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SUMMARY

The cumulative travel-time responsive (CTR) algorithm determines optimal green split for the next time
interval by identifying the maximum cumulative travel time (CTT) estimated under the connected vehicle
environment. This paper enhanced the CTR algorithm and evaluated its performance to verify a feasibility
of field implementation in a near future. Standard Kalman filter (SKF) and adaptive Kalman filter (AKF)
were applied to estimate CTT for each phase in the CTR algorithm. In addition, traffic demand, market
penetration rate (MPR), and data availability were considered to evaluate the CTR algorithm’s performance.
An intersection in the Northern Virginia connected vehicle test bed is selected for a case study and evaluated
within VISSIM and hardware in the loop simulations. As expected, the CTR algorithm’s performance
depends on MPR because the information collected from connected vehicle is a key enabling factor of
the CTR algorithm. However, this paper found that the MPR requirement of the CTR algorithm could be
addressed (i) when the data are collected from both connected vehicle and the infrastructure sensors and
(ii) when the AKF is adopted. The minimum required MPRs to outperform the actuated traffic signal control
were empirically found for each prediction technique (i.e., 30% for the SKF and 20% for the AKF) and data
availability. Even without the infrastructure sensors, the CTR algorithm could be implemented at an
intersection with high traffic demand and 50–60% MPR. The findings of this study are expected to
contribute to the field implementation of the CTR algorithm to improve the traffic network performance.
Copyright © 2017 John Wiley & Sons, Ltd.
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1. INTRODUCTION

According to the 2015 Urban Congestion Report, average duration of daily congestion—the extra time
spent caused by the difference between congested speed and free-flow speed—was approximately
5 hours for January through March in the USA [1]. To deal with congestion in an urban area, various
adaptive traffic signal control systems have been developed by traffic engineers and researchers. These
systems collect vehicle information in real time to optimize signal timing plans by changing the length
and sequence of the phase to serve current traffic demands. Several widely used such systems include
Split Cycle Offset Optimization Technique, Sydney Coordinated Adaptive Traffic System, Real-Time
Hierarchical Optimized Distributed Effective System, Adaptive Control Software-Lite, Optimization
Policies for Adaptive Control, INSYNC, and ATMS.NOW [2].
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While most adaptive traffic control strategies for urban transportation network are designed to
deal with traffic congestion, they have two major challenges. First, these systems rely mostly on
prediction techniques by using approaching demands, vehicle’s arriving pattern, and turning
movement rates. Generally, the prediction technique’s inaccuracy undermines the performance of
traffic control systems. To overcome the inaccuracy, several researchers have tried to apply
advanced prediction techniques to control algorithms to improve system performance. For real-time
travel time prediction problems, Kalman filter-based algorithms and time-series models have
received great attention among parametric models and have been compared with other methods in
previous studies. In case of Kalman filter algorithms, several researchers employed advanced
Kalman filter to overcome the limitation of Kalman filter that Gaussian noise might not be consistent
in field data, such as extended Kalman filter [3–5], adaptive Kalman filter (AKF) [6, 7], and
unscented Kalman filter [8]. In addition, neural network model, which is one of the nonparametric
prediction models, has been used due to its well-known learning and pattern recognition abilities
[9–13]. Currently, k-nearest neighbors approach is widely used as a nonparametric short-term
prediction method, and it can be easily extended to handle a multivariate problem by using historical
data as well as real-time data [14].
Second, real-time data for the adaptive control systems are collected from infrastructure-based

sensors such as video cameras or loop detectors that are fixed point sensors. However, the unreliable
prediction of vehicle locations and speeds could lead to suboptimal control. Moreover, travel times
could not be directly collected until vehicles completely passed the sensors. Hence, travel times need
to be estimated by using an algorithm. Under Vehicle to Vehicle and Infrastructure (V2X)
communication environment, connected vehicles (CVs) could send their trajectories to other vehicles
and/or infrastructure through communication-based devices in real time and the intersection control
algorithm could use directly measured travel-time data regarding vehicle status [15]. Recently, many
researchers have studied to take advantage of communication-based traffic data to improve operational
efficiency and traffic safety. Several methodologies and algorithms were proposed to allow vehicles to
cross safely at an intersection under V2X communication environment. Such algorithms manipulated
individual vehicles’ maneuvers by using predicted trajectories or calculated crash potential so that
vehicles can safely cross the intersection [16, 17]. Guler et al. [18] proposed an algorithm that
incorporates information from CV to determine the sequence of departures from an intersection and
developed an algorithm to evaluate the impacts of autonomous vehicle control and detailed vehicle
information. Dujardin et al. [19] proposed a multiobjective optimization interactive procedure which
is capable of dealing with traffic condition considering total waiting time and the number of stops
based on an adaptive optimization system. Feng et al. [20] proposed an algorithm to optimize the phase
sequence and duration by solving a two-level optimization problem: minimization of total vehicle
delay and minimization of queue length under V2X environment. Their traffic control algorithms using
communication-based data worked well compared with current adaptive signal control when 100%
market penetration rate (MPR) was assumed, but the performance was significantly dropped as
MPR decreases. In this study, MPR is defined as the percentage of vehicles equipped with CV
technology that reports vehicle’s information such as location, speed, and travel time.
The primary objectives of this paper are (i) to analyze effectiveness of a cumulative travel-time

responsive (CTR) algorithm by incorporating MPRs, traffic demand, and types of available data
(i.e., data from both CV and infrastructure sensors vs. CV’s data only) and (ii) to verify a feasibility
of field implementation in a near future. The CTR algorithm proposed by Lee et al. [21] was modified
by adopting AKF to improve prediction performance under variable MPRs. Furthermore, this study
evaluated the CTR algorithm by using a calibrated VISSIM simulation environment. The performance
of CTR algorithm was compared with current traffic signal control algorithm based on infrastructure
sensors considering MPRs in terms of mobility and environmental sustainability.
The remainder of this paper is organized as follows. A concept of the CTR algorithm and the

prediction technique in the CTR algorithm are introduced in section 2. The prediction technique in
the CTR algorithm and proposed analysis procedure based on microscopic simulation are presented in
section 3. The effectiveness of the CTR algorithm is evaluated via simulation in terms of mobility and
environmental sustainability by using an existing intersection in section 4, followed by the findings
and future studies in section 5.
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2. CUMULATIVE TRAVEL-TIME RESPONSIVE TRAFFIC SIGNAL CONTROL ALGORITHM

2.1. A concept of the CTR algorithm

The CTR algorithm is a real-time intersection control strategy. The CTR algorithm determines the
optimal green split for the next time interval by identifying the maximum cumulative travel time
(CTT) measured or estimated by both CV and infrastructure-based sensors under V2X communication
environment. CTT, employed as a real-time measurement for the CTR algorithm, is defined as the
summation of the elapsed time spent by individual vehicles for each phase at an intersection, thereby
enabling to capture instantaneous delays caused by queues and waiting time at the intersection. Thus,
the CTR algorithm could rapidly respond to traffic congestion condition to reduce delay and total
travel time of the intersection.
Figure 1 depicts the CTR algorithm. The travel-time data of individual vehicles equipped with a

communication device are collected to implement the CTR algorithm. Consequently, the CTT for each
phase is calculated and the highest CTT phase can be determined among the calculated CTTs. Then,
the phase with the highest CTT is compared with the current green time phase. The CTR algorithm
decides whether the current green time phase should be kept or not and updates traffic signal every
5 seconds. Additionally, the impacts of update intervals were investigated by using various intervals
(i.e., 4–7 seconds). It turned out that the results under these intervals were not statistically significant.
Thus, the CTR algorithm under 5-second update interval was used throughout this paper.
The CTT is a key factor when the CTR algorithm determines the next signal phase. In other words,

the performance of the CTR algorithm depends on the accuracy of CTTs. As the CTTs depend on
MPR, low MPR would likely undermine the CTR algorithm’s performance. Hence, advanced
prediction technique can be employed to improve the estimation accuracy of CTTs. To this end, this
paper applied Kalman filter algorithms to compensate imperfect market penetration.
Taking into consideration the variety of MPRs, this paper evaluates the performance of the CTR

algorithm in comparison with current signal control by conducting the following steps. First, this paper
selected a study area and established a simulation environment by using VISSIM [22], a microscopic
simulation package. Second, field data (i.e., traffic volume and signal timing plans) were collected
during both peak and off-peak hours for VISSIM model calibrations. Third, in the simulation
environment, real-time CTTs were collected from calibrated VISSIM models and estimated by Kalman
filter algorithms under imperfect MPR conditions. It is worth noting that AKF was employed to
improve the prediction performance as the AKF could dynamically adjust coefficients for the system
and observation noises under the congested situation. This paper also considered two distinctive types
of data availability: (i) data from both CV (e.g., travel time) and infrastructure sensor (e.g., total

Figure 1. Concept of the cumulative travel-time responsive algorithm.
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number of vehicles), denoted as Case 1: CV and infra and (ii) data from CV only, denoted as Case 2:
CV only. Therefore, this study investigated the impacts of insufficient information on the performance
of CTR algorithm. Fourth, the effectiveness of the CTR algorithm was evaluated by comparing with
the actuated signal control under various values of MPR in terms of mobility and environmental
sustainability. The selected performance measurements include travel time, average speed, throughput,
delay, CO2 emissions, and fuel consumptions.

2.2. Kalman filter algorithms

The Kalman filter technique has been widely implemented to estimate future traffic conditions by
using collected data [7, 23–25]. This method relies on stochastic and dynamic models that describe
the behavior of the state-space vector and the relationship between the state-space and the
measurement vector. The algorithm works in a two-step process: (i) time update and (ii) measurement
update. In the first step, the algorithm estimates of the current state variables, along with their
uncertainties. Once the outcome of the next measurement is observed, these estimates are updated
by using a weighted average in the second step, with more weight being given to estimates with higher
certainty. In addition, this algorithm can run in real time by using only the present input measurements
and the previously calculated state and its uncertainty matrix because of the algorithm’s recursive
nature.
The state-space equation in Equation (1) explains the current state (xk) that is the result of the

previous state (xk� 1), the previous input action (uk� 1), and the noise from the previous time step.
The measurement equation presented in Equation (2) explains the current measurement (zk) that
resulted from the current estimated states with noise. wk and vk are process noise and measurement
noise with variance of Q and R and assumed to have a Gaussian noise. The observation matrix, H
in Equation (2), is employed to adjust the difference between the measured states (the collected CTTs
from CV) and the predicted states (the obtained CTTs from state-space equation). If MPR is 100%,
then the observation matrix should be an identity matrix.

• State-space equation: xk =Axk� 1 +Buk� 1 +wk� 1

A: transition matrix for state mapping.
B: transition matrix for input mapping.

wkeN 0;Qð Þ (1)

• Measurement equation: zk =Hxk + vk

H: observation matrix.

vkeN 0;Rð Þ (2)

The transition matrices, A and B in Equation (1), are employed to account for the relationship
between control activities and the results. These matrices need to be determined by considering road
and traffic characteristics such as geometric condition (i.e., the number of lanes for each phase),
volume (i.e., the number of approaching vehicles), and signal status because the CTT could be
affected by various external activities. Hence, this paper utilized an equation in a previous study
[21] described in Equation (3). As noted, when MPR is 100%, the observation matrix becomes
an identity matrix. If infrastructure sensors are not installed (e.g., loop detector), then the total
number of vehicles (qi in Equation (3)) is not available. In this case, this equation is modified as
Equation (4).

• Case 1: CV and infra

ti;k ¼ αti;k�1 þ βqi;k�1 þ μgi;k�1 þ σNLi
tj;k ¼ γti;k�1 þ δti0 ;k�1 þ εqj;k�1 þ τgj;k�1

(3)
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• Case 2: CV only

ti;k ¼ αti;k�1 þ μgi;k�1 þ σNLi
tj;k ¼ γti;k�1 þ δti0 ;k�1 þ τgj;k�1

(4)

where

tk CTT at time interval k
qi , k� 1 vehicle counts of phase i at k� 1
gi , k� 1 length of green time of phase i at k� 1
NLi the number of lane of phase i
i , j the number of phase for through and left turn based on the National Electrical

Manufacturers Association standard, respectively
i
0

the number of through-traffic phase corresponding left-turn traffic
j the number of phase for left turn
α , β , γ , δ , ε ,μ , τ , σ coefficients.

The covariance matrices in standard Kalman filter (SKF) could be estimated by using Minimum
Norm Quadratic Unbiased Estimation [26]. However, the Minimum Norm Quadratic Unbiased
Estimation is an offline tuning process; this is not suitable for real-time implementation. The estimation
of the noise variance is very important in order to correctly tune the filter because it determines the
Kalman gain. In this study, AKF was considered to address this issue. The basic idea of the AKF is
to update the covariance matrices at every time interval by using a covariance matching technique
called multiple model adaptive estimation [27] to reduce uncertainty in the error of covariance.
Generally, the procedure of the AKF is as follows: (i) State propagation and prior state estimation error
covariance are estimated; (ii) observation errors are computed; (iii) observation process covariance
matrix is updated; (iv) Kalman gain is calculated; (v) posterior state estimation and posterior state
estimation error covariance are estimated; (vi) state estimation errors are computed; and then (vii) state
process covariance matrix is updated. More details about the Kalman filter algorithms are available in
previous studies [6, 7].

3. ANALYSIS

3.1. Study area for simulation experiments

Lee highway and Nutley Street within the Northern Virginia’s connected vehicle test bed [28] were
selected as shown in Figure 2. The intersection operates according to the actuated signal control.
The Nutley Street is connected to I-66, which is an interstate highway in the eastern USA as well as
Lee highway, and there are high inbound traffic volumes during peak hour. To establish and calibrate
a simulation environment of study area, field data (e.g., traffic volume, geometrical characteristics, and
signal timing plans) were collected during peak hour (7 AM–8 AM) and off-peak hour (3 PM–4 PM). The
eastbound and westbound approaches have permitted exclusive left-turn signals; southbound and
northbound approaches have protected through left-turn signals.

Figure 2. VISSIM network for study area.
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Two volume data were collected in the study area during peak and off-peak hours. In both volume
data, higher traffic volume rates were found at Lee highway (i.e., east–west directions) than at Nutley
Street. The left-turn traffic in southbound and right-turn traffic in westbound had higher volume rates
than through traffic due to the traffic volume going in and out of I-66.
To establish a simulation-based environment for analysis of the CTR algorithm, VISSIM is used in

this study. To reflect field condition of the study area within the simulation environment as a base
case, VISSIM model was developed by using field data such as traffic counts and traffic signal timing
plan and was calibrated in terms of total travel time and average speed by mean absolute percentage
error (MAPE). As described in Table I, the calibrated VISSIM simulation results showed 5–15% error
when compared with the field measurements. The CTR algorithm was evaluated by using the
calibrated VISSIM simulation model, and measures of effectiveness (MOE) regarding operational
efficiency and environmental sustainability analyzed 10 replications to assess the performance of
the CTR algorithm.
In addition, a C# programming language on VISSIM’s COM interface, which allows additional

external control of simulation model, is used to implement the CTR algorithm. Figure 3 describes
the simulation-based analysis procedure in this study by using VISSIM COM interface for the CTR
algorithm. At time interval t, VISSIM collects elapsed time information of equipped vehicles as
travel-time measurements for each phase and sends the information to the CTR algorithm. If MPR
is 100%, then the CTR algorithm immediately calculates CTTs. If MPR is imperfect, then CTTs are
estimated from Kalman filter algorithms, the SKF, or the AKF. To calculate the matrices in the Kalman
filter algorithms, this paper used the dynamic linked library in MATLAB. Once the highest CTT phase is
determined as next green phase by using the estimated CTTs, the current green signal is either
extended or switched by the CTR algorithm. It is noted that the signal control information is updated
for every 5 seconds even though it can be adjusted.

3.2. Model estimation in Kalman filter algorithms

In the state-space equation, coefficients were estimated by considering external traffic characteristics
such as number of lanes, existence of left-turn bay, and signal status. These estimated coefficients
should be statistically significant because these coefficients would affect the accuracy of estimated
CTTs. To estimate coefficients by a regression model, this study collected 2880 data records
including CTTs, the number of vehicles, and length of green time from the calibrated VISSIM

simulation and used SPSS 22 that is one of statistical analysis packages. The geometric
characteristics, the number of lanes for each phase, were also used. Considering data availability,
two types of state-space equation were developed as shown in Table II: (i) CV and infrastructure
sensors (i.e., CV and infra) and (ii) CV only (i.e., CV only). All parameters are statistically
significant with a 95% significance level for both equations, and R2 values, which represents model
performance, are close to 1.0. Using coefficients for each equation, Equations (3) and (4) can be
written as Equations (5) and (6), respectively.

• Case 1: CV and infra

ti;k ¼ 0:85�ti;k�1 þ 3:33�qi;k�1 � 22:90�gi;k�1 þ 8:13�NLi
tj;k ¼ 0:92�ti;k�1 � 0:01�ti0 ;k�1 þ 4:11�qj;k�1 � 22:48�gj;k�1

(5)

• Case 2: CV only

ti;k ¼ 0:92�ti;k�1 þ 22:81�qi;k�1 þ 13:68�NLi
tj;k ¼ 0:98�ti;k�1 þ 0:02�ti0 ;k�1 � 19:06�gj;k�1

(6)

When the regression models were adopted in the KF models, the KF algorithms’ performances were
analyzed by using MAPE under 100% MPR with comparison between measured CTTs by CV in
VISSIM and estimated CTTs by KF algorithms. The average MAPEs of SKF and AKF were
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investigated as 18.15% and 15.31%, respectively. It is noted that the key to the success is not about the
prediction accuracy but the correct identification of an approach with the highest CTT. The prediction
accuracies to identify the highest CTT of the SKF and AKF were 89.6% and 92.1%, respectively. In
addition, there are a few factors affecting the travel-time prediction accuracy. These include
communication errors, vehicle types, MPR, etc. This paper only considered MPR in evaluating the
performance of the Kalman filter because it is generally understood that communication errors are
important for safety critical applications (i.e., not critical for travel-time estimation) and the vehicle
mix on this corridor has less than 2% trucks. In addition, the Kalman filter used in this paper predicted
quite well even without considering vehicle types.

3.3. Scenarios and measures of effectiveness

Eleven different MPR values are applied to the simulation scenarios to evaluate the CTR algorithm.
The MPRs were ranged from 0% (current signal control) to 100% (perfect CV environment)
incrementing by 10%. This study used two sets of traffic volume data including peak hour and off-peak
hour. In addition, two types of communication technique and two types of Kalman filter were
considered. Thus, total 88 scenarios were developed to evaluate CTR algorithm and 5 replications
were made for each scenario.
For comparison purpose, this study employed the following MOE: total travel time (h), average

speed (mph), and delay (s) as mobility measures and amount of CO2 emissions per vehicle and fuel
consumption as environmental sustainability measures. In addition, Virginia Tech microscopic
energy and emission model [29] was employed to estimate the emissions and fuel consumptions
of each scenario by using speed and acceleration in vehicle trajectory data collected by VISSIM

simulation.

3.4. Hardware in the loop simulation configuration for the CTR algorithm

Given that CV technology has not been deployed, the Bluetooth technology could be used as a CV
surrogate and simulations of a fully implemented CTR algorithm in a V2X environment under various
MPRs. This paper developed a hardware in the loop simulation (HILS) [30] environment to evaluate
the field implementation feasibility of the CTR algorithm. The HILS consists of 2070L traffic signal

Table I. Simulation results using existing traffic signal timing and traffic volume.

Parameters Peak hour Off-peak hour

Volume (vph)

Total travel time (h) 169.089 (MAPE 5%) 98.659 (MAPE 13%)
Average speed (mph) 11.040 (MAPE 15%) 16.697 (MAPE 8%)
Delay (s) 92.310 48.214
CO2 (kg/unit) 0.787 0.473
Fuel (kg/unit) 0.615 0.315

MAPE, mean absolute percentage error.
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controller hardware; controller interface device (CID); Bluetooth readers developed by Lee, Zhong,
Du, Gutesa, and Kim [31]; communication devices between a server computer and Bluetooth readers;
and VISSIM. Figure 4 illustrates HILS configuration to operate the CTR algorithm under CV
environment.
First, Bluetooth readers capture Medium Access Control (MAC) addresses of Bluetooth devices

in approaching individual vehicles in each direction for every 5 seconds. Second, the collected
MAC addresses are transmitted from Bluetooth readers to a remote server computer through
Zigbee-based short range communications [29]. The MAC address data are stored in a database
in the server computer. Third, a program in the server computer matches the MAC addresses from
downstream and upstream for each direction and computes the travel time of equipped vehicles in
real time. Fourth, using these travel times, the CTR algorithm determines the next green time phase
and sends this information to the CID. At last, the CID switches digital signals to analog signals,
and this signal is sent to controller hardware. In addition, the controller sends the signal

Figure 3. Simulation-based analysis procedure.

Table II. Regression model to estimate coefficients in Kalman filter by using simulated data.

Scenario Equations

Model summary Performance

Parameter B Std. error t Sig. R R2 Adjusted R2

CV and
infra

Equation for
THRU

α 0.85 0.01 67.81 0.00 0.976 0.953 0.953
β 3.33 0.49 6.72 0.00
μ �22.90 0.89 �25.81 0.00
σ 8.13 1.12 7.23 0.00

Equation for LT γ 0.92 0.01 109.61 0.00 0.975 0.951 0.951
δ �0.01 0.01 �2.20 0.03
ε 4.11 0.28 14.83 0.00
τ �22.48 0.74 �30.41 0.00

CV only Equation for
THRU

α 0.92 0.01 167.64 0.00 0.976 0.952 0.952
μ �22.81 0.89 �25.52 0.00
σ 13.68 0.77 17.79 0.00

Equation for LT γ 0.98 0.01 132.81 0.00 0.973 0.947 0.947
δ 0.02 0.01 2.78 0.01
τ �19.06 0.73 �26.16 0.00

Note: CV, connected vehicle; THRU, through; LT, left turn.
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information to the signal head. Note that step 5 is not available to consider for indoor experiments.
Thus, this study analyzed the CTR algorithm in the HILS configuration implementing step 1
through step 4.

4. RESULTS

The effectiveness of the CTR algorithm over the actuated signal algorithm is summarized in Table III
in terms of MPRs, volume scenarios, communication types, and Kalman filter algorithms compared. It
is noted that the existing actuated signal control is considered to be up to date as the Northern Virginia
traffic engineers well maintain the timing plans in the area. Because the existing signal control was
considered as the base case, we observed the changes of MOEs between the base case and the
proposed control scenarios (with the CTR algorithm). In Table III, when the MOE of the scenario is
greater than that of the base case, the value of change is positive. For example, if a change of total
travel time is �20%, then it means that the CTR algorithm reduced total travel time by 20% compared
with the actuated signal control.
Generally, the CTR algorithm’s performance improved as the rate of equipped vehicle increased.

With 100% MPR under V2X communication environment, the CTR algorithm significantly improved
the mobility when compared with the actuated signal control at peak hour; total travel time decreased
by 45–47%, average speed increased by 96–101%, and delay decreased by 71–73%. Moreover, at
off-peak hour, travel time decreased by 37–42%, average speed increased by 57–70%, and delay
decreased by 61–69%. In terms of environmental sustainability, the amount of CO2 emission slightly
increased by 1–2% and fuel consumption decreased by 3–6%; however, it was not significant. We
found a large drop of fuel consumption under low MPR.

4.1. Effectiveness of prediction technique

An interesting finding is that the CTR algorithm showed different performance by the type of
Kalman filter algorithm under low MPR conditions. At off-peak hour, the performance of the
CTR algorithm with the SKF denoted as rectangle marks was about 5–10% better than that with
the AKF denoted as circle marks. Moreover, the minimum required MPR of the SKF (10%) was
lower than that of the AKF (20%). However, the AKF’s results were slightly better (2–7%) than
the SKF’s results at peak hour. In addition, the minimum required MPR of the AKF (20%) was
lower than the SKF (30%). Therefore, to guarantee the CTR algorithm’s performance for both traffic

Figure 4. Hardware in the loop simulation configuration for the cumulative travel-time responsive algorithm.
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demands, 30% and 20% MPR should be needed for the SKF and the AKF, respectively. Because
the AKF showed better performance than the SKF under imperfect MPR, the AKF is recommended
as prediction technique for the CTR algorithm.

Table III. Evaluation results.

MOEs (a) Peak hour (b) Off-peak hour

Total travel time (h)

Average speed (mph)

Delay (s)

CO2 (kg/unit)

Fuel consumption (kg/unit)

MOE, measures of effectiveness.
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4.2. Effectiveness of data availability

If information from infrastructures is not available, then high MPR should be ensured for operating the
CTR algorithm. According to the comparison results between “CV and infra” with solid line and “CV
only” with dotted or dashed line, the minimum required MPRs for the CTR algorithm were 50–60% at
peak hour and 90% at off-peak hour to outperform the current actuated traffic signal control.
According to the results of t-tests to compare effectiveness of data availability, travel-time, average
speed, and delay of “CV and infra” were significantly reduced than those of “CV only” at off-peak
hour (α<0.05). In case of peak hour, the results of t-tests were not statistically significant at peak hour.
However, the differences in terms of travel time, average speed, delay, and CO2 were statistically
significant when the AKF was adopted (α<0.05).
Even at the same MPR for peak and off-peak hour, the performance of the CTR algorithm shows a

big difference because the quality of information for operating the CTR algorithm is influenced by the
number of equipped vehicles. Therefore, the infrastructure sensor data should be needed for stable
algorithm performance. On the other hand, even though there is no infrastructure sensors at the
intersection, the CTR algorithm could be considered where high traffic demand is found with 60%
MPR. Furthermore, the CTR algorithm could improve the mobility than actuated control even in under
50% MPR when the AKF is considered.

5. CONCLUSIONS

To verify the feasibility of field implementation in a near future, this research enhanced and evaluated a
cumulative travel-time responsive (CTR) real-time intersection control algorithm under various
conditions considering MPR, traffic demand, and types of data availability. An existing intersection
within the CV test bed in Virginia, USA, was simulated within a microscopic traffic simulation model,
VISSIM, under the current traffic signal timing plans and volumes of peak and off-peak hours. Two CTT
estimation techniques, SKF and AKF, were applied for each phase in the CTR algorithm. In addition,
HILS configuration, which utilizes actual traffic signal controller, was proposed to test the feasibility of
implementing the CTR algorithm in the field.
The CTR algorithm improved the mobility in comparison with actuated traffic signal control when

MPRs exceed 30% with the SKF and 20% with the AKF. At 100% MPR, total travel time, average
speed, and delay were significantly enhanced when compared with the current actuated traffic signal
control. Without utilizing infrastructure sensors, the CTR algorithm could be considered at the
intersection when traffic demand is high and MPR is 50–60%. We found that the AKF outperformed
the SKF at peak hour because it reduces the uncertainties with the process and observation noise
statistics. Although the environmental sustainability was not improved as much as mobility, the
CTR algorithm is highly expected to improve mobility performance under CV environment.
As expected, the CTR algorithm’s performance largely depends on the MPR because the

information of CV is a key factor of the CTR algorithm. However, we found that the perfect MPR
requirement of the CTR algorithm could be relaxed (i) when the data were collected from both CV
and the infrastructure sensors and (ii) when the AKF was adopted in the CTR algorithm.
For successful implementation of the CTR algorithm in the field, there are several challenges. The

performance of communication devices should be considered because it could affect reliability of
collected data from CV. It can be accomplished with a field experiment by using Connected Vehicle
Roadside Equipment and On-board Equipment. For reliable information, advanced communication
devices might be needed to minimize packet losses and latencies of data delivery such as Dedicated
Short-Range Communications. To explicitly consider vehicle mixes, Kalman filter model should
include vehicle type (e.g., % of heavy vehicles) as a variable for estimating/predicting the CTTs. In
addition to enhancing the applicability of the results shown in this study, it needs to configure the
CTR algorithm for multiple intersections. To consider the progression along the corridor, we propose
to apply weights on the movements along the main corridor based on the platoon dispersion factor. The
findings of this study are expected to be of great use in trying to implement the CTR algorithm with
minor modifications in the field to improve network performances.
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