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Abstract: We propose a low complexity QR decomposition (QRD)-M multiple input multiple output
(MIMO) detection algorithm based on adaptive search area. Unlike the conventional QRD-M MIMO
detection algorithm, which determines the next survivor path candidates after searching over the
entire constellation points at each detection layer, the proposed algorithm adaptively restricts the
search area to the minimal neighboring constellation points of the estimated QRD symbol according
to the instantaneous channel condition at each layer. First, we set up an adaptation rule for search
area using two observations that inherently reflect the instantaneous channel condition, that is,
the diagonal terms of the channel upper triangle matrix after QR decomposition and Euclidean
distance between the received symbol vector and temporarily estimated symbol vector by QRD
detection. In addition, it is found that the performance of the QRD-M algorithm degrades when
the diagonal terms of the channel upper triangle matrix instantaneously decrease. To overcome
this problem, the proposed algorithm employs the ratio of each diagonal term and total diagonal
terms. Moreover, the proposed algorithm further decreases redundant complexity by considering the
location of initial detection symbol in constellation. By doing so, the proposed algorithm effectively
achieves performance near to the maximum likelihood detection algorithm, while maintaining the
overall average computation complexity much lower than that of the conventional QRD-M systems.
Especially, the proposed algorithm achieves reduction of 76% and 26% computational complexity
with low signal to noise ratio (SNR) and high SNR, compared with the adaptive QRD-M algorithm
based on noise power. Moreover, simulation results show that the proposed algorithm achieves both
low complexity and lower symbol error rate compared with the fixed QRD-M algorithms.

Keywords: long term evolution advanced (LTE-A); multiple input multiple output (MIMO); QRD-M;
low complexity algorithm

1. Introduction

Multiple input multiple output (MIMO) systems have received significant attention, owing to the
rapid development of high-speed broadband wireless communication systems employing multiple
transmit and receive antennas [1-12]. MIMO systems have many advantages such as spatial diversity
and high throughput without increasing bandwidth. Thus, MIMO systems are employed in modern
and next generation wireless standards [1].

Meanwhile, there are many challenging issues to overcome from disadvantages owing to increasing
of the number of antennas. For example, multi-user MIMO systems have been studied in [2-8]. In [2]
and [3], the authors tried to maximize signal to interference plus noise ratio by employing the precoding
schemes to minimize interference among multiple users. In [4], an adaptive antennas algorithm at the
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mobile and base stations has been proposed. In [6], they proposed a near optimal scheduling algorithm
by managing radio resource for multi-user MIMO systems.

Meanwhile, studies to solve the problems of mutual coupling between multiple antennas are
receiving much attention [9-12]. In [9], the authors designed a compact dual band-notched ultra
wideband MIMO antenna in order to achieve high isolation. In [10], the authors presented a slot
structure perpendicular to current on the surface of patches to overcome the mutual coupling problems.
In [11], the authors tried to reduce the mutual coupling between closely packed antenna elements
using defected ground structure.

As one of the most promising among the challenging issues for MIMO systems, the complexity
reduction of MIMO detection algorithms has recently been studied [13-22]. The optimal detector
for MIMO system is the maximum likelihood detection (MLD) algorithm. However, MLD requires
exponential complexity regarding the number of transmit antennas [1]. Recently, several algorithms
achieving near-MLD performance have been proposed for MIMO systems [16-21]. The tree search based
QR decomposition (QRD)-M algorithm and sphere decoding (SD) achieve near-MLD performance,
while requiring substantially low complexity in comparison with MLD.

The fixed QRD-M algorithm compromises the complexity and performance by selecting only M
survivor paths among all possible paths at each layer of the tree search [16,17]. The metric computational
complexity is determined by the product of M and the number of the candidate symbols in the next
detection layer, S, which has been conventionally set to be the number of all constellation points C.
To achieve near-MLD performance for this algorithm, the value of M and S should be large enough
for the selected paths to include the correct path. This still requires high computational complexity.
Recently, in [18], a low complexity QRD-M algorithm was proposed by reducing the redundant metric
computation complexity with identical performance at the first and the last detection layer. However,
this algorithm still has inefficient computation complexity because M and S are fixed regardless of the
instantaneous channel condition. If M or S is adaptively controlled according to the instantaneous
channel condition, the computational complexity should be effectively decreased compared with the
conventional fixed QRD-M algorithm.

Recently, adaptive QRD-M algorithms based on average noise power have been proposed [19-21].
They can be classified as two kinds of adaptation algorithms. One is the adaptation of M and the
other one is the adaptation of S. The conventional adaptive QRD-M algorithms control the number
of survivor paths, M, according to average noise power [19,20]. On the other hand, the conventional
adaptive search area QRD-M algorithm adaptively changes S according to SNR [21]. We will call
the QRD-M algorithm with the adaptation of S the adaptive search area QRD-M algorithm in other
words. The simulation results reveal that adaptive search area QRD-M algorithm enables us to more
drastically reduce the computational complexity than the conventional adaptive QRD-M algorithm.
This implies that reducing the search area (candidate path space size) is safer than reducing the number
of survivor paths in order to reduce the computation complexity without losing the correct path.
However, the adaptive search area QRD-M algorithm in [21] still has a problem. This algorithm cannot
adaptively change the search area, S, against the instantaneous variation of the channel condition,
because this algorithm controls S based on the average noise power.

In this paper, we propose an adaptive search area QRD-M algorithm that overcomes the complexity
reduction limit of the conventional adaptive search area QRD-M algorithm. The proposed algorithm
accomplishes dynamic adaptation of S by observing the diagonal terms of the channel upper triangle
matrix after QR decomposition and Euclidean distance between the received signal vector and temporarily
estimated symbol vector by QRD. These two observations are found to form a good indicator of the
instantaneous channel condition because they are the simple functions of the instantaneous noise sample
power as well as the instantaneous channel fading magnitudes and correlation. First, we propose
a simple, but efficient instantaneous channel condition indicator formula using these two observations,
and then we show that, based on the proposed channel indicator, a very tight adaptive setting of search
area is possible without performance loss. In addition, it is found that the performance of the QRD-M
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algorithm degrades when the diagonal terms of the channel upper triangle matrix instantaneously
decrease. To overcome this problem, the proposed algorithm employs ratio of each diagonal term
and total diagonal terms. Moreover, the proposed algorithm further decreases redundant complexity
by considering the location of initial detection symbol in constellation. By doing so, the proposed
algorithm effectively achieves performance near to the maximum likelihood detection algorithm, while
maintaining the overall average computation complexity much lower than that of the conventional
QRD-M systems. Especially, the proposed algorithm achieves reduction of 76% and 26% computational
complexity with low signal to noise ratio (SNR) and high SNR, respectively, compared with the adaptive
QRD-M algorithm based on noise power. Moreover, the simulation results show that the proposed
algorithm achieves both low complexity and lower symbol error rate compared with the fixed QRD-M
algorithms. As a result, the proposed algorithm efficiently decreases the computation complexity without
performance degradation compared with the conventional adaptive search area QRD-M algorithm.

The remainder of the paper is organized as follows. Section 2 describes the system model
considered in this paper, and Sections 3 and 4 explain the conventional QRD-M algorithm and the
adaptive search area QRD-M algorithm. The proposed low complexity QRD-M algorithm is introduced
in Section 5. In Section 6, the performance and complexity of the proposed algorithm are evaluated
through computer simulations. Finally, we present the conclusion in Section 7.

2. System Model
We consider a MIMO system that consists of N transmit (TX) and L receive (RX) antennas, as shown
Figure 1. The received signal vector y is described by

y=Hs+w 1

where s is N-dimensional TX symbol vector, H is the LXxN channel matrix, and w is L dimensional
complex additive white Gaussian noise (AWGN) vector with zero mean and variance, and (1) is
rewritten as follows:

n hig hip hiz ... N [ s1 wy
Y2 hig hp his ... hin || s2 wy
.= S . R (2)
yL hii hrp bz ... hpn 1l sn wr,

where y; is the I th RX symbol, thatis, y = [ y1, v, ... yr]7, where (-)T is transpose operator and h; , is
the element / th and n th of H; and s, is the n th TX symbol, thatis, s =[s; s5 .. sy]T. Each element of
symbol vector s is chosen from the quadrature amplitude modulation (QAM) constellation with the
average symbol energy, which is denoted by E;. We consider a Rayleigh fading where the elements of
H are independent complex Gaussian with zero mean and unit variance. It is assumed that the channel
matrix H is known by the receiver and remains constant over the data symbol duration.

Vi
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Figure 1. Structure of multiple input multiple output (MIMO) systems with N transmit (TX) and L
receive (RX) antennas.



Electronics 2020, 9, 756 4 0f 15

3. Conventional Fixed QRD-M Algorithm

The conventional fixed QRD-M algorithm is based on the classical M-algorithm [16,17]. At each
detection layer, instead of deciding the transmitted symbol, QRD-M algorithm keeps M reliable
survivor paths. First, performing QR-decomposition on H, we obtain

H=0QR 3)

where Q is a L X L unitary matrix and R is N x N upper triangular matrix. Noting that, QQ = I,
where I is the identity matrix and Q" is the conjugate transpose of Q. After pre-Multiplying received
signal by QH, we can rewrite (1) as follows:

Y=RS+7 4)

where ¥ is QH yand7is QHn. Tt follows from (4) that

1 =711,151 + 11252 + 11,353 + -+ + 11 ,NSN + 11
Y2 = 12,252 + 12353 + - + 12 NSN + 12
: %)
YN-1 = N-1,N-15N-1 + 'N-1,NSN + 1IN-1
YN = N,NSN + 1IN

where y; is the i-th element of vector i, and 7;; is the element of the j-th row and the i-th column of R
and rj; = 0 whenj > i.

From (5), the signal detection can be realized through a tree searching process from sy to s;, where
sy and s are the last and the first element of s, respectively. In the conventional QRD-M algorithm,
only M-paths will survive in each detection layer according to the accumulated Euclidean distances on
different paths. In the first detection layer (N-th row in R), path metrics uy are calculated as follows:

un = ||yn - FN,N?N(m)”Z (6)

where sy (m)is the m-th candidate of sy. The accumulated Euclidean distance of the m-th path in the
i-th detection layer (= (N— i + 1)th row in R) is calculated as follows:

. 2
i

N
UN-i+1 = Z YN-j+1— Z IN-j+1kSk(m)]| )

=1 k=N—j+1

where s (m) is the candidate of s; on the m-th path. Figure 2 shows an example of the conventional
QRD-M algorithm (M = 4) with N = L = 4, and quadrature phase shift keying (QPSK). The number of
layers is equal to N, and M nodes are maintained at each layer. The minimum path metric is chosen as
an estimation symbol vector, § at the last layer.

At the final detection layer (i = N), the candidate vector that corresponds to the minimum path
metric value is chosen as the detection signal set.

As the detection process spends its computation time mainly on metric computations, we take
the number of metric computations as the complexity measure. If we denote Tfiyeq as the number of
metric computations of the conventional QRD-M algorithm, it is calculated as follows:

Thixeda = C+ MC(N - 1)' )



Electronics 2020, 9, 756 50f 15

Recently, a reduced complexity QRD-M algorithm has been proposed in [18]. They avoid the
redundant computation at the first and the final layers with identical performance. The number of
metric computations of this reduced algorithm, Tredyced is calculated as follows:

Treduced = MC(N - 2)' (9)

From (8) and (9), we note that the metric computational complexity of the conventional QRD-M
algorithm is roughly determined by the product of M, C, and N, and this is much smaller than that of
MLD, which is given as CN. However, if we want to make the performance of the conventional QRD-M
algorithm approach that of MLD, we need a considerably large value of M for the worst case design.

1st detection
layer

Q

2nd detection
layer

............ 3rd detection
layer

4th detection
layer

§

Figure 2. An example of the conventional QRD (QR decomposition)-M (M = 4) with N =L =4 and
quadrature phase shift keying quadrature phase shift keying (QPSK).

4. SNR-Based Adaptive Search Area QRD-M Algorithm

The adaptive search area QRD-M algorithm has been proposed in order to further reduce the
complexity of the conventional fixed QRD-M algorithms [21]. In this algorithm, the number of extended
nodes per survivor path S is adaptively changed according to average noise power instead of all
constellation points C, at step 4 in the previous section. That is, the S closest constellation points
from the soft decision symbol by QRD are chosen at each layer. The soft decision by QRD at the i-th
detection layer is denoted by dl and is calculated as follows:

N
A = Ynci1 - Z IN=it+ 1k " Sk |/ TN=i+1,N=i+1- (10)
k=N-i42
Figure 3 shows an example of the closest order of the constellation points with 16 QAM plane
from dll, The numbers in parentheses mean the closest order from dl’.

A(15)  E®) 1(5) M(9)
B(11) F@3) I N(6)
dlll
.
C(13) G4 K(2) o(7)
D(16) H(12) L(10) P(14)

Figure 3. Example of the closest order of the constellation points with 16 quadrature amplitude
modulation (QAM) from dlil,

The probability that the correct path’s metric is not included among the smallest S path metrics
can be approximated by the probability of event A that the correct hypothesis falls outside of the
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square box that centers at dl/, and encloses S constellation points. Assuming the constellation is
sufficiently large such that the continuous approximation [21] holds and the effects of points at the
edge of the constellation are negligible, the side of such a box is 2 VSl / 4D’ ., where Sl is S at the
i-th detection layer and D, and D;m,n’l. £ ¥;Dmin are the minimum distances of the transmitted and
received constellations, respectively (y; = rN—it+1N-i+1)- Setting Pr(A) < P; to achieve the specified
performance level, where P; is pre-specified target level and using the assumption that each entry of w
is an i.i.d. Gaussian r.v. with zero mean and variance, 02, we have

2
Pr(A) =1- [1 - 2Q( NEl /4D;mn)] < Py (11)

where Q(x) £ 1/V2n fx * ¢=™/247. With moderate to high SNRs, the second-order term of the
Q-function in (11) can be ignored. Furthermore, let Smax denote the largest allowable value of Sl that
is set by the implementation constraints and the size of constellation, that is, Smax < |C|. It follows that
the minimum integer value for Sl that satisfies (11) and the constraints in complexity and constellation
size is found to be as follows:

2

i . o —1, Pt
Sraw = ming (4 — , Smax 12
: Hﬁd;ﬁng <4>} (12)

where [x] is the smallest integer that is greater than or equal to x. Finally, to enable set partitioning,
Slilis set to .
slil — [Sﬂw} (13)
2

where [-]; is the operation that rounds up to the nearest integer that is a power of 2. The number of
considered candidate symbols, Sll canbesetto 1,2, 4,8, and 16 with 16 QAM.

By adaptively controlling the size of the search area based on SNR, the computational complexity
of this algorithm can be significant decreased compared with the conventional fixed QRD-M algorithm,
which is set to S = C as the search area. However, this algorithm cannot adaptively change SI against
the instantaneous variation of the channel condition as this algorithm controls S/ based on the average
SNR does not reflect the instantaneous channel information, such as the instantaneous channel fading
and instantaneous noise sample power. Therefore, we have to accept either the increasing complexity
or performance degradation, which is the main shortcoming of this algorithm.

5. Proposed Adaptive Search Area QRD-M Algorithm

In this section, we illustrate the proposed adaptive search area QRD-M algorithm, which controls S
using the instantaneous channel condition instead of average noise power of the conventional adaptive
search area QRD-M algorithm. The proposed algorithm is an advanced version of [22]. Compared
with [22], the proposed algorithm employs additional channel indicator, that is, accumulated Euclidean
distance at each layer in order to improve the performance and the average diagonal terms to reflect
channel conditions of all the layers. The proposed algorithm uses diagonal elements of R and Euclidean
distance between the received symbol vector and the temporal QRD estimation symbol vector as
a simple channel reliability indicator.

As one of channel indicators of the proposed scheme, we employ the ratio of power of diagonal
term of channel matrix R at the i-th detection layer, as shown in [17]. This indicator is denoted by & [d
and is calculated as follows:

N
g[i] = |rN_i+1,N_i+1|2/I%Z|1’krk)2- (14)
k=1

In the denominator in (14), the diagonal term is normalized by the average diagonal terms. This
is because we intend to make this indicator [l dependent on the variable channel matrix not on the
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SNR in order to get rid of the signal scaling effect and measure the relative channel state with respect
to all of the detection layers.
As another instantaneous channel indicator, we additively employ Euclidean distance between

the temporarily estimated symbol by QRD §1(3]I_{l 1 and the received signal YN-j+1 at i-th detection layer.

The accumulated Euclidean distance between yy_;11 and §I(\2]13 1 is denoted by uR and is calculated

i+
as follows:
N N 2
— QR
uR = Z YN-j+1 — Z 7’N—j+1,kSkQ (15)
=1 k=N—-j+1

If §]?R is the correct detection symbol, there remains only noise power in (15). This implies that
Euclidean distance vector #R reflects the instantaneous noise sample power. Let !/ be a instantaneous
noise sample power indicator at i-th detection layer, and we calculate it as follows:

2
i _ |7N—i+1,N—i+1|
P e — (16)

If u%i. 1 decreases owing to the high SNR, then Yl becomes large, and vice versa. Finally,
by multiplying two channel indicators &[land 1!, the total channel condition indicator at i-th detection

layer Al is calculated as follows:

0 el &
AT =Ty = NMT/ZVMJ . 17)
k=1

QR
N-i+1

calculated A, the number of candidate symbols at each layer is adaptively controlled.

Meanwhile, the proposed algorithm employs four-Mode adaptation according to Al Figure 4
shows an example of four-Mode adaptation of the proposed algorithm based on Al with 16QAM at
i-th detection layer. In Figure 4, dl!l is the hard decision symbol by QRD and by comparing Al to three

As SNR increases, & [} increases and u decreases, and thus Al increases. According to

predetermined thresholds Ajow, Amid, and Apigh-

i_,

search area

A E I M A E |1 M,
! I

[,/[I] : (/['] :

B F |I& N B F | 1% N
searcharea S%=1 | —======

C G | K o) c ¢ | & o
D H | L P D H| L P

(a) Mode I. For the case of A= Ay (b) Mode II. For the case of A, < AP < 4,

stl=g s=16
Seﬂl‘Ch area SEﬂl‘Ch area

| i 1 | el e |

A IE I M| LA E I M i
I an \ I

| ° I | 0 !

B 1 F J N1 1 B F T dY N
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1 I
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(c) Mode III. For the case of A, <A < 2 . (d) Mode IV. For the case of A< 4,

low

Figure 4. Example of four-Mode adaptation of the proposed scheme.
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Depending on which range Al belongs to, we determine how many neighboring symbols of d!’
we will include in the candidate symbol set. The proposed algorithm’s adaptation criterion is given
as follows:

1. IfAll > Ahigh, we decide that the channel condition is excellent, and thus the estimated symbol is
very close to the correct symbol =set mode I, where Sl = 1.

2. IfApna <Al <Anigh, we decide that the channel condition is good, and thus the estimated symbol is
near to the correct symbol =set mode II, where Sl! = 4.

3. If A10w<?\[i] < Amid, we decide the channel condition is normal, and thus we have to increase the
range of search area =set mode III, where sll =9,

4. If Al < A, we decide the channel condition is bad, and thus the estimated symbol might be far
off from the correct symbol =set mode IV, where Sl = 16.

As the threshold values Ajow, Amid, and Apigh determine the computation complexity and detection
performance, it is crucial to properly set their values so that the probability of the selected S
neighboring candidate symbols including the correct symbol is high, but the margin should be tight
enough to avoid extra computation. Let 1!l be the path metric order of the correct path at i-th detection
layer. For example, for the case when the correct path’s metric is the second minimum at the third
detection layer after sorting the metrics for all constellation symbols, we denote the metric order of the
correct path as nl®l = 2. This implies that the path metric order nl! can reflect the channel condition.
In order to properly set the threshold values, Ajow, Amid, and Apjgh on the channel condition, Figure 5a,b
illustrate the cumulative distribution function (CDF) of Al ati =1 and 2 for the cases when nl = 1,
2,4,5,9, and 10, respectively, with N = L = 4, 16 QAM, and E,/Ny = 20 dB. We can observe that
the distributions of Al are clearly different according to the order of the correct path’s metric orders.
The probabilities of Al >12ati=1and2are nearly zero when nll # 1. The probabilities of Al > 04
ati=1and 2 are nearly zero when nl! > 4. This feature enables us to efficiently restrict the size of
search area. If Al > 1.2, itis highly probable that n[! = 1, and thus we can safely set mode I, that is,
Sl = 1. So, we take Ahigh = 1.2. If Al > 0.4, the correct path’s metric is hardly larger than the fourth
minimum, and thus we can safely set mode 1II, that is, sl = 4. So, we set Amid = 0.4. In a similar way,
we set the threshold value between mode III and IV, Ay, = 0.1 because the correct path’s metric is
hardly larger than the ninth minimum for All > 0.1. While it is clear that Allis distributed in the small
valued region for the case of not good channel condition, that is, nll > 1, the channel indicator, )\[i],
for the case of good channel condition, that is, nlil ~ 1, is rather widely distributed, including a small
valued region. So, their distributions are not as clearly disjointed as desired. This implies that we
cannot help a tradeoff between complexity and performance in determining the thresholds, Aoy, Amid.
and Apigh. As these thresholds get smaller, we can have more chance to have a small Sl and thus
we can reduce the complexity. At the same time, the possibility of bad channel condition becomes
non-negligible, and thus we may lose the correct path if we take just a few search regions. The effort to
minimize the computational complexity is meaningful only when the required symbol error rate (SER)
performance is guaranteed. So, in our criterion, we first try to meet the SER performance, and then
take the threshold as small as possible within the range where the SER performance is satisfied. By this
criterion, predetermined values are set to [Now, Amid, Ahigh] = [0.1,0.4,1.2]. Thus, we adaptively set sl
at each detection layer and effectively decrease the metric computation complexity, while achieving
almost the same performance as the conventional QRD-M algorithm with large M.

Figure 6 illustrates examples of the special cases of the proposed algorithm at Mode II and III when
dll is located at the edge in the constellation. From this figure, we can expect the proposed algorithm
can additively reduce the computation complexity. In Figure 6a,b, the number of neighboring points of
dlil is just 1 or 2, instead of 4 in Mode II. Similarly, in Figure 6¢,d, the number of neighboring points of
dll is just 4 or 6, instead of 9 in Mode III.
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Figure 5. The cumulative distribution function (CDF) of (a) Al and (b) A2l for the cases when
nlil = 1, 2, 4, 5,9, 10, respectively, at the first detection layer (with 16 QAM and Eg/Ny =20dB, N=L
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Figure 6. Examples of the special cases of the proposed limited search area.

Figure 7 illustrates an example of the proposed algorithm'’s search tree hierarchy for the case when
st = 9, sl = 4, and SBl=16withN=L= 4, and 16 QAM. At the first detection layer, the redundant
complexity is reduced by employing the algorithm [18], and thus S is set to 9. Then, at the second
detection layer, based on (19), S/ is set to 4, and thus only four candidate symbols are considered.
At the third detection layer, owing to the bad channel state, S Bl is set to 16. Hence, all candidate
symbols are considered at this layer. Finally, at the fourth detection layer, the nearest candidate symbol
is chosen based on measurement reflecting good channel condition. The simulation results in the
following section show that the average complexity of the proposed algorithm is much lower than that
of conventional adaptive search area QRD-M conditioned on the same error performance.
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QRD symbol at the
Ist detection layer

" The neighboring symbols of d" as Mode IIT

1st detection layer
Mode III. s =9

2nd detection layer
Mode II. ~ s®' =4

3rd detection layer
. Mode IV. s =16

~ 4th detection layer
i Model. s%=1

Figure 7. Example of the proposed QRD-M algorithm with N = L =4 and 16 QAM.
6. Simulation Results

This section shows the simulation results to check the performance gain of the proposed QRD-M
algorithm. We consider the cases of N =L =3 and N = L = 4 with 16 QAM and the predetermined values
are set to [Ajow,Amid Anigh] = [0.1,0.4,1.2]. For performance comparison, we consider the conventional
fixed QRD-M algorithm with M = 4 and 16, and the conventional adaptive search area QRD-M
algorithm with M = 16 and MLD. For comparison with the conventional fixed QRD-M algorithm,
we select the reduced QRD-M algorithm [18] instead of the conventional fixed QRD-M algorithm
because the overall computation complexity is reduced with identical performance. In the sequel,
we simply call the full constellation search area QRD-M algorithm ‘reduced QRD-M’. Commonly, in all
of the algorithms we consider for comparison, we rearranged the detection order by the norms of
the each row in the pseudo inverse of H in order to minimize the error propagation effect as done in
the ordered detection in successive interference cancellation [23]. As the detection process spends its
computation time mainly on metric computations, we take the number of metric computations as the
complexity measure. At the last detection layer, we do not contain the metric computation complexity
according to [18] and [21].

The SER performances with N = L = 3 and N = L = 4 are shown in Figures 8 and 9, respectively.
The proposed algorithm achieves near MLD performance and almost the same performance as the
reduced QRD-M algorithm [18] and the conventional adaptive search area QRD-M algorithm based on
noise power. However, the conventional fixed QRD-M algorithm with M = 4 significantly deviates
from MLD performance owing to the lack of candidate symbols.

0
10 d

107!

24
|83
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Figure 8. Symbol error rate (SER) performance comparisons for N = L = 3 with 16 QAM. MLD,
maximum likelihood detection.
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Figure 9. SER performance comparisons for N = L = 4 with 16 QAM.

Figure 10 shows the relative frequencies of the conventional adaptive search area QRD-M
algorithm and proposed algorithm with 16 QAM for N = L = 4 at 15 dB and 26 dB, respectively.
In Figure 10a, the frequencies of Sl = 16 are larger than 40% at the first and second detection layer
and the frequencies of S/ = 1 are near to zero at all layers. In Figure 10b, in the case of the proposed
algorithm, the frequencies of Sl = 16 are less than 10% at the second and third detection layer, and the
frequencies of S = 1 are larger than 30% at the first and the third detection layer. These results show
that the indicator of the proposed algorithm reflects the instantaneous channel condition compared
with [21] in a low SNR environment. In Figure 10c, the frequencies of Sl = 10f the conventional
search area QRD-M algorithm are larger than 70% at all layers, and the frequencies of Sl!! = 16 are
very low at all layers. From these results, the computation complexity of the conventional adaptive
search area QRD-M algorithm significantly decreases compared with the conventional fixed QRD-M
algorithm, which achieves the same performance. In Figure 10d, the frequencies of S/ = 1 in the
proposed algorithm are larger than 95% at the second and third detection layer. On the other hand,
the frequencies of Sl/= 4,9, and 16 are nearly zero. From these results, we can expect that the proposed
algorithm can significantly reduce the computation complexity compared with the conventional
adaptive search area QRD-M algorithm as well as the conventional fixed QRD-M algorithm. This is
because the frequencies of S [l = 1 and 16 are the most dominant factors to determine the computational
complexity of the systems. These results show that the measurement of the proposed algorithm reflects
the instantaneous channel condition compared with [21] even in high SNR conditions.

Figures 11 and 12 show the metric computations’ complexity. We can observe that, as SNR
increases, the computation complexities of the conventional adaptive search area QRD-M algorithm
and the proposed algorithm are significantly reduced compared with the reduced QRD-M (M = 4
and 16). In Figure 11, as expected before, the proposed algorithm achieves more than about 93%,
96.7%, 98.2%, and 99% of the reduction of the metric computation compared with the reduced QRD-M
algorithm (M = 16) at 15 dB, 20 dB, 23 dB, and 26 dB, respectively, with N = L = 3. Even compared with
the conventional adaptive search area QRD-M algorithm, the proposed algorithm achieves more than
about 85%, 72%, 63%, and 46% of the reduction of the metric computation.

Similarly, in Figure 12, the metric computation complexity of the proposed algorithm is significantly
decreased compared with the conventional QRD-M algorithms in SNR regions lager than 12 dB with
N =L = 4. The proposed algorithm requires 13.87%, 4.99%, 2.41%, and 1.33% metric computations
over the reduced QRD-M (M = 16), which achieve the same performance at 15 dB, 20 dB, 23 dB, and
26 dB, respectively. In high SNR (Es/Ng = 23 dB, 26 dB), the proposed algorithm achieves more than
about 90% and 94.5% of the reduction of the metric computation, even compared with the reduced
QRD-M with M = 4. In the same SER performance condition, the proposed algorithm achieves more
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than about 76%, 67%, 52%, and 26% of the reduction of the metric computations compared with the
conventional adaptive search area QRD-M algorithm at 15 dB, 20 dB, 23 dB, and 26 dB, respectively.
This is because the channel indicator that is used in the proposed algorithm reflects instantaneous
channel information about the instantaneous noise power as well as the instantaneous channel fading.
On the other hand, noise power that is used as the adaptation indicator in the conventional adaptive
search area QRD-M algorithm does not contain the instantaneous channel information.
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Figure 10. Relative frequencies of the conventional adaptive search area QRD-M [21] and the proposed
algorithm for N = L = 4 with 16 QAM at i = 1-3 with 15 dB and 26 dB.
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Figure 11. Average metric computation complexity comparisons, N = L = 3 with 16 QAM.
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Figure 12. Average metric computation complexity comparisons, N = L = 4 with 16 QAM.
7. Discussions

This section addresses the comparison of the QRD-M MIMO detection algorithms. Table 1 shows
the summary of the QRD-M algorithms. The fixed QRD-M algorithm [16] is the classical QRD-M
algorithm. In [18], they reduced redundant complexity at the first and last layers, but this algorithm
did not control survivor paths and search area according to channel conditions. Hence, the effect of
the complexity reduction of this algorithm is slight. In [19], this algorithm controlled the number of
survivor paths according to measured noise power. In [20], this algorithm adaptively changed the
number of survivor paths based on the path metric at each layer. However, [19] and [20] changed
not search area, but the survivor paths, and thus the effect of the complexity reduction was not high
compared with the schemes that controlled search area. In [21] and this paper, the search area was
changed based on noise power and channel conditions. Hence, their effect of complexity reduction
was very high.

Table 1. Summary of the QRD-M algorithms.

Article Mode Subject to Control Measurement Effect of Cor.nplex1ty
Reduction
[16] Fixed None None None
[18] Fixed None None Slight
[19] Adaptive Survivor paths Noise power Middle
[20] Adaptive Survivor paths Ratio of paths Middle
[21] Adaptive Search area Noise power high
Proposed Adaptive Search area Ratio of diagonal matrix and high

partial Euclidean distance

8. Conclusions

We proposed a new low complexity QRD-M algorithm based on adaptive search area for MIMO
systems. The proposed algorithm significantly decreases the computational complexity compared
with the conventional adaptive search area QRD-M algorithm based on average noise power as well as
the conventional fixed QRD-M algorithm, while achieving near MLD performance. This is because the
proposed algorithm adaptively changes the range of the search area using a channel indicator, which
contains the instantaneous noise power as well as the instantaneous channel fading. We can expect
further complexity reduction if the proposed algorithm is jointly performed with the adaptation of
the number of survivor paths based on instantaneous channel information, which is also on-going by
the authors.
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