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Abstract: Optical modes in deformed dielectric microdisk cavities often show an unexpected
localization along unstable periodic ray orbits. We reveal a new mechanism for this kind of
localization in weakly deformed cavities. In such systems the ray dynamics is nearly integrable
and its phase space contains small island chains. When increasing the deformation the enlarging
islands incorporate more and more modes. Each time a mode comes close to the border of an
island chain (separatrix) the mode exhibits a strong localization near the corresponding unstable
periodic orbit. Using an EBK quantization scheme taking into account the Fresnel coefficients
we derive a frequency condition for the localization. Observing far field intensity patterns and
tunneling distances, reveals small differences in the emission properties.
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1. Introduction

The ray-wave (classical-quantum) correspondence has been the objective of extensive research.
Semiclassical methods such as the Einstein-Brillouin-Keller (EBK) quantization scheme [1, 2]
for integrable systems and trace formulas for the periodic orbits (POs) of classically chaotic
systems [3–6] have proven to be remarkably useful. One particular interesting aspect is the
phenomenon of “scarring”, first observed by Heller in a quantized stadium billiard [7]. It
refers to the existence of energy eigenstates with strong concentration along unstable POs
of the underlying classical system. In optical microcavities, the localization of optical modes
along short unstable POs has been observed experimentally in various kinds of strongly
deformed microlasers [8–11]. These observations are of interest because such modes can have
relatively high quality factors (long photon lifetimes) even in the presence of chaos since the
corresponding PO is located entirely outside the leaky region, which is the region where the
condition for total internal reflection is not fulfilled. Numerical simulations indicate that scarring
in open systems with chaotic ray dynamics, such as deformed microdisk cavities, is rather the
rule than the exception; see, e.g., [12–18].

A related phenomenon observed in deformed microdisk cavities is the appearance of “quasi-
scarred modes” showing a strong localization on simple geometric structures with no underlying
PO [19, 20]. Lasing on quasiscarred modes has been successfully realized for spiral-shaped
InGaAsP microcavity lasers [21]. Quasiscars find a natural explanation in terms of an extended
ray dynamics [22] which incorporates Fresnel filtering [23].

Yet another phenomenon is the appearance of “scarlike modes” in systems with marginal
stable POs which have been slightly perturbed [24–29]. These states form near avoided
resonance crossings as a perturbation parameter is varied. This happens in particular when an
integrable system is slightly perturbed [25]. According to the Poincaré-Birkhoff theorem [30,31]
the family of marginal stable POs is replaced by pairs of stable and unstable POs. The stable POs
are embedded into small islands in phase space. Figure 1 illustrates this situation in the Poincare
surface of section (SOS) [31], a section through the full phase space obtained by plotting the
intersection points of a set of trajectories with the cavity’s boundary. The unstable POs are
located on the enclosure of the island which is called separatrix. For very weak deformation the
two modes involved in the avoided resonance crossing hybridize such that one mode is located
near the stable POs and the other mode near the unstable POs. This scenario can be considered
as a quantum version of the Poincaré-Birkhoff theorem [25], see also [32].

In this article, we reveal another type of localization along unstable POs which appears
naturally in weakly deformed microdisk cavities. Consider a weakly deformed cavity with a
small island chain in phase space, possibly with a scarlike mode localized near the unstable
PO. Increasing the deformation further leads to an increasing of the size of the island chain.
The phenomenon occurs as a transition process of modes getting into an increasing island chain
from the outside. Each time a mode comes close to the separatrix the mode exhibits a strong
localization near the corresponding unstable PO. Such a scenario has been predicted already in
the context of atomic physics, namely for hydrogen in a circularly polarized electromagnetic
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unstable  periodic orbit

stable  periodic orbit

s

separatrix

p

Fig. 1. Sketch of an island chain in the SOS of a near-integrable microcavity. The coordinate
s is the arc length along the boundary of the cavity and p = sin χ is its canonical conjugate
momentum; χ is the angle of incidence. The thin curves are sections through invariant tori.
The thick curve marks the separatrix which separates the interior from the exterior of the
island chain.

field [33]. Interestingly, the localization at the unstable PO is of classical nature: the classical
motion slows down near the unstable point [34]. Similar localization has also been observed in
quantum maps [35].

To clarify this localization in our setting, we quantize the POs in terms of a semi-classical
approach taking into account the degree of the deformation. Through the analysis, we show that
a mode is maximally localized in the vicinity of the unstable PO when its quantized frequency
matches the natural frequency of the mode. In addition, by examining intensities outside the
cavity, surprising similarity of far field patterns are revealed even though the mode structures,
inside the cavity, are completely opposite as in the island and on the separatrix. On the other
hand, further studies on the emission properties of these modes near the cavity boundary reveal
different tunneling distances of them.

This paper is organized as follows. Section 2 specifies the system that serves as an example.
In Sec. 3 we show that this system possesses for very weak deformation the already known
scarlike modes. In Sec. 4.1 we semiclassically quantize the unstable PO. Numerical results
are presented in Sect. 4.2. A further analysis in terms of a pendulum approximation is given
in Sect. 4.3. Section 5 addresses properties of far field intensity patterns. In Sec. 6 tunneling
characteristics of emissions are analyzed. The work is summarized in Sect. 7.

2. The system

For our analysis we introduce an oval-shaped cavity

x2 + y2 (1 + εx) = R2 , (1)

where ε is the deformation parameter. For ε = 0 one obtains a circle of radius R. We choose the
effective refractive index to be ne = 3.3.

Maxwell’s equations are solved in two dimensions within the effective index approximation
with Sommerfeld outgoing wave conditions at infinity. The optical modes are defined as
the solutions with time dependence e−iωt . We express the complex-valued frequency ω by
the dimensionless frequency ωR/c = kR where c is the speed of light in vacuum and
k = ω/c is the wave number. The real part of kR is the conventional frequency whereas the
imaginary part determines the line width (decay rate) γ = −2 Im kR and the quality factor
Q = −Re kR/[2 Im kR] of the given mode.
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Only in the limiting case ε = 0, the modes can be computed analytically and can be
characterized by two mode numbers (l ,m), see e.g. [36]. Here, l is the radial mode number and
m is the azimuthal mode number. In the general case, the modes are determined numerically.
Here, we employ the boundary element method (BEM) [37] and focus on transverse magnetic
(TM) polarization, on even modes (positive parity with respect to the symmetry line y = 0 of
the cavity) and on the regions 95.0 ≤ Re(nekR) ≤ 96.2 and 0 ≤ ε ≤ 0.05.

3. Scarlike modes

In this section we demonstrate that for very small ε the oval-shaped cavity (1) possess scarlike
modes in the sense of [24]. An example is shown in Figs. 2(a) and 2(b) for ε = 0.0025. Both
modes are developed from the (l ,m) = (11, 48) and the (10, 51) modes in the circular cavity
by continuously increasing ε from 0 to 0.0025.

Fig. 2. (a) and (b) Intensity of modes for ε = 0.0025 with dimensionless frequencies
Re(ne kR) = 95.726 and 95.692, respectively. The solid lines mark the stable (a) and the
unstable PO (b). (c) and (d) show the corresponding Husimi functions with ray dynamics
superimposed. Only the counter-clockwise direction (p ≥ 0) is shown by virtue of the
spatial mirror-symmetry. The localization on a stable and unstable period-3 orbit can be
clearly seen. The yellow dashed line at p = 0.5 is a guide to the eye.

The connection to the ray dynamics is most conveniently illustrated by the Husimi
function [38] of a given mode. It can be considered as quasi-probability distributions of a mode
at the boundary of the dielectric cavity [39]. We use here the incidence Husimi function hu(s,p)
in the interior region of the cavity [39]. Note that for the Husimi functions we set the squeezing
factor ξ of the coherent state as σ′ = ξσ = (2π/2)(

√
2/nekR) [39, 40] in order to reflect our

rectangular phase space region [smin , smax ] × [pmin , pmax ] = [0, 2πR] × [−1, 1]. Figures 2(c)
and 2(d) are Husimi functions of the two modes. By comparing the Husimi functions with the
superimposed ray orbits it can be seen that one mode is localized in the island with the period-3
stable PO in its center, whereas the other mode is localized near the period-3 unstable PO. The
good agreement between mode and ray calculations may be even improved by incorporating
the Goos-Hänchen shift into the ray dynamics [41].

The localization happens when the mode pair satisfies a necessary requirement [25,27] which
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is, essentially, a rational winding number

ωl

ωm
=

∣
∣
∣
∣
∣

Δnm

Δnl

∣
∣
∣
∣
∣
=

r
t
, (2)

where ωi are classical frequencies of the rays and Δni are mode number differences in the i-th
degrees of freedom and r and t are integers, respectively. This phenomenon can be understood
by the well known Fermi resonance interpretation. In our case, a relation (Δl ,Δm) = (t , r) is
used where Δl ≡ Δnl and Δm ≡ Δnm are the radial and the angular mode number differences.
According to this definition, (t , r) represents the classical POs performing r-reflections during
t-cyclic motions. In this article, the considered mode pairs have the mode number difference
(Δl ,Δm) = (1, 3) and hence the PO should be also (t , r) = (1, 3), which corresponds to the
orbits having 3-reflections during 1-rotating motion along the angular direction for a period
(i.e., triangular orbit). In fact, we have already observed this relation in the previous example;
the (l ,m) = (11, 48) mode and the (10, 51) mode at ε = 0.0025 together form the modes that
are localized on the period-3 stable and unstable PO, respectively.

4. Separatrix modes

In this section we show that by increasing the deformation further the scarlike mode disappears
and that at certain values of the deformation parameter a new type of localized mode appears.

4.1. Periodic orbit quantization

As a first step the period-3 POs are quantized according to an one-dimensional EBK
quantization scheme. In analogy to quantum mechanics, we consider the momentum nek (�
is set to unity) along the entire path of the PO, leading to [42, 43]

∮

l

nekdl = 2π(N + ψ) (3)

with the mode number N = 0, 1, 2, . . . and

ψ =
1
2
+
μ

4
+

φ

4π
+
α

2π
. (4)

The Maslov index μ counts the number of classical caustics crossed plus twice the number of
hard-wall reflections [1, 31, 43–45]. For both period-3 orbits μ = 9 because each orbit crosses
the inner caustics three times and gets reflected at the cavity’s boundary also three times. The
phase φ belongs to the monodromy matrix which measures the stability of the PO. In Birkhoff
coordinates it is expressed by [46]:

(

Δs1

Δp1

)

=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

∂s1
∂s0

∂s1
∂p0

∂p1
∂s0

∂p1
∂p0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

(

Δs0

Δp0

)

= M

(

Δs0

Δp0

)

, (5)

where Δs0(1) and Δp0(1) are the initial (final) deviations in s and p axes, respectively. The
eigenvalues of the matrix M are λ±=exp(±iφ). For the unstable PO the phase φ is zero, because
in that case the eigenvalues of the monodromy matrix are purely real. Finally, the Fresnel phase
α arises due to the reflection of the ray at the dielectric boundary. From the well-known Fresnel
coefficients we get for TM polarization

α = Re

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣
−i

3∑

j=1

ln

(

ne β( χ j ) − 1

ne β( χ j ) + 1

)
⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦
, (6)
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where β( χ j ) = cos( χ j )/
√

1 − n2
e sin2( χ j ). χ j is the incident angle of the PO at the j-th

bouncing point on the cavity’s boundary. The quantized frequency is given by

nekR =
2π(N + 1

2 ) + π μ
2 +

φ
2 + α

lpo/R
, (7)

where lpo is the length of the given PO. The quantities lpo , φ, and α are numerically determined
depending on the value of the deformation parameter.

4.2. Numerical results

Figure 3(a) shows the quantized frequencies (7) of stable (squares) and unstable (triangles)
POs as functions of the deformation parameter ε. Also shown are the modes in the regime
95.0 ≤ Re(nekR) ≤ 96.2. The solid line and the dashed one mark the two modes which
are developed from the (11, 48) and the (10, 51) mode of the circular cavity. For very small
ε ≈ ε1 = 0.002 their frequencies agree well with the quantized frequencies. Moreover, one of
the modes show a strong localization near the unstable PO, (s′ , p′) in phase space, in terms of
the averaged Husimi functions hu(s′, p′) =

∑3
n=1 hu(s′n , p′n )/3 at that location [see Fig. 3(b)].

This mode is the scarlike mode discussed in Sect. 3.

95.0
95.2
95.4
95.6
95.8
96.0
96.2

R
e(

n ekR
)

ε2 ε3ε1

0.00 0.01 0.02 0.03 0.04 0.05
ε

0.0
5.0

10.0
15.0
20.0
25.0
30.0

hu
(s

´, 
p´

)

(a)

(b)

Fig. 3. Dimensionless frequencies (a) and Husimi functions on unstable points (b) related
to period-3 POs. The solid, the dashed, the dot-dashed, and the dotted curves originate from
the (l ,m) = (11, 48), the (10, 51), the (9, 54), and the (8, 57) mode in the circular cavity,
respectively. (a) The squares (triangles) are quantized stable (unstable) POs with N = 76,
see Eq. (7). Vertical lines at ε1 = 0.002, ε2 = 0.0175, and ε3 = 0.049 mark the maximal
localization on the unstable PO. There are two kinds of avoided crossings in (a). The first
is a broad one along the quantized unstable PO and the second is a sharp one at ε ≈ 0.0415.
For the sharp one, we focus on the diabatic continuation of the modes by jumping at this
point to the other branch.

Upon further increasing the deformation the frequency of the former scarlike modes starts
around ε = 0.006 to deviate from that of the quantized unstable PO, Fig. 3(a). This is fully

                                                                                                    Vol. 25, No. 7 | 3 Apr 2017 | OPTICS EXPRESS 8054 



Fig. 4. (a), (b), and (c) Intensity of modes at ε = 0.0175 for the solid, dashed and dot-
dashed curves in Fig. 3, respectively. The solid lines mark the stable PO (a)-(b) and the
unstable PO (c). (d)-(f) are the Husimi functions of the modes in (a)-(c) superimposed on
the SOS (red dots). The yellow dashed line at p = 0.5 is a guide to the eye.

consistent with the decrease of localization at the unstable point in Fig. 3(b) at around the same
value of ε. The interpretation is that the increasing island swallows up the scarlike mode. It
becomes a mode in the island close to the stable PO as it is confirmed in Figs. 4(b) and 4(e).
However, in contrast to the mode localized around the stable PO [see Figs. 4(a) and 4(d)], it
is localized on a torus surrounding the stable PO. It can be considered as a first excited island
mode or as a first transversal excitation of the mode along the stable PO.

As explained, the increasing size of the island chain is responsible for the destruction of
the scarlike mode. Interestingly, the very same mechanism gives birth to a new mode being
localized around the unstable PO: By increasing the size of the island chain further a new mode
comes closer to the separatrix of the island chain until it becomes a “separatrix mode”. Since
the classical motion becomes very slow near the unstable PO, the separatrix mode mainly has
intensity near this unstable PO [see Figs. 4(c) and 4(f)]. This scenario can be observed in Fig. 3.
Upon increasing ε the mode originating from the (9, 54) mode of the circular cavity (dot-dashed
curve) starts to come closer in frequency to the quantized unstable PO and accumulate intensity
at the unstable point. The maximum localization appears at ε = 0.0175.

This mechanism goes now on and on. Upon further increasing the deformation the (9, 54)
mode will be incorporated into the island. It is no longer a separatrix mode. On further
increasing the deformation the (8, 57) mode (dotted curve in Fig. 3) comes close to the
separatrix and shows strong localization near the unstable PO. The maximum localization of
this separatrix mode is at ε = 0.049.

The whole progression of creation and annihilation of localization is summarized in Fig. 5.
For ε ≈ 0 there is no localization along the boundary of the cavity. For ε ≈ 0.002 one mode
is localized at the stable and one at the unstable PO (scarlike mode). Around ε ≈ 0.0175 two
modes are located inside the island and one mode is located on the separatrix (separatrix mode)
showing large intensity at the unstable PO. For ε ≈ 0.049 three modes stay inside the island
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and one on the separatrix.
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Fig. 5. Husimi functions at p = pt :r for the selected parameters. Solid, dashed, dot-dashed,
and dotted curves are for (11,48), (10,51), (9,54), and (8,57) modes of the circular cavity,
respectively. Husimi functions are normalized by total intensity in phase space and recorded
in an arbitrary unit. The values of ε1, ε2, and ε3 are same as those in Fig. 3.

4.3. Pendulum approximation

For a further analysis we consider the pendulum approximation for an isolated island chain in
phase space [47–51]

Ht :r (s, p) = H0(p) + 2Vt :r (ε) cos

(

2πrs
smax

)

(8)

where the unperturbed Hamiltonian H0 and the strength of potential are

H0(p) = 2

(

p cos−1(p) −
√

1 − p2 +

√

1 − p2
t :r

)

− ω(pt :r )p (9)

2Vt :r (ε) =

√

1 − p2
t :r

2r2

(

cos−1
[

Tr {Mt :r (ε)}
2

])2

. (10)

Here, the frequencies and the momenta of the POs are, respectively, ω(p) = 2 cos−1(p)
and pt :r = cos(πt/r). It should be pointed out that Vt :r (ε) is governed by the trace of the
monodromy matrix Mt :r (ε) calculated on the stable (t , r)-PO depending on the deformation
parameter ε. From the given Hamiltonian, we estimate a measure of the size of the island chain.
In order to figure out this measure we, again, use an approximation in [48, 49, 51] which is
optimized to determine the separatrix psep (s) of the island chain. The size of this separatrix is
expressed in terms of momentum distances Δp(s) from pt :r as

psep (s) = pt :r ±
(

2Vt :r

√

1 − p2
t :r

[

1 − cos

(

2πrs
smax

)]) 1
2

= pt :r ± Δp(s), (11)
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Fig. 6. (a) Ratio of the Husimi functions of the modes from Fig. 3 inside the separatrix
normalized by the total Husimi functions on the entire phase space. The shaded region
marks values below 1/2. (b) Expectation values of the distances measured from pt :r to p
having probabilities hu(s,p). The shaded region indicates values smaller than the width of
the island chain from Eq. (11). Vertical lines labeled by ε1, ε2, and ε3 are same as those in
Fig. 3.

and the resonance width is given by the maximum value of Δp(s∗) which is reached whenever
s∗ ≡ smax (2z + 1)/2r with integer z.

Based on the pendulum approximation, we compute the inside-islands intensities ratio of the
Husimi functions as shown in Fig. 6(a). As the deformation parameter increases, the modes are
gradually occupying more area in the island chain. The figure confirms the discussed scenario:
starting from weak deformation each mode first becomes a separatrix mode with high intensity
around the unstable PO [cf. Fig. 3] and low intensity in the island chain [see Fig. 6(a)]. With
increasing deformation the localization at the unstable PO reduces and at the same time the
intensity in the island chain increases.

Another illustration of the capturing mechanism is shown in Fig. 6(b). The figure shows the
expectation value 〈δp〉 = ∫

dsdp hu(s, p) |p − pt :r |
/ ∫

dsdp hu(s, p) of the distance from the
pt :r using Husimi functions as probability density in phase space and a resonance width using
the pendulum approximation. As the deformation parameter increases, the distance of each
mode to the island center, 〈δp〉, at some deformation becomes smaller then the size of the island
chain, Δp(s∗) consistent with Figs. 3 and 6(a).

5. Far fields patterns

Until now, our discussions have been showing no distinct openness feature of the dielectric
microcavity. Now, far field emission patterns of the modes are investigated. By these studies,
an almost identical directionality is discovered which seemingly not related to the mode
localization regions. Figure 7 shows comparisons of far-field intensity patterns between the
modes (l ,m) = (11, 48) localized on the stable points in the islands and successively formed
separatrix modes (10,51), (9,54), (8,57) at ε = 0.0020, 0.0175, 0.049, respectively. Hereafter
we call the mode (l ,m) = (11, 48) the island ground mode for convenience.

As we can see in the first row of Fig. 7, emission directions of the island ground and separatrix
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Fig. 7. Angular distributed far-field intensities. (a), (b), and (c) are overlapped far-fields of
the island ground and separatrix modes at ε1 = 0.002, ε2 = 0.0175, and ε3 = 0.049. Black
curves in all panels are for the island ground modes (l ,m) = (11, 48). Red curves in (a),
(b), and (c) correspond to the separatrix modes (10, 51), (9, 54), and (8, 57). (d), (e), and
(f) are expanded plots of the first prominent lobes of (a), (b), and (c), respectively.

modes are difficult to discern. This surprising similarity of the far fields can be conceived via
the phase space distributions of the modes. It is instructive to point out that there are some
achievements to hybridize a directional low-Q mode with a high-Q weak directional mode [52].
The back bone of this idea is based on the superposition property of the modes at the avoided
resonance crossing point and in that sense the avoided resonance crossing may serve the similar
far field patterns of the interacting modes. However, the modes we are discussing in the present
paper do not belong to that case since the similarity of the far field patterns is not restricted to
the avoided resonance crossing point at all. It is more clear when we see, e.g., Figs. 7(c) and
7(f) which are the far fields of the modes having a large frequency difference at ε3 in Fig. 3.

It is obvious that a tunneling path from the localization points to the emission regions would
take the shortest distance to the critical line of the leaky region. Thus, an emission tail takes
the straight extension toward the critical line for the island ground mode while the tail of the
separatrix mode occurs at the lowest point of the separatrix in phase space, which are at the
same phase space coordinate s as the island mode.

Figure 8 shows Husimi functions of the island ground (above row) and separatrix (below
row) modes. In the above row, the three straight stretched Husimi functions from the main
localization regions to the critical line are evident while the below row exhibits emission
tongues at the same s to the above row which are different from the main localization of the
separatrix mode. Note that this mismatch between localization inside the cavity and the emission
characteristics outside has already been treated in a different system exhibiting a similar phase
space structure [53]. However we emphasize that their works are based on the perturbative
treatment of complex ray orbits to describe the emission process while the main focus of the
present paper is on the properties of the separatrix mode formation process depending on the
deformation parameter.
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Fig. 8. Logarithmic plot of Husimi functions of the island ground and separatrix modes.
(a), (b), and (c) are for the island modes (l ,m) = (11, 48) at ε1 = 0.002, ε2 = 0.0175,
and ε3 = 0.049, respectively. (c), (d), and (e) are, respectively, for the separatrix modes
(10, 51), (9, 54), and (8, 57) at the same deformation in the same column. Dashed lines
correspond to the critical line pc = 1/ne ≈ 0.303. Rightmost panels illustrate the tunneling
paths of the modes in the same rows. pI (S) and ΓI (S) correspond to the tunneling starting
point and distance of the island ground (separatrix) mode. The maximum and minimum
values of the Husimi functions are shown in yellow and black.

Fig. 9. Logarithmic plot of the intensity. (a) and (b) are the island ground mode
(l ,m)=(11,48) and the separatrix mode (8,57) at ε3, respectively. In (a), a horizontal solid
line at y=1.5 is a plane for the emission Husimi function. The vertical line at x = xb is a
guide for the left end of the cavity boundary. A line with arrow heads at both ends in (a)
visualizes the departure point, remote from xb , and the radiation directions. All quantities
are in units of R.

6. Tunneling distances

In this section, we will address differences of tunneling emission distances of the modes which
are measured from the cavity boundary. The distant emission from the cavity boundary is
caused by the evanescent leakage fulfilling an angular momentum continuation across the cavity
boundary [54–56]. The tunneling distance is given as

δ = R(ne sin χ − 1)

= neR(p − pc ) = neRΓp , (12)
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where pc = 1/ne is the critical line of the leaky region in phase space. The quantity Γp = p− pc
is a tunneling distance from p to pc in phase space (cf. Fig. 8) while δ is a real space distance
of the emission point measured from the cavity boundary.

Now, we recall the previous discussions that the emissions of the island ground mode and
the separatrix mode share the same emission regions because the separatrix modes tunnel from
the lowest points of the separatrix contours in phase space. Consequently, ΓS of the separatrix
mode is smaller than ΓI of the island ground mode (see rightmost panels in Fig. 8) so that, from
Eq. (12), we can expect the smaller δ for the separatrix mode than that of the island ground
mode. In order to verify this claim we use, first, Lee’s "emission Husimi function" [55] which
manipulates a sum of Gaussian overlap of the wave function and its derivative with respect to
a certain virtual plane in the exterior region of the cavity. For the emission Husimi function we
set the plane at y0 = 1.5R to detect the field emitting vertically from the left end of the cavity
boundary xb . In Fig. 9(a), this emission direction is guided by a vertical line with arrows and
we can see the emission is parallel to the cavity boundary. By comparing all the emissions in
Figs. 9(a) and 9(b) we can confirm the very similar emission behaviors of the island ground
and separatrix modes again. In the followings we concentrate on the tunneling distances of the
vertical emissions radiating from the left end of the cavity boundary.

The emission Husimi function τ(x) for our setup is :

τ(x) =
∣
∣
∣
∣
∣

∫

dx′Φ(x′)G(x , x′)
∣
∣
∣
∣
∣

2

, (13)

where Φ(x) = 0.5
[

ψ(x , y0) − i∂yψ(x , y0)/k
]

and G(x , x′) = 1/(σπ)1/4 exp
[

−(x − x′)2/2σ
]

.
Here ψ(x , y0), ∂y , and σ are the wave function along x-axis at fixed y = y0, partial derivative
with respect to y and width factor of the Gaussian set to σ =

√
2/k for the wave number k.

Figure 10 exhibits the comparisons of τ(x) between the island ground and separatrix
modes in Fig. 7. From the behavior of the peak position of τ(x), we can observe two kinds
of characteristics of the tunneling distances. The first one is a decreasing tendency of the
tunneling distances in both modes as the deformation increases and the other one is an
increasing difference of the tunneling distances between the modes depending on the increasing
deformations. These are organized in Table 1 and explained below.

Table 1. Tunneling distance (measured in units of R) depending on deformation ε. δI , δS ,
and Δδ are the tunneling distance of the island ground mode, of the separatrix modes and
the difference of them, respectively. The second and third columns are obtained from the
peak positions of Fig. 10 and Eq. (15).

ε δI - δS = Δδ δ
f

I
- δ f

S
= Δδ f

0.0020 0.538 - 0.522 = 0.016 0.560 - 0.555 = 0.005
0.0175 0.358 - 0.310 = 0.048 0.356 - 0.326 = 0.030
0.0490 0.270 - 0.194 = 0.076 0.228 - 0.178 = 0.050

When the deformation is very weak ΓI and ΓS are either close to the resonant torus sin χ = 0.5
corresponding to δ = 0.65R when certain modes are on the torus. For strong deformation, the
more curved KAM tori [57] result in smaller ΓI and ΓS . Consequently, tunneling distances, in
real space, have relatively closer values to 0.65R for small deformation and decrease toward
zero following the increasing deformation as we can perceive in Table 1.

As a final remark we relate the far field intensities of Fig. 7 and the near field tunneling
distances. By taking a Fourier transform of the far field intensity pattern, we can obtain an
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Fig. 10. Emission Husimi function τ(x) with the setup described in Fig. 9(a). Solid and
dashed curves in (a), (b), and (c) correspond to the island ground mode (l ,m) =(11,48) and
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Fig. 11. Weight function P(m) = |F (m) |2 versus angular momentum number m of the far
field intensity. Open circle with solid lines and filled square with dashed lines are for the
island ground and separatrix modes. (a), (b), and (c) are at ε1 = 0.002 ε2 = 0.0175, and
ε3 = 0.049, respectively.

amplitude of an angular momentum number m as

F (2m) =
1
Z

∫

dφ I (φ)eimφ (14)

Z =
m f
∑

mi

|F (2m) |2.

A factor 2 of the argument at the left hand side in Eq. (14) reflects the fact the Fourier transform
is applied to the field intensity I = |ψ |2 not amplitude ψ for the purpose of mimicking the
practical measurement. A normalizing factor Z is introduced in order to manipulate a square
absolute value of F (m) as a weight function of m, i.e., P(m) = |F (m) |2. Note that by
comparing the Fourier transform of the wave amplitudes and of the wave intensities, we have
observed significant additional side peaks in the intensity case (not shown), in particular, around
m = 3 corresponding to the 6 maxima in the far field intensity pattern. Thus, in order to abandon
the effects from these contributions we consider only the range from mi = 20 to m f = 50.

Figure 11 shows weight functions of the far field intensities in Fig. 7 with respect to the
angular momentum number m. According to the increasing deformation, from Figs. 11(a) to
(c), a clustered distribution of m moves from high to low values for both modes while the
distributions in the clusters are individually changing. Using this weight function, we can obtain
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the tunneling distances in Eq. (12) with averaged values of sin χ = m/nekR as below

δ f =
1
k

⎡

⎢
⎢
⎢
⎢
⎢
⎣

m f
∑

mi

mP(m) − kR

⎤

⎥
⎥
⎥
⎥
⎥
⎦
. (15)

The results in the third column of Table 1 are nicely but not perfectly matching with the
estimations of the emission Husimi functions. On this stage it is unclear how much and what
kind of errors are there in both approaches since we did not carry out the intensive error analysis
. However, it looks that significant information of tunneling process is embedded in the far field
intensity patterns.

7. Summary

We presented a new type of mode localization along unstable periodic orbits in deformed
microdisk cavities. In the regime of weak deformation the near-integrable ray dynamics exhibits
small island chains in phase space. When increasing the deformation the enlarging islands
incorporate more and more modes. Each time a mode comes close to the separatrix of the
island chain the mode exhibits a strong localization near the associated unstable periodic orbit.

We demonstrated this interesting effect by studying an oval-shaped cavity. For very weak
deformation this cavity exhibits the conventional scarlike modes. We showed that by increasing
further the deformation the revealed mechanism first destroys the scarlike mode and then
subsequently creates and destroys the new type of localized separatrix modes. Using an EBK
quantization scheme for the periodic orbits we derive a frequency condition for the localization.
The mode shows the localization whenever its frequency is comparable to that of the quantized
frequency of the unstable periodic orbit.

Through the investigations of the mode emission properties, very similar far field intensities
and different tunneling distances are revealed.

Funding

This research was supported by High-Tech Convergence Technology Development Program
(NRF-2014M3C1A3051331) through the National Research Foundation of Korea (NRF)
funded by the Ministry of Science, ICT & Future Planning and the DFG (project WI1986/7-
1).

                                                                                                    Vol. 25, No. 7 | 3 Apr 2017 | OPTICS EXPRESS 8062 




