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The Sun also rises,

– Ernest Hemingway

again, again, and again.

1 Introduction

Einstein gravity in three-dimensional anti-de Sitter (adS) spacetime sits at the crossroad

of the simplicity of lower-dimensional spacetime and the richness of higher-dimensional

spacetime. There is no propagating massless spinning fields but there are non-trivial

Banados-Teitelboim-Zanelli (BTZ) black holes, be they neutral, charged or rotating [1].

In three-dimensional spacetime, the Einstein gravity also accommodates many interesting

extensions including, notably, the higher-spin gravity [2, 3].

Recently, we developed a new extension of the three-dimensional Einstein gravity

in [4, 5]. The extension can be summarized most transparently in the Chern-Simons (CS)

formulation. At the classical level, the pure Einstein gravity on AdS3 is equivalent to the

CS theory with gauge group SL(2,R)L × SL(2,R)R [6, 7]. The idea is that we decorate

each copy of the gauge group SL(2,R) with a ‘color’ isospin symmetry group, for example,

U(N). Naively, this would mean that we replace the usual sl(2,R) valued gauge connection

with the sl(2,R)⊗u(N) valued ones. Although the no-go theorem [8]1 prevents the tensor-

1See [9] for an “exotic” exception.
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product vector space sl(2,R) ⊗ u(N) to admit a Lie algebra structure, we can get around

it by enlarging the vector space with additional su(N) to obtain a vector space furnished

with a Lie algebra isomorphic to su(N,N):

sl(2,R)⊗ u(N)⊕ su(N) ≃ su(N,N) . (1.1)

The upshot of this enlargement is the SU(N,N) CS theory describing not only multiple of

massless spin-two fields, but also the SU(N)L×SU(N)R CS gauge fields. The 1+(N2−1)

copies of massless spin-two fields consist of the genuine graviton and the rest whose left

and right moving modes carry the adjoint representations of the SU(N)L and SU(N)R,

respectively. We call the corresponding gravity theory SU(N) colored gravity theory.

The SU(N) colored gravity theory has many interesting features. In particular, in

contrast to uncolored counterpart, the colored theory admits multiple vacua, referred to as

rainbow vacua in [4], breaking the SU(N) color isospin symmetry as

SU(N) → G = SU(N − k)× SU(k)×U(1) . (1.2)

The breaking parameter k ranges over between 0 and
[
N+1
2

]
, and each of these vacua corre-

sponds to an AdS background with a k-dependent curvature scale. The k = 0 corresponds

to the color-singlet vacuum, where the theory has the perturbative spectrum described

above: i) graviton, ii) SU(N) × SU(N) CS gauge fields, and iii) SU(N) adjoint massless

spin-two fields. In the vacuum with non-zero k, due to the symmetry breaking (1.2), the

theory has different perturbative degrees of freedom. It has i) graviton, ii) G × G CS

gauge fields, iii) G adjoint massless spin-two fields, and iv) the fields associated with the

2 (N − k) k broken generators in the coset SU(N)/G. In this symmetry-broken sector, a

Higgs-like mechanism glues the massless spin-two fields with the spin-one, namely, the left

and right CS fields. The resulting spectrum turns out to be partially-massless spin-two

fields [10, 11], carrying now the bi-fundamental representation of the residual symmetry

G. If the background were de Sitter (dS) spacetime, partially-massless spin-two field cor-

responds to a massive spin-two field whose mass lies exactly on the unitarity bound known

as the Higuchi bound [12]. On this bound, a scalar-parameter gauge symmetry persists

and the helicity zero mode decouples leaving only the helicity two and one modes. If the

background were AdS spacetime, the same mechanism holds except that the bound is not

the unitarity one but the point where the norm of tachyonic spin-two field changes the

sign of the helicity-zero mode. Still, the helicity-one modes have negative norms with re-

spect to the helicity-two modes, and so the partially-massless fields in AdS background

are non-unitary. Despite of the non-unitarity, it plays many interesting roles in a variety

of contexts (see e.g. [13–15]). Interestingly, the partially-massless fields persist to exist in

three dimensions, despite of the fact that all the helicity modes are not propagating [4, 5].

By the AdS/CFT correspondence, there must be two-dimensional conformal field theo-

ries (CFTs) dual to the panorama of colored gravity. Spacetime and internal symmetries of

these CFTs are deducible from asymptotic symmetry algebra of each rainbow vacua of the

colored gravity. As is well-known, slow fall-off of gravitational field in three-dimensional

AdS spacetime enhances the asymptotic symmetry algebra to infinite-dimensional affine
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extensions. For the colored gravity at hand, the diffeomorphism is color-decorated, so the

asymptotic symmetry algebra dictated by large colored diffeomorphism would be much

richer. Roughly speaking, we anticipate color-decorated Brown-Henneaux algebra.

As said, the rainbow vacua and spectrum therein point to panorama of the asymptotic

symmetries. To study these symmetries systematically, one would first construct the CFT

dual to colored gravity in the k = 0 color-singlet vacuum and, from this, derive the CFTs

dual to k 6= 0 color-broken vacua. Along the way, one ought to face the issue of unitarity.

In the color-broken vacua, the spectrum includes partially-massless fields, whose boundary

degrees of freedom carry non-unitary representations of the AdS isometry, so(2, 2) (see the

section 6 of [5]). Moreover, among the SU(N −k)×SU(k)×U(1) adjoint massless spin-two

fields, the ones corresponding to the SU(k)× U(1) turn out to be ghosts as they have the

negative sign of kinetic term with respect to the sign of graviton kinetic term. Intuitively,

one can understand the sign flip of kinetic terms from the shape of effective potential of

the colored spin-two matters from which the rainbow vacua have been derived. In fact,

the rainbow vacuum solutions are all saddle points except for the k = 0 color-singlet one.

All these seem to suggest that the colored gravity in a k 6= 0 background has an issue

of unitarity. Since k is a parameter that characterizes the pattern of spontaneous gauge

symmetry breaking and so the pattern of mass spectrum reorganizations, it is hard to

imagine that the “amount” of non-unitarity depends on the value of k. Therefore, we are

naturally lead to the suspicion that, if the background with k 6= 0 has an issue of unitarity,

the color-singlet background at k = 0 ought to have the same issue in a hidden manner.

Around the color-singlet background at k = 0, all the massless spin-two fields including the

graviton are unitary, so the only source one would suspect is the SU(N)×SU(N) CS part.

Usually, one does not question the unitarity of CS theory as it is a matter of definition in

so far as gauge invariance is maintained. Here, however, we do.

With the aim to find answers to the above two questions, in this paper, we study the

asymptotic symmetry of the SU(N) colored gravity with particular attention to pin down

the holography of non-unitarities. The asymptotic symmetry of three-dimensional gravity,

and its cousins, has played a central role in the development of string theory black holes

and holography since the seminal work by Brown and Henneaux [16]. Recent advances

extended the scope to the asymptotic symmetry of higher spin gravity [17, 18], which

led to a version of AdS3/CFT2 proposal [19]. Here, we explicitly derive an asymptotic

symmetry algebra of the SU(N) colored gravity and discover that the SU(N)× SU(N) CS

part of the theory indeed contains the non-unitarity: the boundary excitation modes of

SU(N)×SU(N) spin-one dynamics have negative norm with respect to the gravity modes.

We organized this paper as follows. In section 2, we recapitulate salient features of the

colored gravity on AdS3 relevant for the foregoing considerations. In section 3, we impose

asymptotically AdS3 boundary conditions on colored gravity and obtain gauge transfor-

mations preserving them. We observe that resulting gauge transformations and variations

of fields have non-linear dependence on fields. In section 4, we read off Poisson brackets

between dynamical variables. The algebra is non-linear in terms of fields which do not

transform as Virasoro primaries. We show that field redefinition of Virasoro generator

make all fields into Virasoro primaries but the non-linearity is not removable. In sec-
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tion 5, we discuss negative level of the affine algebra and its relation to the non-unitarity.

Appendix A contains additional technical details.

2 Colored gravity

Before starting the analysis of asymptotic symmetries of colored gravity, we first recapitu-

late salient features of the colored gravity.

The SU(N) color-decorated gravity in three dimensions can be described by the CS

action with the gauge algebra su(N,N)⊕su(N,N) . For the colored-gravity interpretation,

we decompose the generators of su(N,N) as

su(N,N) ≃ gl(2,R)⊗ u(N)⊖ id⊗ I , (2.1)

where the natural associative structures of gl(2,R) and u(N) provide the su(N,N) Lie

algebra structure in the end: see appendix A for further details. The gl(2,R) is generated

by {I, Ja} subject to the product,

Ja Jb = ηab I + ǫabc J
c , (I, Ja)

† = (I,−Ja) ( a, b, c = 0, 1, 2 ) , (2.2)

where the ηab is the invariant metric with mostly positive signs and ǫabc is the Levi-civita

tensor with sign convention ǫ012 = +1 . The u(N) algebra is generated by {I ,TI} with

TI TJ =
1

N
δIJI +

(
gIJ

K + i fIJ
K
)
TK , TI

† = TI (I, J,K = 1, . . . , N2 − 1) . (2.3)

The totally symmetric and anti-symmetric structure constants gIJK and fIJK are both

real-valued. Only identities of gl(2,R) and u(N) admit a non-trivial trace, which are

normalized as

Tr(I) = 2 , Tr(I) = N . (2.4)

By the tensor product structure, the trace in su(N,N) is defined as the product of the

above traces.

The SU(N) colored gravity is defined by two copies of the CS action,

S =
κ

4π

∫ [
Tr

(
A ∧ dA+

2

3
A ∧A ∧A

)
− Tr

(
Ã ∧ dÃ+

2

3
Ã ∧ Ã ∧ Ã

)]
, (2.5)

where the ‘left-moving’ connection one-form can be decomposed into

A =

(
1

ℓ
ea + ωa

)
Ja I +A+

1

ℓ
ϕa Ja . (2.6)

Here, A = AI I TI and ϕa = ϕaI TI are the gauge field and the colored massless spin-two

fields, respectively. Both of them take values in the adjoint representation of su(N) . They

satisfy

(A,ϕa)† = (−A,ϕa) . (2.7)
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The ‘right-moving’ connection one-form is analogously decomposed with 1
ℓ e

a − ωa and

tilded fields as components. In [4], it was shown that, by solving the torsion condition

δS/δωa = 0, the above CS action can be reduced to the form

S=SCS+
1

16πG

∫
d3x

√
|g|

[
R−V (ϕ, ϕ̃)+

2

N ℓ
ǫµνρTr

(
ϕµ

λDνϕρλ−ϕ̃µ
λDνϕ̃ρλ

)]
. (2.8)

The above system involves not only the gravity but also two copies of SU(N) gauge

fields and, most notably, additional massless spin-two matter-like fields transforming as

adjoint representation of SU(N) . In eq. (2.8), the term SCS refers to the two copies of

SU(N) CS actions with the level 2κ . The gravitational constant and the AdS radius are

related to the level κ as

κ =
ℓ

4N G
. (2.9)

The massless spin-two fields are given by the one-derivative action, but we can also render

them to a two-derivative form. They interact minimally with gravity and SU(N) CS fields

through the covariant derivative,

Dµϕνρ = ∇µϕνρ + [Aµ,ϕνρ] . (2.10)

Moreover, they interact among themselves through the scalar potential given by

V (ϕ, ϕ̃) = −
1

N ℓ2
Tr

[
2 I + 4

(
ϕ[µ

µϕν]
ν + ϕ̃[µ

µ ϕ̃ν]
ν
)
+ 8

(
ϕ[µ

µϕν
ν ϕρ]

ρ − ϕ̃[µ
µ ϕ̃ν

ν ϕ̃ρ]
ρ
) ]

−
16

N2 ℓ2
Tr

(
ϕ[µ

ν ϕρ]
ρ − ϕ̃[µ

ν ϕ̃ρ]
ρ
)
Tr

(
ϕ[ν

µϕλ]
λ − ϕ̃[ν

µ ϕ̃λ]
λ
)

+
6

N2 ℓ2

[
Tr

(
ϕ[µ

µϕν]
ν − ϕ̃[µ

µ ϕ̃ν]
ν
) ]2

. (2.11)

Due to the presence of this non-trivial potential, the colored gravity admits a panorama of

AdS vacua with different values of the cosmological constant. In this work, we will mainly

focus on perturbations around the color-singlet background which is invariant under the

SU(N) color symmetry.

3 Asymptotic symmetry

After its first appearance in analyzing asymptotic dynamics of three-dimensional grav-

ity [20], the CS formulation has been applied to compute asymptotic symmetries in more

general settings [17, 18]. The computing procedure is well-known, and we follow it to inves-

tigate the asymptotic symmetry of the colored gravity around the color-singlet background.

As the ‘left’ and ‘right’ copies of the CS theory are independent from and similar to each

other, we will only present the analysis for one copy of the CS theory and replicate for the

other copy.

3.1 Asymptotics for general Chern-Simons theory

The first step in identifying the asymptotic algebra of colored gravity is in common with

any other gravity theories based on CS formulation. We briefly recapitulate those steps

while keeping the generality, that is, without using specific structures of the colored gravity.

– 5 –
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We consider a CS theory with gauge algebra g whose base manifoldM has the topology

of Rt ×D2 . We parameterize the time Rt and the disc D2 by t and the polar coordinates

(ρ, θ), respectively. We also introduce the light-cone coordinates,

x± = t± θ . (3.1)

The hypersurface ρ = ∞ corresponds to the asymptotic boundary with the topology of a

cylinder. In the presence of a boundary, the action must be supplemented by a boundary

term or appropriate boundary condition to render the functional variation well-defined.

We primarily consider the left-moving sector.2 One commonly employed boundary

condition is A− |∂M = 0 , that is,

lim
ρ→∞

A−(ρ, x
+, x−) = 0 . (3.2)

In the gauge the ρ component of the field is fixed by

Aρ(ρ, x
+, x−) = b−1(ρ) ∂ρ b(ρ) , (3.3)

where b(ρ) is a G-valued function (here, G is the Lie group associated to the Lie algebra

g) that depends only on the radial coordinate ρ , the condition (3.2) along with the flat

connection condition Fρ− = 0 asserts that the A− component vanishes everywhere:

A−(ρ, x
+, x−) = 0 . (3.4)

The remaining flat connection conditions F+− = 0 and Fρ+ = 0 constrain the A+ compo-

nent of the field to the form,

A+(ρ, x
+, x−) = b−1(ρ) a(x+) b(ρ) , (3.5)

where the a(x+) is an undetermined function of x+ only. To summarize, the equa-

tions (3.3)–(3.5) indicate that the gauge connection A is completely specified by two func-

tions a(x+) and b(ρ), taking value in g and G, respectively.

The above result was obtained by using all of the flat connection conditions, F = 0,

and a part of the gauge symmetry. The rest of the gauge symmetry can still act on fields

in the form of gauge function

C(ρ, x+, x−) = b−1(ρ) c(x+) b(ρ) . (3.6)

From the form of the gauge transformation of A under C , one can find that the eq. (3.6)

induces the transformation of a as

δ a(x+) = ∂ c(x+) + [a(x+), c(x+)] , (3.7)

where ∂ means the derivative with respect to x+: ∂ = d/dx+ .

Thus far, we have relied our analysis on the generic properties of CS theory, but not

yet used any specific information of the colored gravity.

2The analysis for right-moving sector paves the same steps provided the parity inversion ± → ∓ is

performed at the same time.
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3.2 Asymptotic for Chern-Simons colored gravity

We now specifically dwell on the CS theory for the colored gravity with the SU(N) gauge

algebra g = su(N,N), as in eq. (2.1). For that, we decompose the g-valued field a as

a(x+) = ua(x+)La I + aI(x+) I TI + φaI(x+)La TI , (3.8)

where we have redefined the generators of sl(2,R) as

L0 = −
i

2
J0 , L± =

1

2
(−iJ1 ± J2) . (3.9)

One can understand ua, aI , and φaI as the gravity, the SU(N) CS gauge connection and

the colored spin-two matter fields. Note however that their relation to the fields ea

ℓ + ωa,

AI and ϕa,I is not diagonal because the adjoint action of b mixes different generators. We

can similarly decompose the gauge function c as

c(x+) = ξa(x+)La I + λI(x+) I TI + ζaI(x+)La TI , (3.10)

so, ξa, λI and ζaI are associated with the conventional diffeomorphism, the SU(N) gauge

symmetry and the nonabelian diffeomorphism (associated with the colored spin-two fields).

We can further restrict the form of fields and residual gauge transformations to be

compatible with the color-singlet vacuum. This means that as we approach the spatial

infinity (in other words, in the ρ → ∞ limit) the metric should asymptote to ds2 =

ℓ2
(
dρ2 + e2ρ dx+ dx−

)
while the colored spin-two fields asymptote to ϕI

µν = 0. The SU(N)

CS gauge connection is not subject to any condition as varying it does not alter the asymp-

totes of the gravity and the colored spin-two fields hence the color-singlet vacuum remains

intact. Note that the SU(N) part of the connection is similarly unconstrained in the

analysis of the asymptotic symmetries of extended AdS3 supergravities [21].

The asymptotic behavior of the metric gµν = eaµ eaν and the colored spin-two fields

ϕI
µν = ea(µ ϕ

aI
ν) restrict the structure of ua and φa,I . To proceed further, we have to fix

the function b(ρ). One particularly convenient choice for the color-single vacuum (k = 0

case) is

b(ρ) = exp (ρL0 I) = exp (ρL0) I . (3.11)

This specific form of b(ρ) and the asymptotic behavior of fields force us to set

u+ = 1 , φ+I = 0 . (3.12)

We further simplify the setting with the gauge-fixing condition (see [22, 23] for the issues

of the first and second class constraints in this procedure)

u0 = 0 , φ0I = 0 . (3.13)

After these, the form of a compatible with the colored gravity is

a(x+) =
(
L+ + u−(x+)L−

)
I + aI(x+) I TI + φ−I(x+)L− TI . (3.14)

So, we have three undetermined functions u−(x+), aI(x+) and φ−I , up to the SU(N) color.

They correspond to the ‘left-moving’ boundary modes of the graviton, the SU(N) CS gauge

connection and the colored spin-two matter field.

– 7 –
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3.3 Asymptotic symmetry of colored AdS gravity

Transformation rules of each component of (ua, aI , φa,I) under a gauge transformation

generated by (ξa, λI , ζa,I) components of c gauge function can be calculated using the

relations (2.2) and (2.3). The results are as follows. Firstly, the transformations of the

gravity part are given by

δu+ = ∂ξ+ + ξ0 , (3.15)

δu0 = ∂ξ0 + 2 ξ− − 2u− ξ+ −
2

N
φ−I ζ+I , (3.16)

δu− = ∂ξ− − u− ξ0 −
1

N
φ−I ζ0I . (3.17)

Secondly, the SU(N) CS connection transforms as

δaI = ∂λI + 2 i f I
JK aJ λK − if I

JK φ−J ζ+K . (3.18)

Finally, the colored spin-two part transforms as

δφ+I = ∂ζ+I + ζ0I + 2 i f I
JK aJ ζ+K (3.19)

δφ0I = ∂ζ0I + 2 ζ−I − 2u− ζ+I + 2 i f I
JK aJ ζ0K

− 2φ−I ξ+ − 2 gIJK φ−J ζ+K (3.20)

δφ−I = ∂ζ−I − u− ζ0I + 2 i f I
JK aJ ζ−K

− φ−I ξ0 + 2 i f I
JK φ−J λK − gIJK φ−J ζ0K . (3.21)

In the above, we simplified the expressions (3.16)–(3.21) by using the asymptotic condi-

tions (3.12) and (3.13). In order to preserve the asymptotic conditions, the corresponding

variation must vanish as well:

δu+ = 0 , δu0 = 0 , δφ+I = 0 , δφ0I = 0 . (3.22)

The asymptotic symmetries of the SU(N) colored gravity consist of the gauge transforma-

tions that satisfy these conditions. Due to the conditions (3.22), the asymptotic symmetries

are generated only by the parameters,

ξ := ξ+ , λI , ζI := ζ+I , (3.23)

whereas the rest of the parameters are fixed in terms of (ξ, λI , ζI) . The gravity part is

determined as

ξ0 = −∂ξ , ξ− =
1

2
∂2ξ + u− ξ +

1

N
φ−I ζI , (3.24)

while the colored spin-two part as

ζ0I = −∂ζI − 2 i f I
JK aJ ζK , (3.25)

ζ−I =
1

2
∂2ζI + i f I

JK

(
∂aJ ζK + 2 aJ ∂ζK

)
+ u− ζI

+ 2 f I
JP fP

KL aJ aK ζL + φ−I ξ + gIJK φ−J ζK . (3.26)
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One can see that the other components of gauge parameter depend not only on (ξ, λI , ζI)

but also on their derivatives. Moreover, the parameters involve also a nonlinear dependence

on the field components.

The remaining components of the fields (u−, aI , φ−I) correspond to the ‘left-moving’

part of the ‘would-be’ gauge modes of the system. They describe the boundary degrees

of freedom of the colored gravity. These components now transform nonlinearly under the

asymptotic symmetries with parameters (ξ, λI , ζI) . Renaming the field components as

(u−, aI , φ−I) =
2π

κ

(
1

N
L , J I , KI

)
, (3.27)

the gravity part L transforms as

δL = N
κ

4π
∂3 ξ + ∂L ξ + 2L ∂ξ + ∂KI ζI + 2KI ∂ζI − i

4π

κ
fIJK J I KJ ζK , (3.28)

where the last term exposes a nonlinear dependence on the field. The SU(N) CS gauge

connection part J I transforms as

δJ I =
κ

2π
∂λI + 2 i f I

JK J J λK − i f I
JK KJ ζK . (3.29)

Finally, the colored spin-two field part KI transforms as

δKI =
κ

4π
∂3ζI +

1

N
∂LζI +

2

N
L∂ζI + ∂KIξ + 2KI∂ξ

+ if I
JK

(
∂2J JζK + 3∂J J∂ζK + 3J J∂2ζK + 2KJλK

)
+ gIJK

(
∂KJζK + 2KJ∂ζK

)

+ i
4π

κ
f I

JK

(
J JKKξ +

2

N
LJ JζK

)
+ i

4π

κ

(
f I

JP g
P
KL + gIKP f

P
JL

)
J JKKζL

−
4π

κ
f I

JP f
P
KL

(
∂J JJKζL + 2J J∂JKζL + 3J JJK∂ζL

)

− i

(
4π

κ

)2

f I
JQf

Q
KRf

R
LPJ

JJKJ LζP . (3.30)

Note that the nonlinearity goes up to the cubic order in the last term.

4 Non-linear Poisson algebra from colored gravity

In the previous section, we have derived how the ‘would-be’ gauge modes (L,J I ,KI)

transform under the asymptotic symmetry. In order to better understand the algebraic

properties of the symmetry, we shall identify the Poisson brackets between the generators

of such symmetry.

4.1 Poisson bracket

The variation of the conserved global charge in CS theory is given in general [24] by

δQ = −
κ

2π

∫

∂Σ
dxiTr(C δAi) . (4.1)
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In order to identify the charge Q from the above, we need to ‘integrate’ the above, taking

into account that the gauge parameter may be field-dependent. In the case of colored

gravity, we obtain the charge as

Q =

∫
dθ

(
ξ L − 2λI J

I + ζI K
I
)
, (4.2)

which correctly reproduces the transformation laws:

{Q,L} = δL , {Q,J I} = δJ I , {Q,KI} = δKI . (4.3)

Hence, one can simply read off the Poisson bracket between L, J I and KI from the ex-

pression (4.2) of the charge.

One can first learn that the generator L and J I form a Virasoro and SU(N) Kac-

Moody subalgebra:

{L(θ1), L(θ2) } = −
N κ

4π
∂3δ12 − ∂L δ12 − 2L ∂δ12 , (4.4)

{J I(θ1),J
J(θ2)} = +

κ

4π
δIJ ∂δ12 − i f IJ

K JK δ12 , (4.5)

{J I(θ1),L(θ2)} = 0 . (4.6)

The additional generators KI associated with colored spin-two transforms covariantly under

J I and L up to a nonlinear term for the latter case:

{KI(θ1),L(θ2)} = −∂KI δ12 − 2KI ∂δ12 − i
4π

κ
f I

JKJ JKKδ12 , (4.7)

{KI(θ1),J
J(θ2)} = − if IJ

KKK δ12 . (4.8)

The bracket between KI ’s introduces even higher nonlinearity:

{KI(θ1),K
J(θ2)}=−

κ

4π
δIJ∂3δ12−

δIJ

N

(
∂L̃δ12+2L̃∂δ12

)

+if IJ
K

(
∂2JKδ12+3∂JK∂δ12+3JK∂2δ12

)
−gIJK

(
∂KKδ12+2KK∂δ12

)

+i
8π

Nκ
f IJ

KLJKδ12+i
4π

κ

(
f IN
K g J

LN +g IN
L f J

KN

)
JKKLδ12

+
4π

κ
f IN
K f J

LN

(
∂JKJ Lδ12+2JK∂J Lδ12+3JKJ L∂δ12

)

−i

(
4π

κ

)2

f IO
K f P

LO f J
MP JKJ LJMδ12 . (4.9)

In these algebras, all the fields appearing in the right-hand side of the equations are func-

tions of θ1 and δ12 is the shorthand notation for δ(θ1 − θ2).

For the consistency check of our results, we examined the Jacobi identities of the

Poisson brackets (4.4)–(4.9). The calculation is lengthy, so we just sketch out the procedure.

In order to make the treatment of multiple delta distributions clearer, we introduce the

generators with a smearing function f :

X [f ] =

∫
dθX (θ) f(θ) , (4.10)
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and check the Jacobi identity in terms of these ‘smeared’ generators. Hence, we consider

{{X [f1],Y[f2]},Z[f3]}+ {{Y[f2],Z[f3]},X [f1]}+ {{Z[f3],X [f1]},Y[f2]} , (4.11)

where X , Y and Z can be any of the generators L , J I and KI . From the double Poisson

brackets, we get two delta distributions whereas we have three integrals coming from each

of smeared generators. In the end, (4.11) will take a form

∑

a,b,c

∫
dθ ∂af1(θ) ∂

bf2(θ) ∂
cf3(θ)Fa,b,c(θ) , (4.12)

where F is a function of L, J and K and their derivatives. After removing the ambiguity of

integration-by-parts by setting c = 0 , we have verified Fa,b,0 = 0 term by term (also order

by order in κ). In the latter calculations, various identities of SU(N) structure constants

were used: for instance,

f P
IJ fPKQ + f P

KI fPJQ + f P
JK fPIQ = 0 , (4.13)

g P
IJ fPKQ + g P

KI fPJQ + g P
JK fPIQ = 0 , (4.14)

1

N
δIJδKL + g P

IJ gPKL − f P
IJ fPKL =

1

N
δLIδJK + g P

LI gPJK − f P
LI fPJK . (4.15)

Therefore, the colored gravity provides a non-trivial Poisson algebra, whose structure will

become clearer after a redefinition of generators in the following section.

4.2 Redefinition of generators

To make a contact with two-dimensional CFT dual, let us analyze the Poisson brackets

obtained in the previous section and reorganize the generators into the Virasoro primaries.

Firstly, the bracket {L(θ1) ,L(θ2)} given in eq. (4.4) is nothing but that of Virasoro al-

gebra, and L is its generator which creates boundary gravitons. Secondly, the bracket

{J I(θ1) ,J
J(θ2)} given in eq. (4.5) satisfies the SU(N) Kac-Moody algebra and suggests

for us to interpret J I as corresponding generators. These are more or less expected results

as L and J I are associated with the metric and the CS gauge connections, respectively.

We can make these statements more precise by considering the brackets among L, J I and

KI . The bracket (4.8) between J I and KJ shows that KJ transforms in the adjoint rep-

resentation of SU(N) Kac-Moody algebra under the action of J I . This is another hint of

identifying J I with SU(N) Kac-Moody generators and does not raise any problem.

We have seen that the brackets (4.4), (4.5) and (4.8) admit natural CFT interpreta-

tions, but this is no longer true for the brackets (4.6) and (4.7). Firstly, the former bracket

between J I and L does not define Virasoro primaries for J I as it simply commutes with

Virasoro. Secondly, in the latter bracket between KI and J J , the KI transforms almost

like a primary of conformal dimension two but the transformation also involves a nonlin-

ear term proportional to f I
JK J J KK . For the organization of the algebra as Virasoro

primaries, we redefine the Virasoro generator as

L̃(θ) = L(θ)−
2π

κ
J I(θ)JI(θ) . (4.16)
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Then, its Poisson brackets with J I and KI give the desired forms,

{L̃(θ1), L̃(θ2) } = −
Nκ

4π
∂3δ12 − ∂L̃ δ12 − 2 L̃ ∂δ12 , (4.17)

{J I(θ1), L̃(θ2)} = −∂J Iδ12 − J I∂δ12 , (4.18)

{KI(θ1), L̃(θ2)} = −∂KI δ12 − 2KI ∂δ12 . (4.19)

Therefore, in terms of new generators L̃ , the generators J I and KI become Virasoro

primaries of dimension one and two respectively. As we do not modify J I and KI , the

generators J I still define the SU(N) Kac-Moody algebra, and the generators KI transform

in the adjoint representation.

Finally, we are left to examine the bracket {KI(θ1),K
J(θ2)} given in eq. (4.9), which

has non-linear terms. Even taking the redefinition (4.16) into account, it involves terms

nonlinear in generators. We find that this non-linearity is genuine in the sense that they

cannot be removed by a redefinition of KI into

K̃I = KI +∆KI . (4.20)

As the scaling dimension of KI is two, possible candidates for ∆KI are terms proportional

to L̃, ∂J I and J J JK . By asking that the K̃I — hence the ∆KI — transforms in the

same way as the original KI under Virasoro and SU(N) Kac-Moody algebras, we can

immediately rule out L̃ and ∂J I from the possibilities as they are not adjoint or primary.

Therefore, the only remaining possibility is

∆KI = cIJK J JJK , (4.21)

where cIJK is a constant symmetric under the exchange of the index J and K . This

modification does not spoil the fact that the K̃I is a Virasoro primary of dimension two as

{∆KI(θ1), L̃(θ2)} = −∂∆KI δ12 − 2∆KI ∂δ12 . (4.22)

Meanwhile, ∆KI transforms under the action of J I as

{∆KJ(θ1),J
I(θ2)} =

κ

2π
cJIK JK ∂δ12 − 2 if IK

L cJKM J L JM δ12 . (4.23)

Even though the second term can give −i f IJ
K ∆KK by choosing cJKM = gJKM and using

the identity (4.14), the first term prevents ∆KI from transforming in adjoint representation.

With this, we exhausted all the possibilities of redefining KI , and the non-linearity of the

bracket {KI(θ1),K
J(θ2)} is free from ambiguities of generator redefinition. Its form reads

{KI(θ1),K
J(θ2)}=−

κ

4π
δIJ∂3δ12−

δIJ

N

(
∂L̃δ12+2L̃∂δ12

)

+if IJ
K

(
∂2JKδ12+3∂JK∂δ12+3JK∂2δ12

)
−gIJK

(
∂KKδ12+2KK∂δ12

)

+i
8π

Nκ
f IJ

KL̃JKδ12+i
4π

κ

(
f IN
K g J

LN +g IN
L f J

KN

)
JKKLδ12

−
4π

κ

(
δIJδKL

3N
−f IN

K f J
LN

)(
∂JKJ Lδ12+2JK∂J Lδ12+3JKJ L∂δ12

)

+i

(
4π

κ

)2(δKL

N
fM

IJ−f IO
K f P

LO f J
MP

)
JKJ LJMδ12 . (4.24)
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The result of this Poisson bracket involves essentially all allowed terms of dimension three.

The central term is proportional to ∂3δ. The linear part involves contributions from all

the three generators L, J I and KI properly adjusted with derivatives. The quadratic part

contains L̃ J I , J I KJ and J I J J terms. Finally, the cubic part only involves J I J J JK

without any derivatives. See [21] and [25] for a similar type of nonlinearities appearing in

extended AdS supergravities and in extended higher-spin AdS supergravities, respectively.

4.3 Mode expansion

For the completeness, we also provide the Poisson bracket in terms of Fourier modes:

Ln = −L[ei n θ]−
N κ

4
δn,0 , J I

n = iJ I [ei n θ] , KI
n = KI [ei n θ] , (4.25)

where we replaced the notation for L̃ to L and introduced factors to get more standard

expressions. Recall that the SU(N) CS connection is anti-Hermitian (2.7) where the Her-

mitian generators T I is used for su(N) algebra. As a result, the generator J I(θ) is purely

imaginary. With the i factor, the generators now satisfy

L†
n = L−n , J I

n
†
= J I

−n , KI
n
†
= KI

−n . (4.26)

First, the brackets containing Virasoro generators are

i {Ln,Lm} =
Nκ

2
(n3 − n) δn+m,0 + (n−m)Ln+m , (4.27)

i {Ln,J
I
m} = −mJ I

n+m , (4.28)

i {Ln,K
I
m} = (n−m)KI

n+m . (4.29)

The other brackets containing J I
n give

i {J I
n ,J

J
m} = −

κ

2
δIJ n δn+m,0 − i f IJ

K JK
n+m , (4.30)

i {J I
n ,K

J
m} = −i f IJ

K KK
n+m . (4.31)

Finally, the bracket between two KIs reads

i{KI
n,K

J
m} =

κ

2
δIJ(n3 − n)δn+m,0 +

δIJ

N
(n−m)Ln+m

+ i(n2 − nm+m2 − 1)f IJ
K JK

n+m − (n−m)g IJ
K KK

n+m

+ i
4

Nκ
f IJ
K

∑

l

Ln−lJ
K
m+l − i

2

κ

(
f IN
K g J

LN + g IN
L f J

KN

)∑

l

JK
n−lK

L
m+l

+
2

κ

(
δIJδKL

3N
− f IN

K f J
LN

)∑

l

(n−m+ l)JK
n−lJ

L
m+l

+ i

(
2

κ

)2(δKL

N
fM

IJ − f IO
K f P

LO f J
MP

)∑

k,l

JK
k J L

l JM
n+m−k−l . (4.32)
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Comparing eqs. (4.27)–(4.29) with the standard definition of Virasoro and Kac-Moody

subalgebras,

[Ln, Lm] =
c

12
(n3 − n) δn+m,0 + (n−m)Ln+m , (4.33)

[Ln, J
a
m] = −mJa

n+m , (4.34)
[
Ja
n , J

b
m

]
= kKM δab n δn+m,0 + i fab

c J
c
n+m , (4.35)

we find that the Virasoro subalgebra generated by Ln has the central charge,

c = 6N κ =
3 ℓ

2G
. (4.36)

This coincides with the central charge of the pure Einstein gravity. Turning to the Kac-

Moody subalgebra generated by J I
n , we find that the central term has the coefficient,

kKM = −
κ

2
. (4.37)

When the color gauge group SU(N) is fixed, the ratio between these coefficients is fixed

by c/kKM = −12N . Note that the central term of the Kac-Moody algebra comes with

negative sign. We shall come back to this important point later.

4.4 Rigidity of the structure

A natural question at this point is whether the Poisson algebra we have obtained can be

generalized such that the two central terms c and kKM become independent of each other.

In order to examine this idea, we begin with an ansatz,

i{KI
n,K

J
m} = CδIJ(n3 − n)δn+m,0 + CL(n−m)Ln+m

+ CJ (n
2 − nm+m2 − 1)f IJ

K JK
n+m + CK(n−m)g IJ

K KK
n+m

+ CLJ f
IJ

K

∑

l

Ln−lJ
K
m+l + CJK

(
f IN
K g J

LN + g IN
L f J

KN

)∑

l

JK
n−lK

L
m+l

+ CJJ

(
δIJδKL

3N
− f IN

K f J
LN

)∑

l

(n−m+ l)JK
n−lJ

L
m+l

+ CJJJ

(
δKL

N
fM

IJ − f IO
K f P

LO f J
MP

)∑

k,l

J P
k J Q

l J R
n+m−k−l , (4.38)

with eight arbitrary constants,

C , CL , CJ , CK , CLJ , CJK CJJ , CJJJ . (4.39)

For the other Poisson brackets, we take eqs. (4.29), (4.31), the classical counterpart of

eqs. (4.35). We examine Jacobi identity on this ansatz to find out all consistent sets of

(c = 6N κ, kKM) and the constants in eq. (4.39). The Jacobi identity between one L and

two K gives the relations,

C =
Nκ

2
CL , CJ =

Nκ

4
CLJ , (4.40)
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whereas the Jacobi identity between J and two K gives

C = ikKMCJ , CJ = −ikKMCJJ , CK = ikKMCJK , CJJ = −ikKMCJJJ . (4.41)

The six linear relations in eq. (4.40) and eq. (4.41) determine the constants in terms of

kKM, C and CK. Finally, the Jacobi identity between three K’s gives

kKM = −
κ

2
, C =

κ

2
CK

2 . (4.42)

In this way, all the constants are fixed in terms of CK , and the latter is not restricted by

Jacobi identities. Actually, the arbitrary constant CK can be absorbed into a redefinition

of K’s. Therefore, once we fix the normalization of K, then there is no freedom left.

5 Discussions

We can summarize what we have achieved in this paper as follows. Starting from the

SU(N,N)L × SU(N,N)R CS theory which admits the interpretation of colored gravity

with the diffeomorphism adjoined by the color group SU(N) , we have obtained a non-

linear Poisson algebra generated by spin-2 generators Ln, K
I
n and spin-1 generators J I

n

as the asymptotic symmetry algebra of the theory. The generators Ln and J I
n form the

standard Virasoro and Kac-Moody subalgebras, whereas the brackets of two KI
ns, which

are Virasoro primary of dimension-two and adjoint under Kac-Moody symmetry, generate

non-linear structures.

The algebra we obtained is new and worth exploring further. An outstanding question

is to identify a class of two-dimensional ‘flavored’ conformal field theories whose holographic

dual correspond to the colored gravity at various vacua. At finite temperature, these

conformal field theories would be described by some colored counterpart of the BTZ black

holes. An extension of the analysis put forward in [26] should reveal the new correspondence

more concretely. A related question is to understand how breaking and restoration of (1+1)-

dimensional Lorentz symmetry is reflected in the (non)-unitarity of the two-dimensional

CFT. Such issues were discussed already in other contexts [27, 28].

In the rest of this section, we devote to discuss aspects of the algebraic structure and

also supersymmetric extensions relevant for colored counterpart of three-dimensional AdS

supergravity. Let us also mention that analogous issues in the higher-spin context and in

a wider class of examples have been discussed in [29] and [30], respectively.

5.1 Non-unitarity of Kac-Moody algebra sector

An intriguing point of the asymptotic algebra we obtained above is that the central term

for the SU(N) Kac-Moody subalgebra takes a negative value. This can also be checked

by examining the Jacobi identities for a generic set of coefficients with the ansatz (4.39)

in section 4.4. For the Kac-Moody algebra alone, the negative central term does not make

any problem since we can simply redefine the generator J I
n into J I

−n, which is equivalent

to interchanging the left-moving and right-moving sectors. However, in the current case,

we cannot utilize this redefinition as it will violate the natural grading of the algebra,
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[Am,An] ⊂ Am+n , where An is the subspace of polynomials in Ln, J I
n , KI

n with L0

eigenvalue n . Hence, unless the Kac-Moody central term changes its sign upon quantization

of the algebra for other reasons, the usual lowest-weight representations would involve

negative norm states created by J I
−n’s.

We claim that this non-unitarity is a distinguishing feature of the colored gravity in

three dimensions. Recall that we already encountered non-unitarity when we consider

the linearized spectrum around a color-symmetry breaking rainbow vacuum. When a

background solution is chosen such that the color-symmetry is broken down as eq. (1.2),

we have

• (N − k)2 unitary and k2 non-unitary spin-two fields,

• k2 unitary and (N − k)2 − 1 non-unitary spin-one fields, and

• 2 (N − k) k partially-massless spin-two fields.

Let us recall that a left-moving partially-massless spin-two has two boundary degrees of

freedom of which only one is unitary. Thus, if we only collect the unitary modes, then

there are

• (N − k)2 spin-two fields,

• k2 spin-one fields, and

• 2 (N − k) k partially-massless spin-two fields.

In total, there are exactly N2 unitary modes. On the other hand, a similar counting shows

that there are (N2 − 1) non-unitary modes:

• k2 spin-two fields,

• (N − k)2 − 1 spin-one fields, and

• 2 (N − k) k partially-massless spin-two fields.

The partially-massless spin-two fields are doubly counted since they have one unitary and

one non-unitary mode in left (or right)-moving sector. It is important to note that the

respective numbers of unitary modes and non-unitary modes do not depend on the value

of k . Hence, as k varies, that is to say, as the vacuum changes from one color-symmetry

breaking pattern to another pattern, the number of positive and negative norm states do

not change and just rearrange into spin-two, spin-one and partially-massless spin-two rep-

resentations. This suggests that the non-unitarity is stringently tied up with the underlying

non-compact group structure (which may eventually extend to supergroup structure) when

graviton is color-decorated.

To be more precise, let us observe that the Poisson bracket between dynamical variables

ϕi(x) and ϕj(y) takes the form of

{ϕi(x), ϕj(y)} ∼ κ dij δ(x− y) + · · · , (5.1)
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where κ is the CS level and dij is the Killing inner product of su(N,N) between generators

associated with ϕi and ϕj . In the basis (A.5), it is clear that the 2N2 generators of spin-

two fields — J1 ⊗ I, J1 ⊗ T I , J2 ⊗ I and J2 ⊗ T I — have positive Killing inner products

while the other N2 generators — J0 ⊗ I and J0 ⊗ T I — have negative ones. But the

asymptotic behavior of fields reduces the number of physical fields to N2, which were

previously identified with one color-singlet spin-two field L and (N2 − 1) colored spin-two

fields KI . The fact that all the spin-two fields generate positive norm states accounts for

the positive central terms in the Possion brackets {L(θ1),L(θ2)} and {KI(θ1),K
J(θ2)}. On

the other hand, it is also clear that the (N2 − 1) generators of spin-one fields — I ⊗T I —

have negative Killing inner products. Since spin-one fields get no further constraints from

the asymptotic behavior, all these fields appear in the asymptotic algebra in terms of J I

to give negative level of the Kac-Moody algebra. Different vacua will mix up these physical

states among themselves to give a different spectrum, yet they will retain the number of

unitary modes and non-unitary modes as N2 and (N2 − 1) at any of the N vacua.

5.2 Colored higher spin gravity

The analysis of the current paper can be extended to various direction. One particularly

interesting and important direction is the CS colored higher-spin gravity with the gauge

algebra,

g = hs(λ)⊗ u(N)⊖ id⊗ I . (5.2)

In fact, when λ = 1/2 and N = 2[N/2] , the above algebra coincides with the bosonic sector

of supersymmetric higher-spin algebra shs(N|2,R) [25] which is the higher-spin extension

of the gravity sector osp(N|2,R) generated by

Ja = qα qβ σ
αβ
a , Qi

α = qα ψ
i , Rij = ψi ψj . (5.3)

The oscillators qα and ψi are respectively Grasmannian even and odd and the product

between generators are realized by the usual star product of the oscillators. The higher

spin version contains generators of type:

Mα1···αn

i1···im = qα1
· · · qαn

ψi1 · · ·ψim [n+m ∈ 2Z ] , (5.4)

and the spin of a generator is given by s = n/2 . Focusing on a particular bosonic spin s ,

there are multiple of generators whose Grasmannian odd part generated by

ψi1 · · ·ψi2p
[
p = 0, 1, . . . , [ N2 ]

]
. (5.5)

The polynomials of ψi form a Clifford even algebra, isomorphic to u(2[
N

2
]) . In [25], the

asymptotic symmetry of the supersymmetric CS higher spin gravity with the algebra

shs(N|2,R) has been analyzed in details and further classified all other possible types

of the supersymmetric CS higher spin gravity. In [31], the asymptotic symmetry of the

matrix extended shs(N|2,R) higher spin gravity has been studied. However, in this work,

the Poisson brackets between colored generators of spin s ≥ 2 were not explicitly analyzed.

Therefore, it would be worth to revisit the analysis focusing now on the ‘color’ aspects.

We would not be surprised to discover surprising richness both in algebraic structure and

in physics implications.
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A Colored gravity basis of su(N,N)

Let us remind that we are working with CS theory whose gauge algebra is g⊕g, where the

algebra g is isomorphic to su(N,N). An element X of su(N,N) is a traceless 2N × 2N

complex matrix with the condition,

X†

(
I 0

0 −I

)
+

(
I 0

0 −I

)
X = 0 . (A.1)

Here, I is the N × N identity matrix. The isomorphism g ≃ su(N,N) can be seen by

expressing X in the block matrix form,

X =

(
A B

B† C

)
, (A.2)

where A,B and C are N×N matrices satisfying A† = −A, C† = −C and Tr(A+C) = 0.

We can expand these matrices in terms of I and the Hermitian generators TI of su(N) to

have

A = i (a0 I + aI TI) , B = b0 I + bI TI , C = i c0 I + i cI TI . (A.3)

Here the coefficients a0, aI , cI and c0 are real with a0+ c0 = 0 while b0 and bI are complex

numbers. Redefining these coefficients as

a0 = x0 , aI = yI + z0I , b0 = x1 + i x2 , bI = z1I + i z2I , cI = yI − z0I , (A.4)

we can express an arbitrary element X of su(N,N) as

X = xa Ja ⊗ I + yI i I ⊗ TI + zaI Ja ⊗ TI , (A.5)

making use of the u(1, 1) generators,

I =

(
1 0

0 1

)
, J0 =

(
i 0

0 −i

)
, J1 =

(
0 1

1 0

)
, J2 =

(
0 i

−i 0

)
. (A.6)

The isomorphism between u(1, 1) and gl(2,R) (2.2) now shows that the underlying algebra

of the colored gravity, presented in the basis (A.5), is indeed isomorphic to su(N,N).
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