than the encrypted data [31]
to infer daily activities, such as cooking or showering [4]. The attack first determines individual sensors
by identifying distinct fingerprints of radio transmitters. Once unique data sources are identified, they are
grouped together into clusters based on the spatial proximity of data transmissions, where each cluster
represents a physical room or a logical association. For example, most of the sensors located in various
parts of the dining room detect movement within a small time window, and sensors in the kitchen are
also activated during dinner. Labels for these clusters, such as “dining room” or “kitchen”, can be
inferred by using inter-cluster and intra-cluster activation patterns. The cluster labels and traffic patterns
reveal sufficient information on the sensors, such that individual identification becomes possible. With
this information, the attacker can label each sensor with a location and a type, such as a contact sensor
in the bathroom. Activities can be then predicted with high accuracy based on the cluster and sensor
labels, along with the transmission patterns. The whole scheme is based on radio fingerprinting, which
is the identification of the data source based on imperfections in the signal due to physical differences in
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different transmitters [4,13,15,17]. Protection against fingerprinting requires resource-hungry, complex
hardware [4]. Despite the necessity of fingerprinting for activity identification, it is not a threat against
privacy by itself.

The focus of this work is on hiding the patterns that are used in clustering and type identification
of wireless sensor nodes. Previous work on hiding transmission patterns mostly uses fake messages
transmitted in between data messages. In [8], a method based on periodic transmissions has been
described. According to [8], each sensor is assigned a time slot at which it must transmit a fake or data
message depending on the availability of data. However, it has been shown that this method introduces
significant delays [23]. To reduce large delays introduced by periodic transmission, a probabilistic
method called Fit Probe Rate (FPR) has been proposed [23]. In FPR, each data source transmits data
or fake messages at intervals that fit into an exponential distribution, but a minimum possible delay is
assigned to data messages. This method guarantees an order of magnitude lower delay for data messages
compared to the periodic scheme when the mean delay in the FPR is equal to the message interval in the
periodic scheme. Both periodic and probabilistic transmissions against traffic analysis attacks require
continuous fake data injections by all sensors, hence having considerable energy overhead [32]. An
alternative method based on k-anonymity [33] was proposed in [34]. According to the proposed method
in [34], semantically meaningful noise is injected into the wireless network to create fake events over
the actual transmission data, such that real sensor data is sent in real time, without any delays and the
adversary observes multiple events. One drawback of this approach is the complexity of generating
fake events that are indistinguishable from actual events. In our scheme, we instead use FPR slots to
overcome this problem. Although there is a clear trade-off between privacy protection, network lifetime
(energy efficiency) and response time (latency) [35], previous work in the literature fails to provide a
means to control this trade-off and bias towards one aspect, such as reducing latency, to improve the
protection overhead. The approach we propose in this work exposes a parameter called the θ value, by
means of which the level of privacy can be controlled.

The conventional method for protecting against traffic spoofing is injecting fake data or introducing
random delays in order to obscure the transmission patterns. Since latency has a significant impact on
the user experience, fake data generation is preferable in a smart home environment. In order to limit
the energy consumption of our scheme, we devise an algorithm that is similar to the cloaking areas used
in location-based services (LBS). Cloaking areas are used in the domain of mobile computing in order
to provide privacy, but still allow individuals to benefit from an LBS [5,36,37]. According to this, an
approximate cloaking area is reported to service providers instead of the exact location of the user. The
construction of a cloaking area is based on k-anonymity or l-diversity. In k-anonymity-based methods,
multiple users’ behavior is projected to the service provider, whereas schemes based on l-diversity
increase the semantic scope of the location information.

High volumes of long-term smart home data are also processed for extracting patterns and
information, especially in the domain of healthcare systems [38–40]. The proposed method is completely
orthogonal to the work in the big-data domain, because the fake transmissions are known and filtered out
by the system. As a result, the sensor data is never tainted, and any analysis on the historical or real-time
data will produce results that it would generate in a privacy blind setting. Mission critical services, such
as healthcare systems and harm prediction engines, require real-time processing and actuation [40–42].
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While periodic transmissions introduce large delays to sensor reports and, hence, are unfeasible for
mission critical deployments, the FPR packet scheduler we use for traffic obfuscation guarantees the
delivery of real sensor data within one tenth of the mean transmission delay [43]. Furthermore, events
that are extremely critical can be reported immediately, since in those cases, privacy becomes a secondary
concern, and they are rare enough to be ignored in the evaluation of any algorithm.

6. Conclusions and Future Work

This paper introduces a light-weight, energy-efficient, low-latency privacy protection scheme for
smart home environments against side channel attacks. The proposed method expands the semantic
scope of the information an adversary can gather by sniffing the encrypted wireless communication. We
introduce the concept of cloaking activities in order to reduce the energy overhead of existing protection
algorithms. The experiments using real data collected from a smart home environment indicate up to
a 50% reduction in the energy dissipation and orders of magnitude decreases in the per-packet latency
compared to previous methods. We also show that the proposed approach can substantially reduce the
accuracy of the FATS attack. The proposed method exposes the trade-off between privacy and energy
efficiency via the system parameter θ. In the future, we plan to extend the algorithm to adapt θ based on
the system conditions without user interference by classifying activities in privacy groups, as well as to
support environments with multiple residents by expanding the activity prediction set.
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