
Received October 18, 2020, accepted October 28, 2020, date of publication November 4, 2020, date of current version November 17, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3035777

Co-Adjusting Voltage/Frequency State and
Interrupt Rate for Improving Energy-Efficiency
of Latency-Critical Applications
KI-DONG KANG, HYUNGWON PARK, GYEONGSEO PARK,
AND DAEHOON KIM , (Member, IEEE)
Department of Information and Communication Engineering, DGIST, Daegu 42988, South Korea

Corresponding author: Daehoon Kim (dkim@dgist.ac.kr)

This work was supported in part by the National Research Foundation of Korea (NRF) grants funded by the Korean Government, Ministry
of Science and ICT (MSIT) under Grant NRF-2020R1C1C1013315 and Grant NRF-2018R1A5A1060031, and in part by the Institute for
Information and Communications Technology Promotion (IITP) funded by the Korean Government, Ministry of Science and ICT (MSIT),
Resilient Cyber-Physical Systems Research, under Grant 2014-0-00065.

ABSTRACT As the power/energy consumption is one of the major contributors to the Total Cost of Owner-
ship (TCO), improving power/energy efficiency is crucial for large-scale data centers where latency-critical
applications are commonly accommodated while computing resources are usually under-utilized. For
improving the power/energy efficiency of processors, most of the commercial processors support Dynamic
Voltage and Frequency Scaling (DVFS) technology that enables to adjust Voltage and Frequency state (V/F
state) of the processor dynamically. In particular, for the latency-critical applications, many prior studies
propose power management policies using the DVFS for the latency-critical applications, which minimizes
the performance degradation or satisfies the Service Level Objectives (SLOs) constraints. Meanwhile,
although the interrupt rate also affects the response latency and energy efficiency of latency-critical
applications considerably, those prior studies just introduce policies for V/F state adjustment while not
considering the interrupt rate. Therefore, in this article, we investigate the impact of adjusting the interrupt
rate on the tail response latency and energy consumption. Through our experimental results, we observe that
adjusting interrupt rate along with V/F state management varies the performance and energy consumption
considerably, and provides an opportunity to reduce energy further by showing latency overlap between
different V/F states. Based on the observation, we show the quantitative potential in improving energy
efficiency of co-adjusting V/F state and interrupt rate with a simple management policy, called Co-PI.
Co-PI searches the most energy-efficient combination of the V/F state and interrupt rate from the latency
and energy tables that we obtain through offline profiling, and reflect the combination to the core and
NIC. Co-PI reduces energy consumption by 34.1% and 25.1% compared with performance and ondemand
governors while showing the almost same tail response latency with the performance governor that operates
cores at the highest V/F state statically.

INDEX TERMS Power management, dynamic voltage and frequency scaling, latency-critical applications,
interrupt coalescing.

I. INTRODUCTION
In large-scale data centers, power/energy efficiency is
essential since it mostly contributes to the Total Cost of
Ownership (TCO). In particular, since current data centers
do not always fully utilize their computing resources while
showing a low average resource utilization (i.e., 10-50% on
average [1]–[4]), there is an opportunity to improve the

The associate editor coordinating the review of this manuscript and

approving it for publication was Stavros Souravlas .

power/energy efficiency by turning off a part of hard-
ware resources or throttling their performance. Consequently,
sophisticated power management policies, while not degrad-
ing performance or satisfying the target Service Level Objec-
tives (SLOs), become necessary [5].

For improving energy efficiency of the processor that is
one of major contributors to the total power consumption of
the computing system, most commercial processors support
a power management technology, called Dynamic Voltage
and Frequency Scaling (DVFS) [6], which can allow the

201028 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0003-0837-0877
https://orcid.org/0000-0002-9602-2663


K.-D. Kang et al.: Co-Adjusting Voltage/Frequency State and Interrupt Rate for Improving Energy-Efficiency

processor to adjust its Voltage and Frequency state (i.e.,
V/F state) dynamically at run-time. Besides, Operating Sys-
tems (OSes) also provide power management policies, called
governors (e.g., ondemand governor [7]), which exploits the
DVFS technology for improving energy efficiency. Although
the DVFS technology can reduce power and energy consump-
tion, it may increase response latency, especially tail response
latency, of latency-critical application substantially [8], [9].
For example, the power management governors can deter-
mine a lowV/F state that is not enough to handle the incoming
requests quickly for the processor due to their periodic deci-
sion even though a quite number of requests arrives at the
server for a very short period. To address the problem, many
prior studies propose power management policies exploit-
ing the DVFS technology for latency-critical applications
to improve energy efficiency while minimizing performance
degradation or not violating SLO constraints [10]–[14].

Meanwhile, in addition to the V/F state of the proces-
sor, interrupt rate also affects the response latency of the
latency-critical applications since interrupt handling that
includes handler invocation, supervisor mode switching, and
more cache misses along with the packet delivery consumes
the processor considerably as the network load increases [15].
Furthermore, the frequent interrupt delivery can even lead
to the receive live lock problem that does not make any
progress of tasks except for the interrupt handling [16].
Therefore, current Network Interface Cards (NICs) support
interrupt coalescing technology [17] that can adjust the inter-
rupt rate dynamically. However, adjusting the interrupt rate
for latency-critical applications is challenging since it can
affect response latency positively or negatively. Increasing
interrupt rate can improve the response latency by delivering
packets to the cores quickly, but it can degrade the latency
by putting more load on the processor. On the contrary,
decreasing interrupt rate can degrade the response latency by
making packets wait longer at the network queues, but it can
improve the latency by reducing the load on the processor
due to interrupt handling. The current policy for the interrupt
coalescing offered by theNIC drivers adjusts the interrupt rate
based on the network load.

Since the interrupt rate shows the considerable impact on
the response latency of latency-critical applications, adjusting
the interrupt rate provides an opportunity to decrease the V/F
state of cores without performance degradation, improving
energy efficiency. For example, if the application still shows
the same tail response latency after decreasing the V/F state
of the processor by adjusting the interrupt rate, we can reduce
the energy consumption without performance degradation.
Furthermore, since the interrupt rate determines the load
on the core, it also affects the energy consumption of the
processor.

Therefore, in this article, we experimentally analyze the
impact of the interrupt management at each V/F state of
the processor on the response latency and energy consump-
tion with two representative latency-critical applications,
memcached [18] and nginx [19]. Our experimental results

show that adjusting the interrupt rate makes the performance
overlaps among V/F states, allowing changing the V/F state
without performance degradation by adjusting the interrupt
rate. Furthermore, we observe that adjusting the interrupt rate
leads to increase/decrease in the energy consumption at the
same V/F state. Consequently, adjusting the interrupt rate
along with the V/F state management can improve the energy
efficiency of the latency-critical applications considerably.

To demonstrate the potential of co-adjusting the V/F state
and interrupt rate in improving the energy efficiency, we pro-
pose a simple policy, called Co-PI, which co-adjusts the V/F
state and interrupt rate based on the network load. Co-PI
first obtains latency and energy tables for each combination
of theV/F state and interrupt rate through offline profiling; we
discuss the offline profiling in Section IV in detail. Under the
given load, Co-PI first searches combinations that show the
same latencywith the target latency that can be set by the user.
Next, among the combinations, Co-PI chooses the combina-
tion that shows the lowest energy consumption. By choosing
the most energy-efficient combination, Co-PI reduces the
energy consumption by 34.1% and 25.1% compared with
performance and ondemand governors, respectively, while
showing the almost same or even shorter tail response latency
than performance governor that operate cores at the highest
V/F state statically.

To the best of our knowledge, this is the first study
to demonstrate the potential of co-adjusting the V/F state
and interrupt rate in improving energy efficiency for
latency-critical applications. The main contributions of this
article are as follows.

1) We demonstrate that the interrupt rate management
affects the tail latency and energy consumption of the
latency-critical applications.

2) We demonstrate that co-adjusting V/F state and inter-
rupt rate provide an opportunity to improve energy
efficiency further.

3) We demonstrate that the potential in improving the
energy efficiency of co-adjusting the V/F state and
interrupt rate with the proposed simple policy on the
real-system setup.

The remainder of this article is organized as follows.
Section II describes background. Section III analyzes the
impact of adjusting the interrupt rate for each V/F state
on the tail response latency and energy consumption of
latency-critical applications. Section IV proposes a simple
policy, Co-PI, which can show the potential of co-adjusting
the V/F state and interrupt rate for power management.
Section V shows the experimental results. Section VI and
Section VII discusses related work and concludes this article,
respectively.

II. BACKGROUND
A. INTERRUPT COALESCING FOR NETWORK I/O
I/O devices (e.g., Network Interface Card (NIC), stor-
age, Graphic Processing Unit (GPU)) typically notify the
processor of the completion of I/O events using interrupts.

VOLUME 8, 2020 201029



K.-D. Kang et al.: Co-Adjusting Voltage/Frequency State and Interrupt Rate for Improving Energy-Efficiency

Each interrupt from a different device has a unique ID along
with its software handler, called Interrupt Service Routine
(ISR). The interrupts temporarily stop the current execu-
tion of the processor, and the processor invokes the ISR
corresponding to the number of the interrupt, which incurs
switching to supervisor mode and more cache misses. How-
ever, as the advent of high-performance network technologies
(e.g., 100 Gigabit Ethernet, InfiniBand [20]), the frequency
of interrupt delivery to the processors increases substantially,
which can even lead to receive live lock problem [16] where
the processor cannot execute any tasks except for processing
interrupts.

To mitigate the performance overheads by handling inter-
rupts, current NICs support the interrupt coalescing technique
that adjusts the frequency of interrupt delivery as the network
load changes, reducing the load on the processor. However,
although coalescing more interrupts mitigate the number of
interrupts and performance overhead by handling the inter-
rupts, it delays the packet delivery, increasing the response
latency of network requests. For the interrupt coalescing,
NICs support a register that maintains the period of interrupt
delivery and the software driver that manages the value of
the register. For example, the Intel 82599 NIC provides an
Interrupt Throttle Register (ITR) and the software driver
(i.e., ixgbe driver) that updates the ITR based on the number
of processed network packets and size; the software driver’s
default ITR management adjusts the ITR value in the range
of 40 (100K interrupts/sec.) to 336 (12K interrupts/sec.) [21].
In addition, the software driver also allows users to update
the ITR value in the range of 24 (166K interrupt/s) to 4088
(1K interrupts/sec.).

The modern multi-queue NICs supporting multiple hard-
ware queues for network packets manage the interrupt rate
separately for each queue. Since each queue is typically
mapped to a different core [22], packets and interrupts are dis-
tributed across cores with the multi-queue NICs, processing
packets in parallel. For example, the Intel 82599NIC supports
up to 64 hardware queues, and activates the same number of
queues as the number of cores. Consequently, the software
driver coalesces interrupts separately depending on the load
on each queue for each core.

B. POWER MANAGEMENT WITH DYNAMIC VOLTAGE AND
FREQUENCY SCALING
For the power/energy efficiency of processors, most commer-
cial processors support the Dynamic Voltage and Frequency
Scaling (DVFS) technology. The DVFS technology allows
the processor to dynamically adjust its current V/F state,
varying performance and power consumption of the proces-
sor. Most of the desktop and mobile processors support the
chip-wide DVFS that adjusts the V/F state of all cores on the
same processor package to the same V/F state. Furthermore,
current high-end multi-core processors for servers (e.g., Intel
Xeon processor) support the different V/F state for each core
(i.e., per-core DVFS).

Linux OS provides several software governors for power
management based on the DVFS technology, such as perfor-
mance, powersave, userspace, ondemand, conservative [23].
As static governors, performance and powersave governors
statically operate cores at the highest and lowest V/F state,
respectively. Consequently, performance governor shows the
highest performance and power consumption while pow-
ersave governor shows the lowest performance and power
consumption. The userspace governor allows users to stati-
cally set a particular V/F state for the processor. Meanwhile,
dynamic governors, such as ondemand, conservative, adjust
the V/F state based on the periodically measured CPU uti-
lization (e.g., every 10 ms). The ondemand governor sets V/F
state in proportion to the measured CPU utilization while
the conservative governor gradually adjusts the V/F state by
increasing/decreasing the V/F state adjacent to the current
V/F state (e.g., from P1 to P0 or from P1 to P2). Since each
core can deploy a different governor, cores of the processor
supporting per-core DVFS can operate at the different V/F
state. However, the chip-wide DVFS sets the V/F state of all
cores to the highest V/F state among the V/F states deter-
mined by the governor of each core.

III. IMPACT OF CO-ADJUSTING V/F STATE AND
INTERRUPT RATE ON RESPONSE LATENCY AND ENERGY
In this section, we investigate the effects of V/F states and
interrupt rate on the tail response latency and energy con-
sumption of the latency-critical application.

TABLE 1. System specification of experimental environment.

A. EXPERIMENTAL METHODOLOGY
We build a client-server environment consisting of two sep-
arated machines. Table 1 specifies the system specifica-
tions of the server. As a latency-critical application, we run
memcached, which is a representative in-memory key-value
store application. For the server, we run eight memcached
threads on an eight-core Intel Xeon processor (Silver 4108)
supporting 11 different V/F states ranging from P0 (1.8GHz)
to P10 (0.8GHz) for each core (i.e., per-core DVFS). For per-
formance evaluation, we measure tail response latency (e.g.,
95th percentile latency (P95)) of memcached server, as most
of the prior datacenter studies for latency-critical applica-
tions do. We use multi-queue NICs (Intel 82599) for both
server and client, which distribute packets across all cores
with Receive Side Scaling (RSS) technology, and connect the
client and sever using D-Link DXS-1210-12SC 10 Gigabit
Ethernet switch. We experiment with Linux 4.16.1 kernel
of Ubuntu 16.04, and ixgbe 5.6.1 NIC driver. The client

201030 VOLUME 8, 2020



K.-D. Kang et al.: Co-Adjusting Voltage/Frequency State and Interrupt Rate for Improving Energy-Efficiency

FIGURE 1. Response latency of each packet at low load (200KRPS).

FIGURE 2. Response latency of each packet at high load (900KRPS).

generates and sends 200, 700, and 900 Kilo Requests Per
Second (KRPS) to the server, denoted as low, medium,
and high load, respectively. We disable hyper-threading and
turbo-boost technology for both server and client, and use
Model Specific Register (MSR) to obtain energy consump-
tion by the processor package.

B. IMPACT OF INTERRUPT RATE ON THE RESPONSE
LATENCY
We first analyze the impact of interrupt rate on the response
latency of the latency critical service. Figure 1 and Figure 2
plot the response latency of every packet for 400ms at the
low and high loads, respectively, To eliminate the impact of
the V/F state, we set the V/F state of all cores to the highest
state (i.e., P0). Figure 1a, Figure 1b, and Figure 1c show the
response latency of the requests at low loadwhen the Interrupt
Throttle Rate (ITR) is 24 (166.6K interrupts/sec.), 800 (5K
interrupts/sec.), and 4088 (1K interrupts/sec.), respectively;
note that 24 and 4088 are the minimum and maximum values
supported by the NIC. At the low load, the 24 ITR shows
the lowest response latency on average. However, as the ITR
increases (i.e., as the interrupt rate decreases), the response
latency increases since packets wait for the delivery to the
core at the network queues longer.

However, at the high load, increasing ITR shows com-
pletely different results. As plotted in Figure 2a, the low ITR

increases the response latency substantially. This is because
the frequent interrupt delivery interferes with request pro-
cessing of application threads running on the core. As the
interrupt handlers consume the CPU, the application threads
consume the CPU less, affecting performance considerably,
especially at the high load. Therefore, if we allow application
threads to consume more CPUs by reducing the interrupt
rate, the response latency is considerably improved at the
high load as plotted in Figure 2b and Figure 2c. However,
the excessive increase of the ITR rather increases the response
latency. Compared with 4088 ITR, 800 ITR shows the lower
response latency on average. Therefore, properly adjusting
the ITR can be critical for providing low response latency for
latency-critical applications.

C. PERFORMANCE AND ENERGY ANALYSIS OF THE V/F
STATE AND INTERRUPT RATE
To investigate the impact of the V/F state and interrupt rate on
the tail latency and energy consumption of the latency-critical
application, we measure the P95 and energy consumption as
the combination of V/F state and interrupt throttle rate (ITR)
changes.
Tail Response Latency: Figure 3 shows the range of P95 as

the ITR changes by plotting the lowest and highest latency
for each V/F state (from P0 to P10) at three different loads,
low, medium, and high. For the experiments, we gradually

VOLUME 8, 2020 201031



K.-D. Kang et al.: Co-Adjusting Voltage/Frequency State and Interrupt Rate for Improving Energy-Efficiency

FIGURE 3. The range of 95th percentile latency with memcached by adjusting ITR for each V/F state.

increase the ITR value by 100 from the minimum to maxi-
mum (i.e., 24 to 4088) for eachV/F state.We do not plot when
the server fails to show the throughput as much as the requests
per second generated by the client since the tail latency will
increase substantially up to several seconds in that case; we
represent response latency of the cases as 40ms in figures.

As plotted, adjusting ITR changes the tail response latency
of the latency-critical application considerably. At the low
load, the ITR adjustment varies P95 by about 1ms even at the
same V/F state. In addition, at the medium and high loads,
the ITR can substantially increase/decrease the P95 by up to
several seconds. For example, when the cores operate at P4 at
the medium load, the minimum P95 by the ITR adjustment is
1ms while the maximum P95 is 22.2ms.

In many cases, adjusting the ITR shows the greater impact
on the tail latency than adjusting the V/F state. In particular,
the impact of adjusting ITR becomes greater as the V/F state
decreases at the medium load. This is because the lower V/F
states reduce the performance of cores, increasing the CPU
utilization at the same load, thus the interrupt rate affects the
response latency more by stealing CPU share of application
threads. In addition, at P5, P6, and P7, the ITR adjustment
can lead to lower throughput than the generated requests
per second from the client, increasing the P95 up to several
seconds; at P8, P9, and P10, all ITR configurations show the
less throughput than the generated requests per second from
the client. At the high load where the core is highly utilized by
application threads, except for P0, the improper ITR adjust-
ment can increase the tail latency by up to several seconds.

Since the ITR adjustment shows a considerable impact
on the P95, it can allow the same performance at the lower
V/F state, providing an opportunity to improve energy effi-
ciency. As plotted in Figure 3, the ranges of P95 are over-
lapped among all V/F states at the low load. This means that
P10 can show the similar or the same P95 with P0 by the ITR
adjustment. At the medium and high loads, there is also the
latency overlap between different V/F states. Consequently,
Figure 3 shows that there are many combinations of the V/F
states and ITR values that show the same tail latency.
Energy: Figure 4 shows the ranges of the energy consump-

tion by the ITR adjustment at eachV/F state for three different

loads, low, medium, and high. All results are normalized to
the worst energy consumption at each load. As expected,
increasing/decreasing the V/F state increase/decrease the
energy consumption. The energy consumption varies among
the V/F states by up to 23.5%. In particular, when decreasing
the V/F state from P0, we can considerably reduce energy
consumption. Since different V/F states can show the same
performance by the ITR adjustment, we can improve energy
efficiency by decreasing V/F state along with the ITR adjust-
ment while not degrading performance.

In addition to the V/F state, adjusting ITR also shows the
different energy consumption by up to 5.8% (P0 at the high
load) at the same V/F state. This is because the cores are
more/less consumed as the interrupt rate changes. As shown
in Figure 4a, at the low load, between P2 and P10, the ITR
adjustment leads to greater change in the energy consumption
than the V/F state adjustment. Therefore, adjusting ITR along
with the V/F state can improve energy efficiency further.

Our experimental results show that co-adjustment of the
V/F state and ITR provide an opportunity to improve energy
efficiency further. In this article, we quantitatively demon-
strate the potentials of the co-adjustment of the V/F state and
ITR for improving the energy efficiency of latency-critical
applications.

IV. CO-ADJUSTING V/F STATE AND INTERRUPT
THROTTLE RATE FOR IMPROVING ENERGY EFFICIENCY
A. DYNAMIC CO-ADJUSTMENT OF V/F STATE AND
INTERRUPT THROTTLE RATE
In Section III, we observe that the ITR adjustment along with
V/F state management can improve energy efficiency consid-
erably. To observe the quantitative potential of co-adjusting
the V/F state and ITR in improving energy efficiency,
we implement a simple power management policy, called
Co-PI. Co-PI co-adjusts the V/F state and ITR for
latency-critical applications as the measured network load
rather than just adjusting the V/F state as prior power man-
agement studies. For each load, Co-PI determines the most
energy-efficient combination of the V/F state and ITR while
showing the same tail response latency with the target latency
that can be specified by users.

201032 VOLUME 8, 2020



K.-D. Kang et al.: Co-Adjusting Voltage/Frequency State and Interrupt Rate for Improving Energy-Efficiency

FIGURE 4. The range of energy consumption with memcached adjusting ITR for each V/F state.

FIGURE 5. The overall architecture of Co-PI.

Figure 5 illustrates the overall architecture of Co-PI.
Co-PI consists of two major components, the monitor and
decision engine. The monitor counts the number of packets
processed by each core to figure out the current network
load; note that the network load on each core can be different
with the multi-queue NIC since the multi-queue NIC maps
each queue to a different core, and distributes packets across
queues by default. The monitor delivers the counted value to
the decision engine.

The decision engine uses the target tail response latency
when searching combinations of the V/F state and ITR.
To set the target latency aggressively, although we use
P95 when the core operates at P0 statically (i.e., the same
with performance governor) with the default ITR pol-
icy offered by the Intel NIC driver, the target tail latency
can be set to a particular value by the user. The decision
engine has two tables for latency and energy that maintain
P95 and energy consumption of combinations of V/F state
and ITR; the tables need to be filled through offline-profiling
as discussed in Section IV-B. Co-PI first searches pos-
sible combinations of V/F state and ITR that show the
same latency with the target latency under the given load
by looking up the latency table. Next, Co-PI chooses the
most energy-efficient combination that shows the lowest
energy consumption among the combinations searched by
the first step; with the multi-queue NIC and multi-core pro-
cessor supporting per-core DVFS, Co-PI chooses the most

energy-efficient combination of V/F state and ITR for each
core. Lastly, Co-PI reflects the V/F state and ITR of the
chosen combination to the core and NIC queue.

B. OBTAINING THE ENERGY-EFFICIENT COMBINATION OF
V/F STATE AND ITR THROUGH OFFLINE PROFILING
For offline profiling, there are tremendous number of cases
since we have three dimensions, the V/F states, ITR, and
loads. The number of V/F states supported by the processors
is typically ranging from 10 to 20, but there are thousands
of ITR configurations; in our experimental environments,
the processor supports 11 V/F states, and the NIC supports
4065 different ITR configurations ranging from 24 to 4088.
Consequently, there are 44968 (11 × 4088) cases for each
load, making the profiling costly. However, if the target tail
response latency is millisecond scale, we do not need to
profile all cases by gradually increasing the ITR by 1 (e.g.,
24, 25, 26,. . . ) since increasing/decreasing the ITR value by
1 leads to the difference of the interrupt period inmicrosecond
scale. If we increase the ITR by 4, it delays the interrupt deliv-
ery to the processor by 1µs. Consequently, the fine-grained
profiling is not necessary for the applications that target
millisecond scale latency; in this article, we use memcached
and nginx that target millisecond scale tail response latency.

Furthermore, we observe that the ITR change shows the
much greater impact on the response latency when the ITR
is low (i.e., delivering interrupts frequently). This is because

VOLUME 8, 2020 201033



K.-D. Kang et al.: Co-Adjusting Voltage/Frequency State and Interrupt Rate for Improving Energy-Efficiency

FIGURE 6. Comparison of 95th percentile response latency among performance, ondemand, and Co-PI.

that a considerable portion of CPU time is consumed by
handling interrupts when the ITR is low, thus increasing ITR
(i.e., reducing interrupt rate) shows a notable impact on the
performance. However, as the ITR value increases, the per-
formance difference between configurations decreases grad-
ually. Therefore, we do not need to profile in the fine-grained
manner in the high ITR range. Lastly, due to the run-time
characteristics of latency critical applications where the load
usually fluctuates, the fine-grained profiling for each load that
can rather lead to inefficient V/F state and ITR decisions is
not necessary.

V. EVALUATION
A. EXPERIMENTAL METHODOLOGY
We use the same experimental environment with
Section III-A. In addition to memcached (in-memory key
value store), we run nginx, which is a representative web
server application. To evaluate Co-PI, we use the P95 as the
target latency when cores operate at the P0 (i.e., the highest
V/F state) statically with the default ITR management policy
offered by the Intel NIC driver. The monitor of Co-PI mea-
sures the network load every 100ms, thus the decision engine
of Co-PI determines the combination of the V/F state and
ITR every 100ms. We use ondemand and performance
governors to compare the tail response latency and energy
consumption with Co-PI. With our setup, ondemand gov-
ernor determines the V/F state every 10ms based on the CPU
utilization for the past 10ms; the minimum sampling period
of ondemand governor is 10ms.

B. EXPERIMENTAL RESULT
1) COMPARISON OF THE TAIL RESPONSE LATENCY AND
ENERGY CONSUMPTION
Figure 6 shows the comparison of P95 among perfor-
mance governor, ondemand governor, and Co-PI.
Figure 6a and Figure 6b plot the P95 with memcached and
nginx applications, respectively. The ondemand governor
shows the longest P95 for all loads while performance
governor shows the much shorter latency compared with
ondemand governor. With nginx, Co-PI shows the

P95 almost samewith performance governor for all loads.
With memcached, at the low and medium loads, Co-PI
shows the P95 almost same with performance governor
while Co-PI shows even shorter P95 by 42.3% compared
with performance governor by co-adjusting the V/F state
and ITR at the high load. The reason for showing much
shorter latency even than performance governor at the
high load is that Co-PI can show higher performance by
ITR adjustment even though it chooses lower V/F states
than P0 while the default ITR driver with performance
governor usually fails to choose the efficient ITR; note
that improper ITR leads to worse performance even with
higher V/F states as discussed in Section III-C. In particu-
lar, memcached requires more CPU-shares for processing
interrupt due to small size data than nginx. Consequently,
the impact of increasing ITR (i.e., reducing interrupt rate)
that allows application threads to consume more CPU-share
on the tail response latency is considerable, especially at the
high load.

Figure 7 shows the comparison of the energy consump-
tion among performance governor, ondemand gover-
nor, and Co-PI. All results are normalized to the energy
consumption of performance governor. Figure 7a and
Figure 7b show the energy consumption with memcached
and nginx, respectively. As plotted, the performance
governor shows the highest energy consumption while
the ondemand governor consumes much less energy
than the performance governor. For all cases, Co-PI
shows the lowest energy consumption by co-adjusting theV/F
state and ITR. With nginx, Co-PI shows further energy
reduction than with memcached. With memcached, com-
pared with performance governor, Co-PI reduces the
energy consumption by 23.9%, 20.1%, and 21.9% for the
low, medium, and high loads, respectively. With nginx,
compared with performance governor, Co-PI reduces
the energy consumption by 32.3%, 34.14%, and 33.47% for
the low, medium, and high loads, respectively.

In particular, as the load increases, Co-PI shows further
energy reduction compared with the ondemand governor.
This is because the ondemand governor increases the V/F

201034 VOLUME 8, 2020



K.-D. Kang et al.: Co-Adjusting Voltage/Frequency State and Interrupt Rate for Improving Energy-Efficiency

FIGURE 7. Comparison of the energy consumption among performance, ondemand, and Co-PI.

FIGURE 8. Comparison of V/F state distribution with memcached.

state as the load increases while Co-PI increases the ITR
rather than the V/F state. With memcached, compared
with ondemand governor, Co-PI reduces the energy con-
sumption by 2.7%, 6.3%, and 16% for the low, medium,
and high loads, respectively. With nginx, compared with
ondemand governor, Co-PI reduces the energy consump-
tion by 18.63%, 21.7%, and 25.12% for the low, medium, and
high loads, respectively.

In summary, as a result of co-adjusting the V/F state
and ITR for latency-critical applications, we show a consid-
erable energy reduction by up to 23.9% and 34.1% com-
pared with the performance governor while showing
the energy reduction by up to 16% and 25.1% compared
with ondemand governor, respectively. Along with the
energy reduction, Co-PI shows almost the same or even
shorter P95 compared with the performance governor.

2) COMPARISON OF THE V/F STATE AND ITR DISTRIBUTION
To figure out where the performance and energy difference
come from, we plot the V/F state and ITR distribution of
the performance governor, ondemand governor, and
Co-PI. Figure 8 shows comparison of the V/F state distri-
bution between the ondemand governor and Co-PI; note
that the performance governor operates cores at the high-
est V/F state (i.e., P0) statically. Figure 8a and Figure 8b

show the V/F state distribution of the ondemand governor
and Co-PI, respectively. Figure 9 shows a comparison of
the ITR distribution between the performance governor,
ondemand governor, and Co-PI. Figure 9a, Figure 9b, and
Figure 9c show the ITR distribution of the performance
governor, ondemand governor, and Co-PI, respectively.

As shown in Figure 8a, as the load increases, the onde-
mand governor operates cores more at the higher V/F states
since it determines the V/F state based on the CPU utilization.
At the high load, the ondemand governor operates cores at
the P0 for 76.5% of the total run-time. On the other hand,
as shown in Figure 8b, Co-PI operates core at lower V/F
states than the ondemand governor on average even at the
high load since it does not determine the V/F state based on
the CPU load.

However, with memcached, when the load is 200 KRPS,
although the average V/F state by Co-PI (i.e., P4) is higher
than the average V/F state by the ondemand governor (i.e.,
P6), Co-PI shows the energy reduction by 2.7%. This means
that adjusting ITR affects the energy consumption more
than the V/F state. As plotted in Figure 9b and 9c, Co-PI
reduces the interrupt rate by setting higher ITR values than
the ondemand governor, reducing the load on the cores (i.e.,
reducing the performance overheads by handling interrupts).
As shown in Figure 8a and 8b, when the load is 700KRPS,

VOLUME 8, 2020 201035



K.-D. Kang et al.: Co-Adjusting Voltage/Frequency State and Interrupt Rate for Improving Energy-Efficiency

FIGURE 9. Comparison of ITR distribution with memcached.

FIGURE 10. Comparison of V/F state distribution with nginx.

Co-PI and ondemand governor show a similar V/F state
distribution while Co-PI shows less energy consumption by
6.3%. This is also because Co-PI sets higher ITRs than the
ondemand governor as shown in Figure 9c.

Lastly, as shown in Figure 8a and 8b, when the load is
900KRPS, Co-PI operates cores at P2 for 65.3% of the
runtime while the ondemand governor mostly operate cores
at P0 (i.e., for 76.5% of the runtime). Although Co-PI
operates cores at the lower V/F states than the ondemand
governor, it does not lead to performance degradation by
increasing the ITR (i.e., reducing interrupt rate) as plot-
ted in Figure 9a and Figure 9b; note that the Intel default
ITR management adjusts the ITR in the narrow range as
plotted in Figure 9a and Figure 9b. Consequently, Co-PI
reduces the energy consumption by 16% compared with
the ondemand governor while also improving tail response
latency.

Figure 10 and Figure 11 show comparison of V/F
state and the ITR distribution with nginx, respectively.
Figure 10a and Figure 10b show the V/F state distribu-
tion of the ondemand governor and Co-PI, respectively.
Figure 11a, Figure 11b, and Figure 11c show the ITR distribu-
tions of the performance governor, ondemand governor,
and Co-PI, respectively.

As shown in Figure 10a, withnginx, as the load increases,
the ondemand governor also operates cores more at the high

V/F state as it does with memcached; the residence time at
P0 decreases considerably compared with the memcached s
results since ngix shows the relatively lower CPU uti-
lization with large size data. On the other hand, as shown
in Figure 10b, Co-PI does not notably show the increase
of average V/F state as the load increases. When the load
is 48KRPS with nginx, Co-PI mostly operates cores at
P2 while the ondemand governor mostly operates cores
at the lower V/F states (i.e., P5, P6, P7). However, Co-PI
shows less energy consumption by 18.63% comparedwith the
ondemand governor; note that Co-PI reduces the energy
consumption by 16% with memecached compared with
the ondemand governor. With nginx, Co-PI shows more
energy reduction since adjusting ITR leads to the energy
reduction while handling requests faster with the higher V/F
states, making cores enter the idle state quickly; ngix shows
more idle periods while running than memcached.

Lastly, as shown in Figure 10b and Figure 11c, when the
load is 88KRPS and 140KRPS, Co-PI shows similar V/F
state and ITR distributions while the ondemand governor
operate cores at the higher V/F states and ITRs as the load
increases. At the 88KRPS and 140KRPS, Co-PI reduces the
energy consumption by 21.7% and 25.1% compared with the
ondemand governor, respectively.

In summary, with memcached shows the short service
time per request with the small size data, the impact of

201036 VOLUME 8, 2020



K.-D. Kang et al.: Co-Adjusting Voltage/Frequency State and Interrupt Rate for Improving Energy-Efficiency

FIGURE 11. Comparison of ITR distribution with nginx.

adjusting ITR is greater than nginx. Consequently, along
with the energy reduction by up to 23.9%, Co-PI also
improves the tail response latency by 42.3% compared
with the performance governor at the high load. Com-
pared with the ondemand governor, Co-PI improves tail
response latency by up to 65.7%while improving energy con-
sumption by up to 16%. With nginx, Co-PI shows almost
the same tail response latency with the performance gov-
ernor while reducing the energy consumption by up to 34%.
Compared to the ondemand governor, Co-PI improves
energy consumption and tail response latency by up to 25.1%
and 22.7%, respectively.

VI. RELATED WORK
A. POWER MANAGEMENT
Many existing studies propose power management poli-
cies for V/F states or idle states (i.e., C states) to reduce
energy consumption while ensuring the target latency of
latency-critical applications.
V/F State Management for Latency-Critical Applications:

Rubik improves the energy efficiency by setting the opti-
mal V/F based on the length of the queuing of network
packets so that requests for latency-critical applications do
not show longer latency that the target latency [10]. Rubik
uses the table that maintains the optimal V/F for each queue
length, which is pre-trained based on the statistical model.
PEGASUS adjusts the power supply when the target latency
is violated or the latency is much lower than the target while
monitoring the power of servers running latency-critical
applications and the latency of requests [11]. Adrenaline
identifies latency-critical requests among requests and adjusts
the V/F state according to the load [12]. Hipster deter-
mines a core to schedule latency critical service and the
V/F state of the core in the heterogeneous architecture
through reinforcement learning using the latency of the
request [13]. NMAP adjusts the V/F state for latency-critical
applications based on the transitions of packet processing
modes between interrupt and polling [14]. NMAP raises the
V/F state when it detects the ratio of polling to interrupt
increases rapidly. Kumar et al. [24] propose a technique to
adjust V/F state according to the queueing of requests and

analyzes the performance impact of the queue-core mapping
configuration.
C-State Management for Latency-Critical Applications:

PowerNap proposes an approach to enter a deep C-state
quickly by handling requests at the highest V/F [25]. CARB
improves energy efficiency by controlling the number of
active cores for latency-critical applications based on the load
so that in-active cores enter the C-state [26]. DynSleep
predicts the maximum idle time that does not violate the
target SLO based on request arrival time, and decide the
C-state according to the predicted idle time [27]. Yawn
also predicts the maximum idle time according to predictor
based on machine learning without the target SLO viola-
tion, and update machine learning model parameters with
the difference between predicted idle time and measured idle
time [28].
V/F State and C-State Management for Latency-Critical

Applications: SleepScale profiles the idle time of the
processor every epoch (e.g., 1 minute) and predicts the idle
time to determine the optimal V/F and processor idle state
that does not violate target latency [29]. NCAP wakes up
the cores from the idle state, maximizes the V/F, and dis-
able the idle state before the packets are delivered to the
core when it detects the burst of latency-critical requests at
the NIC [30]. uDPM manipulates packet delivery rate at the
SmartNIC to maximize the residence time at the idle state
while setting energy-optimized V/F when the packets are
delivered [31].

However, all of these power management studies for the
latency-critical applications overlook the impact of adjusting
interrupt rate even though it affects the tail response latency
and energy consumption considerably while providing an
opportunity to reduce energy by allowing cores to decrease
the V/F without performance degradation. By co-adjusting
V/F state and interrupt rate, Co-PI shows the considerable
energy reduction of latency-critical applications while show-
ing the same P95 with performance governor.

VII. CONCLUSION
In this article, we show that the impact of adjusting
interrupt rate on performance and energy consumption of

VOLUME 8, 2020 201037



K.-D. Kang et al.: Co-Adjusting Voltage/Frequency State and Interrupt Rate for Improving Energy-Efficiency

latency-critical application. Through the experimental anal-
ysis, along with the V/F state management, we demonstrate
that the adjustment of the interrupt rate provides an oppor-
tunity to improve energy efficiency considerably without
performance degradation. This is because the the adjustment
of the interrupt rate allows cores to decrease the V/F state
without performance degradation. Furthermore, we observe
that adjusting the interrupt rate shows more impact on the tail
response latency than adjusting the V/F state in many cases.
Consequently, we demonstrate that co-adjusting the V/F state
and interrupt rate lead to substantial improvement in the
energy efficiency of the latency-critical applications. Based
on the observation, we propose Co-PI to observe the quan-
titative potential of co-adjusting the V/F state and interrupt
rate in improving energy efficiency, which co-adjusts the V/F
state and interrupt load based on the measured load. Under
given load, Co-PI searches the most energy-optimal combi-
nation of the V/F state and the interrupt rate among the ones
that does not show the longer latency than the specified target
latency. In this article, we use the aggressive target latency
that is the P95withperformance governor with the default
ITR management offered by the Intel NIC. Our experimental
results show that Co-PI reduces the energy consumption by
up to 23.9% and 34.1%, respectively, with memcached and
nginx, while not showing the notable degradation or even
shorter latency compared with the aggressive target
latency.

In this article, although we show the quantitative potential
of co-adjusting the V/F state and interrupt rate in improving
energy efficiency, our proposed Co-PI requires offline pro-
filing and operates with a simple policy based on the network
load. Therefore, for more efficient and dynamicmanagement,
we plan to extend our work to co-adjust the V/F state and
interrupt rate based on other architectural behaviors related to
the tail response latency and energy consumption in addition
to the network load. To propose more practical solution,
we also plan to improve the efficiency of offline training
by avoiding the unnecessary profiling. Furthermore, the idle
state of the processor is also another type of power states
that allows core to reduce the energy consumption when the
core are idle. In the future work, we also plan to analyze
the interrupt rate on the idle state and the energy efficiency,
and propose management techniques that can maximize the
energy reduction without performance degradation. Lastly,
we plan to integrate with policies for the idle state manage-
ment with our work.

ACKNOWLEDGMENT
(Ki-Dong Kang and Hyungwon Park contributed equally to
this work.)

REFERENCES
[1] C. Delimitrou and C. Kozyrakis, ‘‘Quasar: Resource-efficient and qos-

aware cluster management,’’ in Proc. ACM Int. Conf. Archit. Support
Program. Lang. Oper. Syst. (ASPLOS), 2014, pp. 127–144.

[2] L. A. Barroso and U. Hölzle, ‘‘The case for energy-proportional comput-
ing,’’ Computer, vol. 40, no. 12, pp. 33–37, Dec. 2007.

[3] P. Bohrer, E. N. Elnozahy, T. Keller, M. Kistler, C. Lefurgy, C. McDowell,
and R. Rajamony, ‘‘The case for power management in Web servers,’’ in
Proc. Power Aware Comput., 2002, pp. 261–289.

[4] L. A. Barroso and U. Hölzle, ‘‘The datacenter as a computer: An introduc-
tion to the design of warehouse-scale machines,’’ Synth. Lectures Comput.
Archit., vol. 4, no. 1, p. 108, Jan. 2009.

[5] J. Dean and L. A. Barroso, ‘‘The tail at scale,’’ Commun. ACM, vol. 56,
no. 2, pp. 74–80, Feb. 2013.

[6] P. Macken, M. Degrauwe, M. Van Paemel, and H. Oguey, ‘‘A voltage
reduction technique for digital systems,’’ in Proc. 37th IEEE Int. Conf.
Solid-State Circuits, 1990, pp. 238–239.

[7] D. Brodowski and N. Golde. (2013). Linux Cpufreq Governors.
[Online]. Available: https://www.kernel.org/doc/Documentation/cpu-
freq/governors.txt

[8] D. Meisner, C. M. Sadler, L. A. Barroso, W.-D. Weber, and T. F. Wenisch,
‘‘Power management of online data-intensive services,’’ in Proc. 38th
Annu. Int. Symp. Comput. Archit., 2011, pp. 319–330.

[9] S. Kanev, K. Hazelwood, G.-Y. Wei, and D. Brooks, ‘‘Tradeoffs between
power management and tail latency in warehouse-scale applications,’’ in
Proc. IEEE Int. Symp. Workload Characterization (IISWC), Oct. 2014,
pp. 31–40.

[10] H. Kasture, D. B. Bartolini, N. Beckmann, and D. Sanchez, ‘‘Rubik: Fast
analytical power management for latency-critical systems,’’ in Proc. 48th
Int. Symp. Microarchitecture, 2015, pp. 598–610.

[11] D. Lo, L. Cheng, R. Govindaraju, L. A. Barroso, and C. Kozyrakis,
‘‘Towards energy proportionality for large-scale latency-critical work-
loads,’’ in Proc. ACM/IEEE 41st Int. Symp. Comput. Archit. (ISCA),
Jun. 2014, pp. 301–312.

[12] C.-H. Hsu, Y. Zhang, M. A. Laurenzano, D. Meisner, T. Wenisch, J. Mars,
L. Tang, and R. G. Dreslinski, ‘‘Adrenaline: Pinpointing and reining in tail
queries with quick voltage boosting,’’ in Proc. IEEE 21st Int. Symp. High
Perform. Comput. Archit. (HPCA), Feb. 2015, pp. 271–282.

[13] R. Nishtala, P. Carpenter, V. Petrucci, and X. Martorell, ‘‘Hipster:
Hybrid task manager for latency-critical cloud workloads,’’ in Proc.
IEEE Int. Symp. High Perform. Comput. Archit. (HPCA), Feb. 2017,
pp. 409–420.

[14] K.-D. Kang, G. Park, N. S. Kim, and D. Kim, ‘‘Network packet processing
mode-aware power management for data center servers,’’ IEEE Comput.
Archit. Lett., vol. 19, no. 1, pp. 1–4, Jan. 2020.

[15] L. Schaelicke, A. Davis, and S. A. McKee, ‘‘Profiling I/O interrupts in
modern architectures,’’ in Proc. 8th Int. Symp. Modeling, Anal. Simul.
Comput. Telecommun. Syst., 2000 pp. 115–123.

[16] J. C. Mogul and K. K. Ramakrishnan, ‘‘Eliminating receive livelock in
an interrupt-driven kernel,’’ ACM Trans. Comput. Syst., vol. 15, no. 3,
pp. 217–252, Aug. 1997.

[17] K. Salah, ‘‘To coalesce or not to coalesce,’’ AEU Int. J. Electron. Commun.,
vol. 61, no. 4, pp. 215–225, Apr. 2007.

[18] B. Fitzpatrick, ‘‘Distributed caching with memcached,’’ Linux J., vol. 124,
p. 15, Dec. 2004.

[19] W. Reese, ‘‘Nginx: The high-performance Web server and reverse proxy,’’
Linux J., vol. 17, p. 2, Sep. 2008.

[20] Infiniband Trade Association. Accessed: Jul. 16, 2020. [Online]. Available:
http://www.infinibandta.org/

[21] I. Intel, ‘‘82599 10 gbe controller datasheet,’’ 2014.
[22] (2009). Assigning Interrupts to Processor Cores Using an Intel

82575/82576 or 82598/82599 Ethernet Controller. [Online]. Available:
https://www.intel.com/content/www/us/en/ethernet-controllers/82575-
8257%6-82598-82599-ethernet-controllers-interrupts-appl-note.html

[23] D. Brodowski and N. Golde. (2002). Cpu Frequency and Voltage Scaling
Code in the Linux Kernel. [Online]. Available: https://www.kernel.org/doc/
Documentation/cpu-freq/governors

[24] S. K. Shukla, D. Ghosal, and M. Farrens, ‘‘Tuning network I/O pro-
cessing to achieve performance and energy objectives of latency critical
workloads,’’ in Proc. IEEE 21st Int. Conf. High Perform., Aug. 2019,
pp. 1499–1508.

[25] D. Meisner, B. T. Gold, and T. F. Wenisch, ‘‘Powernap: Eliminating server
idle power,’’ in ACM Int. Conf. Architectural Support for Program. Lang.
Operating Syst. (ASPLOS), pp. 205–216, 2009.

[26] X. Zhan, R. Azimi, S. Kanev, D. Brooks, and S. Reda, ‘‘CARB: A C-State
power management arbiter for latency-critical workloads,’’ IEEE Comput.
Archit. Lett., vol. 16, no. 1, pp. 6–9, Jan. 2017.

201038 VOLUME 8, 2020



K.-D. Kang et al.: Co-Adjusting Voltage/Frequency State and Interrupt Rate for Improving Energy-Efficiency

[27] C.-H. Chou, D. Wong, and L. N. Bhuyan, ‘‘DynSleep: Fine-grained
power management for a latency-critical data center application,’’
in Proc. Int. Symp. Low Power Electron. Design - ISLPED, 2016,
pp. 212–217.

[28] E. Sharafzadeh, S. A. S. Kohroudi, E. Asyabi, and M. Sharifi, ‘‘Yawn:
A CPU idle-state governor for datacenter applications,’’ in Proc. 10th ACM
SIGOPS Asia–Pacific Workshop Syst., 2019, pp. 91–98.

[29] Y. Liu, S. C. Draper, and N. S. Kim, ‘‘SleepScale: Runtime joint speed
scaling and sleep states management for power efficient data centers,’’
in Proc. ACM/IEEE 41st Int. Symp. Comput. Archit. (ISCA), Jun. 2014,
pp. 313–324.

[30] M. Alian, A. H. M. O. Abulila, L. Jindal, D. Kim, and N. S. Kim,
‘‘NCAP: Network-driven, packet context-aware power management for
client-server architecture,’’ in Proc. IEEE Int. Symp. High Perform. Com-
put. Archit. (HPCA), Feb. 2017, pp. 25–36.

[31] C.-H. Chou, L. N. Bhuyan, and D. Wong, ‘‘DPM: Dynamic power man-
agement for the microsecond era,’’ in Proc. IEEE Int. Symp. High Perform.
Comput. Archit. (HPCA), Feb. 2019, pp. 120–132.

KI-DONG KANG received the B.S. degree in
computer science from Gachon University and
the M.S. degree from the Department of Infor-
mation and Communication Engineering, DGIST,
in 2017, where he is currently pursuing the
Ph.D. degree. His research interests include
energy-efficient systems, network systems, and
virtualization.

HYUNGWON PARK received the B.S. degree in
computer science from Sahmyook University and
the M.S. degree from the Department of Infor-
mation and Communication Engineering, DGIST,
in 2019, where he is currently pursuing the Ph.D.
degree. His research interests include computer
architecture, operating systems, virtualization, and
cloud computing.

GYEONGSEO PARK received the B.S. degree
in electrical and computer engineering from
Ajou University, Suwon, South Korea, in 2016.
He is currently pursuing the Ph.D. degree with
the Department of Information and Communica-
tion Engineering, DGIST. His current research
interests include computer architecture, network
systems, and cloud computing.

DAEHOON KIM (Member, IEEE) received the
B.S. degree in computer science from Yonsei Uni-
versity in 2008, and the Ph.D. degree in computer
science from KAIST in 2014. He is currently an
Assistant Professor with the Department of Infor-
mation and Communication Engineering, DGIST.
His research interests include computer architec-
ture, operating systems, system virtualization, and
cloud computing.

VOLUME 8, 2020 201039


