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ABSTRACT

Contextual bandit is useful algorithm for the recommendation task in many applications such as NET-
FLEX, Amazon Echo, etc. Many algorithms are researched and showed a good result in terms of high total
reward or low regret. However, when user wants to receive a recommendation in the new task, these algorithms
do not use information that learned from before task.

We suggest new topic, Bandit Parameter Estimation, to solve that inefficient problem. In the same setting
with Contextual bandit, we consider 8" as user’s latent profile. And then we propose some algorithms to esti-
mate 6" as fast as possible.

We conducted to experiment to verify algorithms that we proposed in two case by using a synthetic da-
taset. As a result of experiment, we found that our algorithm estimates parameters faster than other algorithms

in Contextual bandit.

Keywords: Recommendation system, Bandit algorithm, Contextual bandit, Parameter estimation
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I.INTRODUCTION

1.1 Overview

N ET |: I, | X Watch Instantly ~ Just for Kids ~ Personalize DVDs

Because you watched Dexter %

DEXTER’S
LABORATORY.

Figure 1. The recommendation example in NETFLIX

Recommendation is an important algorithm in many applications these days. For example, various recommen-
dations such as a news recommendation on a portal site, a product recommendation on a shopping site, are
provided. Therefore, it is important to give users the right recommendations.

A lot of research has been done in the form of Contextual-Bandit for a good recommendation[1][2][3]. Many
algorithms have been studied, and as a result, some algorithms have resulted in fast and good recommendations
to the user[1]. However, these algorithms have problem that, since these algorithms are only intended to make
good recommendations in a present task, they cannot use the learned user’s information from other tasks. There-
fore, these algorithms have the disadvantage of learning separately for each other task.

In this thesis, we present Bandit Parameter Estimation so that the information of the user learned in the current
task can be used in other tasks. In order to introduce Bandit Parameter Estimation, we will briefly explain Bandit
and Contextual-bandit. Next, we will introduce some algorithms used for Bandit and Contextual-bandit such as
e-greedy, UCB[4] and linUCBJ1]. we will set up problems for Bandit Parameter Estimation and introduce var-
ious algorithms for a fast estimation and then verify the proposed algorithm by explaining experimental results

on synthetic data. Finally, we will conclude the experimental results and suggests some future work.



1.2 Background

Before introducing Bandit Parameter Estimation, we talk about some basic concepts such as Multi-Armed

bandit and Contextual bandit to help understand our problem setting.

1.2.1 Multi-Armed bandit

Figure 2. The example of Multi-armed bandit

The basic setting of Multi-Armed bandit has a set of K arms, each arm has meanreward u for a < {1, ...,K}

and we can only choice the one arm at t. the process of Multi-Armed bandit is as follows:

1. Init t =1
2. Algorithm chooses an arm a; < {1,...,K}
3. World provides stochastic reward ¢, with mean E[r;] = pg,, and independent noise

4. T = t+ 1, repeat from Step 2 until t = T (T possibly unknown)

Figure 3. The setting of Multi-armed bandit[4]

The purpose of an optimal algorithm to solve Multi-Armed bandit problem is maximizing a total reward so
algorithm has to choice a arm that has max reward in every t. However, comparing a total reward of algorithm
is not appropriate to evaluate the algorithm because the value of a total reward varies with the value of ,,, and
total reward increases continuously. Therefore, the following new measurement method is used to evaluate the

algorithm, Regret :



T

R, = Z[u* — Ua,]

t=1

where u,, denotes the mean reward of a; is selected at ¢t and u, is the mean reward of the best arm. From
the regret, we can compare how fast each algorithm finds the best arm that minimize Regret as soon as possi-
ble[4].

The crucial difficulty to solve Multi-Armed bandit problem is an exploration and exploitation tradeoff. When
we are in starting point(t=0), we don’t have any information of each arm. Therefore, we have to choice each
arm at least once and check the reward. However, because reward is a stochastic value(u,,), we cannot totally
trust the reward of each arm. we can repeat an enough exploration to get a reliable u,, of each arm. As aresult,
we can find the best arm but our total reward will be low because the size of T 1is limited. If we do not explore
but exploit only, we also get a low total reward with a high probability Because we do not know that the arm we
choice is the best since we did not have an enough exploration[6].

In conclusion, it is most important to control an exploration and exploitation tradeoff to solve Multi-Armed
bandit problem. The algorithm that finds the best arm as possible as fast will be the best algorithm. There are

some algorithms that show good result so we will introduce algorithms in Related work.

1.2.2 K-armed (Linear) Contextual bandit

Context X q (age, gender, time of the day, etc.)

amazon echo
~—

Action a; (restaurant, TV show, etc.) ‘
Reward 1 4, (see the TV show or not, etc.)
A user Digital
Companion

Figure 4. Contextual Bandit

The main difference between Bandit and Contextual bandit is that each arm has a context in Contextual bandit.

Each context can be regarded as a user, article and product information for recommendation depending on the



task. Therefore, many applications use this setting to give a user a right recommendation and it is actually show-

ing good results in many field. The problem setting of K-armed (Linear) Contextual bandit is as follows:

> Setting:

1. Observe x.4 € RY for a € {1,... K}

2. Pick a;, receive the reward 134, = xtTIQCG* + €

3. Incurs regret ¢4 — 734, and update 6, (e.g., 8, = (A + XIx)"xIr))
»  Goal: Maximize the reward or minimize the regret

v R(T) =1/T Z{=1(rt, a; —Tta,)

Figure 5. K-armed (Linear) Contextual bandit[4]

where a; = argmax,0;x;, is the best action given X;q, and ry, T¢4; is a best reward at time ¢. Because
each arm has a context unlike Multi-armed bandit, we can consider the reward as x{, a,0" + €. The purpose of

K-armed (Linear) Contextual bandit is also maximizing the reward or minimizing the reward.
K-armed (Linear) Contextual bandit also has an exploration and exploitation tradeoff so many algorithms are
suggested. The main approach of these algorithms is to solve tradeoff by using ellipsoid confidence regions. we

will look into detail about ellipsoid confidence regions later.

1.3 Related work

In this part, we will look into popular algorithms that solve Multi-armed bandit and Contextual Bandit problem.

To understand these algorithms is important since these algorithms is used as comparison target of our method.

1.3.1 &— greedy algorithm

& — greedy is very simple but quite a powerful algorithm for Multi-armed bandit. This algorithm just choice
the best arm using the reward of each arm identified with 1 — & probability or randomly selects an arm in all

arms. The details of the algorithm are as follows[5]:



= {at = argmax,,(0fxl,,), w.p. 1—¢
‘ a, ~Unif{1,...,K}, w.p. £

Figure 6. € — greedy algorithm

This algorithm is not very good theoretically and experimentally, but it is very intuitive because & parameter
is a term to control an exploration and exploitation tradeoff. If & is quite big, algorithm will explore many times
and result in the low total reward. The opposite case can easily be considered. Another problem is that the fixed
¢ will lead to a meaningless exploration after many trials. The reason is that we already found the best arm as a
result of a sufficient exploration.

To solve a problem of & — greedy, there are various variations. For example, there is a way to avoid a mean-

ingless exploration. That is, while keeping € constantly, adaptively update or reduce & to a constant rate.

1.3.2 UCB

UCB(Upper Confidence Bound) algorithm is used for Multi-armed bandit. This algorithm namely set an upper
confidence bound for selecting an arm. There are many variations, such as UCB1, UCB and UCB-Tuned, but
we introduce UCBI algorithm because it is a fundamental and basic algorithm. UCBI1 algorithm choice an arm

each time t based on:

_ N logt
ar = argmaxae{l ..... K}[Ha,t +c m]

Figure 7. UCB algorithm

where fi, . isa estimated empirical mean of a, attime t,and logt means the natural logarithm of t, N.(a)
denotes counting number that action a has been selected before time t, and ¢ controls the degree of an ex-
ploration[6].

The main idea of upper confidence bound (UCB) is in the square root term, that means a measure of the vari-
ance or uncertainty to estimate value of action a,. Intuitively, whenever action a, is selected, the uncertainty

of a; is reduced since N;(a) is increased. On the other hand, when an action other than a; is selected, t is



increased but N;(a) is unchanged. The natural logarithm of ¢ means that the increase of value will small over
time, but is unbounded.

UCB algorithm choice an arm each time t to take into account both the estimated empirical mean and the
uncertainty of a;. As a result, all actions will be selected, however, an action that is selected relatively many
times than others but has a low empirical mean will be not selected over time since this action do not have a
value for an exploration or exploitation. In contrast, an action that is selected rarely but has a high empirical
mean is relatively worthy to be chosen. Finally, after many times, an uncertainty term will be decrease, so an
action that has a high empirical mean will be only selected. This algorithm has a great result in terms of theory
and actually pretty work well in experiment than other algorithms. However, this algorithm has also disad-
vantages, that UCB have to explore all arms to compute an empirical mean of all arms since it is essential to

compute UCB.

1.3.3 linUCB

In the K-armed (Linear) Contextual Bandit, linUCB is useful and powerful algorithm. To introduce this algo-
rithm, we begin with similar approach used in UCB. The goal of linUCB is to set confidence regions C, that

has 6 with sufficient confidence. We can suppose ellipsoid confidence regions as below:

C=Wwllv— llgr <} (D)

where Z;! is a symmetric positive definite matrix, and:

v = Willgzr = V(v = W)TZ W= W), (2)

For example, (2) is the standard 2-norm, and C, would be a ball of radius C, centered at W, when I is

the identity matrix. Also, we can estimate W, by using ridge regression :

W = argmin, Al + (P —vTxp0 )% (3)



we can consider (2) as a Gaussian confidence regions determined the parameter c,, if one modeled the posterior
distribution of w as Gaussian with mean W, and covariance Z;?, then (2) is a high confidence region that
contains w,[4][8].

By using this ellipsoid confidence regions, UCB1-sytle algorithm choose the context as below:

.....

— T
ap = argmaxqe(,. kyMaxXpec,V Xta>  (4)

this is equivalent to:

— AT t ’ T -1
ay = argmaxge1, ;W Xea + € [Xeat Xta

Figure 8. linUCB algorithm




II. METERIALS

2.1 Problem setting for Bandit Parameter Estimation

Task A
Context x, o
H Action Actiona, ﬂ “
+> ,
Reward _Reward 7o E ﬁ
A user

Same user sec,etary
But not share learned information! Task B

Context x; o

CEmEe
S ciona,  E8EE

e ,‘ Reward riq, | P s

A user Al
secretary

Figure 9. The recommendation task for same user in different two tasks

The most algorithm for contextual bandit is focused on maximizing total reward or minimizing a regret as soon
as possible. As a result, some algorithm that we checked in introduction show good result in the both case.
However, there is a problem that, if the algorithm makes a good recommendation to a user in the task, every
time a task is changed for the same user, it must be newly learned for a good recommendation. In other words,
the characteristics of the user learned in a specific task cannot be reflected in other tasks. To solve this problem,
we suggest new settings for Bandit Parameter Estimation and Initial Iteration that learns user profile to rapidly

adapt to a new task.

Task A
Context _Contextxeq
Action CActiona, | ﬂ "
Reward _Reward riq ﬁ E

Initial interaction (Learn user’s profile)

Context x; o
—_—T
¢ . Action a, Q“
—_—

User’s profile Auser
. i
secreta
i Rewardr, Reward r,, IR A Task B i
Auser Al n Context x; ,
secretary Action a; & 1 §

- ,‘ Reward 7, ,, “ Figy

Auser Al
secretary

Figure 10. New setting for learning user profile

Our new setting is the same as Figure 10. It is similar to a situation that a user joins new web site or buy a new



artificial intelligence based secretary. In the initial iteration, we can ask a few questions about the user such as
a hobby, interest and specialty. If we can learn the characteristics of the user through this process, we can quickly
make good recommendations in each task. However, the point is that, since the process of the signup should not
be long, it is important to learn user profile quickly.

In K-armed (Linear) contextual bandit setting, we suggest new problem called Bandit Parameter Estimation.
For this problem, we begin with setting that used in K-armed (Linear) contextual bandit. However, we change

the goal as below:

> Setting:

1. Observe x.q € RY for a € {1,..,K}

2. Pick a;, receive the reward 134, = x{ate* + e

3. Incurs regret ¢4 — 73,4, and update 6, (e.g., 0, = (A + XIx)"1xIr))
>  Goal: Minimize R(T) = 1/T X1, L, as fast as possible

v Ly =116, — 67[l,

Figure 11. the problem setting for BPE

We interpret 6° € R as a latent user profile reflected in the initial iteration. Since Tt,q, 18 determined by
X, ate*, we can suppose that 8* can be said to contain the user’s current interests or behavior in the current task.

Therefore, if we learn 8" quickly in the current task, we can use 8* as additional information for the same

user in other tasks. In this study, we aim to concentrate on finding which algorithm can quickly estimates 8*.

2.2 The uncertainty ellipsoid of 8"

E={00-6,)T%716-6,)}

Figure 12. The uncertainty ellipsoid of 0*[7]



From the K-armed (Linear) contextual bandit and linUCB, we could induce ellipsoid confidence regions. Fig-

ure 12 shows that the ellipsoid centered at 6, and the uncertainty ellipsoid of 8* defined by X7!. X71(Z, =
A+ XTX,) is a symmetric positive definite matrix so s; in the Figure 10 is unit eigenvector of Z;'. we can

see that the short axis of ellipsoid (eigenvector s; corresponding A (Z;1))) is stretched most by sensing and
the long axis of ellipsoid (eigenvector s, corresponding A, (271)) is stretched least by sensing[7].
Our new goal is that estimating 6" as fast as possible. To do this, we have to find algorithm that shrink the

uncertainty ellipsoid of 8 in all directions rapidly.

2.2.1 Max(minEig.val)

The minimum eigenvalue of the uncertainty ellipsoid is the log axis of ellipsoid. As mentioned earlier, algo-
rithm have to shrink the uncertainty ellipsoid in all directions. Selecting an arm(context) that maximize a mini-

mum eigenvalue is lead to shrink ellipsoid in a complete circle. Max(minEig.val) algorithm is as follow:

Input : x;, t, X; Output: x.,

Algorithm: 8. else:

1. arr = [] 9. tempX, = X,

2 foriinrange(size(x;)) 10. tempX, = stack(tempX;, x.[i])
3 if t =0: 11. = M+ XT X,

4. Xe = x¢[i] 12. min_EV = getMinEigval(X)
5 = M+ XT X, 13. arr.append(min_EV)

6 min_EV = getMinEigval(X) | 14. action = argmax(arr)

7 arr.append(min_EV) 15.  x¢q = x¢[action]

Figure 13. Max(minEig.val) algorithm

Where x, denotes whole arms at time ¢, and X, denotes arms that are selected by algorithm up to time ¢t. t
means current time. The algorithm quite simple and other subsequent algorithms will go through a similar pro-
cess. First, algorithm get x, and calculate min_EV from x.[i] and X,. Next, save min_EV into array. Fi-

nally, algorithm choice an arm that maximize minimum eigenvalue of X.

10



2.2.2 Max(Tr(Z,))

The trace of X is same as the arithmetic mean of A;(Z;). Intuitively, we can think that maximizing the trace

of X can lead to shrink ellipsoid. Max(Tr(2;)) algorithm is as follow:

Input : x;, t, X; Output: x.,

Algorithm: 8. else:

1. arr = [] 9. tempX, = X,

2. foriinrange(size(x;)) 10. tempX, = stack(tempX;, x.[i])
3. if t =0: 11. = M+ XT X,

4. X = x¢[i] 12. trace = getTrace(X)

5. = M+ XT X, 13. arr.append(trace)

6. trace = getTrace(X) 14. action = argmax(arr)

7. arr.append(trace) 15.  x¢q = x[action]

Figure 14. Max(Tr(Z,)) algorithm

The difference with Max(minEig.val) is just selecting the arm that maximize trace of X. However, in the
face of a computational cost, this algorithm is more efficient than Max(minEig.val) because the cost of get-

ting an eigenvalue is more expensive than getting the trace of matrix.

2.2.3 Min(Tr(Z;1))

Similar with Max(Tr(Z;)), we could think that the harmonic mean of 4;(X;). Because the arithmetic mean
is always greater than or equal to the harmonic mean, maximizing the harmonic mean of A;(Z;) can be effec-

tive.

Input : x;, t, X; Output: x.,

Algorithm: 8. else:

1. arr = [] 9. tempX, = X,

2. foriinrange(size(x;)) 10. tempX, = stack(tempX;, x.[i])
3. if t =0: 11. = M+ XT X,

4. Xe = x¢[i] 12. trace = getTrace(X™1)

5. T=AU+X X, 13. arr.append(trace)

6. trace = getTrace(2™1) 14. action = argmin(arr)

11



7. arr.append(trace) 15. x¢q = x.[action]

Figure 15. Min(Tr(Z;1)) algorithm

Min (Tr 7 1)) algorithm is just adding an inverse function into part of getTrace(X). As a result, computational

cost is expensive than Max(Tr(Z;)) slightly.

2.2.4 Max(Det(X,))

Because Z; is a symmetric positive definite matrix, the determinant of X is the geometric mean of 4;(%,) .
The geometric mean is less than or equal to the arithmetic mean, and is greater than or equal to the harmonic

mean. Therefore, Max(Det(%,)) will also lead to shrinkage the uncertainty ellipsoid in the all directions.

Input : x;, t, X; Output: x.,

Algorithm: 16. else:

8. arr = [] 17. tempX, = X,

9. foriinrange(size(x;)) 18. tempX, = stack(tempX;, x.[i])
10. if t =0: 19. = M+ XT X,

11. X: = x¢[i] 20. det = getDet(X)

12. = M+ XT X, 21. arr.append(det)

13. det = getDet(X) 22. action = argmax(arr)

14. arr.append(det) 23.  xpq = x¢[action]

Figure 16. Max(Det(X,)) algorithm

The time complexity of calculating determinant in matrix is known as 0(n®). Therefore, Max(Det(Z,))

is a undesirable algorithm in terms of the time complexity than other algorithms we mentioned.

12



. METHOD

3.1 Generating synthetic data

Before applying our algorithm to a real dataset, we generate synthetic data and verify our algorithm. A target
parameter(6”) for a estimation, an initial parameter of each algorithm(6,) and k contexts(x.,) are generated
based on Gaussian distribution( = 0,0 = 1). The size of k and d depends on experimental cases. For the
experiment, we set two values, episode(ep) and time(t). Each ep means a new experimental setting and ¢
means selecting one arm in an ep. Therefore, the target parameter(6*) and the initial parameter(6,) are gener-

ated when new ep starts but k arms(x,,) are renewed at each t.

3.2 The experiment process

In order to compare the performance of each algorithm according to the change of k(the number of arms in
each t) and d(the size of context), we proceeded in two separate experiments. They are ‘Casel : Various k,
fixed d’ and ‘Case 2 : Various d, fixed k’. When we fixed a value(k or d), we set a value to 25. In the case
of a various value, the experiment was conducted within the range of [10, 25,50, 75]. On the other hand, the
other parameters are set as follows in common. The number of max episode(ep) and time(T') in each experimen-
tation are respectively setto 20 and 2500. Also, a forlinUCBis 0.01 and A forridge regressionis 0.1. As

a result, we carried out experiments on 8 cases(but two are duplicated).

13



IV. Experimental Result

4.1 The experiment case 1 : Various Kk, fixed d

1.0 1.0
—— e-greedy —— e-greedy
0.9 linuCB 0.9 linuCB
—— max(Tr(Z) —— max(Tr(Z)
0.8 —— max(minEig.val) 0.8 —— max(minEig.val)
—— min(Tr(z:71)) —— min(Tr(z:71))
— 07 __ 07
= max(det(Z)) = max(det(Z))
0] 0]
1 0.6 | 0.6
o} o}
— 05 — 05
0.4 0.4
0.3 0.3
0.2 0.2
0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500
t t
1.0 1.0
—— e-greedy —— e-greedy
0.9 linuCB 0.9 linuCB
—— max(Tr(Z;)) —— max(Tr(Z;))
0.8 —— max(minEig.val) 0.8 \ —— max(minEig.val)
—— min(Tr(z:71) —— min(Tr(z:71)
_ 07 _ 07 \
= max(det(Z;)) = max(det(Z;))
0] 0]
1 0.6 | 0.6
o} o}
— 0.5 — 0.5
0.4 0.4
0.3 0.3
0.2 0.2
0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500
t t

Figure 17. Experimental results of case 1

We fixed the value of d and experimented with changing the value of k in the range of [10, 25,50, 75].
Figure 17 is a graph of the result when the experiment was carried out by gradually increasing d value from
the upper left corner. The x-axis represents t and the y-axis represents the norm between 6 and 6, of each
algorithm(||8, — 6*||). While the other algorithms show similar results, we can see that Min(Tr(Z;1)) and

Max(Det(Z;)) show the best result similarly from Figure 17 but the time complexity of Max(Det(Z;)) is
quite expensive than Min(Tr (Zt_l)). Therefore, we can think Min(Tr (Zt_l)) is better than other algorithms

to estimate 8. In the case of linUCB(yellow line), it is confirmed that as k increases, the result becomes worse
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than other algorithms. However, Min(Tr(Z;')) shows better results than other algorithms in the same case.
For example, in the case of d = 25, k = 25(upper left graph), Min(Tr(Z;{!)) achieves |6, — 6*|| = 0.4
at t = 1000, while the other algorithm obtain near ¢ = 1500. However, in the case of d = 25,k =
75(bottom right graph), t must reach approximately 2000 in order for other algorithms to achieve the value
achieved by Min(Tr(Z;1)) at t = 1000. As a result, Min(Tr(Z;')) is more stable than other algorithms

for estimating 6*, and it can be confirmed that Min(Tr(2Z;1)) shows better results as k increases.

4.1 The experiment case 2 : Various d, fixed k
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Figure 18. Experimental results of case 2

Figure 18 is another case in our experiment. We fixed k = 25 and changed k in the range of [10, 25,50, 75].
As above graph, we can check that Min(Tr(Z;)) shows better result than other algorithms again. Especially,

we can confirm that Min(Tr(Z;1)) gets the same ||8, — 6*|| faster by about 67% than other algorithms from
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k = 25,d = 10 case(right top graph). linUCB shows better result than other algorithm when d increase unlike
experiment in case 1. However, the results of linUCB is still insufficient than Min(Tr(Z71)). In conclusion,

we can confirm that Min(Tr(Z;')) shows the best performance even in experiments that change d.
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V. Discussion

5.1 Conclusion

We suggested Bandit Parameter Estimation motivated by current bandit algorithms problem that cannot use
information of getting from user’s choice in current task when algorithm start to recommendation to user in
another task. In the same K-armed (Linear) contextual bandit setting, we changed the goal that estimates 8 as
fast as possible because 6* can be considered as user’s latent profile. We also introduced some algorithms that
is to shrink the uncertainty ellipsoid rapidly in all directions and verify our algorithms by simulating in two
different experimental cases. From the experimental result, we are able to confirm that Min(Tr(Z;1)) is most

rapidly converged at the lowest value of |[6, — 6*||.

5.2 Future work

The motivation of our research is learning user’s latent profile by estimating 8*. We found some algorithms
that estimate @* rapidly from this research but don’t experiment that it really help to adapt another task. There-
fore, we think that there are two big topics for future work. First, we will have to verify our algorithm in real
dataset. We check that our algorithm works well in case of using Gaussian based synthetic dataset. However,
real dataset such as Yahoo Today’s Module is different with synthetic dataset so this work is essential. Second,
we will check that user’s latent profile is meaningful. When we estimate @* in task, we will use that as addi-
tional information of user’s in another recommendation task and then adapt popular bandit algorithms to show

that user’s latent profile help to converge max total reward or min regret more fast than just use context.
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