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ABSTRACT Rotator cuff tear (RCT) is a common injury that causes pain and disability in adults. The
quantitative diagnosis of the RCT can be crucial in determining a treatment plan or monitoring treatment
efficacy. Currently, only a few diagnosis tools, such as magnetic resonance imaging (MRI) and ultrasound
imaging (US), are utilized for the diagnosis. Specifically, US exhibited comparable performance with MRI
while offering a readily available diagnosis of RCTs at a lower cost. However, three-dimensional(3D) US
and analysis of the regions are necessary to enable a better diagnosis of RCTs. Therefore, we developed a
wide-field 3D US platform with a semi-automatic 3D image segmentation algorithm for 3D quantitative
diagnosis of RCTs. The 3D US platform is built based on a conventional 2D US system and obtains
3DUS images via linear scanning.With respect to 3D segmentation algorithm based on active contourmodel,
frequency compounding and anisotropic diffusion methods were applied, and their effects on segmentation
were discussed. The platform was used for clinical examination after evaluating the platform via the
RCT-mimicking phantoms. As verified by the Dice coefficient(average DC: 0.663, volume DC: 0.723),
which was approximately up to 50% higher than that obtained with conventional algorithms, the RCT regions
segmented by the developed algorithm significantly matched the ground truth. The results indicated that the
wide-field 3D US platform with the 3D segmentation algorithm can constitute a useful tool for improving
the accuracy in the diagnosis of RCTs, and can eventually lead to better determination of treatment plans
and surgical planning.

INDEX TERMS 3D ultrasound, rotator cuff tear, 3D image segmentation, active contour.

I. INTRODUCTION
Rotator cuff tear (RCT) is a common disease in the shoul-
der joint, which causes pain and a limited range of motion
resulting in functional disability. The prevalence and severity
of RCTs are expected to increase with elderly individuals [1].
The aging population is currently growing globally, and the
number of patients with RCTs are also increasing. Nonsur-
gical or surgical treatment (open or arthroscopic repair) is
performed to treat the RCT, and the estimation of the tear con-
figuration is essential to determine the treatment method [2].
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Non-invasive imaging techniques, such as ultrasound
sonography (US) and Magnetic Resonance Imaging (MRI),
increase the diagnostic accuracy of RCT due to a variety of
technological advances [3]. Subsequently, MRI is considered
as the favored imaging tool for diagnosis and surgical plan-
ning. However, this imaging modality is not clinically readily
available due to its high cost, time consumption, and acoustic
noise [4]. Conversely, US is widely used for diagnosis and
surgical planning for RCTs due to its real-time dynamic
capture, low-cost, time-saving, and readily-availability when
compared to MRI [5]–[7]. Hence, US is more preferred than
MRI by the patients [8]. Furthermore, Roy et al. [9] reported
that US exhibits high sensitivity and specificity for the diag-
nosis of RCT, and several studies described that US exhibited
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a similar or better diagnostic performance when compared to
that of MRI [10]–[13].

However, a conventional US is a tool in which the
two-dimensional (2D) images are acquired by an opera-
tor; therefore, the diagnosis is determined based on the
skill and subjectivity of the surgeon. Hence, the three-
dimensional (3D) shape cannot be accurately understood.
To overcome the aforementioned disadvantages, 3D US is
introduced [14], [15]. Free-hand scanning, 2D matrix array
transducer, and mechanical scanning are representative tech-
niques for 3D US with their pros and cons [14], [16]. Specif-
ically, 3D US techniques are used and researched for various
applications and the diagnosis of RCTs [17]–[21].

Among the techniques, the 2Dmatrix array transducer was
recently commercialized and is relatively widely used for
clinical purposes such as monitoring fetuses. However, the
conventional 3D US(2D matrix array) exhibits a small field
of view (GE RSP6-16, 37.4 mm X 29◦ FoV) and is unable
to trace the convexity of shoulder surface during free-hand
scanning, and this can constitute an obstacle to accurately
diagnose RCTs and determine the severity of the RCT [22].
Additionally, it is not clinically utilized widely due to the
high cost ($3500). Free-hand scanning with the capability of
providing a wide field of view with a position sensor appears
as ideal for the application. However, the technique is unable
to ensure the reliability of the 3D imaging and even requires
calibration [15], [23], which can act as a barrier for use in clin-
ics. Additionally, the reconstruction of a 3D image with the
2Dmatrix array and free-hand scanning is extremely complex
such that it needs unique algorithms with high computational
cost and takes a considerably long time to reconstruct [14].
Conversely, mechanical scanning can offer 3D imagingwith a
comparatively simple configuration and algorithm [15]. Even
if the technique requires a scanning apparatus to move the
probe over the region of interest, it can be implemented at a
relatively low cost [15].

Although the 2Dmatrix array and free-hand scanning were
utilized for the diagnosis of RCT [24], [25], their use is
limited to only research purposes and cannot be used fur-
ther due to the high cost of the hardware and difficulty in
configuration. Therefore, a 3D US system for clinical use,
which is capable of offering a large field of view for a 3D US
image with a reasonable cost, should be developed for the
quantitative analysis of the RCT region. Hence, we utilized
mechanical scanning, particularly linear scanning, in which
scan conversion is simpler and credible due to the perpen-
dicular scanning route to the image plane with the accurate
information on the position of the transducer.

In addition to the 3D US system with a large field of
view, 3D quantitative analysis of RCT regions and especially
3D volumetric segmentation is crucial to precisely estimate
the tear configuration and decide surgical planning. Ultra-
sonic image segmentation enables delineating the bound-
ary of an RCT on an ultrasound image. Recently, various
methods including threshold, region growing, watershed, and
active contour techniques were developed for ultrasound

image segmentation. The threshold-based technique was suc-
cessfully applied to the automatic segmentation of breast
lesions on ultrasound images [26]. However, the technique
exhibited poor performance in the segmentation of the dis-
eased regions when imaging parameters, such as the dynamic
range, focus, and gain, were changed.

Conversely, region growing and watershed-based tech-
niques exhibited better performance than the threshold-based
techniques in the segmentation of tumors and cysts on ultra-
sound images [27], [28]. However, the region growing and
watershed-based segmentation methods were sensitive to
noise. Therefore, their performance was dependent on the
image quality. To overcome the issues, active contour-based
models were developed to segment breast tumors in three-
dimensional ultrasound images [19]. The active contour-
based models were shown as superior to the region growing
and threshold-based methods in the segmentation of breast
tumor regions. Thus, an active contour model is generally
utilized for US image segmentation [29]. Additionally, 3DUS
images were also adequately segmented with the extension of
active contour model(2D segmentation algorithm) [30]–[32].
Therefore, we developed a semi-automatic 3D segmentation
algorithm based on active contour model.

In the study, we developed and demonstrated a wide-
field 3D US platform with a semi-automatic 3D segmenta-
tion algorithm for the quantitative detection of RCTs. The
3D US platform can adapt to the conventional 2D US system
with relatively low cost for configuration. With the linear
scanning apparatus, the 3D US platform exhibits a wide field
of view, multi-planar image, and high repeatability for diag-
nosis at a specific region. Furthermore, the semi-automatic
3D ultrasound segmentation algorithm was developed based
on active contour and some pre-processing methods. Specifi-
cally, frequency compounding and anisotropic diffusion were
applied as pre-processing methods to suppress speckle noise
and enhance contrast. Their effects on the segmentation were
discussed, and an optimal suitable pre-processing procedure
was selected. For better segmentation accuracy, we also
approached the 3D segmentation algorithm based on active
contour via exploiting randomly generated masks. Using the
platform that integrates with the algorithm, phantom experi-
ments and clinical tests were performed to evaluate it. Finally,
comparisons were performed with the outcomes obtained
from previous algorithms.

II. MATERIAL AND METHODS
A. 3D ULTRASOUND IMAGING SYSTEM
A 3D ultrasound imaging platform was developed for
3D ultrasound imaging of RCT regions in the shoulder
with a large field of view. Figures 1.(a) and (b) show
the 3D ultrasound imaging platform. The platform consists
of a commercial linear array ultrasound imaging system
(Sonix Touch Q+, BK Ultrasound, Canada), shoulder scan-
ning apparatus, DAQ board (USB6341, National Instrument,
USA), and user-interface program for the system control.
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FIGURE 1. 3D ultrasound imaging platform for detection of rotator cuff
tear regions.

The linear array ultrasound imaging system includes a 1D lin-
ear array probe (L14-5/38 Linear Transducer, BKUltrasound,
Canada), which includes 128-channel elements with a pitch
size of 0.3 mm and an aperture size of 4 mm x 38 mm in the
elevation and azimuth direction.

The shoulder scanning apparatus is shown in Fig. 1.(c).
It consists of a degassed-water dam, a linear servo motor
(L12-30PT-6, IRrobot, Republic of Korea), and an ultrasound
probe. The shoulders are curved and rigid, and thus an air gap
between the skin and ultrasound probe is formed when the
probe is attached to the shoulder. It is noted that the ultrasound
can be barely transmitted into the body from the air due to
the high acoustic impedance difference between the air and
body. Eventually, the air gap can deteriorate whole image
quality and hinder proper diagnosis. Therefore, a degassed-
water dam was constructed to remove the air gap. The dam
was designed to flexibly fit the shape of the shoulder. The
frame of the dam was printed using a 3D printer (u Print SE
Plus, Stratasys, USA). A thin latex sheet was attached at the
bottom and top of the frame, as shown in Fig. 1.(d), such that
the dam can be flexibly deformed and thereby tightly attached
to the shoulder. Degassed water filled up the dam, as shown
in Fig. 1.(d), to adequately transmit the ultrasound with the
removal of the air gap. The material that filled the dam was
selected to maximize the transmissivity of ultrasound waves
from the probe to the shoulder [33].

The linear servomotor enables the ultrasound probe to scan
an area, and this is integrated with the shoulder scanning
apparatus over the shoulder. The maximum travel range is
less than 56 mm. The commercial linear array ultrasound
imaging system is synchronized with the shoulder scanning

apparatus via the DAQ board. After 3D ultrasound imag-
ing is initiated, the pulse signal from a digital output port
of the DAQ board is transmitted to the linear motor after
obtaining a B-mode image at an initial position. The linear
motor integrated with the ultrasound probe moves to the next
target position with a step size of 1 mm. Subsequently, a
B-mode image is obtained at the position, and this is fol-
lowed by a recording of a frame-trigger counting value in the
user-interface program to annotate the order of the B-mode
images. The procedure is repeated until the motor reaches the
end position of the apparatus. During the process, the posi-
tions of the probe (where the B-mode images are obtained)
are also recorded with the corresponding B-mode images
in order. The B-mode images are then orderly enumerated
by recorded position information and reconstructed to a 3D
ultrasound image. The 3D ultrasound image exhibits a field of
view of 38 mm×90 mm×56 mm as a maximum and it takes
approximately 10 s for a single scan to acquire the 3D image.
It is noted that the field of view can be appropriately adjusted
based on the imaging object.

B. 3D SEGMENTATION ALGORITHM FOR ROTATOR
CUFF TEAR REGIONS
For the precise 3D segmentation of rotator cuff tear regions
on a 3D ultrasound image, we developed a semi-automatic
segmentation algorithm based on frequency compounding
(FC), speckle reducing anisotropic diffusion(SRAD), and
Chan-Vese active contour techniques. For US imagingmodal-
ity, speckle noise and low contrast are inevitable, and this
can lead to low accuracy segmentation. To reduce speckle
noise and improve low contrast while preserving edges,
we applied FC and SRAD in the frequency domain of
the radio frequency (RF) beamformed signals and spatial
domain of the US images, respectively. Adaptive histogram
equalization (AHE) was also applied for further contrast
enhancement.

With respect to the active contour, a mask should be ini-
tialized and the location of the mask is extremely important
because it affects the performance of the algorithm. The auto-
matic initialization of the masks is significantly more crucial
for an extension of Chan–Vese active contour to segment
the RCT region in 3D. Previous studies utilized the centroid
(center of mass) of the previous segmented frame as an initial
mask for a subsequent frame as an approach for automatic
initialization of the masks. The previous approach exhibited
excellent performance in the studies [30]–[32]. However, it
exhibited a weakness in our task. Given the vague boundaries
and irregular shape s of the RCT regions, the initial mask was
often located on the out-of-bounds region and not region of
interest(the RCT region). After a single wrong initialization,
segmentation on the rest of the frames in the 3D image failed.

Therefore, a new approach (which seeds the masks ran-
domly) was attempted to improve the previous approach.
Hence, the previous approach using the centroid is essentially
utilized, and it improves with the proposed approach. In the
proposed approach, numerous masks are generated on the
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FIGURE 2. Procedures for the 3D segmentation of rotator cuff tear regions on a 3D ultrasound image.

frame based on the previous segmented frame when the mask
on a subsequent frame is assumed as incorrectly initialized by
using the centroid. The incorrectly initialized mask is deter-
mined by comparing the segmented result using the mask
and previous segmented result. Chan-Vese active contour is
then performed on all the masks with small iterations(to save
time). If the masks were in the out-of-bound region, con-
toured results can be obtained as significantly different from
the previous segmented frame. Conversely, if the masks were
in the region of interest, contoured results can be similar to or
at least laid over by the previous result. Thus, the contoured
results of all the randomly generated masks were compared to
the previously segmented result by the sensitivity metric. The
mask with the highest sensitivity is then initialized as a mask
of the frame, and the segmentation of images is performed
with the mask.

The procedure is described in detail as follows:
1) Frequency compounding of beamformed RF signals;
2) Process for generating B-mode images; 3) Selection
of an image located at the mid-frame among the series
of 2D images, which contain the rotator cuff tear region;
4) Manual selection of an initial mask on the image by
a doctor; 5) Image contrast enhancement by adaptive his-
togram equalization; 6) Application of SRAD to the enhanced

image; 7) Perform the Chan-Vese active contour on the initial
mask for the segmentation of the rotator cuff tear region;
8) Computation of the centroid of the segmented result and
using the centroid in the subsequent frame; 9) Move on to
the subsequent frame and repeat 5th and 6th step; 10) Per-
form active contour on the centroid with small iteration;
11) Compare the contoured result with the previous result;
12-1) Perform active contour with sufficient iterations if the
centroid is assumed as proper mask for the frame; 12-2)Make
numerous initial masks randomly on the frame based on the
previous result if the centroid is assumed as wrongly located;
13) Perform the active contour on all the randomly generated
masks with small iterations; 14) As an initial mask of the
frame, select the optimal mask that results in segmentation
with higher sensitivity when compared with the previous
segmented frame; 15) Perform the active contour on the
initial mask with sufficient iterations, and 16) Repeat the
aforementioned steps from 8th step to 12th step and continue
for all 2D images (Fig. 2).

All of the aforementioned steps including FC, SRAD,
Chan-Vese active contour, and the 3D reconstruction
algorithm were implemented using MATLAB and per-
formed using a 3.4-GHz Intel Core i7 6700 CPU and
16-GB RAM.
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FIGURE 3. Frequency compounding of an ultrasound image.

1) FREQUENCY COMPOUNDING OF
AN ULTRASOUND IMAGE
Frequency compounding techniques (which are also called
frequency diversity [34]) were applied to construct a B-mode
ultrasound image to suppress speckle noise and to improve
the signal-to-noise ratio (SNR) of an ultrasound image.
To divide the bandwidth of the A-line RF signals into sub-
frequency bands, band-pass filters with different center fre-
quencies, but with the same bandwidth, are applied to the
RF signals. The signals within the divided bands are utilized
to form sub-band images. A frequency compounding image
is constructed via the weighted averaging of the sub-band
images (Fig. 3). The weighting factors equalize the contribu-
tion of each sub-band and average the speckle patterns [35].
To determine the weighting factors for the construction of the
frequency compounding image, integrated magnitudes of the
sub-band signals are obtained with (1),

Pm =
N−1∑
k=0

|Xm (k)| , (1)

where Pm denotes the integrated magnitude of the mth sub-
band signal; N denotes the number of utilized sub-bands.
Xm denotes the mth sub-band signal at the frequency domain,
and k denotes the kth frequency. With the integrated magni-
tudes of the sub-band signals, the weight factors for each sub-
band are estimated with (2),

ωm =

∏M−1
k=0 Pk∑M−1

i=0

[∏M−1
j=0 Pj

]
i

(k 6= m, j 6= i), (2)

where ωm denotes a weighting factor for the mth sub-band
image, and 5 denotes the product of the sequences, and
M is the number of sub-bands. Specifically for the denom-
inator, all sub-bands are multiplied except for ith sub-band.
Hence, the products are obtained while varying the number i
from 0 toM − 1, following which they are summed.

2) SPECKLE REDUCING ANISOTROPIC DIFFUSION
To further reduce speckle noise in the frequency compound-
ing image, an anisotropic diffusion technique with high
edge-sensitivity was applied to the image. The anisotropic
diffusion maintains edge contours in an ultrasound image
while it decreases speckles. Therefore, the speckle reduc-
ing anisotropic diffusion method(SRAD), as suggested by
Yu. et al [36], was utilized to reduce speckles on ultrasound
images for the 3D segmentation of rotator cuff tear regions.
In the anisotropic diffusion of the images, an instantaneous
coefficient of variations at a local position is applied to
a partial differential equation (PDE). The procedures are
described in detail as follows: When an intensity image with
a finite power and no zero values over an image supporting
� is given, the output image is updated based on anisotropic
diffusion partial difference equations (AD-PDE) as described
in (3) and (4),

∂I (x, y; t)
∂t

= div [c (q)∇I (x, y; t)] (3)

I (x, y; 0) = I0 (x, y) ,
∂I (x, y; t)

∂En
|∂� = 0, (4)
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where ∇ denotes the gradient operator; div denotes the
divergence operator; c(q) denotes the diffusion coeffi-
cient; q denotes the instantaneous coefficient of variations;
I0 denotes the initial image; ∂� denotes the border of �, and
En denotes the outer normal to the ∂�. The differential equa-
tion can be solved by an iterative Jacobi method. We assume
the discrete image as Ini, j (5) and solve the aforementioned
PDE. It is noted that the time step-size of1t and spatial step-
size of h are sufficiently small:

Ini, j = I (x, y, n1t),

(x = ih, y = jh, i = 0, 1, 2, . . . M − 1

& j = 0, 1, 2, . . . N − 1) (5)

where, Ini, j denotes the image intensity at x, y, and n1t;
n denotes the time index; i is the ith position in the x-direction;
j denotes the jth position in the y-direction; M denotes
the pixel size of the image support in the x-direction,
and N denotes the pixel size of the image support in the
y-direction. The derivative and Laplacian approximation can
be solved with symmetric boundary conditions. The deriva-
tive approximations is calculated with (6) and (7).

∇RIni,j =

[
Ini+1,j − I

n
i,j

h
,
Ini,j+1 − I

n
i,j

h

]
(6)

∇LIni,j =

[
Ini,j − I

n
i−1,j

h
,
Ini,j − I

n
i,j−1

h

]
(7)

The Laplacian approximations is obtained with (8)

∇
2Ini,j =

Ini+1,j + I
n
i−1,j + I

n
i,j+1 + I

n
i,j−1 − 4Ini,j

h2
(8)

The symmetric boundary conditions are illustrated with
(9) and (10).

InM ,j = InM−1,jj = 0, 1, 2, . . . N − 1 (9)

Ini,N = Ini,N−1i = 0, 1, 2, . . . M − 1 (10)

After the derivative and Laplacian approximations, the
diffusion coefficient c(q) is calculated with the follo-
wing (11)-(14).

cni,j= c[q(
1
Ini,j

√∣∣∣∇RIni,j∣∣∣2+∣∣∣∇LIni,j∣∣∣2, 1
Ini,j
∇

2Ini,j)] (11)

c (q)=
1

1+
[
q2 (x, y; t)− q20 (t)

]
/
[
q20(t)(1+ q

2
0 (t))

]
(12)

q(x, y; t)=

√√√√√√ 1
2

(
|∇I |
I

)2
−

1
42

(
∇2I
I

)2
[
1+ 1

4

(
∇2I
I

)]2 (13)

q0 (t)=

√
var [z (t)]

z(t)
(14)

where, var [z (t)] denotes the intensity variance, and z(t)
denotes the mean intensity over a homogeneous area at t.

After obtaining the diffusion coefficient c(q), the divergence
of c(·)∇I is calculated with symmetric boundary conditions
for the AD-PDE with (15).

dni,j =
1
h2

[
cni+1,j

(
Ini+1,j − I

n
i,j

)
+ cni,j

(
Ini−1,j − I

n
i,j

)
+ cni,j+1

(
Ini,j+1 − I

n
i,j

)
+ cni,j

(
Ini,j−1 − I

n
i,j

)]
(15)

Finally, the approximation to the PDE is obtained by the
anisotropic diffusion update function with (16). The approx-
imation can result in a US image in which speckle noise is
reduced, as shown in Fig. 4(b). The original image is shown
in Fig. 4(a)

In+1i,j = Ini,j +
1t
4
dni,j (16)

FIGURE 4. Application of SRAD to US image of cyst phantom; (a) original
(b) after SRAD.

3) CHAN-VESE ACTIVE CONTOUR ALGORITHM FOR
SEGMENTATION OF ROTATOR CUFF TEAR REGIONS
To determine the boundary of rotator cuff tear regions on an
ultrasound image, the active contour algorithm proposed by
Chan and Vese [37] is applied to the anisotropic diffusion-
filtered image. Before the algorithm is applied, an initial
contour is manually selected on the filtered image. The Chan-
Vese active contour algorithm is based on theMumford–Shah
function. This constitutes a powerful and flexible method that
can segment various types of medical images, which cannot
be properly segmented via classical segmentation methods
such as thresholding or gradient-based methods. The algo-
rithm is based on fitting an energy minimization problem
such that it can be reformulated in the level set function.
The segmentation boundary is represented implicitly with
the level set function, which enables the segmentation to
handle topological changes more easily than explicit snake
methods. The algorithm computes forces generated from the
attributes of an image. A contour is deformed by the forces.
To determine a precise boundary of the regions of interest, the
contour is deformed by the following procedures. A signed
distance function (SDF) is computed from the mask to be
initially determined. A level set is then utilized to track the
deformation of a contour over time. The SDF is computed
to represent the level set. Different surfaces and shapes are
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analyzed with the level set, and they are then split or merged
by the analyzed outcomes. From the image, two different
forces consider the deformation of an initial mask. Shrinkage
and expansion of the contour are controlled by the forces. The
force is computed as follows (17).

Fimage =
∫
inside(C)

(I (x, y)− c1)2dxdy

+

∫
outside(C)

(I (x, y)− c2)2dxdy (17)

where, C denotes the evolving contour; I denotes the image
in which speckle noises are reduced by the SRAD; c1 denotes
the mean of the inside of the contour C , and c2 denotes the
mean of the outside of the contour C . In the equation, the
shrinkage is controlled by the first term while the expansion
is controlled by the second term. By minimizing Fimage, the
boundary of a target object is obtained in the image.When the
contour reaches the boundary of the object, the shrinking and
expansion forces are balanced, and thus the Fimage becomes
minimal and stops the deformation of the contour. The details
are as follows: the algorithm minimizes the aforementioned
fitting term and a regularizing term such as the length of the
contour C and area of the region inside C with (18).

F (c1, c2,C) = µ · Length (C)+ ν · Area (inside (C))

+ λ1

∫
inside(C)

(I (x, y)− c1)2 dxdy

+ λ2

∫
outside(C)

(I (x, y)− c2)2dxdy (18)

where, µ ≥ 0, ν ≥ 0, λ1, λ2 > 0 are fixed parameters,
and the parameters are typically fixed as λ1 = λ2 = 1 and
ν = 0. The minimization problem can be redefined by the
Mumford–Shah function for segmentation as (19).

FMS (I ,C) = µ · Length (C)

+ λ

∫
�

|I0 (x, y)− I (x, y)|2 dxdy

+

∫
�/C
|∇I (x, y)|2 dxdy (19)

where, I0 denotes an image for segmentation; C is the con-
tour; � denotes the domain of the image, and µ and λ
denote positive parameters that affect the quality of segmen-
tation. By smoothing the regions with sharp boundaries in the
image I0, minimization of this function is accomplished, and
the solution image I (which is the smoothed image of I0) fol-
lows. Therefore, in this active contour model, the contour C
is determined by searching for I , the optimal approximation
of I0, which assumes only two values as (20) with one edgeC .

I =

{
mean(I0) inside C
mean(I0) outside C

(20)

The problem is represented using the level set method. The
contour C ⊂ � is reformulated by the zero-level set of the
Lipschitz function φ : � −→ R as (21)

C = {(x, y) ∈ � : φ (x, y) = 0} (21)

For the level set formulation of the active contour model, the
unknown variable C is replaced by an unknown variable φ.
Using the Heaviside functionH , the energy termF (c1, c2, φ)
is expressed as (22)

F (c1, c2, φ)

= µ

∫
�

δ (φ (x, y)) |∇φ (x, y)| dxdy

+ λ

∫
�

|I (x, y)− c1|2 H (φ (x, y))dxdy

+ λ

∫
�

|I (x, y)− c2|2 (1− H (φ (x, y)))dxdy (22)

Additionally, given image I , the solution of the model is
expressed as (23)

u (x, y) = c1H (φ (x, y))+ c2 (1− H (φ (x, y))) (23)

In order to minimize the energy term F (c1, c2, φ), c1, c2
and φ are determined where the derivative of F becomes
zero. Here, c1(φ) , c2(φ) and φ can be updated recursively
with (24)-(26).

c1 (φ)=

∫
�
u0 (x, y)H (φ (x, y)) dxdy∫
�
H (φ (x, y)) dxdy

(24)

c2 (φ)=

∫
�
u0 (x, y) (1− H (φ (x, y)))dxdy∫
�
(1− H (φ (x, y)))dxdy

(25)

∂φ

∂t
= δ (φ)

[
I · div

(
∇φ

|∇φ|

)
−λ (I0 − c1)2+λ (I0−c2)2

]
(26)

If the solution is stationary, the recursion then stops.

C. EVALUATION OF THE 3D ULTRASOUND IMAGING
PLATFORM AND ALGORITHM
In order to evaluate the performance of the 3D ultrasound
imaging platform with the proposed algorithm for the 3D
segmentation, we constructed rotator cuff tear-mimicking
phantoms, as shown previously [38]. The phantom consists
of a normal soft tissue-mimicking region and rotator cuff
tear-mimicking region (Fig. 5). The soft tissue-mimicking
region exhibits a Young’s modulus of 3 kPa, and this is
similar to the Young’s modulus of normal tissues in the shoul-
der. Conversely, the rotator cuff tear-mimicking region was

FIGURE 5. Rotator cuff tear-mimicking phantoms: (a) rotator cuff
tear-mimicking region (b) soft tissue-mimicking region.
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constructed by filling degassed water into the latex, thereby
resulting in hypoechoic regions in an ultrasound image. It is
noted that the rotator cuff tear regions typically exhibit hypoe-
choic rather than normal regions in an ultrasound image of the
shoulder [39]. The volumes of the rotator cuff tear regions are
0.2, 0.4, 0.6, and 0.8 ml because the typical volume of rotator
cuff tear regions range from 0.15 to 0.80ml [39]. The volumes
were estimated by measuring the water weight and density in
the latex.

D. CLINICAL EXPERIMENT
A clinical trial was conducted at Daegu Catholic University
Hospital to evaluate the performance of the developed system
and algorithm in the detection of rotator cuff regions. Ultra-
sound images of rotator cuff tear regions of fifteen patients
were obtained using the system, and this is followed by 3D
segmentation of the rotator cuff regions of the shoulders
using the developed algorithm. Rotator cuff disease in the
patients was confirmed by two different medical doctors.
The clinical trial was approved by the Institutional Review
Boards of DCUH. The trials were performed following the
relevant guidelines and regulations, and informed consent
was obtained from the participants.

E. QUANTITATIVE EVALUATION OF THE
DEVELOPED ALGORITHM
For the quantitative analysis of the developed algorithm, the
Dice coefficient (DC), Hausdorff distance (HD), and volu-
metric similarity (VS) were obtained. The Dice coefficient
is used as an indicator for the evaluation of accuracy in
segmentation. The value between the segmented result and
ground truth is obtained with (27),

DC i=
2 × Area of Intersection

Area of segmented result + Area of ground truth
,(27)

where i denotes the frame number, and the Area of Intersec-
tion represents the intersected area between the segmented
region and the ground truth region. The ground truths were
built under the supervision of medical doctors, and the doc-
tors verified. Additionally, themean of the DC values for each
frame sequence is calculated with (28)

Average DC =
1
n

n∑
i=1

DC i (28)

The average DC value represents the capability of our devel-
oped algorithm for 2D segmentation of rotator cuff tear
regions. Furthermore, a volume DC was calculated with (29).
The volume DC value represents the capability of the algo-
rithm for 3D segmentation of rotator cuff tear regions.

volume DC

=
2 × volume of Intersection

volume of segmented result + volume of ground truth
(29)

The HD measures the similarity of the two sets, which are
formed by voxels of the segmented region and ground truth
region, in a metric sense. Thus, the lower the HD, the more
alike the two sets. The HD is obtained with (30)

HD = max
a∈A
{min
b∈B
{d(A,B)}} (30)

where, a denotes the voxels in the segmented region A and b
denotes the voxels in the ground truth region B.

Further, the volume of the segmented region and ground
truth are calculated if a volume of one voxel is known. The
platform is evaluated using the RCT-mimicking phantom of
pre-determined volumes, and thus estimation of the volume
is also significant for the evaluation. In the obtained 2D US
images, the size of the pixel is 74µm×53µm, and the size
is determined by dividing the actual length of the image by
the number of pixels. Similarly, in the reconstructed 3D US
images, the length of the voxel (which is an extension of the
pixel) was calculated as 110µm, and the 2D images and 3D
images were calculated after interpolation. Thus, the volume
of a single voxel is 433µl (74µm×53µm×110µm).

A quantitative comparison of the volumes is required after
estimation of the volume of the segmented and ground truth
region. Thus, the VS is a proper metric for the purpose. The
VS is defined as the absolute volume difference divided by
the sum of ground truth volume and segmented volume. It is
obtained with (31).

VS

=1−
|volume of ground truth−volume of segmented result|
volume of ground truth+ volume of segmented result

(31)

III. RESULTS
A. EVALUATION OF THE PERFORMANCE OF
THE 3D IMAGING PLATFORM
In the study, 3D images of a commercial phantom (Model
040GSE, CIRS Inc., Norfolk, VA, USA) were obtained via
the 3D ultrasound imaging platform. A 3D image set and the
associated 3D reconstructed image are shown in Fig. 6. The
3D image set is shown in Fig. 6(a). The images at different
depths in the elevation direction are shown in Fig. 6(b).

FIGURE 6. Phantom image obtained via the 3D ultrasound imaging
system: (a) a 3D image set, (b) sectioned images in the elevation
direction, (c) 3D reconstructed image of a commercial phantom, and
(d) axial and lateral resolution of the system.
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The darkest regions indicate anechoic regions in the phan-
tom. The brighter regions represent hyperechoic regions in
the phantom. Figure 6(c) shows the 3D image constructed
from the 3D image set. The field of view of the 3D image
is 38 mm×50 mm×56 mm, and this is suitable for the imag-
ing of rotator cuff tear regions in the shoulder. Furthermore,
the axial and later resolution of the system was investigated
via imaging resolution targets with a diameter of 80 µm.
The wire targets are placed axially and laterally with certain
regular distances at depths of 3 cm. The resolution of the
system was determined as the minimum distance of the wire
targets that can be imaged separately using the system. Thus,
the system offered an axial resolution of 250 µm and a lateral
resolution of 1 mm. In the magnified image (Fig. 6(d), above
inset), with the graphical description of the actual targets as
a reference (Fig. 6(d), bottom inset), it was observed that
two targets at the left-most location were distinguishable
in the axial direction whereas two targets at the right-most
below location were not clearly distinguishable in the lateral
direction.

B. FREQUENCY COMPOUNDING EFFECTS ON THE
REGIONS OF INTEREST IN AN ULTRASOUND IMAGE
A frequency compounding technique was applied to an ultra-
sound image to decrease speckle noise and to improve the
contrast-to-noise ratio (CNR) of an ultrasound image in the
3D segmentation of the rotator cuff tear regions. In order
to evaluate the effects of the frequency compounding on
the ultrasound image, the speckle SNRs and CNRs of the
ultrasound image after 2-band and 4-band frequency com-
pounding were compared to those of the corresponding orig-
inal ultrasound image. Figure 6 shows the ultrasound image
of a commercial phantom before and after the frequency
compounding. After the 2-band and 4-band frequency com-
pounding of the image, speckles in the ultrasound image
are significantly reduced as shown in Figs. 7(b) and (c).
The speckle SNR of the ultrasound image was improved by
2.1975 from 1.898 due to the 2-band frequency compounding
whereas it was improved by 2.4999 from 1.898 after the
4-band frequency compounding (Table. 1). Additionally, the
CNRs of the ultrasound image before and after frequency
compounding were compared. Two ROIs should be speci-
fied to estimate the CNR. In the ultrasound images, regions

FIGURE 7. Comparisons of ultrasound images before and after frequency
compounding (a) original ultrasound image, (b) ultrasound image after
2-band frequency compounding, and (c) ultrasound image after 4-band
frequency compounding.

TABLE 1. Speckle SNR and CNR of ultrasound images before and
after 2 sub-band frequency compounding and 4 sub-band frequency
compounding of the images.

inside and outside of the anechoic region are specified as
the ROIs. Thus, the CNRs of the ultrasound images after
2-band and 4-band frequency compounding were measured
as 0.622 and 0.789, respectively, whereas the CNR of the
original ultrasound image corresponded to 0.557. The CNRs
of the ultrasound image were significantly improved via fre-
quency compounding.

FIGURE 8. Ultrasound images of resolution target regions of the
commercial phantom before and after frequency compounding with
different number of bands (a) Original ultrasound and intensity profiles
along the targets for examination of the lateral and axial resolutions
(b) Ultrasound image after 2-band frequency compounding and intensity
profiles along the targets for examination of lateral and axial resolutions
(c) Ultrasound image after 4-band frequency compounding and intensity
profiles along targets for examination of lateral and axial resolutions. The
red dotted rectangle indicates two targets separately located within a
distance of 250 µm in the axial direction.

Additionally, the effects of the frequency compounding
on the axial and lateral resolution were examined. Figure 8
shows the ultrasound images of the resolution target regions
before and after the 2-band [Fig. 8(b)] or 4-band [Fig. 8(c)]
frequency compounding. As shown in Fig. 8, the axial resolu-
tion was degraded due to frequency compounding. The axial
resolution slightly worsened because the sub-band number
for the frequency compounding increased (Fig. 8, middle).
In the 4-band frequency compounding image, two targets
located within a distance of 250 µm in the axial direction
were discernable albeit not clearly [Fig. 8(c)]. Conversely,
the intensity profiles of the targets as indicated by the blue
arrow to investigate changes in the lateral resolution due to
the frequency compounding were examined. The results indi-
cated that the lateral resolutionwas not significantly degraded
due to frequency compounding. The results indicate that the
frequency compounding significantly decreased the speckle
SNR and improved the CNR whereas it slightly degraded
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axial resolutions when the number of bands increased in the
frequency compounding.

C. 3D SEGMENTATION OF MIMICKED ROTATOR CUFF
TEAR REGIONS WITH DIFFERENT VOLUMES
To evaluate the performance of the 3D ultrasound imaging
platform with the proposed algorithm for 3D segmentation,
we performed 3D imaging of rotator cuff tear-mimicking
phantoms with different volumes and then applied the pro-
posed algorithm to the images for 3D segmentation of the
mimicked rotator cuff tear regions. The pre-processing affect
the US image quality and performance of the segmentation.
Thus, the effects of the combinations of the pre-processing
methods (FC, SRAD) were quantitatively and qualitatively
evaluated via the phantom experiment. An adaptive histogram
equalization (AHE) was essentially applied to enhance the
image contrast. Frequency compounding was used as 2 sub-
band FC and 4 sub-band FC. Furthermore, SRAD was also
used. Thus, a total of six pre-processing procedures were
compared including combinations involving the absence of
each method.

The acquired 3D image and segmented result of the RCT-
mimicking phantom in which the volume is 0.6 ml are
visualized in 3D as shown in Fig. 9. The segmented RCT
region(Fig. 9, right) is the result of a combination of pre-
processing methods that results in the optimal performance.
More explicit 3D segmented images of other phantoms of
different volumes are shown in Fig. 10. The left side of
Fig. 10 shows the segmented results of the pre-processing
procedure that consists of 2 sub-band FC and SRAD.
Conversely, the right side shows the segmented results of
the pre-processing procedure without FC and SRAD. The
segmented regions (Fig. 10, left side) exhibit good agree-
ment with the manually segmented regions (ground truths),
and the pre-processing procedure (2 sub-band FC/SRAD)
evidently significantly enhanced the performance of the
segmentation.

FIGURE 9. 3D reconstructed B-mode image of rotator cuff mimicking
phantom with a volume of 0.6 ml and segmented rotator cuff
tear-mimicking phantom that is denoted in green.

The average DC, volume DC values, and HDs were com-
pared as shown in Table. 2 for the quantitative analysis of
the performance of the pre-processing procedures in the pro-
posed algorithm for the 3D segmentation of RCT regions.

FIGURE 10. 3D segmentation of the mimicked RCT regions with different
volumes: Green color denotes the segmentation and transparent red
color denotes the ground truth on (a) 3D segmentation with 2-band
frequency compounding/SRAD/Active contour and (b) 3D segmentation
image with original/Active contour.

Following the application of 2 sub-band FC, the averaged
DC and volume DC values increased by 5% when compared
to that in absence of FC. The 4 sub-band FC also slightly
increased the average DC and volume DC values when com-
pared to the 2 sub-band FC. The HD also decreased with
the 2 and 4 sub-band FC. Furthermore, SRAD (which is typ-
ically used to suppress speckle noise while preserving edges)
was applied to the original US images, two and 4 sub-band
images. Specifically, SRAD slightly increased or decreased
the performance. Although the effect is slight, the pre-
processing procedure of 2 sub-band FC and SRAD resulted in
optimal segmentation accuracy among the various combina-
tions. The average DC and volume DC values corresponded
to 0.861 and 0.885, respectively, which are approximately
5% higher than the lowest value of those metrics. The HD
is 4.96 mm, which is considerably improved when compared
to the highest value(5.58 mm) and is similar to the lowest
value (4.85 mm).

Furthermore, the volumes of the rotator cuff tear-
mimicking phantoms estimated from the ground truths and
segmented results were compared with the VS between the
ground truths and segmented results (Table. 3). Specifically,
we also applied the pre-processing procedure of the two-
sub-band FC and SRAD to the images prior to the appli-
cation of the active contour processing. The VS values for
the phantoms at 0.2, 0.4, 0.6, and 0.8 ml are 0.980, 0.891,
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TABLE 2. Average DC, volume DC, and HD values of 3D segmentation of
the mimicked RCT regions with different volumes by different
pre-processing procedures; standard deviations are presented in the
parentheses.

TABLE 3. Estimated volumes of the RCT mimicked region and the VSs
calculated with the volumes: segmented with a combination that
provides the highest average DC value.

0.993, and 0.979, respectively. The results demonstrate that
the performance of the 3D ultrasound imaging platform with
the proposed algorithm with the pre-processing procedure
is sufficiently high such that the algorithm can be used to
quantitatively analyze rotator cuff tear regions.

D. 3D SEGMENTATION OF THE ROTATOR CUFF TEAR
REGIONS USING THE DEVELOPED ALGORITHM
After evaluation of the performance of the 3D ultrasound
imaging platform with the proposed algorithms for the 3D
segmentation, a clinical test was conducted at Daegu Catholic
University Hospital using the developed platform and algo-
rithms. Participants were preoperative and include a total
of 15 patients. A medical doctor obtained the 3D ultrasound
images via the platform. The developed algorithms were
applied to the 3D ultrasound images to segment the rotator
cuff tear regions of the participants. The computation time of
the algorithm is less than 1 min for the segmentation of single
clinical data.

The obtained 3D image and associated segmented 3D
image of rotator cuff tear regions with different views
(Case 4) are shown in Fig. 11. Furthermore, to examine
the effects of the pre-processing including the frequency
compounding and SRAD on 3D segmentation, we com-
pared the 3D segmented images of the rotator cuff tear
regions, as obtained by algorithms with (Fig. 12(a)) and
without the 2 sub-band frequency compounding and SRAD
(Fig. 12(b)), with the 3D ground truth images. The 3D
ground truth images were reconstructed using 2D ground
truth images. The 3D segmented images (green), as obtained
by the algorithms, are presented as overlaid with the 3D
ground truths (red)(Fig. 12). Here, it was observed that the 3D
segmented images obtained by the algorithm with the 2-band
frequency compounding and SRADwere better matchedwith
the 3D ground truths than those by the algorithm without the
pre-processing.

FIGURE 11. 3D reconstructed B-mode image of rotator cuff tear region
and segmented rotator cuff tear region denoted in green(Case 4).

For further quantitative analysis of the proposed algorithm,
the average and volumeDC values andHD, as obtained by the
algorithm with different pre-processing procedures, are com-
pared and listed in Table. 4. In a manner similar to the result
of the RCT-mimicking phantom experiment, the frequency
compounding significantly increased the performance of the
segmentation. After 2 sub-band frequency compounding,
the average DC and volume DC values increased by 10%
when compared to those in the absence of the FC. However,
the 4 sub-band FC (which also expected to improve the
performance of the segmentation) worsened the performance
when compared to the 2 sub-band FC even it is better than
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FIGURE 12. Comparisons of 3D segmented images of rotator cuff tear
regions as obtained by the developed algorithm with 3D ground truths
that are constructed with 2D ground truth images: (a) 3D segmented
images obtained by the developed algorithm (2-band frequency
compounding/SRAD/Active contour) and (b) 3D segmentation images
obtained via an active contour technique without the preprocessing that
includes the 2-band frequency compounding/SRAD. Green color denotes
3D segmented images whereas the red color denotes ground truths.

that in the absence of FC. The results indicate that the 4 sub-
band FC deteriorated the axial resolution of US images, as
shown in Fig. 8. Although the deterioration did not affect the
phantom experiment in which the boundary of the mimicked-
RCT region is clear, it resulted in worse performance in the
clinical trial in which the RCT region exhibited a more vague
boundary that easily collapsed with pre-processing.

The application of SRAD was also evaluated. In a man-
ner similar to the result of the phantom experiment, SRAD
decreased the performance of the original and 4 sub-band
FC images and increased the performance of the 2 sub-band
FC images. Therefore, when the 2 sub-band frequency com-
pounding and SRAD techniques were sequentially applied to
ultrasound images before application of the active contour
technique, the average DC and volume DC values were the
highest and the HD corresponded to the lowest value. The
average DC value was 0.663, which is 11% higher than that
obtained with the original ultrasound images. The volume
DC value was 0.723, which is 10% higher than that obtained
with no pre-processing methods with the exception of AHE.
The HD was 5.68 mm, which is considerably lower than the
largest value of 6.46 mm.

Additionally, the volumes for all the cases were cal-
culated using the segmented results of the proposed
algorithm that consists of the pre-processing procedure

TABLE 4. Mean of Average DC, volume DC, and HD values of the
3D segmentation of the RCT regions for all cases with the different
pre-processing procedures; standard deviations are presented in the
parenthesis.

TABLE 5. Volume similarity(VS) and volume DC values for different
volumes segmented by the proposed algorithm with the 2 sub-band
FC/SRAD/AHE.

(2 sub-band FC/SRAD/AHE). Subsequently, volume simi-
larity (VS) was calculated for all the cases, and the VSs
were categorized via their volumes (lower than 0.2 ml, lower
than 0.4 ml, larger than 0.4 ml). The mean of the VSs for
each categorized group was given with the mean of volume
DCs(Table. 5). The group of the cases with volume exceeding
0.4 ml exhibited higher VSs and volume DCs than the groups
of lower volume cases. Decreases in the volume decreased the
accuracy(VS, volume DC). The mean and standard deviation
of the total VSs were 0.865±0.106. These results suggest
that the 3D ultrasound imaging platform with the proposed
algorithm with the pre-processing combination of 2 sub-band
frequency compounding, SARD, and AHE exhibits potential
for 3D quantitative analysis of rotator cuff tear regions.

For further evaluation of the performance of the developed
algorithm, the segmentation outcomes obtained with clini-
cal data via algorithms based on watershed, region grow-
ing, and active contour(centroid) were compared with the
results of our developed algorithms (Table. 6).With respect to
the watershed, region growing, and active contour(centroid),
the pre-processing combination (2 sub-band FC/SRAD) was
applied in a manner similar to developed algorithm before the
segmentation step. Specifically, the active contour(centroid)-
based algorithm initializes masks by a centroid (center of
mass) of a previous segmented frame, which is a conventional
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TABLE 6. Comparisons of average and volume DCs obtained using the
proposed algorithm (underlined) and other conventional algorithms.

method for 3D segmentation [30]–[32]. Conversely, the pro-
posed algorithm randomly generates masks on a subsequent
frame based on the segmented contour of the previous frame
and select optimal mask for the subsequent frame. The ran-
domly generated masks in the active contour processing
resulted in a more robust segmentation of tumors than the
generated mask at a centroid.

Thus, the watershed-based algorithm exhibited an average
DC value of 0.374 and a volume DC value of 0.428. The
watershed-based algorithm exhibited over-segmentation of
the rotator cuff tear regions. The results indicate that the
rotator cuff tear and the bone regions were connected after
the watershed transformation in several images. Conversely,
the region growing-based algorithm exhibited an average
DC value of 0.374 and a volume DC value of 0.442. The
findings reveal that when ultrasound images exhibit ambigu-
ous boundaries on rotator cuff tear regions or low-intensity
regions on their boundaries, and the growing regions pene-
trated into unwanted regions via the low-intensity regions and
ambiguous boundaries. In contrast, given the superiority of
active contour that detected an overall edge contour of the tar-
get object and also controlled the smoothness of the contour,
and thus the active contour-based algorithm exhibited signifi-
cantly increased accuracy with an average DC value of 0.614
and volume DC value of 0.677. However, the active contour-
based algorithm occasionally exhibited the wrong initializa-
tion of masks during the segmentation of the RCT region in
3D US images. Eventually, the segmentation of the rest of
the 3D image after the inaccurate initialization failed. This
is also due to severely vague boundary and irregular shape of
the RCT region. The developed algorithm enhanced accuracy
with randomly seeded masks for avoiding the wrong initial-
ization. Thus, it resulted in the highest average DC value of
0.663 in the 3D segmentation of rotator cuff tear regions.
Furthermore, it suggests that the developed algorithm outper-
formed the previous watershed, region growing-based algo-
rithms, and the active contour(centroid)-based algorithm in
the segmentation of rotator cuff tear regions.

IV. DISCUSSION
As previously mentioned, the quantitative analysis of rotator
cuff tear regions in 3D aids in the determination of treatment
plans and monitoring of treatment efficacy. In the study,
for the 3D analysis of rotator cuff tear region, we devel-
oped a wide-field 3D ultrasound imaging platform exploiting

conventional 2D US imaging system with linear step motor,
DAQ board, and 3D-printed scanning apparatus. Addition-
ally, for providing volumetric information of rotator cuff tear
regions, a semi-automatic 3D segmentation algorithm was
developed with an extension of the conventional 2D segmen-
tation algorithm (Chan-Vese active contour) using frequency
compounding and SRAD as pre-processing. The capability of
the developed platform (including the developed algorithm)
in terms of the quantitative analysis of the rotator cuff tear
region was demonstrated via the RCT-mimicking phantom
experiment and clinical trials (15 patients).

In the wide-field 3D US imaging platform, the DAQ board
(whichwas used in the study (USB6341, National Instrument,
USA)) can be replaced with a cheaper board that exhibits
the same function. Thus, the cost for the development using
the conventional 2D US imaging system (DAQ board with a
cheaper price: 200$, linear step motor: 200$) can be lower
than the commercial 3D US system with 2D matrix array
transducer as well as the conventional MRI. Additionally, the
developed platform offered a 3D image with a larger FoV
(maximum: 38 mm×90 mm×56 mm) than the 2D matrix
array transducer, and thus it is more suitable for analysis of
rotator cuff tears. It is noted that the field of view is sufficient
to image rotator cuff tear regions in 3D. Errors or artifacts can
exist in the reconstructed 3D image which aroused due to the
motion of the probe or patient. However, the single scanning
using the platform is sufficiently rapid (10 s) to avoid the
motions of a patient for a while. Thus, errors and artifacts due
to the movement of a patient can be avoided. Specifically, we
did not observe any significant artifacts due to the movements
of patients in the study. The time is significantly shorter than
the time for scanning using MRI (30 min). Furthermore, the
platform was configured using a conventional 2D US system,
which was widely used in the clinic. It is noted that the use
of the platform does not require anything specific such as
calibration and tedious setting. Thus, even clinicians who are
novices to the platform can easily adapt to the platform.

In the semi-automatic 3D segmentation algorithm, the pro-
posed approach with randomly seeded masks was attempted
to improve the prior approach which utilized the center of
mass as an initial mask [30]–[32] for the extension of the
2D segmentation algorithm to segment a 3D object. The per-
formance of the new approach exhibited better performance
than the prior approach and other algorithms based on con-
ventional segmentation methods (watershed, region growing)
(Table. 6). Furthermore, frequency compounding and SRAD
were applied to enhance the quality of US images before the
segmentation step. Specifically, frequency compounding in
which the effect on the segmentation is not sufficiently exam-
ined to-date, to the best of the author’s knowledge [40], was
additionally evaluated using a commercial phantom(Model
040GSE, CIRS Inc., Norfolk, VA, USA), and its effect was
demonstrated with increases in SNR and CNR. However, it
worsened the axial resolution (Fig. 7, Fig. 8, Table. 1) as
proved previously [34]. The degradation in axial resolution
makes it difficult to detect the boundary of the RCT region
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and leads to low accuracy of the segmentation. Eventually, it
can lead to a decrease in the accuracy of diagnosis. However,
a trade-off exists for high performance of the segmentation
between speckle noise and axial resolution while varying
the number of sub-bands. Specifically, in the clinical tri-
als, the 2 sub-band frequency compounding exhibited better
performance in the 3D segmentation than the 4 sub-band
frequency compounding and absence of the frequency com-
pounding (Table. 4).

Thus, FC considerably improved the performance of the
segmentation when compared to SRAD, which is conven-
tionally utilized to eliminate speckle noise. And, SRAD did
not show significant improvement in the study (Table. 2,
Table. 4). Although the effect of SRAD is negligible, the
pre-processing procedure that consists of 2 sub-band FC and
SRAD resulted in the highest accuracy as demonstrated with
average DC, volume DC, and HD. However, the performance
of the segmentation was considerably lower in the clini-
cal trial when compared to the phantom experiment. This
is because the boundaries of the rotator cuff tear regions
were significantly more ambiguous than those of the RCT-
mimicking phantoms. Hence, the developed algorithm exhib-
ited good performance in the 3D segmentation of rotator cuff
tear regions.

Conversely, as shown in Table. 5, the RCT regions
of lower volume(<0.4 ml) resulted in lower accuracy
of the segmentation than the RCT regions of a larger
volume(>0.4 ml)(Table. 5). In the algorithm, a region of
interest was not specified although an overall US image
was processed, and thus a small rotator cuff tear (which is
relatively lower than the image) was not accurately detected.
Nevertheless, the mean of VS for the 3D segmented rotator
cuff tear regions by the developed algorithm is 0.865, and this
can be sufficiently high for the quantification of rotator cuff
tear regions. However, in the phantom experiment, the degra-
dation based on the volume was not observed (Table. 3) given
the clearer boundary and spherical shape of the mimicked-
RCT region that maximized the capability of being detected
and the size of the region (Fig. 5, Fig. 9). However, the
phantoms of real volumes (which are less than 0.6 ml) exhib-
ited slightly lower volumes, as estimated from the segmented
results and ground truths, when compared to the real volumes
of each. This can be due to the limited lateral and axial reso-
lutions of the 3D ultrasound imaging platform. It is improved
by the development of a high-frequency ultrasound imaging
platform.

The wide-field 3D US imaging platform with the semi-
automatic 3D segmentation algorithm exhibited its capability
to provide readily available quantitative analysis of rotator
cuff tear regions with cost and time savings. Furthermore, the
platform with the algorithm satisfied doctors with the neces-
sity to understand better spatial information in the diagnosis
of RCT for better treatment planning. Although the platform
with the algorithm enabledmore accurate 3D analysis of rota-
tor cuff tear region with wider FoV than conventional 2D and
3D US systems, the MRI can exhibit superior performance in

terms of the proposed system because it offers better resolu-
tion and sensitivity (Fig. 13). Nevertheless, previous studies
suggested that MRI and US exhibit comparable accuracy in
the diagnosis of a rotator cuff tear. Thus, in this regard, the
platform can aid in the diagnosis andmonitoring of the rotator
cuff tear and especially with accurate visible 3D informa-
tion, good accessibility, time and cost efficiency, and easy
repeatability.

FIGURE 13. US image of the rotator cuff tear region and corresponding
MRI image; yellow arrows delineate the RCT region.

The linear scanning method utilized in the study enabled
simple and reliable scan conversion with the accurate posi-
tion information of the transducer. The simplicity can be
demonstrated without the need for a unique algorithm or high
computational cost. Additionally, as shown in Table. 3, real
volume and estimated volumes are not significantly different,
and it proves the reliability. However, in the clinical trial,
a potential angle-dependent artifact existed, and this is termed
as anisotropy. When the ultrasound beam is incident on a
tendon, the organized fibrils can reflect a majority of the
beam in a direction away from the transducer. This results in
the transducer not receiving the returning echo, and this can
be assumed as hypoechoic area and indicates a tear. In the
study, the artifact anisotropy was avoided due to the doctor’s
effort wherein the artifact did not occur due to an arbitrary
optimal position of imaging. Hence, this can cause operator
variability in the platform. Therefore, the development of a
credible novel free-hand scanning method or the application
of ultrafast imaging (which can image a single frame with
beams of various incident angles) can avoid anisotropy and
improvement of operator-reliability. Additionally, a novel
free-hand scanning method can aid in the improvement of the
platform’s usability by a doctor.

Furthermore, inter/intra-variability can exist when using
the semi-automatic 3D segmentation algorithm because there
exists an intervention by a doctor even if it is only once, and
the intervention can be affected by the doctor’s subjective
view. It can improve with the development of the fully-
automatic segmentation algorithm using a deep-learning
approach. Furthermore, when a large set of clinical data is
ready, the deep-learning approach can make the segmentation
algorithm more accurate and robust. This can constitute the
focus of a future study with improvements in the 3D US
platform.
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V. CONCLUSION
In the study, we developed a wide-field 3D imaging platform
with the semi-automatic segmentation algorithm that can pro-
vide a 3D quantitative analysis of rotator cuff tears in a short
image acquisition time with less cost. The platform is useful
in terms of developing a platform for 3D quantitative analysis
based on readily available imaging modality, i.e., ultrasound
imaging. Thus, the platform can aid in the analysis of rota-
tor cuff tears, which was previously qualitatively diagnosed
based on the experience of a doctor. Eventually, it is expected
to quantitatively lead to better treatment plans andmonitoring
treatment efficacy for rotator cuff disease.

Furthermore, the platform exhibits the potential to further
serve as a platform for image vascularity (which is useful
information for monitoring treatment efficacy) with anatomic
information in 3D via the application of ultrasound Doppler
or photoacoustic imaging. This will be examined in a future
study.
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