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Abstract: Accompanied by increased life span, aging-associated diseases, such as metabolic
diseases and cancers, have become serious health threats. Recent studies have documented that
aging-associated diseases are caused by prolonged cellular stresses such as endoplasmic reticulum
(ER) stress, mitochondrial stress, and oxidative stress. Thus, ameliorating cellular stresses could
be an effective approach to treat aging-associated diseases and, more importantly, to prevent such
diseases from happening. However, cellular stresses and their molecular responses within the cell
are typically mediated by a variety of factors encompassing different signaling pathways. Therefore,
a target-based drug discovery method currently being used widely (reverse pharmacology) may not
be adequate to uncover novel drugs targeting cellular stresses and related diseases. The connectivity
map (CMap) is an online pharmacogenomic database cataloging gene expression data from cultured
cells treated individually with various chemicals, including a variety of phytochemicals. Moreover,
by querying through CMap, researchers may screen registered chemicals in silico and obtain the
likelihood of drugs showing a similar gene expression profile with desired and chemopreventive
conditions. Thus, CMap is an effective genome-based tool to discover novel chemopreventive drugs.

Keywords: cellular stress; endoplasmic reticulum stress; ER stress; mitochondrial stress; oxidative
stress; hypoxia; connectivity map; CMap; drug discovery

1. Introduction

Recent progresses in public health, the health care system, and medicine have greatly helped to
extend our life span [1]. However, extended life span inevitably increases the risk of aging-associated
diseases including cardiovascular diseases and cancers. Furthermore, a surplus of food consumption
and lack of physical activity from a sedentary lifestyle has led to the drastic increase of obesity and
its associated metabolic disorders such as type 2 diabetes [2,3]. Recent studies have demonstrated
that aging-associated diseases, metabolic disorders, and cancers are caused by prolonged exposure to
cellular stresses such as endoplasmic reticulum (ER) stress, mitochondrial stress, heat shock stress, and
oxidative stress [4,5]. For example, the development of leptin resistance and insulin resistance leads to
obesity and type 2 diabetes, respectively, and chronic inflammation and cellular stresses, including
ER stress, oxidative stress, and mitochondrial stress have been reported to contribute to leptin and
insulin resistance [4–7]. Furthermore, metabolic and cellular stresses also play a crucial role in the
development of cancer and its pathophysiology [4,8,9]. Chronic exposure of cells to cellular stresses
such as oxidative stress may lead to tumorigenesis; however, elevated cellular stresses such as hypoxia
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and ER stress may kill cancer cells [4,8,9]. Indeed, cancer cells have been shown to actively employ
stress responses (e.g., unfolded protein response (UPR) against ER stress) to survive from excess
cellular stresses [4,8,9]. Therefore, alleviating certain cellular stresses may prevent the development
of cancer, whereas suppressing adaptive responses and escalating stresses can be useful in removing
existing cancer cells [4,8,9].

Therefore, developing chemopreventive ways to target appropriate cellular stresses could be
an effective prevention and therapeutic treatment toward various aging-associated disorders [10].
However, cellular stresses and related molecular responses are mediated by a myriad of molecules
encompassing multiple signaling pathways [4,5]. In addition, categorized cellular stresses do not
take place solely inside of cells; instead, several stresses appear altogether [4,5]. For this reason,
a target-based drug discovery process (reverse pharmacology) may not be adequate to discover novel
chemicals that can address cellular stresses and associated disorders, although this is currently being
used widely in academia and pharmaceutical companies (Figure 1A).
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Figure 1. Drug discovery using the connectivity map (CMap). (A) Target-based drug discovery.
(B) Phenotypic drug discovery. (C) CMap-based drug discovery. Gene signature of the biological or
pathological state of interest can be used as a query to search through CMap. CMap provides the search
result as a list of small molecules scored to predict their probability to mimic or reverse gene expression
profiles of the state of interest. Candidate chemicals can be further tested in in vitro cell culture and
in vivo animal experiments before proceeding with clinical trials to human subjects.

Phenotypic drug discovery (forward pharmacology) started to regain interest recently due to
its potential usefulness in finding novel drugs to target complex diseases wherein the mechanism
needs to be understood further, thanks to recent technological advances in cell-based phenotypic
screening and analysis of vast genomic data (Figure 1B) [11]. The connectivity map (CMap) is an online
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genome-based database established by Todd R. Golub’s group at the Broad Institute (Boston, MA,
USA), and catalogs transcriptome data from cultured cells treated individually with small molecules
(Figure 1C) [12,13]. By searching on CMap, researchers can screen registered chemicals in silico
and obtain the list of drugs displaying a similar gene expression profile with the desired biological
or pathological conditions as a rank. Numerous studies have successfully demonstrated CMap’s
potential as an effective pharmacogenomic drug discovery tool. In this article, we review the current
understanding of cellular stresses and signaling responses, and discuss CMap as a potentially useful in
silico drug screening tool to unearth novel drugs and phytochemicals to address cellular stresses and
their related disorders.

2. Cellular Stresses

2.1. Heat Shock Stress and Heat Shock Response

Newly synthesized proteins form their native tertiary structure primarily based on their
thermodynamic stability [14]. However, certain environmental conditions (e.g., heat, over-nutrition)
and mutations within proteins often disturb proper protein folding and lead them to form aggregates [14].
Studies have shown that accumulated misfolded proteins and their aggregates cause many debilitating
diseases, notably neurodegenerative diseases such as Alzheimer’s disease, Huntington’s disease,
and Parkinson’s disease [15]. In order to facilitate appropriate protein folding and to prevent misfolded
protein from forming aggregates, cells produce chaperone proteins such as cytoplasmic heat shock
proteins (HSPs) and ER chaperones [15–18].

Heat shock response was initially reported from the observation in which active transcription
(chromosomal puffs) was induced by heat treatment in the saliva gland of a fruit fly, Drosophila
busckii [19]. Many of these loci have been identified to encode HSPs which are categorized and named
based on their molecular weights—small HSPs, HSP40, HSP60, HSP70, HSP90, and HSP110 [20].
Although the specific role and mechanism of each HSP still needs to be investigated, HSPs generally
function cytoprotectively [21–23]. One of the widely studied roles of HSPs is to function as molecular
chaperones. They bind to misfolded and unfolded proteins, thus helping in folding and preventing
them from forming aggregates [21–23]. Additionally, HSPs have been shown to modulate protein
localization inside of cells and to promote antigen presentation [24].

Heat shock response including HSP expression is induced not only by heat but also by other cellular
stresses such as oxidative stress, osmotic stress, and exposure to heavy metals [21–23]. Subsequently,
these stresses activate heat shock transcription factors (HSFs), a major transcription factor family
mediating heat shock response. However, it is not understood clearly how HSFs sense cellular
stresses. There are several isomers of HSFs (6 isoforms were identified in human—HSF1, HSF2,
HSF4, HSF5, HSFX, and HSFY), and HSF1 is the most extensively studied among HSF isomers [22,25].
HSF1 exists as an inactive monomer in cytosol under normal conditions. In response to various
stressors, HSF1 becomes an active transcription factor by forming a homotrimer and translocates to
the nucleus [26–28]. Although the details of how the structure and activity of HSF1 are regulated
are still under investigation, it has been suggested that physical interaction between HSPs and
HSF1 leads to HSF1’s monomerization and cytosol localization under unstressed state, and in turn
inhibits HSF1’s activity [29,30]. Under heat shock stress, HSPs are released from HSF1 probably by
recruiting to unfolded or misfolded proteins, which subsequently allows HSF1 to form a homotrimer,
to translocate to the nucleus, and to transcribe its target genes with unique HSF1 binding promoter
(heat shock element) (Figure 2A) [22,25–30]. The changes in HSF1’s intrinsic structure itself during
environmental stress, especially heat, have been shown to promote HSF1’s homotrimerization and
nuclear translocation (Figure 2A) [31]. Furthermore, various post-translational modifications such as
acetylation and phosphorylation have been shown to modulate HSF1’s activity [22,25].
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to the nucleus and transcribe their target genes, whereas PERK suppresses protein translation and 
thus reduces protein load into the ER. (C) Mitochondrial stress and mitochondrial unfolded protein 
response (UPRmt). Mitochondrial stress activates several transcription factors, activating transcription 
factor associated with stress-1 (ATFS-1) and defective proventriculus (Drosophila) homolog-
1/ubiquitin-like 5 (DVE-1/UBL-5) (Caenorhabditis elegans) and ATF4 (mammals), which promote their 
target gene expression to restore mitochondrial homeostasis. Mitochondrial stress also triggers 
autophagy (mitophagy) via Parkin and Pink1. (D) Hypoxia and hypoxia-induced factor. Under 
normoxia, hypoxia-inducible factor α (HIFα) is hydroxylated on proline by prolyl hydroxylase 
domain enzymes (PHDs) or on asparagine by factor inhibiting HIF1 (FIH1), and the activity of HIFα 
is suppressed by its von Hippel–Lindau (VHL)-mediated ubiquitylation and degradation or its loss 
of the interaction with p300/CREB-binding protein (CBP). 
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Figure 2. Cellular stresses and signaling responses. (A) Heat shock stress and heat shock response.
The stressors such as heat lead to releasing of heat shock proteins (HSPs) from heat shock factor 1 (HSF1)
or directly changing the conformation of HSF1 resulting in its trimerization, nuclear translocation,
and target gene transcription. (B) Endoplasmic reticulum (ER) stress and unfolded protein response
(UPR). The accumulation of unfolded or misfolded proteins activates three ER transmembrane
proteins—activating transcription factor-6 (ATF6), inositol requiring protein-1 (IRE1), and protein
kinase RNA-like ER kinase (PERK). ATF6 and IRE1 generate the functional transcription factors,
ATF6N and spliced form of X-box binding protein 1 (XBP1s), which translocate to the nucleus and
transcribe their target genes, whereas PERK suppresses protein translation and thus reduces protein
load into the ER. (C) Mitochondrial stress and mitochondrial unfolded protein response (UPRmt).
Mitochondrial stress activates several transcription factors, activating transcription factor associated with
stress-1 (ATFS-1) and defective proventriculus (Drosophila) homolog-1/ubiquitin-like 5 (DVE-1/UBL-5)
(Caenorhabditis elegans) and ATF4 (mammals), which promote their target gene expression to restore
mitochondrial homeostasis. Mitochondrial stress also triggers autophagy (mitophagy) via Parkin
and Pink1. (D) Hypoxia and hypoxia-induced factor. Under normoxia, hypoxia-inducible factor α
(HIFα) is hydroxylated on proline by prolyl hydroxylase domain enzymes (PHDs) or on asparagine
by factor inhibiting HIF1 (FIH1), and the activity of HIFα is suppressed by its von Hippel–Lindau
(VHL)-mediated ubiquitylation and degradation or its loss of the interaction with p300/CREB-binding
protein (CBP).

Several studies have documented the role of heat shock response in aging, decreased and
impaired function of HSF1 and other protein quality control machinery during aging have been
reported, and further HSF1 activation was shown to increase the life span in a worm, Caenorhabditis
elegans [22,32,33]. In addition, increased expression of HSF1 and HSP70 helps to ameliorate pathologies
of neurodegenerative diseases such as Huntington’s disease, Parkinson’s disease, and amyotrophic
lateral sclerosis (ALS) in mouse and fly models [34–37]. Moreover, mice deficient of HSF1 are resistant
to form tumors under oncogenic conditions, suggesting that heat shock response protects tumor cells
from cellular stresses and promotes their survival and proliferation [38].
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2.2. Endoplasmic Reticulum (ER) Stress and Unfolded Protein Response (UPR)

The ER is an intracellular organelle that can be found in all eukaryotic cells. The ER bound
with ribosomes (rough endoplasmic reticulum (RER)) is the major place to synthesize secretory
and membrane proteins. The ER also produces lipids and stores intracellular calcium [5,39].
Newly translated proteins are moved into the ER lumen where they are folded into their native
structure and also modified post-translationally by disulfide bond formation and glycosylation. Within
the ER lumen, the quality control machinery such as ER chaperones helps to ensure proper protein
folding [16]. However, when the ER fails to secure proper folding of ER proteins, protein homeostasis
(proteostasis) is perturbed, and such a condition is referred to as ER stress [5,40]. Although the
accumulation of unfolded or misfolded proteins beyond ER’s folding capacity is a primary cause
of ER stress, metabolic stress, over-nutritional condition, and other cellular stresses also induce ER
stress [5,40]. Under ER stress, cells employ an adaptive mechanism, UPR, to reestablish the ER
homeostasis. The initial goal of the UPR signaling is to restore the ER proteostasis by increasing
the expression of genes which promote protein folding and attenuating general protein translation
which reduces additional protein load into the ER [5,40]. In addition, terminally misfolded proteins in
the ER are translocated to the cytoplasm and degraded by the 26S proteasome, which is known as
ER-associated degradation (ERAD) [41]. However, when ER proteostasis is not restored after these
initial responses, UPR signaling launches cell death pathways [5,40].

The UPR signaling is initiated by three ER-located transmembrane proteins in metazoans,
namely, inositol requiring protein-1 (IRE1), protein kinase RNA-like ER kinase (PERK), and activating
transcription factor-6 (ATF6) (Figure 2B). IRE1 (yeast) or IRE1α (mammal) is a type I transmembrane
protein residing in the ER and consists of an ER-lumenal domain and a cytoplasmic region with
serine/threonine kinase domain and a ribonuclease (RNase) domain [42,43]. Under normal conditions,
IRE1/IRE1α exists as a monomer by physical association of its ER-lumenal domain with an ER
chaperone, glucose-regulated protein 78 kDa (GRP78). However, under ER stress which demands more
ER chaperones to help the folding of unfolded or misfolded proteins, GRP78 is released from IRE1/IRE1α,
which then triggers the dimerization/oligomerization of IRE1/IRE1α. Dimerization/oligomerization in
turn leads to auto-transphosphorylation of IRE1/IRE1α at multiple sites including Ser724 of mammalian
IRE1α [44,45], which ultimately activates the RNase domain of IRE1/IRE1α [46]. The RNase domain
of IRE1/IRE1α selectively excises a 252-base intron of HAC1 mRNA by IRE1 (yeast) and a 26-base
fragment from XBP1 (X-box binding protein 1) mRNA (XBP1u) by IRE1α (mammal) [47–49]. Spliced
HAC1 and XBP1 (XBP1s) mRNA generate functional transcription factors, Hac1p and XBP1s protein,
which translocate to the nucleus and transcribe their target genes which are generally involved in
protein folding, ER biogenesis, and ERAD to restore ER proteostasis (Figure 2B) [47–49]. In addition to
the splicing of HAC1 and XBP1 mRNA, IRE1/IRE1α cleaves and downregulates miRNAs, mRNAs,
and other ER-associated RNAs, which is referred to as regulated IRE1-dependent decay (RIDD) [50–53].
XBP1s protein also shows various crosstalks with other signaling molecules including p38 MAPK, IKKβ,
p85α/β, BRD7, PGC-1α, and FOXO1, which regulate XBP1s activity and its intracellular localization,
and also modulate systemic glucose and lipid metabolism [54–59].

PERK is an ER-residing type I transmembrane protein composed of an ER-lumenal domain
and a cytoplasmic serine/threonine kinase domain. The ER-lumenal domain of PERK is structurally
homologous with the one of IRE1α, thus the dissociation of GRP78 from PERK monomer upon ER
stress prompts homodimerization, auto-transphosphorylation, and activation of the kinase domain
of PERK (Figure 2B) [60]. The activated PERK subsequently phosphorylates eukaryotic translation
initiation factor 2 subunit alpha (eIF2α) at Ser51, resulting in the suppression of the assembly of
ribosomal complex and global protein translation [61]. Despite the suppressed protein translation by
eIF2α phosphorylation, certain transcription factors such as ATF4 and ATF5 can be actively translated
due to multiple upstream open reading frames (uORFs) in their mRNA [62]. ATF4 then induces the
expression of the proapoptotic transcription factor, C/EBP homologous protein (CHOP), which has
been proposed as a major mediator of ER stress-induced apoptosis (Figure 2B) [63,64].
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ATF6 is a type II ER transmembrane protein consisting with an ER-lumenal domain sensing the ER
stress and a cytoplasmic domain that is a bZIP transcription factor [65]. The transcriptional activity of
ATF6 remains inhibited without ER stress due to its retention in the ER via its physical association with
GRP78. The dissociation of GRP78 from ATF6 under ER stress allows ATF6 to translocate to the Golgi
where it is cleaved by site-1 protease (S1P) and S2P (Figure 2B) [66]. After cleavage, the cytoplasmic
domain of ATF6 (N-terminal ATF6, ATF6N), an active transcription factor, translocates to the nucleus
and transcribes its target genes in order to restore ER proteostasis (Figure 2B) [65].

ER stress and UPR signaling play a critical role in metabolic regulation and diseases [5]. Increased
ER stress has been reported in several metabolically important tissues such as the liver, hypothalamus,
and white adipose tissues of obese animal models [67,68]. Furthermore, the treatment of chemical
chaperones alleviating ER stress, such as 4-phenylbutyric acid (4-PBA), and tauroursodeoxycholic
acid (TUDCA) reduces ER stress and restores insulin and leptin sensitivity in animal models and
human subjects, which suggests that modulating ER stress and its associated signaling pathways can
be a useful therapeutic treatment to various metabolic diseases [67,69–71]. Additionally, several recent
efforts have identified numerous novel chemicals as specific modulators of the individual UPR factors
such as IRE1α, PERK, and ATF6 [72–74].

Cancer cells are constantly exposed to elevated ER stress and thus employ UPR and other signaling
responses to ensure their survival from ER stress. Increased expression of UPR signaling factors
such as XBP1s correlates with poor prognosis of several cancers such as glioblastoma, breast cancer
and leukemia, and pharmacological or genetic inhibition of UPR responses demonstrates varying
degrees of tumor-suppressing effects [75,76]. In addition, one of the mechanisms of Food and Drug
Administration (FDA)-approved bortezomib, a proteasome inhibitor against multiple myeloma and
mantle cell lymphoma, is to trigger ER stress-induced cell death in these cancer cells [77].

2.3. Mitochondrial Stress

Mitochondria are organelles derived from alphaproteobacteria that were engulfed by a eukaryotic
progenitor before evolving as endosymbionts between 1 to 2 billion years ago [78,79]. Mitochondria
form a highly dynamic network and continually undergo fusion and fission [80]. Mitochondria
primarily function as a powerhouse of eukaryotic cells with oxidative phosphorylation protein
complexes that are involved in electron transport and ATP synthesis. Mitochondria also perform
crucial functions in many essential metabolisms and signaling pathways including iron–sulfur cluster
synthesis, calcium buffering, and stress responses such as autophagy and apoptosis [7,81–83]. It is
therefore not surprising that their dysfunction has been associated with a variety of diseases such as
neurodegeneration, metabolic disease, heart failure, and cancer [7,81–83].

Eukaryotic cells have evolved multiple stress responses and adaptations to recognize and
resolve mitochondrial dysfunctions. Protease-mediated mitochondrial protein quality control has
been known for many years as the first line of defense against mitochondrial damage through
the degradation of non-assembled proteins and misfolded proteins. The main ATP-dependent
proteases performing protein surveillance are the Lon protease homologue (LONP), Clp protease
proteolytic subunit (CLPP), intermembrane AAA protease (Yme1), and matrix AAA protease
(AFG3L2/SPG7). Two ATP-independent proteases participate as well in mitochondrial protein quality
control—mitochondrial inner membrane protease Atp23 homologue (ATP23) and intermembrane Ser
protease (HTRA2) [84].

A recent series of studies has revealed that mitochondrial unfolded protein response (UPRmt)
counteracts mitochondrial damage. Mitochondrial proteotoxic stress activates the UPRmt, which results
in increased transcription of mitochondrial chaperones to help mitochondrial protein folding and
proteases to degrade misfolded proteins. The mechanistic understanding of how the UPRmt regulates
the transcription has been extensively studied in C. elegans, in which the matrix protease CLPP digests
unfolded or unassembled mitochondrial proteins into peptides. These peptides are transported
to the cytoplasm and induce a transcriptional response in the nucleus via activating transcription
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factor associated with stress-1 (ATFS-1). ATFS-1 is normally imported into mitochondria where it is
degraded by the LONP. However, in response to mitochondrial stress, ATFS-1 accumulates in the
cytosol and subsequently traffics to the nucleus (Figure 2C) [85]. In addition to ATFS-1, mitochondrial
stress also induces ubiquitin-like 5 (UBL-5) expression and UBL-5 protein forms a complex with
defective proventriculus (Drosophila) homolog-1 (DVE-1), a transcription factor, which translocates
into the nucleus (Figure 2C) [86]. In the nucleus, ATFS-1 and DVE-1-UBL-5 induce the transcription
of mitochondrial chaperones and proteases [85,86]. However, in mammals, the understanding of
UPRmt is not clear. It has been reported that the transcription factor ATF5 regulates a mammalian
UPRmt and appears to function as mammalian orthologs of ATFS-1 [87]. Another study found that
mammalian UPRmt altered the expression of nuclear genes including mitochondrial chaperonins that
is involved in protein folding, concurrently with reduced protein synthesis in the matrix via rapid
but reversible translational inhibition. Functional studies also revealed that transcriptional repression
and LON protease-mediated degradation of mitochondrial pre-RNA processing nuclease MRPP3 lead
to defects in pre-RNA processing within the mitochondria, which in turn suppresses the translation
of mtDNA-encoded proteins, thereby reducing protein folding load in the mitochondrial matrix [88].
Another study demonstrated that ATF4 is a main player in the mitochondrial stress response in
mammals, which acts downstream of the integrated stress response (Figure 2C). ATF4 promotes the
expression of various cytoprotective genes, some of which reprogram cellular metabolism toward
the synthesis of key metabolites, especially serine. Newly produced serine may promote lipid and
phospholipid synthesis which have been known to be critical in mitochondrial stress [89]. Moreover,
UPRmt attenuates mitochondrial translation by decreasing the levels of mitochondrial ribosomal
proteins independently of ATF4 [89].

Mitophagy is selective autophagy which degrades damaged mitochondria, thereby maintaining
a healthy mitochondrial population. Mitophagy requires PINK1, a kinase that is imported into
mitochondria under normal conditions and subsequently degraded by proteolysis. When mitochondria
are depolarized and dysfunctional, PINK1 is stabilized on the outer mitochondrial membrane,
and recruits Parkin, a ubiquitin ligase, on the damaged mitochondria. The outer membrane on the
mitochondria is then ubiquitylated by Parkin. Consequently, the poly-ubiquitinated mitochondria
are selectively recognized and bound by autophagy machinery, triggering the selected degradation of
mitochondria (Figure 2C) [90,91].

Aging accompanies the accumulation of dysfunctional mitochondria and mutations in genes
involved in mitochondrial function, which affect life span [92,93]. In addition, mitochondrial
dysfunction is linked to various metabolic diseases such as obesity, type 2 diabetes, hypertension,
and non-alcoholic fatty liver disease [83,94,95]. Moreover, as exemplified by Parkinson’s disease,
impaired mitophagy and mitochondrial dysfunction have been suggested to cause various
neurodegenerative diseases [96,97]. Mutations in PINK1, PARK2 (Parkin), ATP13A2, and DJ-1
impair mitophagy and elicit mitochondrial dysfunction, in turn leading to autosomal recessive
Parkinson’s disease [98,99]. Additionally, mitochondrial dysfunction is observed in Alzheimer’s disease,
Huntington’s disease, ALS, and other neuropathies, but its causal role in these neurodegenerative
diseases has not yet been established [96,100]. Since Otto Warburg discovered that cancer cells
mainly utilize aerobic glycolysis to produce lactate from glucose in the presence of oxygen (Warburg
effect), the defects of oxidative phosphorylation in mitochondria was believed to produce this
Warburg effect in cancer cells [101]. However, recent studies document that cancers alter the
mitochondrial function instead of inactivating it to produce metabolite needed by cancer cells [101,102].
Mutations in tricarboxylic acid (TCA) cycle enzymes such as isocitrate dehydrogenase 2 (IDH2),
succinate dehydrogenase, and fumarate hydratase are frequently found in human cancers [101,102],
and the inhibitor of mutant IDH2, enasidenib, was approved by the FDA to treat acute myeloid
leukemia [103,104].
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2.4. Hypoxia

Molecular oxygen (O2) is a critical substrate for mitochondrial ATP production, signaling,
and numerous cellular metabolisms. The maintenance of O2 homeostasis is, therefore, essential for the
development of multicellular animal life. O2 deprivation (hypoxia) is the condition in which cellular
O2 delivery does not meet the demand. Hypoxia is one of defining features of solid tumors associated
with increased therapeutic resistance [105–107]. The central mediators of cellular adaptation to hypoxia
are hypoxia-inducible factors (HIFs), a family of heterodimeric basic helix-loop-helix transcription
factors composed of an oxygen-sensitive HIFα subunit and a constitutively expressed HIF1β subunit.
Three HIFα subunits are identified in mammals—HIF1α, HIF2α, and HIF3α. In the presence of
oxygen, HIFα subunits are rapidly hydroxylated on proline residues by a group of prolyl hydroxylase
domain (PHD) enzymes. Once hydroxylated, HIFα binds to the von Hippel–Lindau (VHL) protein,
an E3 ubiquitin ligase targeting HIFα for proteasomal degradation (Figure 2D). In another mode
of HIFα regulation, HIFα undergoes asparaginyl hydroxylation by factor inhibiting HIF1 (FIH1),
which inactivates HIFα transcriptional activity by preventing its interaction with the transcriptional
co-activator CREB-binding protein (CBP) and histone acetyltransferase p300 (Figure 2D). Thus,
PHDs and FIH1 function as O2-dependent oxygenases to post-translationally modify HIFs to suppress
their transcriptional activity [108]. Conversely, during hypoxia, PHD and FIH activity is suppressed,
resulting in HIFα stabilization and dimerization with HIF1β. Subsequently, the HIF dimer translocates
to the nucleus and transcribes its target genes with hypoxia-responsive elements (HREs), HIF-binding
promoters (Figure 2D) [109–111]. HIF target genes generally stimulate vascularization (VEGF), raise the
blood’s oxygen carrying capacity (erythropoietin), and modulate mitochondrial metabolism.

The largest group of genes regulated by HIF1 are associated with glucose metabolism. HIF1 can
increase the rate of glucose uptake through the upregulation of the glucose transporters, GLUT1 and
GLUT3. Furthermore, HIF1 stimulates enzymes responsible for the glycolytic breakdown of intracellular
glucose to pyruvate. HIF1 also upregulates lactate dehydrogenase A (LDHA) which converts pyruvate
to lactate. The lactate can then be transported out of the cell through the action of the HIF-inducible cell
surface monocarboxylate transporter 4 (MCT4) [112,113]. Thus, HIF1 activation leads to an increase
in glycolysis.

Mitochondria and O2 are inextricably intertwined. There are several mechanisms by which HIF
signaling can affect mitochondrial function. HIF1 induces the expression of pyruvate dehydrogenase
kinase 1 (PDK1), which phosphorylates and inactivates the mitochondrial pyruvate dehydrogenase
(PDH) and blocks the conversion of pyruvate to acetyl-CoA, thereby suppressing the TCA cycle
and attenuating oxidative phosphorylation and excessive toxic reactive oxygen species (ROS)
production [114]. HIF1 also modulates mitochondrial metabolism by replacing the cytochrome
c oxidase subunit COX4-1 with COX4-2, in which HIF1 increases the transcription of COX4-2 while
downregulating COX4-1 protein levels by augmenting the expression of Lon protease. COX4-2
is more efficient at facilitating the electron transfer to O2, and thereby lowers ROS levels [115].
In addition, HIF1 upregulates BNIP3 and BNIP3L, which promote mitophagy [105]. In another report,
the researchers suggest chronic hypoxia could be used as an unexpected treatment for defects in the
mitochondrial respiratory chain [116].

Regulation of hypoxic responses via the HIFs is well established, but growing evidence also
indicates that HIF-independent mechanisms are also involved. In one study, hypoxic response depends
on the accumulation of lactate which binds to the NDRG3 protein and stabilizes it. NDRG3 is
an oxygen-regulated protein and also a substrate of the PHD2/VHL system. The stabilized NDRG3
mediates hypoxia-induced activation of the Raf-ERK pathway and promotes angiogenesis and cell
growth [110]. In another study, hypoxia promotes survival of in vitro and in vivo models of Friedreich’s
ataxia by restoring the steady-state levels of Fe–S clusters independently of HIF. Mitochondrial protein
frataxin (FXN) participates in the biosynthesis of Fe–S clusters, and FXN-deficient yeast, human cells,
and C. elegans, which cannot survive under normoxia, were able to grow continuously in ambient 1%
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O2, a hypoxic condition. This indicates that hypoxia somehow could directly promote Fe–S synthesis
bypassing the requirement of FXN [117].

Cancer cells are constantly exposed to the hypoxic condition, thus cancer cells frequently employ
various responses ameliorating hypoxic stress. Increased expression of HIF1α and HIF2α correlates
with negative outcome of human tumors, and HIFs in cancer cells promote glucose metabolism and
angiogenesis to help tumor proliferation and survival [118]. In addition to cancer metabolism, hypoxia
signaling contributes to systemic glucose and lipid metabolism; depletion of HIF1α in pancreas
β-cells causes glucose intolerance due to impaired insulin secretion [119]. Additionally, genetic and
pharmacological suppression of HIF2α activity in the intestine alleviates hepatic steatosis of obese
mice, whereas activation of HIF2α in the liver improves glucose metabolism and ameliorates type 2
diabetes [120–122].

2.5. Oxidative Stress

Oxidation–reduction (redox) homeostasis is crucial to maintaining nearly all principal cellular
processes. During the redox reaction, various oxidants and antioxidants are generated endogenously,
and when oxidants are produced or obtained beyond the balancing redox capacity of cells, it leads to
oxidative stress. ROS, which causes oxidative stress, includes not only narrowly defined ROS but also
various other kinds of chemicals such as reactive nitrogen species, reactive chlorine/bromine species,
reactive sulfur species, reactive carbonyl species, and reactive selenium species [123,124]. ROS is
continuously generated during metabolism, which has been considered to facilitate accumulated
DNA damages and ultimately lead to the development of cancers and cellular aging. ROS and
accompanying oxidative stress also have been demonstrated to contribute to the pathophysiologies of
various chronic diseases such as cardiovascular diseases, obesity, diabetes, and neurodegenerative
diseases [125]. However, recent studies also show that ROS plays a beneficial role in many cellular
functions. For example, ROS generated from phagocytes constitutes a pathogen-killing mechanism
during phagocytosis. Furthermore, some ROS such as hydrogen peroxide (H2O2) and nitric oxide (NO)
play a role in cellular signaling and in post-translational modifications of proteins such as sulfenylation
and S-nitrosylation [126–130]. The majority of ROS is produced from the electron transport chain
of mitochondria as a superoxide anion radical, O2•

−, and most of O2•
− is converted to H2O2 by

manganese superoxide dismutase (MnSOD) [131–133]. Additionally, NADPH oxidases, which are
activated by growth factors, also generate H2O2 [134], whereas NO synthases produce NO [135].

Because oxidative stress can be produced at every cellular metabolic process, a myriad of signaling
responses even in other stress responses are employed to curb oxidative stresses, which include
NRF2-KEAP1, p53, MAPKs (JNK, p38 MAPK, ERK), PI3K/Akt, NF-κB, heat shock response,
and UPR [125,136]. In general, the majority of these pathways exercise pro-survival responses,
whereas some responses from JNK, p38, p53, and UPR pathways (e.g., CHOP) exert cell death [5,125].
Among these oxidative stress responses, NRF2-KEAP1 is regarded as one of the main regulators of the
cellular antioxidant responses. NRF2 is a transcription factor and its protein levels are maintained
at low under unstressed conditions by three E3 ubiquitin ligase complexes—KEAP1-CUL3-RBX1,
β-TrCP-SKP1-CUL1-RBX1, and HRD1 [137]. However, KEAP1-CUL3-RBX1 is considered as a principal
negative regulator responding to the changes of redox condition [136,137]. KEAP1 is a substrate adaptor
protein of the CUL3-RBX1 E3 ligase complex and binds to NRF2 to prompt NRF2 ubiquitylation
and its subsequent degradation during unstressed conditions. Under oxidative stress condition,
excessive ROS reacts with cysteines (especially Cys151) at the N-terminal part of KEAP1, leading to
its conformational changes and subsequent loss of affinity to NRF2. In turn, NRF2 translocates to
the nucleus, forms a heterodimer with sMAF, and then transcribes its target genes with antioxidant
response element, many of which contribute to antioxidant responses (e.g., glucose 6-phosphate
dehydrogenase, 6-phosphogluconate dehydrogenase, malic enzyme 1, and isocitrate dehydrogenase 1,
which are involved in NADPH production) [136,137].
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Many studies have suggested that ROS and oxidative stress contribute to cellular senescence,
aging, and aging-associated diseases [125]. During the progression of type 2 diabetes, pancreatic β-cell
dysfunction is caused by increased ER stress, mitochondrial stress, and oxidative stress [138]. Moreover,
ROS-induced DNA damage, in addition to the chemical modifications of macromolecules such as lipids
and proteins, is considered to lead to the development of cancer, whereas many chemotherapy and
radiation therapy treatments induce excessive oxidative stress to kill cancer cells [139,140]. Furthermore,
genes in the KEAP1-NRF2 pathway are frequently mutated in certain cancers such as squamous cell
carcinoma and lung adenocarcinoma showing the strong resistance to chemotherapy and radiation
therapy [141,142].

3. Connectivity Map (CMap)

As we explained above, cellular stresses and their related signaling responses are mediated by
various environmental factors (e.g., heat, oxidants, osmotic stress, and over-nutrition) and a plethora
of signaling molecules. Therefore, finding chemopreventive and even therapeutic chemicals targeting
cellular stresses and their associated diseases is challenging and has proven to be difficult with
target-based drug discovery. Because of its potential advantage to address complex diseases that
require more understanding of their mechanisms, and also recent advances in screening methods for
phenotypic drug discovery such as cell-based phenotypic screening and pharmacogenomic analysis,
phenotypic drug discovery has started to regain its interest and usage in drug screening.

Recently, the connectivity map (CMap) and the upgraded CMap (L1000) have been demonstrated as
useful in silico drug screening tools to target cellular stresses and their related disorders [12,13,143,144].
The CMap (https://portals.broadinstitute.org/cmap/) is a gene expression compendium archiving gene
expression data from cultured cells, treated with individual chemical perturbagens and whose ≈22,000
gene expression levels were analyzed with microarray (CMap Build 2 stores results from over 1300
chemical treatments that include a variety of phytochemicals).

Importantly, researchers can query the CMap with their gene expression signatures that consist
of a list of genes upregulated and downregulated in the biological or pathological states of interest
(Figure 1C). In order to compare the query signature to the entire microarray data in the CMap,
which were generated from different cell lines and batches as well as with various doses and treatment
time, CMap uses a nonparametric, rank-based pattern-matching analysis. In the end, CMap presents
its query result as a list of drugs with a “connectivity score” ranging from +1 (positive connectivity) to
-1 (negative connectivity) (Figure 1C). Drugs with a positive connectivity score may generate similar
gene expression outcomes with the state of interest (query state), whereas ones with a negative score
produce reverse gene expression patterns with the query. Additionally, drugs with a near zero score
are unlikely to induce any related responses with the query state. Therefore, the CMap potentially
provides a list of candidate chemicals which may mimic or reverse the biological or pathological state
of interest [12,13].

Recently, increasing numbers of studies have used CMap to uncover promising small molecules
to address various diseases. For example, searching on CMap with gene expression data from
tissues (liver and hypothalamus) showing diminished ER stress and improved leptin/insulin receptor
signaling as query signatures successfully identified celastrol as an effective leptin sensitizer and
chemical chaperone ameliorating obesity in the leptin-resistant mouse model [145]. Celastrol is
a phytochemical originally extracted from the root of the thunder god vine, Tripterygium wilfordii,
which has been used as a medicinal plant in China and other East Asian countries as a treatment of
inflammatory diseases such as rheumatoid arthritis [145,146]. Furthermore, using the gene expression
signature of celastrol as a query on CMap uncovered that withaferin A is also a chemical chaperone
and a leptin sensitizer, and significantly ameliorates obesity [147]. Similar to celastrol, withaferin
A is also a phytochemical originally extracted from leaves, berries, and roots of Withania somnifera,
a winter cherry (also called Ashwagandha in India), which has been used as a medicinal plant in
India as a treatment of various disorders including inflammation, autoimmune diseases, tumors,
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stress, anxiety, and aging [148–150]. Besides the discovery of celastrol and withaferin A as chemical
chaperones and anti-obesity drugs, CMap has been successfully utilized to uncover numerous
chemicals with potentials to treat various other diseases, for example, COX2- and ADRA2A-targeting
chemicals to treat type 1 and type 2 diabetes [151], tomatidine (a phytochemical from tomato
plants) for skeletal muscle atrophy [152], anisomycin for spinal muscle atrophy [153], topiramate
for inflammatory bowel disease [154], kaempferol (a phytochemical) for cigarette smoke-induced
inflammation [155], pyrvinium for obesity [156], cannabidiol (a phytochemical from Cannabis sativa,
marijuana plant) for diabetic cardiomyopathy [157], piperazine for central nervous system injury [158],
and many other chemicals for cancers such as medulloblastoma [159], breast cancers [160,161],
lung cancers [162,163], glioblastoma [164], ovarian cancer [165], prostate cancers [166], myeloma [167],
atypical meningioma [168], leukemia [169–172], and many others [173–175].

Despite CMap’s promising potential as a genome-based and phenotypic drug discovery tool,
CMap has limitations. First, constructing and expanding reference profiles of CMap database are
time consuming and expensive because CMap is built upon full transcriptome analysis. Second,
CMap is still built on data from limited numbers of small molecules and cell lines. In addition,
gene expression data from cultured cells may not be appropriate to address the diseases happening in
our body or in specific organs. Third, CMap results may not provide enough information about direct
drug targets because CMap is a phenotypic drug discovery tool. To overcome these shortcomings,
the same team at the Broad Institute who created the original CMap has developed the “next generation
connectivity map” or L1000 (https://clue.io/) as part of the National Institutes of Health (NIH) Library of
Integrated Network-Based Cellular Signatures (LINCS) initiative [144]. The current L1000 expands the
original CMap by using nearly 28,000 perturbagens including over 19,000 small molecules and ≈7000
genetic modulations using knockdown with shRNAs and over-expression with cDNAs. L1000 also
includes more cell lines (nine core cell lines) to test perturbagens or uses 3 to 77 variable cell lines for
chemicals without characterized mode of action. Moreover, in order to build the new CMap through
high-throughput screening at lower costs, L1000 uses only 1000 landmark transcripts as references
instead of the full transcriptome, which the authors claim addresses ≈80% of the information in the
entire transcriptome [144]. Collectively, L1000 alongside with the original CMap provide powerful
in silico pharmacogenomic ways for researchers to discover novel small molecules targeting various
diseases that currently do not have effective therapeutics due to their complicated pathophysiologies.

4. Conclusions and Future Perspectives

As our modern society enters the state of population aging, aging-associated diseases such as
cardiovascular diseases, obesity, diabetes, neurodegenerative diseases, and cancers have become
a major health threat as well as a serious economic and social burden. Even though tremendous efforts
have expanded our understanding of the pathophysiologies of these disorders and have also developed
numerous medications against them, such efforts still fell short to alleviate significantly chronic and
aging-associated disorders. This is partly due to their compounding nature in which a myriad of
genetic and environmental factors are interwoven with each other. Recently, a growing number of
studies have documented that cellular stresses caused by the disruption of homeostasis within the cell
contribute to the development of aging-associated diseases and have suggested that ameliorating these
cellular stresses could be an effective prevention and therapeutic treatment. There are several uniquely
categorized cellular stresses such as heat shock stress, ER stress, mitochondrial stress, oxidative
stress, and hypoxia. However, it should be noted that cellular stresses do not occur individually but
frequently happen together. Due to these complexities, developing chemopreventive and therapeutic
treatments against cellular stresses and their associated diseases has not yet achieved any significant
progress. However, recent technological and genomic advances bring new opportunities to tackle many
debilitating chronic disorders. Among them, CMap and its upgraded L1000 are potentially powerful
genome-based in silico drug discovery methods based on phenotypic drug discovery, and many
studies have successfully used CMap to uncover novel chemicals to alleviate cellular stresses and
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aging-associated diseases. Furthermore, there are still many possibilities to expand CMap and L1000
in the future in order to be more effective as follows. (1) The numbers of perturbagens (small chemicals
and genetic modulations) in CMap/L1000 could increase further, including numerous phytochemicals
available currently, and CRISPR/cas9 could be also utilized as genetic perturbation. (2) CMap/L1000
could include more cell types, especially induced pluripotent stem cells (iPSC) and tissue-specific
organoids. Additionally, (3) future CMap/L1000 or other pharmacogenomic tools could include more
phenotypic information, including proteomic and epigenetic data and also high-content imaging
profiles. Furthermore, (4) recent advances in machine learning could empower future genome-based
in silico drug discovery tools by potentially providing the information about probable modes of action
and target proteins of small molecules.

Historically, phytochemicals have provided huge medical benefits to humankind, as famously
shown by salicin (from the willow tree and modified to aspirin®), morphine (from the opium poppy),
cocaine (from coca leaves), guanidine (from the French lilac and modified to metformin), and many other
examples. However, many phytochemicals’ potential medical benefits are still unknown. However,
with recent phenotypic drug discovery tools such as CMap, we can finally be in the position to uncover
novel functions of phytochemicals which could be both chemopreventive and therapeutic toward
many chronic diseases caused by cellular stresses.
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β-TrCP Beta-transducin repeat containing E3 ubiquitin protein ligase
AAA ATPases associated with diverse cellular activities
AFG3L2 AFG3-like protein 2
ALS Amyotrophic lateral sclerosis
AMPK AMP-activated protein kinase
BNIP3L BCL2 interacting protein 3 like
BRD7 Bromodomain-containing protein 7
CLPP Clp protease proteolytic subunit
CUL1 Cullin 1
CUL3 Cullin 3
ERK Extracellular signal-regulated kinase
FDA Food and Drug Administration, USA
HRD1 HMG-CoA reductase degradation 1 homolog
IDH2 Isocitrate dehydrogenase 2
IKKβ Inhibitor of nuclear factor kappa-B kinase subunit beta
JNK c-Jun N-terminal kinase
KEAP1 Kelch-like ECH-associated protein 1
MAPK Mitogen-activated protein kinase
NADPH Nicotinamide adenine dinucleotide phosphate, reduced form
NF-κB Nuclear factor kappa-light-chain-enhancer of activated B cells
NRF2 Nuclear factor erythroid 2-related factor 2
PGC-1α Peroxisome proliferator-activated receptor gamma coactivator-1 alpha
PI3K Phosphoinositide 3-kinase
PINK1 PTEN-induced kinase 1
RBX1 Ring box 1
SKP1 S-phase kinase-associated protein 1



Int. J. Mol. Sci. 2019, 20, 5601 13 of 21

sMAF Small musculoaponeurotic fibrosarcoma
SPG7 Spastic paraplegia 7
TCA Tricarboxylic acid
VEGF-B Vascular endothelial growth factor B
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