
 

 

저작자표시-비영리-변경금지 2.0 대한민국 

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게 

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.  

다음과 같은 조건을 따라야 합니다: 

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.  

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.  

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다. 

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.  

Disclaimer  

  

  

저작자표시. 귀하는 원저작자를 표시하여야 합니다. 

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다. 

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다. 

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/


 

 

 

Master's Thesis 

석사 학위논문 

 

An Approach to Handling Irregular Oversaturation 

in Urban Subway Stations 

 

Minji Kim(김 민 지 金 玟 志) 

 

Department of  

Information and Communication Engineering 

 

DGIST 
 

 

2020 

 



 

 

 

 

 

Master's Thesis 

석사 학위논문 
 

 

An Approach to Handling Irregular Oversaturation 

in Urban Subway Stations 

 

 

 

Minji Kim(김 민 지 金 玟 志) 

 

Department of  

Information and Communication Engineering 

 

 

DGIST 
 

 

2020 

 

 

  



 

 

An Approach to Handling Irregular Oversaturation 

in Urban Subway Stations 

 
Advisor: Professor Sang Hyuk Son  

Co-advisor: Professor Kyung–Joon Park 
 

by 

 

 Minji Kim 

Department of Information and Communication Engineering 

DGIST 

A thesis submitted to the faculty of DGIST in partial fulfillment of the 

requirements for the degree of Master of Engineering in the Department of In-

formation and Communication Engineering. The study was conducted in accord-

ance with Code of Research Ethics1 

 

 
 

 
11. 25. 2019 

 

   Approved by 

 
 

Professor Sang Hyuk Son               (signature)  

(Advisor) 
 

Professor Kyung-Joon Park              (signature)  

(Co-Advisor)  
 

 

                                                           
1 Declaration of Ethical Conduct in Research: I, as a graduate student of DGIST, hereby declare that I have not committed 
any acts that may damage the credibility of my research. These include, but are not limited to: falsification, thesis written by 
someone else, distortion of research findings or plagiarism. I affirm that my thesis contains honest conclusions based on my 
own careful research under the guidance of my thesis advisor. 



 

 

 

An Approach to Handling Irregular Oversaturation 

in Urban Subway Stations 

 

Minji Kim 

 

Accepted in partial fulfillment of the requirements for the degree of Master of 

Engineering. 

 

11. 25. 2019 

Head of Committee 

 

Committee Member                                         

 

Committee Member  
 

Prof. Sang Hyuk Son (signature)    

 

Prof. Kyung-Joon Park (signature)    

 

Prof. Youngmi Baek (signature)    

 

 



- i - 

 

MS/IC 
201952010 

 김민지. Minji Kim. An Approach to Handling Irregular Oversaturation in Urban Subway 

Stations. Department of Information and Communication Engineering. 2020. 81p. Advisor 

Prof. Sang Hyuk Son, Co-Advisor Prof. Kyung-Joon Park 

 

 

ABSTRACT 

This thesis presents a data-based approach for a train scheduling that aims to minimize passenger waiting 

time by controlling train departure time and the number of skipped trains. In contrast to existing approaches that 

rely on a statistical model of passenger arrival, we develop a model based on real-world automated fare collec-

tion (AFC) data from a metro line in Daegu, a Korean city. The model consists of decomposing the travel time 

for each passenger into waiting, riding, and walking times, clustering of passengers by trains they ride and 

calculating the number of passengers in each train for any given time. Based on this, for a given train schedule, 

the passenger waiting time of each passenger for the entire AFC data period can be calculated. The problem is 

formulated using the model under realistic constraints such as headway, the number of available trains, and train 

capacity. To find the optimal solution, we employed a genetic algorithm (GA). The results demonstrate that the 

average waiting time is reduced up to 56% in the highly congested situation. Moreover, letting the trains directly 

go to the congested station by skipping previous stations further reduces the maximum waiting time by up to 

19%. The effect of the optimization varies depending on the passenger arrival pattern of highly congested sta-

tions. This approach will improve the quality of the subway services by reducing passenger waiting time. 

 

Keywords: Train timetable, Passenger waiting time, Oversaturated condition, Genetic algorithm.  
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Ⅰ. INTRODUCTION  

 

Due to the advantages of the urban rail systems, including environmentally friendly trans-

portation as well as the capability it provides to travel at a faster and more consistent speed 

than road-based public transport, there has been an expansion and expected growth of the ur-

ban rail transit system. Despite these positive benefits, subway transit is a complex system that 

integrates both mobility and commercial services where operating costs and service quality is 

of great importance.  

 

Figure 1. A highly congested subway train. 

 

The service quality of the subway system has a lot to be improved. For example, as shown 

in Figure 1, highly congested urban rail transit causes a deeply negative experience for pas-

sengers about the urban rail system. Occasionally, some passengers are not even able to board 

because there is no space on the train. The problem is that this is also a disadvantage for the 
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operator. As more passengers accumulate on the platform, more energy is consumed to main-

tain a more pleasant environment. Given the fact that the heating, ventilation, and air-condi-

tioning (HVAC) system may represent more than 30 percent of the total expenditure which is 

generally responsible for the highest energy consumption in subway systems [1], it will inev-

itably increase the energy consumption for train operations which can generate substantial 

cost. Reducing a few percentages on energy consumption of HVAC systems would save an 

impressive quantity of electricity. 

Therefore, our objective is to reduce the passenger waiting time and the oversaturation 

time by adjusting the set of train departure times to improve service quality. However, it is 

difficult to estimate the oversaturation time of the station since the passenger volume inside 

the coming train is uncertain. Oversaturation time is the time length that at least one passenger 

at the station is unable to ride an incoming train due to congestion. It is essential to consider 

the train oversaturation in the train scheduling problem because it directly affects the passenger 

travel time. As a result, we face a key challenge to estimate the oversaturation time for efficient 

and practical subway train scheduling. Moreover, counting people without violating the pri-

vacy of individuals is also a challenge that must be considered.  

To address these challenges, we propose a new approach to handling the train oversatu-

ration problem by optimizing the passenger waiting time by controlling the train departure 

time from the start terminal station and, if necessary, letting the trains directly go to the con-

gested station skipping previous stations (train skip plan). To estimate the waiting time and 

oversaturation time, passenger volume information is required to determine if a train is over-

crowded. We estimate the passenger volume on the platform and on the train by utilizing the 

density-based spatial clustering of applications with noise (DBSCAN) [2]. DBSCAN is used 

for classifying passengers in the same carriage and travel time decomposition [3] for tracking 
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passengers’ location by time with automated fare collection (AFC) data. The AFC system is a 

smart card-based payment and fare collection method which automates the ticketing system 

for a public transportation network, and it has been widely adopted in many metropolitan cities 

around the world. Utilizing AFC data is with far less privacy concerns and a cost-effective 

method compare to existing sensor-based estimation [4][5][6]. In addition, existing researches 

about the train scheduling considering passenger demand typically use passenger arrival rate 

of each station rather than use more fine-grained data when calculating the passenger waiting 

time[7][8]. 

 

Specifically, the contributions of this work are as the following: 

- -  To our best knowledge, this is the first work to optimize the subway train scheduling by 

controlling train departure time and applying the train skip plan by utilizing large scale real 

traffic data from the AFC system.  

- -  In order to improve the service quality of the urban subway system, train scheduling 

optimization problem is formulated to minimize the passenger waiting time and oversatura-

tion time 

- -  Our experiment results show that the train skip plan and adjusting the train departure 

time yield better results in highly congested situations. Especially, to reduce the maximum 

passenger waiting time, it is desirable for the train to skip certain stations and go straight to 

the congested station. 

- -  Our experiment results indicate that the degree to which the passenger wait time is re-

duced depends on the passenger arrival pattern and the objective function applied. 
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II. RELATED WORK  

 

We provide a summary of previous research close to our work, within the area of passen-

ger volume estimation and train scheduling optimization. 

 

2.1. Passenger Volume Estimation 

There have been existing studies that estimate the passenger volume in the subway by 

using sensor-based approaches such as image sensing [4], CO2 sensing [5], and Radio Fre-

quency (RF) -based [6] techniques. 

To accurately estimate the crowd size, the most standard solutions are using images from 

the camera [4], However, not only digital cameras are expensive in cost and require high com-

putational overhead, but also, each camera can cover a limited field of view which restraints 

the system to monitor beyond designated areas. Additionally, the reliability of these techniques 

can easily be affected by noise in practical settings where lighting levels can vary, and occlu-

sions may be present. Utilizing CO2 levels [5] is another common approach to estimate the 

passenger population in subways. Despite the advantages this method has in predicting de-

mand for ventilation with far less privacy concerns than that of utilizing RGB information, the 

estimation accuracy is low and, hence, the approach does not significantly support in predict-

ing cooling or warming demands. There are also techniques for estimating the number of peo-

ple using RF sensing [6]. Although various wireless devices can easily obtain signal strength 

many factors must be taken into account such as diffraction, multi-path, reflection issues. 

Overall, since the sensors that are used in all of these approaches may not already exist in the 

subway, separate deployments may be required which require additional cost and maintenance 

for reliable operation over time. 

Those existing methods that estimate the passenger volume not only are privacy-invasive 
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but since the sensors that are used may not already exist in the subway, separate deployments 

would be required. Additionally, these devices require high computation and are expensive in 

cost. In this study, we estimate the passenger waiting time and the number of passengers in 

the subway system using transaction records of AFC data for minimizing privacy concerns 

that people might have. 

 

2.2. Train Scheduling Optimization 

Mathematical optimization is the most popular method of solving the train scheduling 

problem. Many researchers have proposed lots of subway scheduling optimization models 

with various objectives such as passenger waiting time minimization [8], energy consump-

tion[8][9] and delay time [10].  

In this research, we propose a train timetable scheduling model by considering service quality 

and operation safety. We compare our approach with three related studies. 

Shi et al. proposed a method for optimizing the train timetable considering the oversaturated 

metro line to minimize total passenger waiting time [11]. Their model does not consider pas-

senger walking time and they assumed that the train running time is pre-given in minute units. 

Niu and Zhou presented an integer programming model to adjust train timetables for a 

heavily congested subway system [12]. Their model requires running time among stations. 

However, both of these studies do not mention the passenger walking time.  

Wang et al. proposed a train scheduling model with the objective of minimizing the total 

travel time of passengers and the energy consumption of trains [7]. They take into account 

passenger walking time and even passenger transfer time from other lines. However, they did 

not evaluate their model with real data. They need the physical distance between two adjacent 

stations to calculate the train running time and train capacity. 
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Our approach optimizes the train timetable to minimize the passenger waiting time by 

placing the number of skipped trains as decision variables as well as the train departure time 

in heavily congested situations. In contrast to existing approaches [7][8] that rely on a statisti-

cal model of passenger arrival, we develop a model based on real-world AFC data in a metro 

line of Daegu, a Korean city. The train running time between two adjacent stations and the 

passenger walking time are estimated from the passenger data of the AFC system, and the 

estimated values are much finer-grained than the existing pre-given data in other studies. 

Therefore, we can expect more accurate results even if less data is provided in advance. 

Moreover, we compare how the optimization effect depends on the passenger arrival pat-

tern. Especially under oversaturation, we classify passenger arrival patterns into single peaks, 

double peaks, and box-shaped peaks and compare how the decrease in passenger waiting time 

depends on the objective function such as average waiting time and maximum waiting time 

for each pattern. Accordingly, the operator may predict how the optimization effect will vary 

depending on the passenger arrival pattern before applying the optimization. 

 

III. PROPOSED APPROACH 

 

3.1. Overview 

 

Figure 2. System overview. 
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The proposed model aims to optimize the train departure time from the first station to 

minimize passenger waiting time. As shown in Figure 2, our system consists of two major 

parts: train scheduling optimization and passenger volume estimation. First, we estimate the 

train capacity. Next, we estimate the passenger volume and optimize the train timetable. While 

performing optimization, we continuously check whether the passenger volume exceeds the 

train capacity. 

To estimate the train capacity, we have to calculate the passenger waiting time and the 

passenger walking time for each station and the train running time between two adjacent sta-

tions. Those times can be estimated by utilizing the travel information, which is including 

origin, destination, tap-in/out time of each passenger from the AFC data. To calculate the pas-

senger waiting time, by utilizing the DBSCAN, passengers are clustered to group passengers 

traveling to the same origin-destination and taking the same train. Passengers with the mini-

mum travel time among passengers in the same group are assumed to have a waiting time of 

zero. Waiting times for other passengers are obtained by subtracting their travel time from the 

smallest travel time of who is on the same train and in the same OD group. The passenger 

walking time for each station is obtained by comparing the smallest travel time between each 

OD group. Train riding times between two adjacent stations are estimated by comparing min-

imum travel time for each OD group minus passenger walking times. The train capacity is 

estimated based on the number of people on the train when the passengers' travel time differs 

even though passengers enter the station at the same time. 

The optimization model is formulated using the passenger waiting time estimated from 

the data. In the model, train departure times are decision variable and the objective function is 
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to minimize passenger waiting time and oversaturation time. When the passenger volume ex-

ceeds the train capacity, the late passengers are set to wait for the next train.  

To evaluate the model, we reconstruct the hypothetical passengers using only the origin, 

destination, and tab-in time of the passenger in the AFC data. Genetic algorithms are used to 

solve the model. The genetic algorithm changes the train departure time for each iteration to 

minimize passengers' waiting and oversaturation times. 

 

3.2. Dataset 

Our data set is the subway smart card transaction data from AFC from the city of Daegu, 

Korea. The Daegu City subway has 85 stations (82 if stations connected by transfers are 

counted as single stations) serving 3 subway lines. 

 

Figure 3. Daegu subway network. 

Passenger transaction data from May 02, 2018, to May 29, 2018, was used as the dataset 

in this study. For the sake of simplicity, we select the 10 stations as the station for optimization 

and those stations are displayed in Figure 3. 

The abbreviation of each station and their average daily boarding and alighting passenger 

volume for the period are listed in Table 1. We have minimized the waiting time for a single 

station and for all stations. We will call this the local case and the global case. To address the 

local case, the DR station was chosen. This is because the DR station is located in a popular 

residential area and a large park. 



9 

 

Table 1.  Average daily ridership (May 2018). 

 

 

 

3.3. Scenario Analysis 

In the subway system, the passenger demand usually varies between the peak-hours and 

off-peak hours. Generally, the frequency of service trains is increased during peak hours and 

decreased during off-peak hours. Taking the Daegu subway system as an example, the head-

way time for peak hours is 6 minutes and that for off-peak hours is 10 minutes. Therefore, we 

assume that 10 and 6 trains per hour are available for peak and off-peak hours, respectively. 

Station number Station name Boarding Alighting 

2210 Seongseo Industrial Complex (SSIC)  6,217   6,179  

2220 Igok(IG)  4,999   4,484  

2230 Yongsan(YS)  9,742   9,429  

2240 Jukjeon(JJ)  6,129   6,129  

2250 Gamsam(GS)  8,539   7,893  

2260 Duryu(DR)  9,439   9,912  

2270 Naedang(ND)  4,968   5,000  

2280 Banggogae(BGG)  4,638   4,752  

2290 Cheongna Hill(CNH)  6,029   5,668  

2300 Banwoldang(BWD)  28,929   26,460  
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Figure 4.  Daily ridership at DR station on Wednesday, May 2018. 

3.3.1.  

3.3.2. 3.3.1. Peak hours Scenario 

Many commuters take the subway to and from their company and home in the morning 

and the evening (called peak hours). At the typical peak hours, the passenger demand is stead-

ily higher than ever. And the time interval between trains is shorter than at other times. In the 

experiment, we used the evening peak on 23 May in the experiment shown in Figure 4. 

 

3.3.3. 3.3.2. Congested Off-peak Hours Scenario 

When festivals or concerts are held in certain places, passenger volume at nearby subway 

stations increases more than other times. Often these events take place during off-peak hours. 

On May 19, shown in Figure 5(a), a big lantern festival was held in a park near the DR station. 

The organizer estimated that 20,000 people participated in the festival. The original data for 

the oversaturation case is shown in Figure 5(a), to evaluate the optimization effect according 
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to the pattern of passenger arrival rate, we synthesized two more passenger data from the orig-

inal data, which is shown in Figures 5(b) and (c). Figure 5(b) shows the data with double peaks 

and Figure 5(c) shows the data with a box-shaped peak. With those synthesized data, we com-

pare the effect of the waiting time optimization according to the passenger arrival pattern. 
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      (b) 

 

 

        (c) 

Figure 5. Daily ridership at DR station on Saturday, May 2018 (a) Single peak (SP) sce-

nario (b) Double peak scenario (c) Box-shaped peak scenario. 
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IV. PROBLEM FORMULATION 

 

1. 4.1. Assumptions 

To reduce the complexity of computation, we used passenger data that used only 10 sta-

tions in Figure 3. Also, we make several assumptions to make the problem more tractable. 

Assumptions are explained as follows: 

Assumption 1. Each passenger satisfies the first-in-first-out (FIFO) property. Passengers who 

first enter the subway station earlier can board the train earlier. 

Assumption 2. The number of alighting people has no effect on passenger’s walking up/down 

time. 

Assumption 3. The walking time of a normal passenger from the turnstile to the platform is 

the same as that from the platform to the turnstile. 

Assumption 4. The passenger cannot board on the train if the number of passengers in the 

train exceeds the capacity of the train. 

Assumption 5. Passengers are distributed uniformly in each carriage. There is no case that 

one carriage is oversaturated and there is space for passengers in the other carriages. 
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The parameters and notations used in this research are summarized in Table 2. 

Table 2. Parameters. 

Notation Description 

𝑡𝑖𝑛 Time a passenger enters a station via turnstile 

𝑡𝑜𝑢𝑡 Time a passenger exits a station via turnstile 

𝑡𝑜𝑛 Time a passenger enters a train 

𝑡𝑜𝑓𝑓 Time a passenger exits a train 

𝑇𝑖𝑗(𝑡𝑖𝑛) 
Total travel time from station i to station j when a passenger 

taps in at station i at time 𝑡𝑖𝑛(sec) 

𝑇𝑖
𝐾 Walking time from the platform of station i to the turnstile 

𝑇𝑖
𝐷 Dwell time of station i 

𝑇𝑖
𝑊(𝑡𝑖𝑛) 

Waiting time for a train on the platform when a passenger 

taps in at station i at time 𝑡𝑖𝑛 

𝑇𝑖𝑗
𝑅 

Riding time in the train when traveling from station i to sta-

tion j (sec)  

𝑁𝑡𝑟 Number of available trains on the time horizon 

τ = {𝑡𝑑1, 𝑡𝑑2, ⋯ , 𝑡𝑑𝑁𝑡𝑟
} Set of train departure times (sec) 

𝑎𝑖𝑘 Time train k arrive at station i 

𝑉𝑘(𝑡, 𝑡𝑑) Passenger volume on train k at time t  

𝑉𝑖(𝑡) Passenger volume on platform i at time t 

𝐶𝑚𝑎𝑥 Maximum capacity of a train 

𝑁𝑠𝑘 Number of skipped trains 
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2. 4.2. Train Capacity 

We perform the experiments only in a single subway line. To represent a more realistic 

situation, train capacity needs to be scaled down. We filter out the passengers who transfer to 

other lines and it has the same effect as the train capacity becomes larger. Before downsizing 

the system, it is important to determine how much to reduce train capacity. It is important to 

determine how much to reduce train capacity. To determine the train capacity, we used the 

following procedure. First, the train schedule is maintained. Then we adjust the train capacity 

such that the expected passenger waiting time in the scaled-down system is equal to the aver-

age waiting time in the original system. (The procedure for calculating passenger waiting time 

is described in detail in the next subsection.) Following this process, we resized the train ca-

pacity from 1902 to 397 passengers. 

 

 

3. 4.3. Passenger Volume Estimation 

To minimize passenger waiting time, it is necessary to consider the passenger volume and 

train capacity. This is because the oversaturated train causes long waiting time for passengers 

and potential accident risks on the platform. In this paper, the oversaturation time is defined 
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as time length that at least one passenger at the station is unable to ride the coming train due 

to many people on the train. In the following, the detailed passenger volume estimation will 

be proposed. 

 

4.3.1.  Passenger Volume on the Train 

In this step, we estimate the passenger volume on the train by utilizing the AFC data. We 

use the DBSCAN and the travel time decomposition for calculating the passenger volume. The 

DBSCAN is chosen for clustering passengers on each train because it does not need the num-

ber of clusters in the data in advance and it is robust to outliers. The travel time decomposition 

is employed since it is conceptually simple and requires low computation.  

The procedure to estimate the passenger volume is as follows. First, we extract each com-

ponent of the travel time from the AFC data, such as walking, waiting and riding as shown in 

Figure 6. When a passenger travels from the station i to the station j, we decompose the travel 

time of the passenger as 

𝑇𝑖𝑗(𝑡𝑖𝑛) = 𝑡𝑜𝑢𝑡 − 𝑡𝑖𝑛 =  𝑇𝑖
𝐾 + 𝑇𝑖

𝑊(𝑡𝑖𝑛) + 𝑇𝑖𝑗
𝑅 + 𝑇𝑗

𝐾. (1) 
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Figure 6. Travel time decomposition. 

  

Figure 7. Clustered passengers who traveled from station i to station j. 

 

In Figure 7, data points that are represented with the same color indicate the passengers 

riding the same train. We assume that the point with the smallest travel time, denoted by 𝑇𝑖𝑗
∗ , 

in a cluster has zero waiting time. Then, the waiting time of each passenger in the same cluster  
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is calculated by subtracting the smallest travel time from each travel time as follows 

 

The same procedure is repeated for other clusters. The trend lines for the clusters is math-

ematically expressed by the equation 

𝑦 =  −𝑥 +  𝑇𝑖𝑗
∗ + 𝑎𝑖𝑘 (𝑎𝑖(𝑘−1) ≤  𝑥 ≤ 𝑎𝑖𝑘). (3) 

The walking time of passenger at station j is obtained by 

𝑇𝑗
𝐾 =  

𝑇𝑖𝑗
∗ + 𝑇𝑗𝑘

∗ − 𝑇𝑖𝑘
∗ + 𝑇𝑖

𝐷

2
 , (4) 

when the train travels in the order of the station i, j and k. We assume that the dwell time 𝑇𝑖
𝐷 

is 30 seconds at peak hours scenario and one minute at off-peak hours scenario. 

 

The riding time is calculated by subtracting walking time and riding time from the travel 

time as 

𝑇𝑖𝑗
𝑅 =  𝑇𝑖𝑗(𝑡𝑖𝑛) −  𝑇𝑖

𝐾 − 𝑇𝑖
𝑊(𝑡𝑖𝑛) − 𝑇𝑗

𝐾 . (5) 

 

As a result, components of the travel time are obtained for a passenger who is traveling 

from station i to j who enters station i at 𝑡𝑖𝑛. 

 

 

𝑇𝑖
𝑊(𝑡𝑖𝑛) =  𝑇𝑖𝑗(𝑡𝑖𝑛) −  𝑇𝑖𝑗

∗ . (2) 
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To calculate the number of passengers on each train by using each component of travel 

time, Heaviside function H(t), defined by 0 when t<0, and by 1 otherwise, is used. Thereafter, 

the passenger volume on the train is calculated by summing each passenger riding time [9] as  

 

Figure 8 shows the passenger volume in each train obtained from the AFC data.  

 

              Figure 8. Passenger volume in each train.  

 

 

  𝑉𝑘(𝑡, ℎ) =  ∑ 𝐻(𝑡 − 𝑡𝑜𝑛) − 𝐻(𝑡 − 𝑡𝑜𝑓𝑓)      𝑡𝑟𝑎𝑖𝑛=𝑘   

         =  ∑ 𝐻(𝑡 − 𝑡𝑜𝑛) − 𝐻(𝑡 − (𝑡𝑜𝑛 + 𝑇𝑖𝑗
𝑅) )    𝑡𝑟𝑎𝑖𝑛=𝑘   

         =  ∑
𝐻 (𝑡 − (𝑡𝑖𝑛 + 𝑇𝑖

𝐾 + 𝑇𝑖
𝑊(𝑡𝑖𝑛))

−𝐻(𝑡 − (𝑡𝑖𝑛 + 𝑇𝑖
𝐾 + 𝑇𝑖

𝑊(𝑡𝑖𝑛) + 𝑇𝑖𝑗
𝑅)).

𝑡𝑟𝑎𝑖𝑛=𝑘   

(6) 
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4.3.2.  Passenger Volume on the Platform 

Passenger volume on the platform is used to determine the number of passengers waiting 

for a train at the station. It is calculated in the same way from Equation (1) to (5). In this case, 

instead of the riding time in the Equation (6), the walking time and the waiting time of each 

passenger at the station are summing. 

 

 

4. 4.4. Timetable Optimization Model 

In order to minimize the passenger waiting time and oversaturation time, we develop a 

model to optimize the train. In this study, we assume that the train speeds are the same as usual. 

Therefore, the most important decision variables are the departure time of each train at the 

start terminal. We aim to minimize the average waiting time and the maximum waiting time 

by controlling the train departure time and applying the train skip plan. The optimization is 

performed for both local and global cases. The local case minimizes the passenger waiting 

time of a specific station, while the global case minimizes the passenger waiting time of all 

stations in the system. In addition, when the oversaturation occurs, we minimize the passenger 

waiting time and oversaturation time by controlling the train departure time and the number 

of skipped trains.  
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4.4.1. Train Departure Time Control  

4.4.1.1. Passenger Waiting Time Minimization Problem 

The goal is to minimize the passenger waiting time by controlling the set of train depar-

ture times. We set the headway constraint to prevent train car collision and long passenger 

waiting time. The headway is defined as the time interval between trains as follows. 

 

                   ℎ = 𝑡𝑑𝑖 − 𝑡𝑑𝑖−1 (7) 

  

where 𝑖 − 1 is the number given to the preceding train and 𝑖 is the number given to the 

train immediately following the train 𝑖 − 1. We formulated several optimization problems ac-

cording to the values that should be minimized. When the goal is to minimize the average of 

the waiting time for passengers at a particular station, the optimization problem for average 

passenger waiting time is defined as Equation (8) In this problem, the objective function is to 

minimize the average of the waiting times for passengers at a station i, which is called as 

LAWT (Local Average Waiting Time). 

 

min 
      ∑ 𝑇𝑖

𝑊(𝑡𝑖𝑛)/𝑉𝑖(𝑡) for 𝑖 

(8) 

τ = {𝑡𝑑1, 𝑡𝑑2, ⋯ , 𝑡𝑑𝑁𝑡𝑟
} 

subject to 

a ≤ ℎ ≤ b, 

ℎ =  𝑡𝑑j −  𝑡𝑑j−1, 

j = 2, … , 𝑁𝑡𝑟,  

h ∈ ℤ. 
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When the goal is to minimize passenger waiting time at all stations in the subway system, 

then the optimization problem for average passenger wait time is defined as Equation (9). In 

this problem, the objective function is to minimize the average waiting time of all passengers 

in the subway system which is called GAWT (Global Average Waiting Time).  

 

min 
       ∑ 𝑇𝑖

𝑊(𝑡𝑖𝑛)/𝑉𝑖(𝑡) for ∀𝑖 

(9) 

τ = {𝑡𝑑1, 𝑡𝑑2, ⋯ , 𝑡𝑑𝑁𝑡𝑟
} 

subject to 

a ≤ ℎ ≤ b, 

ℎ =  𝑡𝑑j −  𝑡𝑑j−1, 

j = 2, … , 𝑁𝑡𝑟,  

h ∈ ℤ. 

 

When the goal is to minimize the maximum passenger waiting time for a particular sta-

tion, the optimization problem for maximum passenger wait time is defined as Equation (10). 

The objective function is to minimize the maximum value of waiting times for passengers 

whose station i is the origin, which is called LMWT (Global Maximum Waiting Time). 

min 
max{ 𝑇𝑖

𝑊(𝑡𝑖𝑛) } for 𝑖 

(10) 

τ = {𝑡𝑑1, 𝑡𝑑2, ⋯ , 𝑡𝑑𝑁𝑡𝑟
} 

subject to 

a ≤ ℎ ≤ b, 

ℎ =  𝑡𝑑j −  𝑡𝑑j−1, 

j = 2, … , 𝑁𝑡𝑟,  

h ∈ ℤ. 

 

To minimize the maximum passenger waiting time in the subway system, the optimiza-

tion problem for maximum passenger wait time is defined as Equation (11). The objective 
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function is to minimize the maximum waiting times for passengers at all stations in the subway 

system. This is called GMWT (Global Maximum Waiting Time). 

 

min 
     max{ 𝑇𝑖

𝑊(𝑡𝑖𝑛) } for ∀𝑖 

(11) 

τ = {𝑡𝑑1, 𝑡𝑑2, ⋯ , 𝑡𝑑𝑁𝑡𝑟
} 

subject to 

a ≤ ℎ ≤ b, 

ℎ =  𝑡𝑑j −  𝑡𝑑j−1, 

j = 2, … , 𝑁𝑡𝑟,  

h ∈ ℤ. 

  

The decision variable in this optimization problem is the set of train departure times. The 

relationship between the passenger waiting time and the train departure time is expressed as 

Equation (12). The passenger waiting time for passengers who entered at 𝑡𝑖𝑛 in station i is 

obtained by subtracting the sum of the time that the passenger entered the station and passenger 

walking time from the sum of the train departure time at first terminal and time length that the 

train ran from the first terminal to station i. 

 

𝑇𝑖
𝑊(𝑡𝑖𝑛)  =  𝑡𝑑𝑘 +  𝑇𝑎𝑖

𝑅 − (𝑡𝑖𝑛 + 𝑇𝑖
𝐾) 

         for  𝑡𝑑𝑘−1 + 𝑇𝑎𝑖
𝑅  < 𝑡𝑖𝑛 + 𝑇𝑖

𝐾  

                          ≤  𝑡𝑑𝑘 +  𝑇𝑎𝑖
𝑅  ; 𝑎 > 1;  𝑖 > 𝑎. 

(12) 
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4.4.1.2. Oversaturation Time Minimization Problem 

When oversaturation occurs, we control the train departure time to minimize the 

oversaturation. The oversaturated time (OST) is the time length that at least one passenger at 

the station is unable to ride the incoming train because the train is in full capacity. OST is 

defined as : 

OST =𝑡𝑑𝑖 − 𝑡𝑑𝑖−𝑗   

         for i = 2, 3, …, 𝑁𝑡𝑟. ; i– j > 1 ; 𝐶𝑚𝑎𝑥  < 𝑉𝑘(𝑡) for ∃𝑘. 
(13) 

 

Oversaturation time minimization is only performed when the passenger volume in the 

train exceeds the train maximum capacity. As with waiting time optimization, there is a 

headway constraint to prevent car crashes and long waits for passengers. The optimization 

problem to minimize the oversaturation time is expressed as follows.  

min 
 𝑡𝑑𝑖 −  𝑡𝑑𝑖−𝑗  

(14) 

τ = {𝑡𝑑1, 𝑡𝑑2, ⋯ , 𝑡𝑑𝑁𝑡𝑟
} 

subject to 

a ≤ ℎ ≤ b, 

ℎ =  𝑡𝑑j −  𝑡𝑑j−1, 

h ∈ ℤ, 

i = 2, 3, … , Ntr, 

j = 2, 3, …, N𝑡𝑟 , 

i – j > 0, 

𝐶𝑚𝑎𝑥  < 𝑉𝑘(𝑡, 𝑡𝑑) for ∃𝑘, 

𝑁𝑠𝑘 < 𝑁𝑡𝑟. 

4.4.2. Train Skip Plan Control 

When oversaturation occurs at a particular station, the oversaturation time and passenger 
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waiting time can be reduced by letting the trains directly go to the congested station by 

skipping previous stations. In the optimization problem to minimize passenger waiting time 

and oversaturation time, the decision variable is the number of trains that skip previous 

stations. Other parts of the equation, such as decision variables and objective functions and 

constraints, are similar to Equations (8)-(11) with different constraints. The optimization for 

LAWT is expressed in Equation (15) and the optimization for GAWT, LMW, GMWT, and 

OST are expressed in Equations (16)-(19) respectively. 

min 

 ∑ 𝑇𝑖
𝑊(𝑡𝑖𝑛)/𝑉𝑖(𝑡) for 𝑖 

(15) 

𝑁𝑠𝑘, τ = {𝑡𝑑1, 𝑡𝑑2, ⋯, 𝑡𝑑𝑁𝑡𝑟
} 

subject to 

a ≤ ℎ ≤ b, 

h ∈ ℤ, 

ℎ =  𝑡𝑑j −  𝑡𝑑j−1, 

i = 2, 3, … , Ntr, 

j = 2, 3, …, N𝑡𝑟 , 

i – j > 0, 

𝐶𝑚𝑎𝑥  < 𝑉𝑘(𝑡, 𝑡𝑑) for ∃𝑘, 

𝑁𝑠𝑘 < 𝑁𝑡𝑟. 

  

min 
∑ 𝑇𝑖

𝑊(𝑡𝑖𝑛)/𝑉𝑖(𝑡) for ∀𝑖 

(16) 

𝑁𝑠𝑘, τ = {𝑡𝑑1, 𝑡𝑑2, ⋯, 𝑡𝑑𝑁𝑡𝑟
} 

subject to 

a ≤ ℎ ≤ b, 

h ∈ ℤ, 

ℎ =  𝑡𝑑j −  𝑡𝑑j−1, 

i = 2, 3, … , Ntr, 

j = 2, 3, …, N𝑡𝑟 , 

i – j > 0, 

𝐶𝑚𝑎𝑥  < 𝑉𝑘(𝑡, 𝑡𝑑) for ∃𝑘, 

𝑁𝑠𝑘 < 𝑁𝑡𝑟. 
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min 
     max{ 𝑇𝑖

𝑊(𝑡𝑖𝑛) } for 𝑖 

(17) 

𝑁𝑠𝑘, τ = {𝑡𝑑1, 𝑡𝑑2, ⋯, 𝑡𝑑𝑁𝑡𝑟
} 

subject to 

a ≤ ℎ ≤ b, 

h ∈ ℤ, 

ℎ =  𝑡𝑑j −  𝑡𝑑j−1, 

i = 2, 3, … , Ntr, 

j = 2, 3, …, N𝑡𝑟 , 

i – j > 0, 

𝐶𝑚𝑎𝑥  < 𝑉𝑘(𝑡, 𝑡𝑑) for ∃𝑘, 

𝑁𝑠𝑘 < 𝑁𝑡𝑟. 

 

 

 

 

min 
   max{ 𝑇𝑖

𝑊(𝑡𝑖𝑛) } for ∀𝑖 

(18) 

𝑁𝑠𝑘, τ = {𝑡𝑑1, 𝑡𝑑2, ⋯, 𝑡𝑑𝑁𝑡𝑟
} 

subject to 

a ≤ ℎ ≤ b, 

h ∈ ℤ, 

ℎ =  𝑡𝑑j −  𝑡𝑑j−1, 

i = 2, 3, … , Ntr, 

j = 2, 3, …, N𝑡𝑟 , 

i – j > 0, 

𝐶𝑚𝑎𝑥  < 𝑉𝑘(𝑡, 𝑡𝑑) for ∃𝑘, 

𝑁𝑠𝑘 < 𝑁𝑡𝑟. 
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min 
𝑡𝑑𝑖 −  𝑡𝑑𝑖−𝑗  

(19) 

𝑁𝑠𝑘, τ = {𝑡𝑑1, 𝑡𝑑2, ⋯, 𝑡𝑑𝑁𝑡𝑟
} 

subject to 

a ≤ ℎ ≤ b, 

h ∈ ℤ, 

ℎ =  𝑡𝑑j −  𝑡𝑑j−1, 

i = 2, 3, … , Ntr, 

j = 2, 3, …, N𝑡𝑟 , 

i – j > 0, 

𝐶𝑚𝑎𝑥  < 𝑉𝑘(𝑡, 𝑡𝑑) for ∃𝑘, 

𝑁𝑠𝑘 < 𝑁𝑡𝑟. 

 

 

 

 

5. 4.5.1. Genetic Algorithm 

To solve the formulated problem, we apply the genetic algorithm (GA) [13]. GA is a 

heuristic search algorithm to optimize problems based on natural evolution. GA is widely ap-

plied in the train scheduling researches [14][15]. It is because GA has the advantage of requir-

ing less computational resources and being able to perform very large calculations in a rela-

tively short time compared to mathematical formulation approaches such as neural networks.   
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Table 3. Pseudocode for Genetic algorithm. 

Function Genetic Algorithm (POP_SIZE, START, END, GENERATION, AVAILABLE_TRAIN) 

As Train Scheduling  

Begin 

    P = Generate_Initial_Population(POP_SIZE, START, END, AVAILABLE_TRAIN) 

    for i = 1 to GENERATION step 1 do 

        S = Selection(P) 

        C = Crossover(S) 

        M = Mutation(S) 

        P = S + C + M 

        if i == (GENERATION-1): 

            BEST_SOLUTION = Evaluate(P) 

    return BEST_SOLUTION 

end 

 

This algorithm is applied to our research as follows. First, an initial population called P 

is generated when we enter the inputs such as the time window of the scheduling and the 

number of available trains. Each initial population is modified by applying selection, crosso-

ver, and mutation procedures. These procedures are repeated for the given generation number. 

If there are n solutions in the parent population, the offspring population is composed by sum 

of three small populations: 1) x selected individuals whose the fitness value, that is evaluated 

by the fitness function, is greater than other individuals 2) y individuals with crossover opera-
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tion applied to the selected individuals and 3) n-x-y individuals with mutation operation ap-

plied to selected individual. In this experiment, two of 10 individuals were selected, four indi-

viduals crossed over, and four were mutated. During the last iteration, each individual in the 

population is evaluated and the solution with low waiting time (or lowest oversaturation time) 

is returned with the best solution. 

 

 

V. EVALUATION 

In order to evaluate the performance of our system, we optimize local average waiting 

time (LAWT), global average waiting time (GAWT), local maximum waiting time (LMWT) 

and global maximum waiting time (GMWT) by controlling the train departure time from the 

start terminal station. We evaluate the improvement for two scenarios: peak hours and con-

gested off-peak hours. To evaluate the effect of the train skip plan, we figure out the improve-

ment of the waiting time and oversaturation time (OST) by skipping the first 0 to 3 trains out 

of 6 trains operated over an hour especially in the oversaturated train scenario. We also opti-

mize OST and then evaluate how much OST, LAWT, GAWT, LMWT, and GMWT have been 

decreased. All results improvement is expressed as (old(seconds) – new(seconds)) / old (sec-

onds) * 100 % . 

We estimated from the AFC data that there were 10 trains per hour during peak hours and 

6 trains per hour during off-peak hours. The experiment was carried out with the same number 

of trains. To prevent car crashes and long waiting times, the minimum headway was con-

strained to 3 minute and the maximum headway was constrained to 15 minutes. To solve the 

problem, each genetic algorithm takes 100 iterations to reach the optimal solution. Each opti-

mization was performed 5 times and more detailed experimental results are in Appendix A. 
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5.1. Peak hours scenario 

In peak hours scenarios, GAWT and LAWT are decreased by 19% and GMWT by 35% 

and it is most desirable to use GAWT as an objective function to reduce both AWT and MWT. 

Note that LAWT is significantly reduced when GAWT is minimized compare to the case 

when LAWT is used as an objective function. As shown in Figure 9(a), when LAWT is mini-

mizing, LAWT is reduced by 13%. However, in Figure 9(b) when GAWT is minimizing, 

LAWT is reduced by 19%. This is due to the fact that the optimization result is more likely to 

get stuck in a local minimum because the amount of the data used in the calculation when 

LAWT is used as an objective function is less than that of GAWT.  

In Figure 9(a) and (b), MWT is decreased by up to 35% when minimizing AWT. How-

ever, when minimizing MWT, AWT is decreased by up to 10% in Figure 9(c), and sometimes 

AWT is increased as shown in Figure 9(d). This is because the objective function for AWT is 

to utilize the entire passenger data, whereas the objective function for MWT is to use only one 

passenger data of maximum waiting time. 

 

(a) 

 

 

 

 

 



31 

 

 

 

(b) 
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(c) 
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(d) 

 

Figure 9. Improvement comparison of waiting time by types of optimization at peak 

hours scenario. (a) Local average waiting time optimization (b) Global average waiting 

time optimization (c) Local maximum waiting time optimization (d) Global maximum 

waiting time optimization 

 

1. 5.2. Congested off-peak hours scenario 

In the oversaturation scenario, we minimized AWT or MWT depending on the number 

of trains skipped out of six trains, along with the departure time of each train. Figures 10 to 12 

indicate the outcome evaluations on the train scheduling optimization of saturated scenario.  

The number of passengers in Figures 10 to 12 is the same, but the passenger arrival pat-

tern differs by a single peak, double peak, and box-shaped peak, respectively. Each figure 

shows that even if the number of boarding passengers is the same, the effect of optimization 

can be different according to the passenger arrival pattern. 

 

 

 

1.1 5.2.1. Single peak oversaturation 

In the single peak oversaturation case, as shown in Figure 10(b), AWT is decreased by 
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up to 36% and MWT by up to 56% when using GAWT as an objective function. In Figure 

10(a), When minimizing LAWT, AWT is reduced up to 36%, which does not show a signifi-

cant difference when compared with minimizing GAWT. 

It is desirable to use AWT than MWT as the objective function to decrease both AWT 

and MWT with low computation at the single peak case. As shown in Figures 10(a) to (b), 

MWT is reduced when AWT was minimized but Figures 10(c) and (d) represent that AWT 

was increased when MWT was minimized. This is presumably because the headway is reduced 

on a single peak with the highest passenger arrival rate, and the waiting time for people arriv-

ing at the train station is longer when it is relatively less crowded. In addition, MWT is signif-

icantly reduced when AWT is the objective function than when MWT is the objective function. 

In Figure 10(d), LMWT and GMWT are decreased by 37% and 42%, respectively, while when 

the objective function is GAWT they are decreased by 51% and 56%, respectively as shown 

in Figure 10(b). This is because minimizing MWT requires more iterations in the GA than 

minimizing AWT. 

When comparing GAWT and LAWT as the objective function of the optimization, 

GAWT yielded slightly better performance. As shown in Figure 10(b), LAWT and GAWT are 

decreased by 36% and 33%, respectively, when GAWT was objective function, and when 

LAWT was objective function LAWT and GAWT is decreased by 36% and 28% respectively 

which is shown in Figure 10(a). In addition, OST is also reduced by 12% when GAWT is the 

objective function while with LAWT it is reduced by 6%. 

Minimizing oversaturation time has very little to do with minimizing the waiting time. 

As shown in Figure 10(e), OST is reduced by up to 37% when OST is the objective function. 

However, AWT is increased by up to 80%, and MWT is decreased up to 13%. 
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(e) 

 

Figure 10. Improvement comparison of waiting time and oversaturation time by types 

of optimization at congested off-peak hours scenario (Single peak oversaturation). (a) 

Local average waiting time optimization (b) Global average waiting time optimization 

(c) Local maximum waiting time optimization (d) Global maximum waiting time opti-

mization (e) Oversaturation time optimization. 

 

5.2.2. Double peak oversaturation 

In the double peak oversaturation scenario, as shown in Figure 11 (a), LAWT and GAWT 

are decreased by up to 39% and 29% respectively and GMWT is decreased by 22% in Figure 

11(d). 

Note that MWT is increased when AWT is minimized shown in Figures 11(a) and (b). 

This is because that MWT increases by the time distance between two peaks. Therefore, 

minimizing AWT does not help reduce MWT when there is a large time interval between 

peaks. 

In Figures 11(c) and (d), OST is decreased by 55% when using MWT as the objective 

function, especially GMWT as the objective function. Using OST as the objective function in 
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Figure 11(e), OST is decreased by 53%, but AWT and MWT are increased. Therefore, in order 

to minimize AWT, MWT and OST, it is most desirable to use each of them as an objective 

function. 

Figures 11(a) to (d) indicate that the number of skipped trains that minimizes AWT and 

MWT is different. To reduce AWT, we do not need to skip the train, but it is desirable to skip 

the train to reduce MWT further. Figure 11(e) presents minimizing oversaturation time does 

not help reduce the waiting time. 

 

(a) 
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(d) 

 

 

(e) 

Figure 11. Improvement comparison of waiting time and oversaturation time by types 

of optimization at congested off-peak hours scenario (Double peak oversaturation). (a) 

Local average waiting time optimization (b) Global average waiting time optimization 

(c) Local maximum waiting time optimization (d) Global maximum waiting time opti-

mization (e) Oversaturation time optimization. 
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5.2.3. Box-shaped peak oversaturation 

In the box-shaped peak oversaturation scenario, LAWT and GAWT are decreased by up 

to 56% and 47% respectively in Figures 12(a) and (b). As shown in Figure 12(c) GMWT is 

decreased by up to 42% when one train is skipped.  

As shown in Figures 12(a) to (d), whatever the objective function is, all variables are 

decreased together. This is because train arrival intervals are optimized on a regular basis as 

passenger arrival rates are nearly constant by time. 

Figure 12(e) indicates that minimizing OST reduces MWT by up to 38% and increases 

AWT by up to 26%. 

 

(a) 
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(d) 

 

 

(e) 

Figure 12. Improvement comparison of waiting time and oversaturation time by types 

of optimization at congested off-peak hours scenario (Box-shaped peak oversaturation). 

(a) Local average waiting time optimization (b) Global average waiting time optimiza-

tion (c) Local maximum waiting time optimization (d) Global maximum waiting time 

optimization (e) Oversaturation time optimization. 
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2. 5.3. Discussion 

We found that the effect of optimization on the objective function varies according to the 

passenger arrival pattern. In particular, the effectiveness of optimization in a congested situa-

tion depends on the uniformity of the passenger arrival pattern of the congested local station. 

In the oversaturation of the box-shaped peak, whichever is chosen as the objective function, 

AWT and MWT are minimized together because the arrival rate of passengers is uniform 

which is shown in Figure 12. On the other hand, AWT and MWT do not decrease together 

when the passenger arrival pattern is not uniformly distributed such as single-peaked and dou-

ble-peaked oversaturation. In the case of single peaked oversaturation, AWT and MWT de-

creased only when AWT was used as the objective function. In double-peaked oversaturation, 

we observe that the closer the distance between the two peaks, the greater the decrease in AWT 

and MWT. Therefore, the operator may consider various decisions depending on the passenger 

arrival pattern and their purpose. If the operator would like to reduce AWT or MWT, they 

might set AWT or MWT to their objective function and minimize it. The optimization result 

will be a new train departure timetable that serves that purpose. However, it should be noted 

that if the passenger arrival pattern is not uniform, a trade-off may occur between MWT and 

AWT when MWT is minimized.  

When it comes to the relationship between WT and OST, OST and MWT had little cor-

relation except for the uniform passenger arrival pattern. OST decreases when MWT is re-

duced in double peak and box-shaped peak oversaturation. However, when the OST is reduced, 

the MWT is reduced only if the passenger arrival pattern is uniform. 
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Applying the train skip plan reduces WT more, especially MWT. However, the train skip 

plan has the disadvantage of increasing the passenger waiting time of skipped stations. There-

fore, using the train skip plan can be considered when there is an urgent need to deal with the 

high congestion of certain stations. 

 

VI. CONCLUSION AND FUTURE WORK 

 

Highly congested trains are often a major factor in poor passenger service in the subway 

system. To solve this problem, we optimized the train timetable to minimize passenger waiting 

time for each scenario of peak hours and congested off-peak hours by controlling the train 

departure time and the number of skipped trains. Our system reduces LAWT by up to 56% at 

oversaturation. The experiment results demonstrate that adjusting the train departure time and 

the train skip plan reduce the waiting time more in the highly congested situation. When we 

skipped the trains in an oversaturation scenario, AWT and MWT are further reduced up to 

15% and 19% respectively in the box-shaped oversaturation scenario. 

Moreover, we compared how the effect of optimization varies with each passenger arrival 

pattern when oversaturation occurs. As a result, we found that AWT and MWT to be mini-

mized together when the arrival rate of passengers is uniform. The proposed approach will not 

only help train scheduling in congestion situations but also help to estimate the optimization 

effect according to the passenger arrival pattern. 

Our future work will consider extending the transfer time when the single line is extended 

to multiple lines and the real-time operation of the system. Moreover, since we used previous 

data to optimize train scheduling, it will also be useful to predict the oversaturation by utilizing 



45 

 

the real-time data. In addition, we assume that passenger walking time is not affected by pas-

senger volume, however that assumption is not realistic. Therefore, it would be good to make 

a more detailed model of the passenger walking time to improve the accuracy of the model by 

considering the effect on the walking time of the passengers when there are a lot of passengers 

on the platform. 
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Appendix A. Optimization Results. 

 

Appendix A indicates how the waiting time and the oversaturation time are reduced by 

optimizing train scheduling and train skip plan. For each optimization, the experiment was 

performed five times and the improvement was calculated as the average of the results. 

 

A.1 Peak Hours Scenario 

    Before Optimization 

      (unit: sec) 

LAWT GAWT LMWT GMWT 

205 260 778 1228 

 

A.1.1 LAWT Optimization 

        (unit: sec) 

  LAWT GAWT LMWT GMWT 

1st 184 255 586 1356 

2nd 184 236 549 1353 

3rd 177 234 550 1355 

4th 174 229 549 1253 

5th 172 238 550 1212 

Average 178.2 238.4 556.8 1305.8 

Improvement 13.1% 8.3% 28.4% -6.3% 
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A.1.2 GAWT Optimization 

        (unit: sec) 

  LAWT GAWT LMWT GMWT 

1st 172 214 503 818 

2nd 170 214 507 818 

3rd 165 209 506 821 

4th 164 210 506 821 

5th 162 207 505 820 

Average 166.6 210.8 505.4 819.6 

Improvement 18.7% 18.9% 35.0% 33.3% 

 

A.1.3 LMWT Optimization 

        (unit: sec) 

  LAWT GAWT LMWT GMWT 

1st 195 235 503 818 

2nd 192 225 457 795 

3rd 187 239 505 819 

4th 176 224 466 781 

5th 174 226 467 781 

Average 184.8 229.8 479.6 798.8 

Improvement 9.9% 11.6% 38.4% 35.0% 
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A.1.4 GMWT Optimization 

        (unit: sec) 

  LAWT GAWT LMWT GMWT 

1st 258 298 776 792 

2nd 249 294 799 858 

3rd 246 264 667 817 

4th 232 283 787 825 

5th 212 272 580 801 

Average 239.4 282.2 721.8 818.6 

Improvement -16.8% -8.5% 7.2% 33.3% 

 

A.2 Congested Off-peak Hours Scenario 

A.2.1 Single Peak  

Before Optimization 

       (unit: sec) 

LAWT GAWT LMWT GMWT OST 

596 572 3301 3661 2180 

 

 A.2.1.1 LAWT Optimization 

The number of skipped train: 0 

          (unit: sec) 

  LAWT GAWT LMWT GMWT OST 

1st 316 347 1340 1340 902 

2nd 320 417 1885 1885 593 

3rd 402 435 2207 2207 3249 

4th 440 419 1861 1861 2259 

5th 443 449 2210 2210 3282 

Average 384.2 413.4 1900.6 1900.6 2057 

Improvement 35.5% 27.7% 42.4% 48.1% 5.6% 
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 The number of skipped train: 1 

          (unit: sec) 

  LAWT GAWT LMWT GMWT OST 

1st 379 428 2222 2222 2964 

2nd 394 436 2227 2227 2955 

3rd 397 429 2205 2205 2714 

4th 421 425 1865 1865 2292 

5th 435 447 3790 3790 2346 

Average 405.2 433 2461.8 2461.8 2654.2 

Improvement 32.0% 24.3% 25.4% 32.8% -21.8% 

 

 

 

 The number of skipped train: 2 

          (unit: sec) 

  LAWT GAWT LMWT GMWT OST 

1st 401 431 2158 2158 1923 

2nd 408 416 1676 1676 2727 

3rd 417 473 2411 2411 3017 

4th 429 422 1959 1959 2709 

5th 430 440 2107 2107 2409 

Average 417 436.4 2062.2 2062.2 2557 

Improvement 30.0% 23.7% 37.5% 43.7% -17.3% 
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 The number of skipped train: 3 

          (unit: sec) 

  LAWT GAWT LMWT GMWT OST 

1st 380 422 2138 2138 2567 

2nd 517 523 1295 1725 2188 

3rd 522 534 1420 1860 2308 

4th 528 505 1767 1767 2174 

5th 535 529 2949 2949 2350 

Average 496.4 502.6 1913.8 2087.8 2317.4 

Improvement 16.7% 12.1% 42.0% 43.0% -5.9% 

 

 

 A.2.1.2 GAWT Optimization 

The number of skipped train: 0 

          (unit: sec) 

  LAWT GAWT LMWT GMWT OST 

1st 316 351 1439 1441 599 

2nd 349 363 1476 1496 1264 

3rd 367 379 1351 1351 2428 

4th 428 414 1882 1882 2267 

5th 445 422 1929 1929 3029 

Average 381 385.8 1615.4 1619.8 1917.4 

Improvement 36.1% 32.6% 51.1% 55.8% 12.0% 
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 The number of skipped train: 1 

          (unit: sec) 

  LAWT GAWT LMWT GMWT OST 

1st 382 381 1826 1826 2772 

2nd 398 413 1989 1989 2488 

3rd 418 430 2060 2060 2567 

4th 427 407 1870 1870 2928 

5th 440 415 1927 1927 2618 

Average 413 409.2 1934.4 1934.4 2674.6 

Improvement 30.7% 28.5% 41.4% 47.2% -22.7% 

 

 

 The number of skipped train: 2 

          (unit: sec) 

  LAWT GAWT LMWT GMWT OST 

1st 417 453 3486 3486 3290 

2nd 420 415 2007 2007 2806 

3rd 460 443 3141 3141 2516 

4th 462 436 1864 1864 2676 

5th 463 442 3033 3033 2491 

Average 444.4 437.8 2706.2 2706.2 2755.8 

Improvement 25.4% 23.5% 18.0% 26.1% -26.4% 
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 The number of skipped train: 3 

          (unit: sec) 

  LAWT GAWT LMWT GMWT OST 

1st 585 591 2372 2372 1393 

2nd 692 639 2554 2554 1764 

3rd 875 716 2512 2512 2617 

4th 1161 920 2370 2370 2637 

5th 1184 906 2498 2498 2628 

Average 899.4 754.4 2461.2 2461.2 2207.8 

Improvement -50.9% -31.9% 25.4% 32.8% -1.3% 

 

 

 

A.2.1.3 LMWT Optimization 

The number of skipped train: 0 

          (unit: sec) 

  LAWT GAWT LMWT GMWT OST 

1st 905 728 2375 2375 2738 

2nd 937 758 2468 2468 2699 

3rd 1073 855 2416 2416 2745 

4th 1171 900 2540 2540 2588 

5th 1215 946 2598 2598 2861 

Average 1060.2 837.4 2479.4 2479.4 2726.2 

Improvement -77.9% -46.4% 24.9% 32.3% -25.1% 
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 The number of skipped train: 1 

          (unit: sec) 

  LAWT GAWT LMWT GMWT OST 

1st 1109 835 2266 2266 2445 

2nd 1136 864 2411 2411 2601 

3rd 1139 885 2258 2258 2507 

4th 1144 882 2256 2256 2533 

5th 1227 979 2588 2588 2874 

Average 1151 889 2355.8 2355.8 2592 

Improvement -93.1% -55.4% 28.6% 35.7% -18.9% 

 

 

 

 The number of skipped train: 2 

          (unit: sec) 

  LAWT GAWT LMWT GMWT OST 

1st 969 772 2143 2143 2454 

2nd 990 792 2213 2213 2514 

3rd 1021 799 2276 2276 2524 

4th 1038 812 2242 2242 2494 

5th 1071 853 2151 2151 2412 

Average 1017.8 805.6 2205 2205 2479.6 

Improvement -70.8% -40.8% 33.2% 39.8% -13.7% 
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 The number of skipped train: 3 

          (unit: sec) 

  LAWT GAWT LMWT GMWT OST 

1st 919 768 2030 2175 2339 

2nd 993 810 2099 2244 2406 

3rd 1017 809 2207 2328 2442 

4th 1021 835 2123 2243 2423 

5th 1050 860 2105 2204 2397 

Average 1000 816.4 2112.8 2238.8 2401.4 

Improvement -67.8% -42.7% 36.0% 38.8% -10.2% 

 

 

 

A.2.1.4 GMWT Optimization 

The number of skipped train: 0 

          (unit: sec) 

  LAWT GAWT LMWT GMWT OST 

1st 585 591 2372 2372 1393 

2nd 292 639 2554 2554 1794 

3rd 872 713 2512 2512 2617 

4th 1161 920 2370 2370 2637 

5th 1184 906 2498 2498 2628 

Average 818.8 753.8 2461.2 2461.2 2213.8 

Improvement -37.4% -31.8% 25.4% 32.8% -1.6% 
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 The number of skipped train: 1 

          (unit: sec) 

  LAWT GAWT LMWT GMWT OST 

1st 840 690 2237 2237 2700 

2nd 1003 770 2182 2182 2430 

3rd 1028 817 2326 2326 2631 

4th 1061 804 2262 2262 2454 

5th 1139 881 2391 2391 2676 

Average 1014.2 792.4 2279.6 2279.6 2578.2 

Improvement -70.2% -38.5% 30.9% 37.7% -18.3% 

 

 

 

 The number of skipped train: 2 

          (unit: sec) 

  LAWT GAWT LMWT GMWT OST 

1st 893 741 2080 2080 2372 

2nd 1002 802 2231 2231 2578 

3rd 1034 807 2184 2184 2398 

4th 1081 846 2207 2207 2488 

5th 1103 865 2321 2321 2623 

Average 1022.6 812.2 2204.6 2204.6 2491.8 

Improvement -71.6% -42.0% 33.2% 39.8% -14.3% 
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 The number of skipped train: 3 

          (unit: sec) 

  LAWT GAWT LMWT GMWT OST 

1st 798 704 2260 2260 2340 

2nd 835 720 2287 2291 2466 

3rd 847 714 1965 1972 2213 

4th 857 719 1891 1921 2158 

5th 915 764 2078 2119 2321 

Average 850.4 724.2 2096.2 2112.6 2299.6 

Improvement -42.7% -26.6% 36.5% 42.3% -5.5% 

 

 

A.2.1.5 OST Optimization 

The number of skipped train: 0 

          (unit: sec) 

  LAWT GAWT LMWT GMWT OST 

1st 540 532 2775 2775 1342 

2nd 696 643 2687 2687 1276 

3rd 814 695 3079 3079 1659 

4th 1025 786 3529 3529 1614 

5th 1045 817 3817 3817 1532 

Average 824 694.6 3177.4 3177.4 1484.6 

Improvement -38.3% -21.4% 3.7% 13.2% 31.9% 
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 The number of skipped train: 1 

          (unit: sec) 

  LAWT GAWT LMWT GMWT OST 

1st 1032 857 4113 4113 1623 

2nd 1062 878 4179 4179 1771 

3rd 1065 837 3336 3336 1873 

4th 1088 831 3594 3594 1874 

5th 1111 859 3314 3314 1660 

Average 1071.6 852.4 3707.2 3707.2 1760.2 

Improvement -79.8% -49.0% -12.3% -1.3% 19.3% 

 

 

 The number of skipped train: 2 

          (unit: sec) 

  LAWT GAWT LMWT GMWT OST 

1st 974 765 3419 3419 1639 

2nd 983 792 3076 3076 1567 

3rd 996 830 4113 4113 1602 

4th 996 852 4121 4121 1668 

5th 1077 821 3722 3722 1763 

Average 1005.2 812 3690.2 3690.2 1647.8 

Improvement -68.7% -42.0% -11.8% -0.8% 24.4% 
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 The number of skipped train: 3 

          (unit: sec) 

  LAWT GAWT LMWT GMWT OST 

1st 824 744 2771 2771 1028 

2nd 841 745 2576 2576 1066 

3rd 1001 819 3848 3848 1698 

4th 1046 852 3184 3184 1620 

5th 1091 901 4121 4121 1492 

Average 960.6 812.2 3300 3300 1380.8 

Improvement -61.2% -42.0% 0.0% 9.9% 36.7% 

 

 

A.2.2 Double Peak Optimization 

Before Optimization 

       (unit: sec) 

LAWT GAWT LMWT GMWT OST 

1190 927 3224 3260 2294 
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A.2.2.1 LAWT Optimization 

The number of skipped train: 0 

          (unit: sec) 

  LAWT GAWT LMWT GMWT OST 

1st 692 655 3834 3834 2120 

2nd 717 677 3851 3851 2053 

3rd 722 632 3560 3560 2477 

4th 730 675 3876 3876 2388 

5th 745 675 2889 2889 2005 

Average 721.2 662.8 3602 3602 2208.6 

Improvement 39.4% 28.5% -11.7% -10.5% 3.7% 

 

 

 

 The number of skipped train: 1 

          (unit: sec) 

  LAWT GAWT LMWT GMWT OST 

1st 655 642 3971 3971 2173 

2nd 752 670 3556 3556 1861 

3rd 762 670 3556 3556 1861 

4th 776 711 3925 3925 1796 

5th 807 689 3442 3442 2200 

Average 750.4 676.4 3690 3690 1978.2 

Improvement 36.9% 27.0% -14.5% -13.2% 13.8% 
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 The number of skipped train: 2 

          (unit: sec) 

  LAWT GAWT LMWT GMWT OST 

1st 719 661 2954 2954 2386 

2nd 750 668 3455 3455 2302 

3rd 767 680 3836 3836 2217 

4th 778 688 3529 3529 1818 

5th 847 753 2978 2978 2154 

Average 772.2 690 3350.4 3350.4 2175.4 

Improvement 35.1% 25.6% -3.9% -2.8% 5.2% 

 

 

 

 The number of skipped train: 3 

          (unit: sec) 

  LAWT GAWT LMWT GMWT OST 

1st 792 734 3691 3691 2320 

2nd 797 746 2896 2896 2227 

3rd 801 725 3445 3445 2338 

4th 802 741 3783 3783 1631 

5th 825 748 3443 3443 2442 

Average 803.4 738.8 3451.6 3451.6 2191.6 

Improvement 32.5% 20.3% -7.1% -5.9% 4.5% 
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 A.2.2.2 GAWT Optimization 

The number of skipped train: 0 

          (unit: sec) 

  LAWT GAWT LMWT GMWT OST 

1st 700 676 3905 3905 1700 

2nd 702 644 3754 3754 2104 

3rd 722 661 2966 2966 2063 

4th 761 658 3446 3449 2128 

5th 802 717 3290 3290 1985 

Average 737.4 671.2 3472.2 3472.8 1996 

Improvement 38.0% 27.6% -7.7% -6.5% 13.0% 

 

 

 

 The number of skipped train: 1 

          (unit: sec) 

  LAWT GAWT LMWT GMWT OST 

1st 704 601 3447 3447 2264 

2nd 754 640 3636 3636 2629 

3rd 769 658 3449 3449 2222 

4th 812 693 3741 3741 2340 

5th 856 723 3751 3751 2566 

Average 779 663 3604.8 3604.8 2404.2 

Improvement 34.5% 28.5% -11.8% -10.6% -4.8% 
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 The number of skipped train: 2 

          (unit: sec) 

  LAWT GAWT LMWT GMWT OST 

1st 675 633 3666 3666 2118 

2nd 699 689 3960 3960 1977 

3rd 700 684 3884 3884 1939 

4th 825 738 2927 2927 2230 

5th 839 729 3757 3735 2353 

Average 747.6 694.6 3638.8 3634.4 2123.4 

Improvement 37.2% 25.1% -12.9% -11.5% 7.4% 

 

 

 

 The number of skipped train: 3 

          (unit: sec) 

  LAWT GAWT LMWT GMWT OST 

1st 666 661 2875 2875 2329 

2nd 700 670 3741 3741 2331 

3rd 788 725 2992 2992 2287 

4th 912 795 3764 3794 1806 

5th 926 805 3808 2908 1711 

Average 798.4 731.2 3436 3262 2092.8 

Improvement 32.9% 21.1% -6.6% -0.1% 8.8% 
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A.2.2.3 LMWT Optimization 

The number of skipped train: 0 

          (unit: sec) 

  LAWT GAWT LMWT GMWT OST 

1st 979 879 2421 2421 1379 

2nd 1030 888 2768 2768 1474 

3rd 1089 944 2512 2512 1302 

4th 1092 925 2678 2678 1439 

5th 1105 943 2667 2667 1505 

Average 1059 915.8 2609.2 2609.2 1419.8 

Improvement 11.0% 1.2% 19.1% 20.0% 38.1% 

 

 

 

 The number of skipped train: 1 

          (unit: sec) 

  LAWT GAWT LMWT GMWT OST 

1st 1091 908 2586 2586 1318 

2nd 1110 934 2630 2630 1747 

3rd 1114 934 2432 2432 1392 

4th 1126 944 2495 2495 1378 

5th 1170 966 2566 2566 1411 

Average 1122.2 937.2 2541.8 2541.8 1449.2 

Improvement 5.7% -1.1% 21.2% 22.0% 36.8% 
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 The number of skipped train: 2 

          (unit: sec) 

  LAWT GAWT LMWT GMWT OST 

1st 1097 939 2347 2347 1275 

2nd 1122 942 2611 2611 1447 

3rd 1143 943 2502 2502 1334 

4th 1236 1001 2785 2785 1552 

5th 1254 1032 2718 2718 1756 

Average 1170.4 971.4 2592.6 2592.6 1472.8 

Improvement 1.6% -4.8% 19.6% 20.5% 35.8% 

 

 

 

 The number of skipped train: 3 

          (unit: sec) 

  LAWT GAWT LMWT GMWT OST 

1st 1080 968 2584 2584 1335 

2nd 1140 981 2441 2441 1460 

3rd 1165 966 2747 2747 1420 

4th 1232 1024 2794 2794 1611 

5th 1234 1017 2856 2856 1815 

Average 1170.2 991.2 2684.4 2684.4 1528.2 

Improvement 1.7% -6.9% 16.7% 17.7% 33.4% 
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A.2.2.4 GMWT Optimization 

The number of skipped train: 0 

          (unit: sec) 

  LAWT GAWT LMWT GMWT OST 

1st 1060 926 2501 2501 1286 

2nd 1077 911 2790 2790 1586 

3rd 1080 911 2876 2876 1761 

4th 1090 954 2530 2530 1640 

5th 1099 944 2525 2525 1260 

Average 1081.2 929.2 2644.4 2644.4 1506.6 

Improvement 9.1% -0.2% 18.0% 18.9% 34.3% 

 

 

 

 The number of skipped train: 1 

          (unit: sec) 

  LAWT GAWT LMWT GMWT OST 

1st 1075 916 2384 2375 1336 

2nd 1076 920 2449 2449 1234 

3rd 1115 964 2527 2527 1485 

4th 1159 949 2669 2669 1501 

5th 1170 955 2632 2632 1380 

Average 1119 940.8 2532.2 2530.4 1387.2 

Improvement 6.0% -1.5% 21.5% 22.4% 39.5% 
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 The number of skipped train: 2 

          (unit: sec) 

  LAWT GAWT LMWT GMWT OST 

1st 1054 892 2610 2610 1379 

2nd 1107 921 2610 2610 1413 

3rd 1107 947 2462 2462 1386 

4th 1126 947 2383 2383 1242 

5th 1216 989 2699 2699 1421 

Average 1122 939.2 2552.8 2552.8 1368.2 

Improvement 5.7% -1.3% 20.8% 21.7% 40.4% 

 

 

 

 The number of skipped train: 3 

          (unit: sec) 

  LAWT GAWT LMWT GMWT OST 

1st 1079 944 2511 2511 1494 

2nd 1086 924 2864 2864 1583 

3rd 1140 965 2581 2581 1360 

4th 1164 988 2756 2756 1619 

5th 1183 978 2732 2732 1329 

Average 1130.4 959.8 2688.8 2688.8 1477 

Improvement 5.3% -3.4% 19.9% 21.2% 55.3% 
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A.2.2.5 OST Optimization 

The number of skipped train: 0 

          (unit: sec) 

  LAWT GAWT LMWT GMWT OST 

1st 1050 850 3537 3537 1073 

2nd 1050 861 3844 3844 1091 

3rd 1094 910 3983 3983 1178 

4th 1193 970 2663 2663 1001 

5th 1199 963 2858 2858 995 

Average 1117.2 910.8 3377 3377 1067.6 

Improvement 6.1% 1.7% -4.7% -3.6% 53.5% 

 

 

 

 The number of skipped train: 1 

          (unit: sec) 

  LAWT GAWT LMWT GMWT OST 

1st 1113 946 4292 4292 1137 

2nd 1133 882 3839 3839 1217 

3rd 1170 928 2885 2885 1239 

4th 1325 979 3758 3758 1252 

5th 1351 972 3491 3491 1609 

Average 1218.4 941.4 3653 3653 1290.8 

Improvement -2.4% -1.6% -13.3% -12.1% 43.7% 
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 The number of skipped train: 2 

          (unit: sec) 

  LAWT GAWT LMWT GMWT OST 

1st 1207 915 3352 3352 1180 

2nd 1267 1008 2844 2877 1473 

3rd 1315 1007 4005 4005 1706 

4th 1323 1007 4018 4018 1448 

5th 1421 1084 4212 4212 1492 

Average 1306.6 1004.2 3686.2 3692.8 1459.8 

Improvement -9.8% -8.3% -14.3% -13.3% 36.4% 

 

 The number of skipped train: 3 

          (unit: sec) 

  LAWT GAWT LMWT GMWT OST 

1st 1145 906 3755 3755 1232 

2nd 1154 878 3517 3517 1241 

3rd 1165 906 3596 3596 1256 

4th 1191 923 3735 3735 1301 

5th 1302 1036 2983 2983 1570 

Average 1191.4 929.8 3517.2 3517.2 1320 

Improvement -0.1% -0.3% -9.1% -7.9% 42.5% 

 

 

A.2.3 Box-shaped Peak Optimization 

Before Optimization 

       (unit: sec) 

LAWT GAWT LMWT GMWT OST 

722 663 3376 3206 1962 
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A.2.3.1 LAWT Optimization 

The number of skipped train: 0 

          (unit: sec) 

  LAWT GAWT LMWT GMWT OST 

1st 317 412 1075 1526 1195 

2nd 356 372 2174 2174 1439 

3rd 359 377 2038 2038 1148 

4th 388 395 2145 2145 1353 

5th 296 400 2226 2226 1188 

Average 343.2 391.2 1931.6 2021.8 1264.6 

Improvement 52.5% 41.0% 42.8% 36.9% 35.5% 

 

 

 

 The number of skipped train: 1 

          (unit: sec) 

  LAWT GAWT LMWT GMWT OST 

1st 279 402 1184 1973 1141 

2nd 302 335 1307 1352 1117 

3rd 329 393 1543 1532 1858 

4th 330 418 1041 1609 1108 

5th 363 379 1401 1439 1867 

Average 320.6 385.4 1295.2 1581 1418.2 

Improvement 55.6% 41.9% 61.6% 50.7% 27.7% 
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 The number of skipped train: 2 

          (unit: sec) 

  LAWT GAWT LMWT GMWT OST 

1st 390 411 2183 2183 1723 

2nd 402 475 1375 1743 1858 

3rd 422 478 1474 1624 1943 

4th 521 507 1448 1586 1309 

5th 307 359 1796 1796 1442 

Average 408.4 446 1655.2 1786.4 1655 

Improvement 43.4% 32.7% 51.0% 44.3% 15.6% 

 

 

 

 The number of skipped train: 3 

          (unit: sec) 

  LAWT GAWT LMWT GMWT OST 

1st 503 568 2320 2320 1769 

2nd 359 423 1276 1622 1750 

3rd 424 490 1274 1636 1888 

4th 425 495 1249 1728 1602 

5th 443 474 2198 2198 1676 

Average 430.8 490 1663.4 1900.8 1737 

Improvement 40.3% 26.1% 50.7% 40.7% 11.5% 
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 A.2.3.2 GAWT Optimization 

The number of skipped train: 0 

          (unit: sec) 

  LAWT GAWT LMWT GMWT OST 

1st 326 363 2140 2140 1644 

2nd 344 350 1401 1401 1327 

3rd 423 422 1994 1994 1538 

4th 477 421 1915 1915 1781 

5th 660 537 2269 2269 1141 

Average 446 418.6 1943.8 1943.8 1486.2 

Improvement 38.2% 36.9% 42.4% 39.4% 24.3% 

 

 

 

 The number of skipped train: 1 

          (unit: sec) 

  LAWT GAWT LMWT GMWT OST 

1st 321 338 1877 1877 1800 

2nd 323 349 1965 1965 1334 

3rd 356 359 2183 2183 2519 

4th 396 390 1221 1221 1552 

5th 309 335 2052 2052 1551 

Average 341 354.2 1859.6 1859.6 1751.2 

Improvement 52.8% 46.6% 44.9% 42.0% 10.7% 
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 The number of skipped train: 2 

          (unit: sec) 

  LAWT GAWT LMWT GMWT OST 

1st 342 393 1200 1516 1536 

2nd 384 408 1198 147 1544 

3rd 429 432 2401 2401 1895 

4th 444 434 1667 1667 1855 

5th 549 491 2433 2433 1883 

Average 429.6 431.6 1779.8 1632.8 1742.6 

Improvement 40.5% 34.9% 47.3% 49.1% 11.2% 

 

 

 The number of skipped train: 3 

          (unit: sec) 

  LAWT GAWT LMWT GMWT OST 

1st 373 490 1821 1839 1693 

2nd 421 442 3211 3211 1640 

3rd 455 487 2314 2314 17121 

4th 516 519 1957 1975 1838 

5th 518 503 3174 3174 1630 

Average 456.6 488.2 2495.4 2502.6 4784.4 

Improvement 36.8% 26.4% 26.1% 21.9% -143.9% 
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A.2.3.3 LMWT Optimization 

The number of skipped train: 0 

          (unit: sec) 

  LAWT GAWT LMWT GMWT OST 

1st 619 594 2156 2156 1408 

2nd 639 635 1947 2093 1227 

3rd 643 781 2100 2100 1395 

4th 693 586 1896 1896 1128 

5th 705 633 1916 2187 1139 

Average 659.8 645.8 2003 2086.4 1259.4 

Improvement 8.6% 2.6% 40.7% 34.9% 35.8% 

 

 

 The number of skipped train: 1 

          (unit: sec) 

  LAWT GAWT LMWT GMWT OST 

1st 681 633 1990 1916 1139 

2nd 728 613 1913 1990 1197 

3rd 729 666 1976 1913 1169 

4th 733 618 1964 1976 1246 

5th 651 689 2006 1964 1363 

Average 651 562 1774 1867 1117 

Improvement 9.8% 15.2% 47.5% 41.8% 43.1% 
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 The number of skipped train: 2 

          (unit: sec) 

  LAWT GAWT LMWT GMWT OST 

1st 661 619 1848 2113 1102 

2nd 691 602 1913 1913 1290 

3rd 693 613 1902 1902 1300 

4th 703 640 1940 1942 1250 

5th 714 584 2013 2013 1009 

Average 692.4 611.6 1923.2 1976.6 1190.2 

Improvement 4.1% 7.8% 43.0% 38.3% 39.3% 

 

 

 The number of skipped train: 3 

          (unit: sec) 

  LAWT GAWT LMWT GMWT OST 

1st 653 601 1849 1872 1214 

2nd 685 612 2031 2031 1193 

3rd 693 630 2078 2078 1266 

4th 709 606 1771 1857 966 

5th 867 769 2512 2512 1723 

Average 721.4 643.6 2048.2 2070 1272.4 

Improvement 0.1% 2.9% 39.3% 35.4% 35.1% 
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A.2.3.4 GMWT Optimization 

The number of skipped train: 0 

          (unit: sec) 

  LAWT GAWT LMWT GMWT OST 

1st 693 596 1985 1985 1159 

2nd 630 620 2087 2087 1112 

3rd 631 583 2018 2018 1193 

4th 639 609 2067 2067 1151 

5th 685 633 2067 2067 1049 

Average 655.6 608.2 2044.8 2044.8 1132.8 

Improvement 9.2% 8.3% 39.4% 36.2% 42.3% 

 

 

 The number of skipped train: 1 

          (unit: sec) 

  LAWT GAWT LMWT GMWT OST 

1st 586 518 1830 1830 1222 

2nd 597 528 1895 1895 1038 

3rd 631 541 1911 1911 1144 

4th 675 611 2027 2027 1188 

5th 722 647 2067 2067 1203 

Average 642.2 569 1946 1946 1159 

Improvement 11.1% 14.2% 42.4% 39.3% 40.9% 
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 The number of skipped train: 2 

          (unit: sec) 

  LAWT GAWT LMWT GMWT OST 

1st 591 581 1925 1925 1281 

2nd 631 607 1929 1939 1205 

3rd 690 635 2028 2028 1281 

4th 737 597 2109 2109 1421 

5th 746 701 2050 2055 1411 

Average 679 624.2 2008.2 2011.2 1319.8 

Improvement 6.0% 5.9% 40.5% 37.3% 32.7% 

 

 

 The number of skipped train: 3 

          (unit: sec) 

  LAWT GAWT LMWT GMWT OST 

1st 614 592 2078 2078 1271 

2nd 732 633 2080 2080 1193 

3rd 761 643 1860 1860 1087 

4th 818 753 2117 2117 1375 

5th 888 763 2706 2706 1601 

Average 762.6 676.8 2168.2 2168.2 1305.4 

Improvement -5.6% -2.1% 35.8% 32.4% 33.5% 
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A.2.3.5 OST Optimization 

The number of skipped train: 0 

          (unit: sec) 

  LAWT GAWT LMWT GMWT OST 

1st 840 704 2178 2178 1003 

2nd 867 656 1935 1935 911 

3rd 884 723 2198 2198 1022 

4th 914 712 2312 2312 1061 

5th 921 761 2371 2371 1064 

Average 885.2 711.2 2198.8 2198.8 1012.2 

Improvement -22.6% -7.3% 34.9% 31.4% 48.4% 

 

 

 The number of skipped train: 1 

          (unit: sec) 

  LAWT GAWT LMWT GMWT OST 

1st 748 655 2229 2229 911 

2nd 808 617 2004 2004 894 

3rd 816 639 2119 2119 946 

4th 906 685 2031 2031 963 

5th 910 683 2045 2045 1009 

Average 837.6 655.8 2085.6 2085.6 944.6 

Improvement -16.0% 1.1% 38.2% 34.9% 51.9% 

 

  



80 

 

 The number of skipped train: 2 

          (unit: sec) 

  LAWT GAWT LMWT GMWT OST 

1st 874 682 2230 2230 891 

2nd 880 735 1949 1990 967 

3rd 901 686 2194 2194 1141 

4th 928 674 3274 3274 1135 

5th 957 756 2346 2346 1149 

Average 908 706.6 2398.6 2406.8 1056.6 

Improvement -25.8% -6.6% 29.0% 24.9% 46.1% 

 

 The number of skipped train: 3 

          (unit: sec) 

  LAWT GAWT LMWT GMWT OST 

1st 819 640 3499 3499 1060 

2nd 865 683 2158 2158 1049 

3rd 879 707 2114 2114 994 

4th 900 698 2163 2163 1089 

5th 1065 766 3214 3214 1309 

Average 905.6 698.8 2629.6 2629.6 1100.2 

Improvement -25.4% -5.4% 22.1% 18.0% 43.9% 
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요 약 문 

도시 지하철역에서의 예기치 않은 혼잡에 대한 처리 방안 

도시 지하철은 도로교통 상황의 영향을 크게 받지 않으며 대용량의 교통 수요를 처리할 수 

있어 많은 승객들에게 이용된다. 혼잡한 지하철은 승객들에게 불편을 야기하며, 승객들의 

승강장에서의 대기시간을 증가시킨다.  본 논문은 열차 출발 시간과 역들을 건너 뛴 열차 수를 

조절하여 승객 대기 시간을 최소화하는 것을 목표로 한 열차 시간표 최적화 방안을 제시한다. 

승객 도착 통계 모델에 의존하는 기존의 접근 방식과 달리, 이 연구는 대구의 지하철에서 

수집된 교통카드 데이터들을 기반으로 하는 최적화 모델을 만든다. 모델은 각 승객의 여행 

시간을 차량 대기 시간, 차량 탑승 시간 및 보행 시간으로 구분하고, 탑승한 기차에 따라 

승객들을 군집화 시킨 후 각 차량마다 승객 수를 추정하는 것으로 구성된다. 이를 바탕으로 

주어진 열차 스케줄에 대해 모든 승객 각각의 대기 시간들을 계산할 수 있다. 최적화 문제는 

이용 가능한 열차 수, 열차가 수용 가능한 최대 승객 수, 폐색구간과 같은 현실적인 제약 조건 

하에서 구성된다. 최적의 시간표를 찾기 위한 방법으로 유전자 알고리즘이 사용되었다. 그 결과 

승객 평균 대기 시간은 최대 56%까지 단축되었으며, 열차 출발시간 뿐만 아니라 일부 역을 

건너뛰는 열차의 수까지 최적화하면 매우 혼잡한 상황에서 더 나은 결과를 얻을 수 있었다. 

혼잡한 상황에서 기차가 일부 역을 건너뛰었을 때, 그렇지 않을 때보다 승객 최대 대기 시간은 

19%, 승객 평균 대기 시간은 15% 정도 더욱 단축되었다. 또한 혼잡한 상황에서 승객 도착 

패턴에 따라 최적화의 효율이 달라진다는 것을 확인하였다. 본 방안은 승객 평균 대기시간을 

감소시킴으로써 지하철 서비스를 향상시킬 것이다.  

 

핵심어: 열차 시간표 최적화, 승객 대기시간, 유전자 알고리즘 
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