
Western University Western University

Scholarship@Western Scholarship@Western

Electronic Thesis and Dissertation Repository

11-9-2023 10:45 AM

Towards Zero Touch Next Generation Network Management Towards Zero Touch Next Generation Network Management

sam aleyadeh, Western University

Supervisor: Shami, Abdallah, The University of Western Ontario

A thesis submitted in partial fulfillment of the requirements for the Doctor of Philosophy degree

in Electrical and Computer Engineering

© sam aleyadeh 2023

Follow this and additional works at: https://ir.lib.uwo.ca/etd

Recommended Citation Recommended Citation
aleyadeh, sam, "Towards Zero Touch Next Generation Network Management" (2023). Electronic Thesis
and Dissertation Repository. 9884.
https://ir.lib.uwo.ca/etd/9884

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca.

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F9884&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/9884?utm_source=ir.lib.uwo.ca%2Fetd%2F9884&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca

Western University Western University

Scholarship@Western Scholarship@Western

Electronic Thesis and Dissertation Repository

11-9-2023 10:45 AM

Towards Zero Touch Next Generation Network Management Towards Zero Touch Next Generation Network Management

sam aleyadeh

Supervisor: Shami, Abdallah, The University of Western Ontario

A thesis submitted in partial fulfillment of the requirements for the Doctor of Philosophy degree

in Electrical and Computer Engineering

© sam aleyadeh 2023

Follow this and additional works at: https://ir.lib.uwo.ca/etd

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages

Abstract

The current trend in user services places an ever-growing demand for higher data

rates, near-real-time latencies, and near-perfect quality of service. To meet such demands,

fundamental changes were made to the front and mid-haul and backbone networking seg-

ments servicing them. One of the main changes made was virtualizing the networking

components to allow for faster deployment and reconfiguration when needed. However,

adopting such technologies poses several challenges, such as improving the performance

and efficiency of these systems by properly orchestrating the services to the ideal edge

device. A second challenge is ensuring the backbone optical networking maximizes and

maintains the throughput levels under more dynamically variant conditions. A third

challenge is addressing the limitation of placement techniques in O-RAN. In this thesis,

we propose using various optimization modeling and machine learning techniques in three

segments of network systems towards lowering the need for human intervention targeting

zero-touch networking. In particular, the first part of the thesis applies optimization

modeling, heuristics, and segmentation to improve the locally driven orchestration tech-

niques, which are used to place demands on edge devices throughput to ensure efficient

and resilient placement decisions. The second part of the thesis proposes using rein-

forcement learning (RL) techniques on a nodal base to address the dynamic nature of

demands within an optical networking paradigm. The RL techniques ensure blocking

rates are kept to a minimum by tailoring the agents’ behavior based on each node’s de-

mand intake throughout the day. The third part of the thesis proposes using transfer

learning augmented reinforcement learning to drive a network slicing-based solution in

O-RAN to address the stringent and divergent demands of 5G applications. The main

i

contributions of the thesis consist of three broad parts. The first is developing optimal

and heuristic orchestration algorithms that improve demands’ performance and reliabil-

ity in an edge computing environment. The second is using reinforcement learning to

determine the appropriate spectral placement for demands within isolated optical paths,

ensuring lower fragmentation and better throughput utilization. The third is developing

a heuristic controlled transfer learning augmented reinforcement learning network slicing

in an O-RAN environment. Hence ensuring improved reliability while maintaining lower

complexity than traditional placement techniques.

Keywords: Edge Computing, Orchestration, Segmentation, Mobility, Clustering,

5G, Elastic Optical Networks, Spectrum Fragmentation, Deep Reinforcement Learning,

Transfer Learning, O-RAN, Network Slicing.

ii

Summary for Lay Audience

As the use of smart and connected devices continues to grow, there is a need for more reli-

able and faster networking infrastructure. This thesis focuses on addressing the challenges

faced by 5G systems and their underlying infrastructure in three domains: user-adjacent

edge computing, Open Radio Access Networks (O-RANs), and back-end Optical net-

working. The main goal is to automate these networks to improve their reliability and

speed. To achieve this, the thesis presents optimization algorithms, heuristic strate-

gies, and machine-learning models to enhance the performance of network orchestration,

slicing, and spectrum allocation. By implementing these contributions, network service

providers can offer more reliable, secure, and fast services. The resulting networks can

support more diverse applications with increasing demands such as Autonomous Vehicles,

Augmented Reality, Industrial Automation, Emergency Services, and Smart Grids. This

thesis paves the way for a new era of networking with automated organization and self-

heal capabilities that target zero-touch networks, where no human interaction is needed

to maintain or fix the networks in cases of failures.

iii

Co-Authorship

The following thesis contains material from previously published papers and manuscripts

submitted for publication that have been co-authored by Dr. Abdallah Moubayed, Prof.

Abdallah Shami, Dr. Parisa Heidari, Dr. Abbas Javadtalab, and Ibrahim Tamim. All

the research, developments, simulations, and work presented here were carried out by

Sam Aleyadeh under the guidance of Dr. Abdallah Shami. Chapters 3-7 are based on

the following manuscripts that have been submitted, accepted, or published.

1. Sam Aleyadeh, Abdallah Moubayed, Parisa Heidari, and Abdallah Shami, ”Op-

timal container migration/re-instantiation in hybrid computing environments” in

the IEEE Open Journal of the Communications Society (OJCOM), 2022.

2. Sam Aleyadeh, Abdallah Moubayed, and Abdallah Shami, ”Mobility aware edge

computing segmentation towards localized orchestration,” in the International Sym-

posium on Networks, Computers and Communications (ISNCC), 2021.

3. Sam Aleyadeh, Abbas Javadtalab, and Abdallah Shami, ”Modular Simulation En-

vironment Towards OTN AI-based Solutions,” in the International Conference on

Intelligent Data Science Technologies and Applications (IDSTA), 2023.

4. Sam Aleyadeh, Abbas Javadtalab, and Abdallah Shami ”Throughput Latency Tar-

geted RL Spectrum Allocation In Heterogeneous OTN,” in the Annals of Telecom-

munications, 2023. (In Submission).

5. Sam Aleyadeh, Ibrahim Tamim, and Abdallah Shami ”Transfer Learning Acceler-

ated Network Slice Management for Next Generation Services,” in the International

Journal for the Computer and Telecommunications Industry, 2023. (In Submis-

sion).

iv

Acknowledgements

First and foremost, I give my thanks to Allah; nothing would have been achievable

without his guidance and blessing, to whom all praise is due. I am deeply thankful to

Allah for giving me the fortitude and resilience needed to accomplish this thesis.

Second, I am profoundly grateful to my supervisor, Dr. Abdallah Shami,

whose unwavering support, motivation, and mentorship throughout my doctoral journey

were invaluable. His commitment and guidance were not only inspirational but also

instrumental in the successful completion of this thesis. Without his continuous guidance,

this work could not have been accomplished.

Third, I would like to thank my examination committee, namely Dr. Anwar

Haque, Dr. Xianbin Wang, Dr. Ahmed Refaey Hussein, and Dr. Salimur Choudhury.

Thank you for taking the time to review and examine my thesis. I would also like to

thank my Master’s thesis supervisor Dr. Hossam Hussanain for carefully guiding me on

the first steps of my research career. Also, a huge thank you to Dr. Abd-Elhamid M.

Taha and Dr. Abdallah Moubayed for the support they have given me throughout my

Ph.D. journey.

Additionally, I would like to thank Courtney Harper and all the administrative

staff at Western University for providing me with all the help throughout this journey.

And last but certainly not least, My deepest love and gratitude are dedicated to

my mother, Dr. Najah Abu Ali. Her relentless support, especially in times of self-doubt,

enduring patience, and infinite affection, have been my life’s bedrock. Life without her

is simply unimaginable; to my siblings, who constantly encouraged me to transcend

my perceived boundaries and have always believed in my potential. And to my wife,

Lujain Haddad, the love of my life, for her unwavering support throughout this journey.

Her unconditional love, support in realizing my dreams, and inspiration for my personal

growth are deeply cherished.

Sam Aleyadeh

v

To the memory of Jameela bader

Table of Contents

Page

Abstract . i

Acknowledgements . v

List of Tables . xi

List of Figures . xii

List of Abbreviations . xiv

1 Introduction . 1
1.1 Motivation . 2
1.2 Thesis Objectives . 4
1.3 Thesis Organization . 4
1.4 Thesis Contributions . 5

1.4.1 Contributions of Chapter 3 . 5
1.4.2 Contributions of Chapter 4 . 6
1.4.3 Contributions of Chapter 5 . 6
1.4.4 Contributions of Chapter 6 . 6
1.4.5 Contributions of Chapter 7 . 7

2 Background . 8
2.1 Introduction . 8
2.2 Linear Programming . 8

2.2.1 Integer Linear Programming . 10
2.2.2 Mixed-Integer Linear Programming 11

2.3 Machine Learning . 12
2.3.1 Clustering . 14
2.3.2 Deep Reinforcement Learning . 15
2.3.3 Transfer Learning . 17

2.4 Network Slicing . 18

vii

3 Optimal Container Migration/Re-Instantiation in Hybrid Computing
Environments . 21
3.1 Introduction . 21
3.2 Related Works . 24
3.3 System Model . 27

3.3.1 Physical Resources . 27
3.3.2 Containers . 29

3.4 Optimal Container Migration/Re-Instantiation (OC-MRI) Model Formu-
lation . 29
3.4.1 General Model Description: . 30
3.4.2 Notations and decision variables: 31
3.4.3 Mathematical formulation: . 32
3.4.4 Implementation . 35
3.4.5 Complexity . 35

3.5 Edge Computing-enabled Container Migration/Re-Instantiation (EC2-MRI) 36
3.5.1 Generation Stage . 38
3.5.2 Auditing stage . 40
3.5.3 Edge-Controlled Live Orchestration Placement Stage 43
3.5.4 Core-controlled Live Orchestration Placement Stage 43
3.5.5 Complexity . 44

3.6 Performance evaluation . 45
3.6.1 simulation environment . 46
3.6.2 Downtime and Latency analysis 50
3.6.3 Heuristic Analysis . 55

3.7 Conclusion . 58

4 Mobility Aware Edge Computing Segmentation Towards Localized Or-
chestration . 60
4.1 Introduction . 60
4.2 Related Work . 62
4.3 System Design . 63

4.3.1 Virtual localization . 64
4.3.2 Mobility-based layer creation . 64
4.3.3 Lax clustering . 65

4.4 Simulation and results . 65
4.5 Conclusion . 71

viii

5 Modular Simulation Environment Towards OTN AI-based Solutions 73
5.1 Introduction & Motivation . 73

5.1.1 Motivation . 73
5.1.2 Available Simulators . 74
5.1.3 Contribution . 76

5.2 Simulator Description . 76
5.2.1 Mobility module . 77
5.2.2 5G module . 78
5.2.3 OTN module . 79
5.2.4 Output processing . 79

5.3 Performance evaluation . 79
5.3.1 Objective . 79
5.3.2 Metrics . 80
5.3.3 Testing methods . 80
5.3.4 Results . 81

5.4 Conclusion . 83

6 Throughput Latency Targeted RL Spectrum Allocation In Heteroge-
neous OTN . 85
6.1 Introduction . 85
6.2 Motivation and Problem definition . 89
6.3 Literature Review . 90

6.3.1 Spectrum Fragmentation . 90
6.3.2 Spectrum Fragmentation . 91
6.3.3 Dynamicity . 92
6.3.4 Limitations of Previous Works . 93

6.4 Throughput Latency First Reinforcement Learning (TLFRL) SA Model . 93
6.4.1 Environment Setup for SA in Optical Networks 93
6.4.2 The Actor in the RL-based SA Proposed Solution 94
6.4.3 The Critic in the RL-based SA Proposed Solution 94
6.4.4 Training Variations . 97

6.5 Performance Analysis . 98
6.5.1 Generating Realistic 5G-Based Demands 98
6.5.2 Simulation Environment . 99
6.5.3 Test Scenarios and Metrics . 99
6.5.4 Benchmarks . 99
6.5.5 Results . 99

6.6 Conclusion . 102

ix

x

7 Transfer Learning-Accelerated Network Slice Management for Next
Generation Services . 103
7.1 Introduction . 103
7.2 Related Works . 105

7.2.1 Optimization-based solutions . 106
7.2.2 AI-based solutions . 107

7.3 Motivation and Problem Definition . 109
7.4 System Description . 113

7.4.1 Machine learning component . 113
7.4.2 Heuristic component . 117

7.5 Performance Evaluation . 119
7.6 Conclusion . 123

8 Conclusion . 125
8.1 Introduction . 125
8.2 Summary of Contributions . 126
8.3 Future Research Directions . 126

8.3.1 Technical Challenges: . 127
8.3.2 Economical Challenges: . 128
8.3.3 Regulatory Challenges: . 128
8.3.4 Social Challenges: . 129

References . 103

Curriculum Vitae . 143

List of Tables

Section Page

3.1 Table of Notations . 32
3.2 simulation environment size . 46
3.3 Edge device size-based placement . 49
3.4 Edge node resource Availability . 49
3.5 Container resource requirements . 50
3.6 Clustering accuracy . 57
3.7 Effect of auditing on error avoidance . 58

5.1 Simulation Environment Comparison . 74
5.2 5G Simulator Output Volume . 82

6.1 Table of Variables . 97

7.1 URLLC use cases . 111
7.2 O-RAN Environment and Metrics Description 120

xi

List of Figures

Section Page

1.1 5G Growth Trend . 2
1.2 5G Complexity . 3

2.1 Linear Programming types . 9
2.2 Clustering techniques types . 14
2.3 Network Slicing . 19

3.1 System Model: Core clouds and edge devices hosting service hosting con-
tainers . 28

3.2 Migration mechanism with placement consideration 30
3.3 Re-instatiation mechanism with placement consideration 31
3.4 User and container solution space setup 37
3.5 Auditing stage, the red portion highlights the margin of mobility violation 42
3.6 User clusters seeding and core edge latency penalty 47
3.7 Edge device placement with respect to user cluster 48
3.8 Downtime distribution OC-MRI . 51
3.9 Downtime distribution EC2-MRI . 52
3.10 Downtime distribution greedy re-instantiation 52
3.11 Downtime distribution greedy migration as per [1] 53
3.12 Latency experienced by the user, OC-MRI. 54
3.13 Latency experienced by the user, EC2-MRI. 55
3.14 Latency under greedy Re-instantiation orchestration 55
3.15 Latency under greedy Migration orchestration as per [1] 56
3.16 Successful placement within the first two iterations of the EC2-MRI . . . 57

4.1 System overview . 64
4.2 Impact of virtual localization on delay 67
4.3 Impact of segmentation resource restrictions 68
4.4 Impact of user mobility on edge space robustness 69
4.5 Impact of user mobility on cluster health degradation 70
4.6 Impact of clustering method on subspace robustness 71

5.1 System Design. 77
5.2 Single app conformity compared to Netsim. 81
5.3 Heterogeneous app conformity compared to Netsim. 82
5.4 Simulating iteration of a single limited size environment. 83
5.5 Simulating a single large environment. 84

6.1 Dynamic demands impact on fragmentation 87

xii

xiii

6.2 Traditional vs. Dynamicity Aware SA 90
6.3 Environment Illustration . 94
6.4 Spectral allocation action . 95
6.5 Offloading action . 95
6.6 Demand distribution illustration example 96
6.7 Scaling factor calculation . 97
6.8 TLFRL’s variations fragmentation comparison 100
6.9 Throughput comparison . 100
6.10 Latency violations comparison . 101
6.11 Spectral biases . 101

7.1 Network-slicing in O-RAN . 106
7.2 System Overview . 113
7.3 TL augmented RL System . 114
7.4 Heuristic Driver overview . 118
7.5 MTTF Across All Placed VNFs for mMTC Application 119
7.6 MTTF Across All Placed VNFs for eMBB Application 121
7.7 MTTF Across All Placed VNFs for URLLC Application 122
7.8 Impact of TL on Agent training . 122
7.9 Impact of TL on Agent training . 123

List of Abbreviations

5G 5th Generation Mobile Network

CAPEX CAPital EXpenditure

OPEX OPerational EXpenditure

VMs Virtual Machines

RSUs RoadSide Units

QoS Quality of Service

NFV Network Function Virtualization

IP Integer Programming

VNFs Virtual Network Functions

IP Integer Programming

ECC Edge Cloud Computing

EC Edge Computing

SDNs Software-Defined Networks

NSPs Networks Service Providers

AI Artificial Intelligence

OTNs Optical Transport Networks

NR New Radio

eMBB enhanced Mobile BroadBand

URLLC Ultra-Reliable Low Latency Communication

mMTC massive Machine-Type Communications

WDM Wavelength Division Multiplexing

RWA Routing and Wavelength Assignment

RSA Routing and Spectrum Assignment

SA Spectrum Allocation

VR Virtual Reality

AR Augmented Reality

NGNs Next-Generation Networks

RL Reinforcement Learning

ML Machine Learning

BBR Bandwidth Blocking Ratio

xiv

xv

RAN Radio Access Network

CRAN Centralized RAN

O-RAN Open RAN

near-RT

RIC

near-Real-Time RAN Intelligent Controller

TS Traffic Steering

SP Service Placement

TL Transfer Learning

SFC Service Function Chain

MINLP Mixed-Integer NonLinear Programming

MADRL Multi-Agent Deep Reinforcement Learning

ZSM Zero-touch network and Service Management

AVL Automatic Vehicle Locator

V2X Vehicle-to-Everything

B5G Beyond 5G

IoT Internet of Things

O-CU O-RAN Centralized Unit

O-DU O-RAN Distributed Unit

COTS Commercial-Off-the-Shelf servers

MTTF Mean Time To Failure

1

Chapter 1

Introduction

The 5th Generation Mobile Network (5G) offers enhanced connectivity, higher data

transfer speeds, lower latency, and increased capacity compared to its predecessors. The

adoption of 5G technology has been accelerated, leading to a significant increase in the

number of 5G devices in recent years. This can be seen in the illustrated Figure 1.1[2].

Additionally, thanks to the more reliable connections offered by 5G Enhanced Mobile

Broadband (eMBB), we have seen a significant increase in the number of 5G applications

available, making it an indispensable aspect of our everyday routines. Hence, users can

enjoy a better mobile browsing experience, video streaming, and immersive virtual and

augmented reality involvement. Additionally, 5G’s impact on industrial applications is

significant due to its massive Machine-Type Communications (mMTC), which enables

more devices to connect to the network, making it ideal for monitoring and maintaining

factory equipment. Furthermore, 5G’s Ultra-Reliable and Low Latency Communications

(URLLC) capabilities allow for critical real-time applications such as autonomous vehi-

cles and remote surgery, where even the slightest delay could have severe consequences.

Consequently, with the increased adoption of 5G-based services, the amount of traffic and

demands will inevitably increase. This will be especially true with the growing deploy-

ment of Smart Cities and their infrastructure, as well as Public Safety and Surveillance.

Human control is insufficient to maintain and accommodate the above applications.

Hence, automation in 5G, also called Zero-touch becomes more crucial. This can be

attributed to several reasons, such as the efficiency and speed the zero-touch provides

with the increased complexity and scale of networks using technologies such as network

slicing. Zero-touch also offers several additional advantages, such as Reduced Operational

Expenses (OPEX) since the automated systems lower the need for human intervention.

This greatly decreases the costs associated with network management and makes the

services more cost-effective. Improving reliability and consistency is important to reduce

Chapter 1: Introduction 2

Figure 1.1: 5G Growth Trend

the chances of human error, which is a common cause of network outages. Finally, zero-

touch allows for Real-Time Management and Optimization. With zero-touch automation,

networks can be managed and optimized in real-time. This is especially important in 5G,

where network conditions can change rapidly, for instance, due to the mobility of users

or rapid fluctuations in traffic demand.

1.1 Motivation

The networking infrastructure is facing a significant surge in complexity due to the

rapid growth of the 5G platform. This complexity arises from various factors, including

expanding network scale driven by the proliferation of connected devices, the devices

dispersed geographical locations, the high diversity of the devices’ computational capa-

bilities, and heterogeneity of the network technologies, protocols, and infrastructure with

each network paradigm having its own specifications and requirements. For instance,

many organizations have adopted edge, hybrid, and multi-cloud architectures that com-

bine private and public cloud services, exemplifying the diversity present. Furthermore,

deploying Software-Defined Networking (SDN) for decentralized network management

and control has introduced additional layers of abstraction and complexity when con-

Chapter 1: Introduction 3

figuring and orchestrating network services, aiming to achieve enhanced flexibility and

programmability.

Figure 1.2: 5G Complexity

In order to take full advantage of the benefits of 5G networks, it is crucial to reduce

the complexity of network management. That’s why effective automation techniques are

seen as a highly appealing solution. These techniques address the challenges arising from

the lack of human supervision, network management overhead delays, and associated

capital and operational expenses (CAPEX and OPEX). The industry and academia are

in a continuous quest to enable automation in network infrastructure, leading to the

emergence of the concept of zero-touch networking. However, The automation process

has become more challenging because of the different solutions geared towards specific

fields, which goes against its intended goal, as depicted in Figure 1.2 [3].

Automation has become an essential tool for handling the expanding scale of net-

working infrastructure. This includes various domains such as edge computing, O-RAN,

and OTN, each with its own set of challenges and goals. As growth trends continue,

automation will be increasingly important in managing these domains.

Automation has become an essential tool in recent years for handling the expanding

scale of networking infrastructure. This includes various network infrastructure domains

and scales, ranging from user-adjacent front haul (e.g., edge computing) to mid-haul

(e.g., O-RAN) and backbone (e.g., OTN). Each with its own set of challenges and goals.

As growth trends continue, automation will be increasingly important in managing these

domains.

Chapter 1: Introduction 4

1.2 Thesis Objectives

This thesis aims to propose automation schemes grouped into three projects. Each project

aims to enable zero-touch management in a specific network infrastructure domain. The

first project proposes automating orchestration mechanisms for edge computing appli-

cations. The second project steered toward simulating and optimizing Optical networks

spectrally. The third project focuses on managing network slices in the O-RAN infras-

tructure utilizing AI techniques and using real-life captured 5G traffic datasets.

The first project presents an optimization scheme and a heuristic scheme to effec-

tively manage edge computing containers by making efficient decisions on whether to

instantiate or migrate them. An intelligent segmentation scheme is proposed to better

split the edge computing solution space, allowing for effective local management and

orchestration. This scheme addresses communication overhead issues that are typical in

centralized management platforms.

The second project aims to develop a comprehensive and highly modular simulation

setup, which helps generate datasets of 5G demands in an optical environment, which is

a scarce resource. The generated dataset is used to train a reinforcement learning model

that can organize the demands within the spectral space at each node. The objective is

to improve throughput while respecting latency requirements.

The third project aims to incorporate 5G into O-RAN. It also strives for addressing

the optimal placement of Virtual Network Functions (VNFs) to efficiently support the

three main types of 5G applications. The project utilizes machine learning techniques

to create intelligent agents that are capable of designing network slices while prioritizing

minimized downtime over extended periods of time. The approach aims to simplify

the placement process by employing network slices instead of managing 5G applications

individually.

1.3 Thesis Organization

This thesis presents various techniques and tools for automating and improving 5G

services and beyond. Our focus is on the front haul, the mid-haul, and the backbone

network infrastructure, with the ultimate goal of achieving a zero-touch framework. We

Chapter 1: Introduction 5

present our findings in an integrated article format. We proceed by presenting the back-

ground of the tools and techniques used to develop our various solutions in Chapter 2.

Chapter 3 presents an orchestration solution using optimization and heuristic techniques.

Chapter 4 presents a novel edge computing segmentation scheme geared towards creating

independent sectors capable of self-orchestration and management. Chapter 5 presents

a modular OTN-enabled 5G end-to-end simulator capable of operating in a distributed

environment. Chapter 6 presents a scheme that utilizes Reinforcement Learning to op-

timize throughput by creating agents on every node in an optical network. The scheme

sole purpose is to reduce fragmentation and prevent demand blocking. In Chapter 7,

we investigate the challenge that 5G faces in O-RAN regarding VNF assignment. We

introduce an intelligent network slice management system that uses a Transfer Learn-

ing augmented Deep Reinforcement Learning model to address this issue. Chapter 8

concludes the thesis and provides some insights into future research directions.

1.4 Thesis Contributions

The major contributions of the thesis are summarized as follows.

1.4.1 Contributions of Chapter 3

1. We designed a scheme for service orchestration in an edge computing environment

to reduce the containers’ downtime and latency. The problem is formulated as a

mixed integer linear programming problem (MILP). However, the complexity of

the MILP increases with the increase in the number of containers. Thus to tackle

this issue,

2. we subdivided the solution space into smaller regions to allow for a suboptimal

practical heuristic solution with reduced complexity and,

3. designed a suboptimal heuristic algorithm to enable automation in zero-touch.

Chapter 1: Introduction 6

1.4.2 Contributions of Chapter 4

1. To minimize communication overhead in the aforementioned orchestration schemes,

we have devised a segmentation scheme to facilitate local orchestration. Hence,

achieving a lower complexity and improving network scalability.

2. To account for mobility and network heterogeneity, we designed a Virtual localiza-

tion technique to improve the segmentation technique. Hence, improving stability

and accuracy.

3. We utilized Lax Clustering techniques to create unique but not necessarily geomet-

rically shaped clusters instead of grid-like approaches. Hence, delivering practical

solutions for implementation in real-life networks.

1.4.3 Contributions of Chapter 5

1. Introduced an end-to-end simulation environment to generate datasets. Hence,

addressing the lack of OTN 5G datasets.

2. Developed a modular end-to-end simulator that interfaces well-known standard

simulators such as NS3, SOMO, OMNINET, and NetSim. Hence, allow for better

utilization of the capabilities of these simulators based on researcher needs.

3. The end-to-end simulator enables distributed operation of the simulation models

to be operated across multiple machines. Hence, reduce the hardware requirements

by dispersing the workload across several machines, rather than relying on a single

powerful workstation. This enables the simulation to run more efficiently.

1.4.4 Contributions of Chapter 6

1. Formulated the problem of spectral allocation in an optical networking environment

as a reinforcement learning model.

2. Implemented the anchoring of demands, forced allocation direction, and traditional

networks to further optimize the RL model.

Chapter 1: Introduction 7

1.4.5 Contributions of Chapter 7

1. Addressed the service placement problem in an O-RAN environment via an intel-

ligent network-slicing solution.

2. Presented a Transfer Learning augmented Deep Reinforcement Learning model to

create the 5G tailored network slices.

3. To automate the Reinforcement Learning model, we formulated a heuristic driver

enabling zero-touch management within O-RAN

8

Chapter 2

Background

2.1 Introduction

As mentioned earlier, the rapid introduction of new technology replacing archaic

networking infrastructure has created highly complex interactions that resulted in the

need for efficient algorithms to help maintain the performance benefits brought about by

those systems and processes. Moreover, these systems need to be able to make intelligent

decisions to further enhance their performance and stability. To that end, this thesis

proposes the use of linear programming, clustering, and machine learning techniques to

improve the performance of different considered systems and processes. In what follows, a

brief background about the different types of linear programming problems and machine

learning techniques is given. Section 2.2 presents the different types of linear models

including standard, Integer Linear Programming, Mixed-Integer Linear Programming,

and other models. Furthermore, Section 2.3 discusses the different types of machine

learning algorithms including supervised, unsupervised, transfer, reinforcement, and deep

learning. Moreover, Section 2.4 also discusses the concept of networking slicing and its

impact on emerging networking paradigms.

2.2 Linear Programming

Linear programming is a powerful mathematical technique used to optimize re-

source allocation and decision-making processes in various fields, including operations

research, economics, engineering, and management. It provides a systematic approach

to solve complex problems involving limited resources and multiple objectives by formu-

lating them into a mathematical model.

At its core, linear programming deals with maximizing or minimizing a linear ob-

jective function subject to a set of linear constraints. The objective function represents

Chapter 2: Background 9

Figure 2.1: Linear Programming types

the quantity to be optimized, such as profit, cost, time, or efficiency, while the constraints

define the limitations or restrictions imposed on the decision variables.

There are three main types of linear programming problems, each characterized by

the type of constraints and variables involved. These types are:

1. Standard Linear Programming: This is the most basic type of linear program-

ming problem, also known as Continuous Linear Programming. In this type, all decision

variables are continuous and can take any real value within a specified range or domain.

The constraints are represented by a system of linear inequalities or equations. The ob-

jective is to optimize a linear objective function subject to these constraints. The simplex

method and other linear programming algorithms are commonly used to solve standard

linear programming problems.

2. Integer Linear Programming (ILP): Integer Linear Programming extends the

standard linear programming by adding the requirement that all decision variables must

be integers. This type of problem is useful when the decision variables represent quantities

that must be discrete or combinatorial in nature, such as the number of units produced,

the selection of projects or routes, or the assignment of workers to shifts. ILP problems

are generally more challenging to solve than standard linear programming due to the

combinatorial nature of integer variables. Specialized algorithms, such as the branch-

and-bound method, are commonly employed to find optimal solutions.

3. Mixed-Integer Linear Programming (MILP): Mixed-Integer Linear Programming

Chapter 2: Background 10

combines the features of standard linear programming and integer linear programming.

In MILP, some decision variables are allowed to be continuous, while others are required

to be integers. This type of problem is suitable when a combination of continuous and

discrete decisions needs to be made. The inclusion of integer variables adds complexity

to the problem, and efficient algorithms, such as branch-and-bound, are used to navigate

the solution space and find optimal solutions.

In addition to these main types, there are variations and special cases of linear

programming, such as binary linear programming (where decision variables are restricted

to take only binary values of 0 or 1), multi-objective linear programming (where multiple

objective functions are simultaneously optimized), and stochastic linear programming

(where uncertainty or randomness is considered in the constraints or objective function).

These variations cater to specific problem characteristics and requirements, providing

further flexibility in modeling and solving optimization problems.

2.2.1 Integer Linear Programming

Integer Linear Programming (ILP) is a branch of mathematical optimization that

deals with optimization problems where all of the decision variables are required to

be integers. It extends the concepts of linear programming to include the additional

constraint of integrality, making it more suitable for problems that involve discrete or

combinatorial decision-making.

In Integer Linear Programming, the objective is still to optimize a linear objective

function, subject to a set of linear constraints. The objective function represents the

quantity to be maximized or minimized, such as profit, cost, or time. The decision

variables in ILP can take on discrete values, usually integers, rather than continuous

values. The constraints define the limitations or restrictions on the decision variables,

which can include both linear equations and inequalities.

The inclusion of integer variables in ILP problems adds a layer of complexity com-

pared to linear programming. The presence of discrete values in the decision variables

leads to a more challenging problem of finding feasible and optimal solutions. The search

space for ILP problems is often much larger than that of linear programming due to the

combinatorial nature of integer variables.

Chapter 2: Background 11

Solving ILP problems requires specialized algorithms that can efficiently explore the

solution space to identify the optimal integer solutions. The branch-and-bound method,

combined with various heuristics, is commonly used to solve ILP problems. It divides

the solution space into smaller subspaces, evaluates the objective function within each

branch, and progressively prunes branches that cannot contain better solutions than the

current best solution found.

ILP problems find applications in numerous areas, such as production planning,

scheduling, logistics, network design, and resource allocation. They are particularly

useful in problems that involve discrete decisions, such as assigning workers to shifts,

selecting project alternatives, determining the optimal routing of vehicles, or scheduling

tasks with precedence constraints.

ILP has proven to be a valuable tool for decision-makers in both industry and

academia. By incorporating the requirement for integer solutions, ILP provides more

accurate and realistic models for many real-world problems. It enables decision-makers

to make optimal choices while considering the discrete nature of the decision variables,

leading to improved resource allocation, cost reduction, and overall efficiency in various

domains.

2.2.2 Mixed-Integer Linear Programming

Mixed-Integer Linear Programming (MILP) is an extension of linear programming

that allows for the inclusion of integer variables in addition to continuous variables. It

is a powerful mathematical optimization technique used to solve problems where some

decision variables must take on discrete or binary values, while others remain continu-

ous. MILP finds applications in various fields, including operations research, logistics,

scheduling, finance, and engineering.

In MILP, the objective is still to optimize a linear objective function, but with the

added complexity of integer or binary variables. The objective function represents the

quantity to be maximized or minimized, such as profit, cost, or time, and is subject to a

set of linear constraints. These constraints define the limitations or restrictions imposed

on the decision variables, which can now be a mix of continuous and discrete values.

The inclusion of integer variables in MILP problems introduces combinatorial com-

plexity, as the search space expands exponentially. Solving MILP problems requires

Chapter 2: Background 12

exploring a large number of potential solutions to identify the optimal one. The chal-

lenge lies in efficiently navigating this vast solution space to find the best feasible solution

that satisfies all the constraints and optimizes the objective function.

The branch-and-bound method is a common technique used to solve MILP prob-

lems. It systematically divides the solution space into smaller subspaces, called branches,

and evaluates the objective function within each branch. By progressively pruning

branches that cannot contain a better solution than the current best solution found

so far, the algorithm narrows down the search space until it finds the optimal solution.

MILP problems can model a wide range of real-world scenarios. For example, in

production planning, MILP can be used to optimize workforce scheduling, equipment

allocation, and production sequencing, taking into account factors such as capacity con-

straints, production costs, and delivery deadlines. In transportation and logistics, it can

help optimize route planning, vehicle assignment, and inventory management, consider-

ing variables like transportation costs, customer demands, and vehicle capacity.

MILP is also commonly used in financial planning and portfolio optimization. It can

aid in asset allocation decisions, investment selection, and risk management by consider-

ing discrete decisions, such as the inclusion or exclusion of specific assets or investment

options.

2.3 Machine Learning

Machine learning, a sub-field of artificial intelligence, focuses on developing al-

gorithms and models that allow computer systems to learn and make predictions or

decisions without explicit programming. It involves the use of statistical techniques and

mathematical models to enable computers to automatically learn from data and improve

their performance over time. Machine learning algorithms analyze and identify patterns,

trends, and relationships in data to generate insights or make predictions. By leveraging

large datasets and computational power, machine learning enables computers to learn

from experience, adapt to changing conditions, and make accurate predictions or deci-

sions in various domains, ranging from image recognition and natural language processing

to recommendation systems and autonomous vehicles.

Chapter 2: Background 13

There are several types of machine learning algorithms, each with its own approach

and characteristics. The main types of machine learning algorithms are:

1. Supervised Learning: In supervised learning, the algorithm is trained on a

labeled dataset, where the input data is accompanied by corresponding output labels

or target values. The goal is to learn a mapping function that can predict the output

labels for new, unseen input data. Common algorithms in supervised learning include

decision trees, random forests, support vector machines (SVM), naive Bayes, and neural

networks.

2. Unsupervised Learning: Unsupervised learning algorithms are used when the

input data is unlabeled or lacks explicit output labels. The goal is to identify patterns,

structures, or relationships within the data. Common unsupervised learning algorithms

include clustering algorithms like k-means, hierarchical clustering, and DBSCAN, as well

as dimensionality reduction techniques such as principal component analysis (PCA) and

t-SNE.

3. Semi-Supervised Learning: Semi-supervised learning combines elements of su-

pervised and unsupervised learning. It is used when only a subset of the input data is

labeled. The algorithm leverages both labeled and unlabeled data to learn patterns and

make predictions. Semi-supervised learning can be useful when labeling data is expensive

or time-consuming.

4. Reinforcement Learning: Reinforcement learning involves an agent learning to

interact with an environment and maximize its cumulative reward. The agent takes

actions in the environment, receives feedback in the form of rewards or penalties, and

adjusts its behavior based on the feedback to achieve a specific goal. Algorithms such as

Q-learning and deep Q-networks (DQN) are commonly used in reinforcement learning.

5. Deep Learning: Deep learning is a subset of machine learning that focuses

on neural networks with multiple layers (deep neural networks). These networks can

automatically learn hierarchical representations of data and extract complex features.

Deep learning has achieved significant breakthroughs in areas such as image recognition,

natural language processing, and speech recognition. Convolutional Neural Networks

(CNNs) and Recurrent Neural Networks (RNNs) are commonly used in deep learning.

6. Transfer Learning: Transfer learning involves leveraging knowledge or models

learned from one task or domain to improve performance on another related task or

Chapter 2: Background 14

domain. It allows models to generalize from previous experiences and adapt to new

scenarios with less data or training time.

7. Ensemble Learning: Ensemble learning combines multiple models or algorithms

to make predictions or decisions. By aggregating the predictions or outputs of individual

models, ensemble methods can improve accuracy and robustness. Examples of ensemble

learning methods include bagging (e.g., random forests) and boosting (e.g., AdaBoost,

Gradient Boosting).

These are some of the main types of machine learning algorithms, each suited

for different types of tasks, data characteristics, and learning objectives. Choosing the

appropriate algorithm depends on the specific problem at hand and the available data.

2.3.1 Clustering

Clustering is a fundamental technique in data analysis and machine learning that

involves grouping similar data points together based on their inherent characteristics or

patterns. It aims to identify similarities and differences within a dataset and organize

it into meaningful groups, called clusters. Clustering provides valuable insights into the

underlying structure of data, facilitates data exploration, and supports decision-making

processes.

Figure 2.2: Clustering techniques types

Chapter 2: Background 15

There are various clustering algorithms, each with its own approach and assump-

tions about the data. In this introduction, we will focus on three commonly used clus-

tering techniques: Lax and Strict Radial Clustering and K-means Clustering.

Lax and Strict Radial Clustering: Lax and Strict Radial Clustering are density-

based clustering algorithms that identify clusters based on the density of data points in

the feature space. These algorithms assume that clusters are formed around high-density

regions separated by low-density regions.

In Lax Radial Clustering, a cluster is defined as a set of data points where each

point is closer to at least one other point in the cluster than to any point outside the

cluster. The algorithm starts with a random data point and expands the cluster by

including neighboring points within a specified radius.

Strict Radial Clustering, on the other hand, is a more restrictive version of Lax

Radial Clustering. It considers only those points that have a minimum number of neigh-

bors within the specified radius to be part of a cluster. This ensures that clusters are

more compact and less likely to overlap.

K-means Clustering: K-means Clustering is a centroid-based clustering algorithm

that partitions the data into K clusters. It assumes that the data points within each

cluster are closer to the centroid of that cluster than to centroids of other clusters.

The algorithm starts by randomly selecting K centroids in the feature space. It

then assigns each data point to the nearest centroid and recalculates the centroid based

on the mean of the data points assigned to it. This process iteratively continues until

the centroids converge or a stopping criterion is met.

K-means Clustering is widely used due to its simplicity and efficiency. However,

it requires the user to specify the number of clusters (K) in advance, which can be

a limitation. Selecting an appropriate value for K is crucial, as it directly affects the

quality and interpretability of the clustering results.

2.3.2 Deep Reinforcement Learning

Deep Q-Learning is a reinforcement learning algorithm that combines Q-learning,

a popular technique in reinforcement learning, with deep neural networks to handle

complex and high-dimensional state spaces. It is a powerful approach for training agents

to make decisions in environments with large and continuous state and action spaces.

Chapter 2: Background 16

In traditional Q-learning, a Q-table is used to store the values of each state-action

pair, representing the expected future rewards for taking specific actions in specific states.

However, for environments with high-dimensional state spaces, it becomes impractical or

even infeasible to maintain a Q-table due to the exponential growth in the number of

states.

Deep Q-Learning addresses this limitation by using a deep neural network, known

as a Q-network, to approximate the Q-values. The Q-network takes the current state as

input and outputs Q-values for all possible actions. It is trained to minimize the difference

between predicted Q-values and the observed rewards obtained during interactions with

the environment.

The training process in Deep Q-Learning involves an iterative approach. The agent

interacts with the environment, selects actions based on an exploration-exploitation strat-

egy (such as epsilon-greedy), and collects experience in the form of state-action-reward-

next state tuples. These experiences are stored in a replay memory buffer, which allows

the agent to learn from a diverse set of experiences and break the correlation between

consecutive samples.

During the learning process, the agent samples a batch of experiences from the

replay memory buffer and uses them to update the Q-network weights. The update is

performed by minimizing the difference between the predicted Q-values and the target

Q-values, which are calculated using a temporal difference (TD) target incorporating the

observed rewards and the estimated future Q-values.

Deep Q-Learning has achieved remarkable success in various domains, includ-

ing playing Atari games, controlling robotic systems, and optimizing complex decision-

making problems. By leveraging the representation power of deep neural networks, it

can learn directly from raw sensory inputs, making it suitable for high-dimensional state

spaces.

However, Deep Q-Learning also faces challenges, such as instability and overes-

timation of Q-values. Techniques like target networks, experience replay, and double

Q-learning have been proposed to address these issues and improve the stability and

convergence of the algorithm.

Chapter 2: Background 17

2.3.3 Transfer Learning

Transfer learning is a machine learning technique that leverages knowledge gained

from one task or domain to improve performance on another related task or domain.

Rather than training a model from scratch on a new task, transfer learning allows the

model to transfer and adapt the learned knowledge from a source task or domain to a

target task or domain.

The idea behind transfer learning is that the knowledge and representations ac-

quired by the model during training on a source task can be beneficial for learning a

new task, especially when the target task has limited data or is significantly different

from the source task. By utilizing transfer learning, models can generalize from previous

experiences and expedite the learning process on the target task.

There are generally two main approaches to transfer learning:

Feature Extraction: In this approach, a pre-trained model, often trained on a

large-scale dataset such as ImageNet for image-related tasks, is used as a fixed feature

extractor. The early layers of the pre-trained model are frozen, and only the final layers or

additional layers are added and trained on the target task-specific data. The pre-trained

model has already learned general features from the source task, and these features can

be used as input for the target task, effectively transferring knowledge.

Fine-tuning: In this approach, not only are the additional layers added on top of

the pre-trained model, but the entire pre-trained model is also fine-tuned on the target

task-specific data. By allowing the weights of the pre-trained model to be updated during

training on the target task, the model can adapt and refine the learned representations to

better fit the target task. Fine-tuning is particularly useful when the target task shares

similarities with the source task, but some domain-specific adaptations are necessary.

Transfer learning can bring several advantages:

Reduced Data Requirements: By leveraging pre-trained models and transferring

knowledge, transfer learning can alleviate the need for large amounts of labeled data for

training a model on the target task. This is particularly valuable when data availability

is limited or expensive to obtain.

Improved Generalization: Transfer learning allows models to learn more generalized

representations by leveraging knowledge gained from the source task. This often leads

Chapter 2: Background 18

to improved performance on the target task, even when the target task has a smaller

dataset.

Time and Resource Savings: Since the pre-trained model has already undergone

extensive training on a large-scale dataset, transfer learning can significantly reduce the

time and computational resources required to train a model from scratch on the target

task.

Transfer learning has been successfully applied in various domains, including com-

puter vision, natural language processing, and speech recognition. It has contributed to

advancements in tasks such as image classification, object detection, sentiment analysis,

and machine translation.

2.4 Network Slicing

Network slicing is a concept in telecommunications and networking where a phys-

ical network infrastructure is divided into multiple virtual networks, known as slices.

Each network slice operates as an independent and isolated network with its own dedi-

cated resources and specific characteristics. These slices are created to cater to different

applications, industries, or user groups, allowing for customized services and optimized

resource allocation.

Network slicing enables the efficient sharing of network resources while providing

tailored connectivity, quality of service (QoS), and functionality to meet the diverse

requirements of various applications or services. Each slice can have its own unique set of

parameters, such as latency, bandwidth, security, reliability, and service-level agreements

(SLAs), ensuring optimal performance for the specific use case it serves.

The implementation of network slicing typically involves virtualization technologies

and software-defined networking (SDN) principles. Virtualization allows the physical

infrastructure to be partitioned into multiple logical networks, while SDN provides the

flexibility and control to manage and orchestrate the network slices dynamically.

By utilizing network slicing, service providers and enterprises can achieve several

benefits. Firstly, it enables the creation of customized services that are tailored to the

specific needs of applications or industries, such as enhanced mobile broadband, Internet

of Things (IoT), or mission-critical communications. Secondly, network slicing allows for

Chapter 2: Background 19

Figure 2.3: Network Slicing

efficient resource utilization, as each slice can dynamically allocate and scale resources

based on demand, ensuring optimal resource usage. Additionally, network slicing offers

flexibility and scalability, enabling rapid deployment of new services or applications and

accommodating evolving needs and technologies.

Instantiating network slices involves several key steps:

Requirements Gathering: The first step is to identify the diverse requirements of

different applications or services that will utilize the network slices. This includes factors

such as latency, bandwidth, reliability, security, and specific service-level agreements

(SLAs).

Slice Design and Mapping: Based on the gathered requirements, network operators

design the architecture and configuration of each network slice. This involves defining

the necessary network functions, resources, and quality of service (QoS) parameters. The

design should align with the specific needs of the intended applications or user groups.

Resource Allocation and Isolation: Network resources, including computing power,

bandwidth, and storage, are allocated to each network slice. Resource isolation mech-

anisms are implemented to ensure that one slice does not impact the performance or

security of other slices. Techniques such as virtualization and software-defined network-

ing (SDN) are commonly used for efficient resource management and isolation.

Service Orchestration and Management: Service orchestration platforms play a

crucial role in managing and coordinating the lifecycle of network slices. These platforms

Chapter 2: Background 20

automate the provisioning, monitoring, and scaling of slices, ensuring efficient utilization

of resources and dynamic adaptation to changing demands.

Security and Slice Isolation: Network slicing involves ensuring strong isolation be-

tween slices to maintain security and prevent unauthorized access or interference. Robust

security measures, including encryption, authentication, and access control mechanisms,

are implemented to protect each slice’s data and operations.

Monitoring and Optimization: Continuous monitoring of network slice perfor-

mance, resource usage, and QoS parameters is essential. Analytics and optimization

techniques are applied to identify potential bottlenecks, optimize resource allocation,

and improve the overall efficiency and performance of the network slices.

Benefits and Applications: Network slicing offers numerous benefits and finds ap-

plications in various domains:

Customized Services: Different slices can be tailored to specific applications, in-

dustries, or user groups, enabling customized services and functionalities. For example,

slices can be optimized for enhanced mobile broadband, massive machine-type commu-

nications (IoT), or ultra-reliable low-latency communications (e.g., autonomous vehicles

or critical infrastructure).

Resource Efficiency: Network slicing allows efficient sharing of network infrastruc-

ture among multiple services, maximizing resource utilization. It enables dynamic allo-

cation and scaling of resources based on demand, ensuring optimal resource usage.

Flexibility and Scalability: Slices can be provisioned or decommissioned quickly

to adapt to changing requirements or introduce new services. Network slicing provides

flexibility and scalability to accommodate evolving needs and future technologies.

Service Innovation: With network slicing, service providers and enterprises can

innovate and deploy new services or applications more rapidly. It provides a flexible and

cost-effective platform for experimentation and service differentiation.

21

Chapter 3

Optimal Container

Migration/Re-Instantiation in Hybrid

Computing Environments

3.1 Introduction

The recent rapid adoption of 5G networks significantly increased the pre-existing

interest in edge computing. This is mainly due to the 5G paradigm’s readiness for rapid

network changes coupled with its ability to accommodate the increasing number of users

and generated traffic. Within 5G, edge computing allows providers to shift their services

away from the core cloud and towards end-users by utilizing the abundant resources

found in previously deployed under-utilized edge communication devices. This shift fur-

ther lowers latencies and offloads traffic from the network’s main backbone. Real-time

dependent applications, such as 4K streaming, instant speech translation, and intelli-

gent transportation systems may then run seamlessly [4, 5, 6]. The push to adopt edge

computing has generated a significant amount of literature targeting the optimization of

its main attributes with more focus on latency and energy costs, capital (CAPEX), and

operational expenditure (OPEX) [7].

The concept of containers was proposed to further build on the premise of edge

computing. Container-type solutions were introduced to replace traditional virtual ma-

chines (VMs) to increase the system’s flexibility and scalability further. This change is

due to the containers’ ability to coexist in a shared platform, allowing more services to

run with higher efficiency and mobility. Consequently, containers have lower CPU re-

quirements compared to VMs that require hardware stack virtualization. Containers can

also recover more quickly and require a significantly lower share of the system’s memory

without requiring an entire operating system (OS) image. These attributes allow for

Chapter 3: Optimal Container Migration/Re-Instantiation in Hybrid Computing
Environments 22

microservices to be hosted on less sophisticated units. In contrast, robust computing

units can be placed in the vicinity of end-users in the form of roadside units (RSU), base

stations, and routers.

Containers hosted on the edge require additional constraints over core cloud-hosted

containers to perform their intended tasks properly, as edge devices are typically less ac-

cessible and maintained less frequently. The containers must then achieve high robustness

through other methods instead of relying on heavy hardware-based safeguards and tra-

ditional data center-based setups typically associated with core clouds [8]. This exposes

the containers to more frequent outages, both planned (maintenance and updates) and

unplanned (hardware failures and overloads) [9]. Redundant copies may be implemented

to tackle this issue. However, this may affect the efficient utilization rates and system

size, which are the advantages of using these containers. Thus, the desired approach is to

maintain efficiency while lowering downtime when recovering, which lessens the impact

on quality of service (QoS) once a failure is detected. This is vital in the edge environ-

ment due to the high availability requirement typical of its services, from urgent services,

such as an emergency response, to standard services, such as IoT-based manufacturing

and smart-city management. Traditionally, containers were allowed to either migrate

from the failing edge node or re-instantiate by allowing the edge node to return to online

status. Migrating with the anticipation of a failure serves to maintain their last state.

The downtime will last until a new viable host is determined and the live capture image

of the container is transferred. Conversely, the downtime in re-instantiation is dependent

on the time a failed edge node needs to perform a hard reset and re-establish the con-

nection with the end-user. This can be done by using the archived stateless image of the

container instead of recovering the current data in the container.

An intelligent orchestration paradigm to decide between migration and re-instantiation

is needed to achieve an optimal solution for placement while lowering downtime. Choosing

the method depends on several network-related constraints to reduce global downtime.

The decision process must also address the type of hosted services within the container

and its compatibility and affinity towards migration and re-instantiation. For example,

the migration should allow the system to recover seamlessly and maintain a high ser-

vice up-time for a container with a stateful application. Comparatively, re-instantiation

techniques are used when it is not necessary to preserve the application states [10]. The

Chapter 3: Optimal Container Migration/Re-Instantiation in Hybrid Computing
Environments 23

recovery method is not controlled solely by the application’s persistence requirement.

Other metrics must be addressed, such as the end-user experience, cost, and security

concerns.

Accordingly, this chapter introduces a novel container orchestrator based on an

integer linear programming optimization model. The goal is to address the challenges

of traditional orchestration and find the optimal placement with minimal downtime in

hybrid computing environments. In addition, due to the time complexity of the optimiza-

tion model, this chapter also introduces a comparably accurate heuristic model capable

of achieving near-optimal results at a fraction of the time and complexity of the opti-

mization model, thereby allowing it to provide real-time orchestration. The presented

solutions are invoked once a failure is detected or deemed imminent. First, the host

captures a snapshot of all hosted containers and generates a list of their given resources.

It then provides a list of dependencies between the containers and similar constraints. A

new placement is then generated using the decision, either migration or re-instantiation,

to minimize the containers’ downtime along with the access delay latency. To this end,

the proposed approach enhances the QoS by minimizing the container downtime and sat-

isfying the carrier-grade requirements of the provided services, namely availability and

performance. The main contributions of this work are summarized as follows:

• Formulate the problem of container migration vs. re-instantiation while considering

edge-related placement requirements such as latency and downtime.

• Develop an intuitive clustering method to generate representative user clusters ca-

pable of reducing solution space-related problems for optimization and heuristic-

based solutions.

• Propose a real-time heuristic model orchestrator capable of providing comparable

results to the optimization model.

• Evaluate the performance of the proposed optimization model and heuristic algo-

rithm in comparison with the greedy migration and re-instantiation algorithms.

The remainder of this chapter is organized as follows: Section 3.2 presents some

of the previous related work addressing this problem. Section 3.3 describes the system

model adopted. Section 3.4 formulates the optimization problem. Section 3.5 presents

Chapter 3: Optimal Container Migration/Re-Instantiation in Hybrid Computing
Environments 24

the proposed heuristic algorithm along with a brief discussion of its complexity. Section

3.6 presents and discusses the results of the system’s performance evaluation process.

Finally, Section 3.7 concludes the chapter.

3.2 Related Works

Current research trends describe a significant interest in exploiting the benefits of

containers within an edge computing environment highlighting a number of critical as-

pects that require the attention of the research community [11]. A number of approaches

were proposed to address the challenges facing the implementation of containers from

both academia and industry.

Hawilo et al. created a solution focused on a specific type of VMs performing

Network function virtualization (NFV) functionalities with the setup assuming all VMs

are housed within a single data center [12]. The developed solution is based on an integer

programming (IP) optimization model orchestrator. The system facilitates the placement

of the virtual network functions (VNFs) taking into consideration different constraints

such as inter-VM relations and service function chain (SFC) delays.

Barbalace et al. introduced a heterogeneous container migration scheme for natively-

compiled containerized applications across compute nodes with differing instruction Set

Architectures [13]. Their focus was on edge computing and migration schemes specifically

to address the issues of stateful services. Their approach produces negligible overhead

most noticeable during migration.

Tiago et al. proposed an analytical model to resolve Service Delay in edge cloud

computing (ECC) systems. The approach seeks to minimize the delay for both commu-

nication and computation elements. The results were compared to models addressing

processing delay only [14]. Although the authors tackle additional types of delays and

have achieved an improvement over traditional methods, the lack of placement, downtime-

related constraints, and delay can be considered a drawback.

Alam et al. leveraged lightweight virtualization to generate a modular solution

that works with the Docker system [15]. Their solution achieved high availability metrics

by relying on the innate redundancies generated by docker with their proposed solution

allowing for on-demand service deployment on heterogeneous architecture layers.

Chapter 3: Optimal Container Migration/Re-Instantiation in Hybrid Computing
Environments 25

Kuljeet et al. addressed the optimization problem by considering that the core

cloud is optimized based on delay and energy with the decision whether or not to offload

to the edge. The multi-algorithm service model operates by jointly allocating workload

assignment based on assigned weights and computation capacities of the respective VMs.

They also implemented a method to ensure the acquired results remain consistent [16].

While their approach is effective, it failed to take into account the network operation,

failures, and containers’ dependencies.

Abdullaziz et al. focused on the migration aspect of container orchestration by

making it a more reliable option [17]. The authors achieved this by leveraging live or-

chestration as a method of achieving low downtime comparable to re-instantiation. Their

method is broken down into two tiers. The first migrates user connectivity, while the

second migrates user containerized applications. They have also addressed the possible

causes of prolonged container migration downtime. Their results boast lower downtime

by up to 50% shorter than that of the state-of-the-art migration.

Oleghe presented in his work [18] the frameworks and algorithms most commonly

used in the container placement problem, the types of containers currently dominating

the edge space, and the heuristic approaches favored in the research community to offer

real time solutions.

Govindaraj et al. followed a similar approach in [19] with a focus on the complex

orchestration of cyber-physical systems. Their work discussed the role of Edge Com-

puting (EC) for factory automation applications. Taking Linux based containers as the

basis, they built a live migration scheme called redundancy migration that reduced the

downtime by a factor of 1.8 compared to the stock migration in Linux containers.

Feng et al. developed a unified mobile edge computing wireless power transfer

(MEC-WPT) design framework with offloading and computing optimization for the edge

while specifically relying on latency constrained computation. They minimized the total

energy consumption subject to each node’s individual computation and latency con-

straints [20]. The authors leveraged the Lagrange duality method to obtain the optimal

solution in a semi-closed form.

Machen et al. took the idea of migrating containers and virtual machines in a lay-

ered format [1]. Their approach using readily available technologies starts by migrating

the non-state related aspects of services or VM and achieved much lower downtimes than

Chapter 3: Optimal Container Migration/Re-Instantiation in Hybrid Computing
Environments 26

traditional methods. The three-layer model also allowed the pre-caching of popular ap-

plications at MECs so that the time required for future instantiation of such applications

can be shortened.

Mansoor et al. developed a classic linear assignment algorithm using computa-

tional nodes and presented a scheme for assigning VMs to data nodes that minimizes

various latency metrics under different constraints [21]. The solution considered variable

total access time allowances, with and without constraints, to showcase the system’s

adaptability.

Vaucher et al. developed a novel Container Orchestrator focusing on addressing

issues such as having the containers being hosted on heterogeneous clusters [22]. Their

focus was security-related issues stemming from the use of Intel-based software guard

extension (SGX) enabled containers on a portion of the containers in a chain, and how to

place them in such a way to maintain its relations to non-SGX enabled containers while

preserving the security of the whole chain.

Manias et al. [23] developed a machine learning-based decision tree model for

optimizing Virtual Network Function (VNF) placement. evaluating a few candidate ML

models focusing on task offloading for network services. The most impactful model is

the decision tree model, as it aids in the effective placement of VNF instances, thereby

enhancing the overall performance and efficiency of service function chaining in network

systems.

The Authors went on and expanded their work in [24] and introduced a novel

DO-DAT algorithm, which focuses on minimizing the end-to-end delay while considering

the depth of service function chains. Addressing the challenges in VNF deployment by

effectively balancing the delay constraints with the network’s topological considerations.

Improving the efficiency of the network service delivery, particularly for delay-sensitive

applications.

However, the solutions listed above focus on the recovery mechanism itself with

focus on either re-instantiation or migration solely. In contrast, our work considers both

potential recovery mechanisms as viable orchestration options. A second limitation of

the related works is that their proposed solutions mostly exclusively consider the edge

or core. This limits the optimality of the solutions to said solution space at a cost

that could favor the users or providers at a time. Our solution considers the joint edge

Chapter 3: Optimal Container Migration/Re-Instantiation in Hybrid Computing
Environments 27

and core orchestration, allowing for a larger and more comprehensive solution space.

Therefore, this work proposes a comprehensive intelligent orchestrator based on an integer

programming optimization model that aims to minimize the impact of migration and re-

instantiation on the containers’ downtime and access delay. Accordingly, the proposed

intelligent orchestration frameworks follow a more comprehensive approach concerning

the recovery mechanisms used, add the core to the solution space to act as an offset, and

select the optimal placement that meets the container’s demands, thereby achieving a

highly optimized solution.

3.3 System Model

This work adopts a hybrid distributed computing environment similar to proposed

works for modern networks. The global environment where the container and hosted

services are placed is comprised of two platform types, namely the core cloud and the

edge devices, as shown in Figure 3.1. The core clouds are typically hosted using server

farms and data centers. This allows for an abundance of resources, both computing and

memory, in these environments. However, the size of the required structures to host

them, the infrastructure, and the human intervention required to maintain them greatly

limit suitable geographical placements in the real world.

Conversely, edge devices are a newly tapped resource that became available in

the wake of the adoption of software-defined networks (SDNs) and similar paradigms.

That relies on the abstraction and virtualization of network functions to allow generic

computing units to act as full-fledged networking units [25]. This presents a challenge

for seeking an abundance of resources while also maintaining low latencies, which makes

the optimization of this problem more crucial.

3.3.1 Physical Resources

The core clouds physically operate from data centers or server farms. The servers

are given abundant resources compared to their edge counterparts. The servers com-

municate with servers housed within the same rack or separate racks within the same

geological location. Cross-core communication is allowed due to the latencies, but it is

not exercised extensively due to the increased complexity [26]. The latencies experienced

Chapter 3: Optimal Container Migration/Re-Instantiation in Hybrid Computing
Environments 28

Figure 3.1: System Model: Core clouds and edge devices hosting service hosting
containers

within the core are kept to a minimum due to the advanced communication backbone

and high bandwidth mediums used between servers, typically fiber-optic cables. The la-

tencies between the core cloud and user are much higher, mainly due to the propagation

delay resulting from the distance between them. The amount of computing power and

memory resources in each server are limited in variation due to the homogeneous nature

of the physical rack servers typically used in data centers.

In contrast, the edge devices are typically either re-purposed communication nodes

such as routers and RSUs, or larger units such as small dedicated edge nodes and 5G

smart towers. The limited physical size of the edge units and the sporadic nature of their

deployment enforces a singular rack structure. The racks typically host a limited number

of servers compared to those found in large data centers. The latencies within the same

rack are similar to those found in the core cloud. However, the delay between the edge

device and end-user is much more negligible than that of the core cloud. The resources

are more limited than those of the core cloud and have a higher variance between each

edge node’s memory and computation resources.

Chapter 3: Optimal Container Migration/Re-Instantiation in Hybrid Computing
Environments 29

3.3.2 Containers

The containers and the hosted services can vary based on their latency require-

ments. This ranges from latency-stringent services, such as those related to financial

transactions and security, to looser requirements, such as those related to text messag-

ing and advertising services. In addition to the containers’ latency requirements, the

required resources are uniquely tailored based on the task they serve. For example,

from high-memory, low-computation in trans-coding 4K videos and AR gaming to high-

computation, low-memory requirements in navigation and sensor processing units.

3.4 Optimal Container Migration/Re-Instantiation

(OC-MRI) Model Formulation

Container recovery combines two tasks with varying complexity. The decision on the

method of recovery for a container between migration vs. re-instantiation followed by a

placement optimization task resulting in an amalgamation that easily qualifies as NP-

hard due to its inherent complexity and the exponential growth of possible solutions with

the increase in problem size. The difficulty arises because there’s a need to evaluate a

vast number of possible configurations to determine the best solution. This evaluation

process is computationally intensive and time-consuming; this can be mathematically

represented as O(MN), where each of the N contain chains can be placed in any of the

M servers. When dealing with large values of N and M, the number of possible placements

increases exponentially, which makes exhaustive searches impractical. Due to this, finding

the exact optimal solution within a reasonable time frame becomes unfeasible for larger

instances, which is typical of NP-hard problems. These characteristics make a classical

mathematical approach infeasible for live orchestration. However, we chose to develop

it as a placement generator for benchmark purposes as well as its integral contribution

to the robust development of supervised AI models in future iterations of the proposed

solution.

Chapter 3: Optimal Container Migration/Re-Instantiation in Hybrid Computing
Environments 30

3.4.1 General Model Description:

The model aims at minimizing two delay metrics. The first is the downtime re-

sulting from the migration or re-instantiation process initiated for a container upon the

imminent failure of its hosting computing node. The second is the access delay caused

by the placement distance of the container to the end-user. The two processes have their

own required static downtime, but choosing a new location has a significant impact on

both the downtime and new access delay, as shown in Figures 3.2 and 3.3. The following

section details how we optimally minimize the downtime within the objective function.

Meanwhile, the access delay is optimally minimized by enforcing costs upon both the

objective function and its related constraints.

• Computational resources constraint: Using this constraint, the proposed model se-

lects the computing nodes that satisfy the containers’ computational requirements.

The resources are CPU cores and available memory.

• Network delay constraint: Using this constraint, the proposed model filters the

nodes to select those that do not violate both the access delay and delay between

master and slave containers in the cloud.

Figure 3.2: Migration mechanism with placement consideration

Chapter 3: Optimal Container Migration/Re-Instantiation in Hybrid Computing
Environments 31

Figure 3.3: Re-instatiation mechanism with placement consideration

• Availability constraints: Each container is classified as unattached for single container-

based services, master, or slave for services that consist of multiple containers work-

ing in a hierarchical set up to perform their tasks. To maintain the usability of QoS

of the overall services offered by various containers, the proposed model defines the

following constraints:

– Affinity constraint: This ensures that the master container and its slaves must

be hosted on the same physical server if the communication tolerance time

between them is lower than the master’s recovery time.

– Anti-affinity constraint: Conversely, the slave containers and their master

should be deployed on different servers if the slave has a higher tolerance

time than their master’s recovery time.

3.4.2 Notations and decision variables:

The developed model relies on the following set of variables as shown in Table 3.1.

The table outlines each variable and how it relates to our problem setup covering all the

types of constraints discussed in more detail below.

Chapter 3: Optimal Container Migration/Re-Instantiation in Hybrid Computing
Environments 32

Table 3.1: Table of Notations

Variable Description
Xce Placement decision variable

Y Dec
c Re-instantiation / Migration decision variables

C Set of containers
Nc Total number of containers
E Set of host nodes
Ne Total number of host nodes
U Set of users
Nu Total number of users.
Rescr Container c computational requirements
Reser Node e computational resources
R Set of computational resources types

CD Set of slave containers

X
original
ce Original placement of the container c

TT
c′ Tolerance time slave container c′

TR
c Recovery time of master container c

SODec
c Container c hosting node’s delay overhead

AccDcu Delay between end-user u and container c
AccDeu Delay between node e and end-user u

DP
c Delay generated from placement of container c

Dee′
ce Delay generated by moving container c from node e to e′

Hmod Delay penalty based on containers’ affinity to migrate or
re-instantiate

DDec
c Delay overhead of migration or re-instantiation decision

3.4.3 Mathematical formulation:

This subsection outlines the binary decision variables, the objective function, and

the model’s constraints.

• Decision Variables:

Xce =

1 if Container c is placed on node e

0 otherwise

Chapter 3: Optimal Container Migration/Re-Instantiation in Hybrid Computing
Environments 33

Y dec two
c =

Y
Mig
c = 1 if Container c Migrated

Y
Mig
c = 0 otherwise

Y Re−inst
c = 1 if Container c Re-instantiated

Y Re−inst
c = 0 otherwise

• Objective Function:

min

Nc∑
c

DownTimec + AccDcu (3.1)

• Boundary constraints:

Xce, Y
Dec
c ∈ {0, 1} ∀c ∈ C, e ∈ E (3.2)

Dec ∈ {Re− instantiation,Migration}

Downtimec ≥ 0; ∀c ∈ C (3.3)

• Placement constraints

Nc∑
c=1

(Xce ×Rescr ≤ Reser); ∀e ∈ E, r ∈ R (3.4)

Nc∑
c=1

(Xce × AccDcu ≤ AccDeu); ∀e ∈ E, u ∈ U (3.5)

Ne∑
E=1

Xce = 1; ∀c ∈ C (3.6)

• Availability constraints

(Xce + Xc′e) ≤ 2 or (Xce + Xc′e
original) ≤ 2; (3.7)

∀e ∈ E, c ∈ C, c′ ∈ CD, TT
c′ ≤ TR

c

Chapter 3: Optimal Container Migration/Re-Instantiation in Hybrid Computing
Environments 34

(Xce + Xc′e) ≤ 1 or (Xce + Xc′e
original) ≤ 1; (3.8)

∀e ∈ E, c ∈ C, c′ ∈ CD, TT
c′ ≥ TR

c

• Re-instantiation/Migration delay constraints

Y Re−inst
c + Y

Mig
c = 1; ∀c ∈ C (3.9)

DP
c = Xce ×

Ne∑
e=1

X
Original
ce ×Dee′

ce

 ; ∀c ∈ C (3.10)

DDec
c = SODec

c × Y Dec
c ; ∀c ∈ C (3.11)

Downtimec = DDec
c + DP

c + Hmod; ∀c ∈ C, (3.12)

Dec ∈ {Re− instantiaion,Migration}

Constraint (3.2) determines that the placement and re-instantiation/migration de-

cision variables are binary. Constraint (3.3) determines that the container downtime must

be a positive number. Constraint (3.4) determines that the candidate computing node

must meet the computational requirements of the potential container. Constraint (3.5)

specifies that the access delay to the container is less than the threshold access delay of

the corresponding container. Constraint (3.6) determines that only one computing node

can host a container.

The containers in the solution space are classified as three types:

1. master: a container that relies on input from subordinate containers to finish its

operation.

2. slave: a container or group of containers that are needed by others to operate but

require no inputs for others to operate normally.

3. free containers: stand-alone single container services.

Chapter 3: Optimal Container Migration/Re-Instantiation in Hybrid Computing
Environments 35

To maintain the interdependent relationship between different containers, constraints

(3.7)-(3.8) determine if a container placement is dependent on its relation to its possible

slaves. Thus, it either forces all related containers to a suitable physical location or

allows them to be placed more freely. Furthermore, constraint (3.9) determines that

a container can be either migrated or re-instantiated. Finally, constraints (3.10) and

(3.11) determine that a container should be placed on a server that satisfies the delay

requirements while minimizing the migration or re-instantiation overhead. Based on the

previous constraints, the model selects to either migrate or re-instantiate each container

to minimize its downtime. Lastly, constraint (3.12) shows that the downtime of each

container is calculated in terms of the placement latency and the overhead delay resulting

from the choice of recovery process offset by the Hmod modifier. This is based on the

container’s type, the critical nature of its state, or the information it holds controlling

its affinity to re-instantiate or migrate.

3.4.4 Implementation

The proposed model is implemented using python environment for ease of use

during experimentation. For the objective function in eq. (3.1), the values for both

latency and downtime are generated based on the simulation environment created. At the

same time, the resources-based constraints are predetermined based on the environment

size and allocated edge devices. Finally, the generated matrices based on the container

types are generated to include a portion with inter-dependencies to be used in constraints

(3.7)-(3.8).

3.4.5 Complexity

Although integer programming problems can be solved using traditional branch

and bound algorithms [27], these problems are typically classified as NP-complete [28].

This is further emphasized by the size of the problem’s search space. Accordingly, the

problem’s search space can be estimated to be 22×Nc×Ne where Nc is the total number

of containers and Ne is the total number of host nodes. This is due to the fact that

there are 22 possible values (migrate or re-instantiate) for each container to be placed

at each host node. For example, for the case of Nc = 10 and Ne = 5, the search space

Chapter 3: Optimal Container Migration/Re-Instantiation in Hybrid Computing
Environments 36

is 1.267 × 1030. Therefore, finding an optimal solution for this problem in a real-world

scenario can be computationally infeasible due to the exponential growth in the search

space size. Thus, a low-complexity heuristic algorithm capable of live decision-making is

needed to address this problem.

3.5 Edge Computing-enabled Container

Migration/Re-Instantiation (EC2-MRI)

The optimization model has allowed us to find the optimal placements through or-

chestration to achieve carrier-grade quality, whereby the mathematical model focused on

satisfying different criteria, mainly downtime and latency. While successful at achieving

optimal results, the model is computationally complex. This drawback is mainly due to

its lack of scalability, as illustrated by the aforementioned complexity analysis. Without

real-time orchestration, it is counter-intuitive to offer the system in its current state for

orchestrating highly dynamic environments, such as mobile edge computing due to the

following:

• The need for total access to the solution space for proper orchestration.

• Treatment and optimization of users and containers as individual unique elements.

• High computational time and significant resources required to perform the orches-

tration task.

Given that downtime is the primary optimization objective, the model’s orchestra-

tion processing time must be taken into consideration. This additional delay is especially

significant when considering the highly mobile nature of edge users, and the sporadic

nature of SDN and 5G based edge devices where it may become detrimental. The op-

timization model cannot be retrofitted or adjusted in a way that would address all the

aforementioned issues while maintaining its accuracy. A better lightweight real-time so-

lution is thus required. We choose to pursue a heuristic-based approach due to its flexible

nature and capability of handling frequent changes to the network. They can also cir-

cumvent the global environment’s staggering size and its effect on any system’s ability to

provide seamless orchestration unnoticeable to the end-user. Orchestration can benefit

Chapter 3: Optimal Container Migration/Re-Instantiation in Hybrid Computing
Environments 37

from taking place within the edge environment by removing the communication over-

head of offsite orchestration. This design aspect minimizes the additional delay caused

to the orchestration communication overhead by a core cloud that is typically required

when done using the centralized approach. This requirement is addressed by limiting the

heuristic model’s complexity, thus allowing it to run on the edge environments, eliminat-

ing the drawback. However, to achieve this, the overall solution space must be segmented

into isolated sub-spaces to maintain the required low complexity.

The requirements above present their own set of challenges when creating the

heuristic model. To address them efficiently, the system’s behavior is comprised of two

main stages. The first intends to run offline and sporadically, and focuses on simplifying

the solution space by tackling the number of elements through clustering and chaining.

It also further simplifies the problem by segmenting the generated clusters and chains

based on their interactions and proximity to each other. This stage is intended only as an

environment initialization point. It is a fail-safe when the existing edge-space results in

many failures that indicate a considerable divergence from the last segmentation cycle.

Its offline nature gives it access to core cloud environments’ exclusive resources, espe-

cially the abundance of low-cost computational power and access to the global solution

space. Figure 3.4 shows the breakdown of the undertaken task. Firstly, the generation

stage is where the solution space is simplified, followed by the auditing stage where the

User solution space

•Edge viable representative users
for each cluster

•Free agents under core control

•Candidate
representatives

•Number of clusters

End user
reverse

clustering

•Container chains

•Anti chainsContainer
chaining

offline
Generation stage Auditing stage Finalization stage

User clusters

• Mobility & latency
violations

Container chains

• Resource violations

Container solution space

•Edge viable container chains

•Core controlled container chains
and attached free agents

Figure 3.4: User and container solution space setup

Chapter 3: Optimal Container Migration/Re-Instantiation in Hybrid Computing
Environments 38

candidates are vetted for accuracy and reliability. Lastly, the finalization stage is where

the heuristic assigns control of the outputted elements to the best-suited orchestration

controller, as discussed below.

3.5.1 Generation Stage

The live requirement placed on the edge-computing container migration/re-instantiation

(EC2-MRI) model demands limited complexity. However, relying on a greedy or simi-

larly generic approaches, while boasting the highly sought-after simplicity, not only do

they not guarantee near-optimal placements, their output can vary vastly. To achieve

our target of matching the placement benefits of the OC-MRI model, we must first solve

the solution space size issue. This solution can be achieved by reducing and segmenting

the solution space into isolated and self-managing subspaces.

3.5.1.1 User clustering

The OC-MRI is allotted several concessions regarding the edge user’s main dis-

tinguishing attributes since it was not developed as a live orchestrator, with the main

concession being its ability to ignore the mobility of user clusters. However, the heuris-

tic approach cannot follow suit. As such, the process of generating the user solution

space must be given additional attention. This is to ensure that the system is gener-

ating a healthy and stable solution space and not fall into a counterproductive cycle of

”build-to-fail” environments. This outcome will keep triggering the offline stage more

frequently, with little actual orchestration taking place. When generating a new edge

space, simply permitting all users entry into the space as individual entities lacks scala-

bility and reproduces the OC-MRI’s drawbacks in our heuristic solution. On the other

extreme, using advanced clustering techniques can be too time-intensive even for offline

operations. Their high granularity will also steer the solution back towards the build-to-

fail state. We address these hurdles in an intuitive approach by first subjecting the user

solution space to the subtractive clustering process. This process generates the clusters

necessary to provide coverage for the overall solution space and a corresponding list of

representative candidate users acting as the centroid of their host cluster. While not

highly complex, this clustering method has been implemented several times and proven

Chapter 3: Optimal Container Migration/Re-Instantiation in Hybrid Computing
Environments 39

to work well. It was used most recently in the research efforts within 5G ultra-dense net-

works [29]. The main premise is segmenting user space to ensure the distance between

the candidate clusters is significant by raising the Squash factor related to the overall

user space and adjusting the Accept/Reject ratios based on the average mobility index

of the users occupying each edge space.

The results of the subtractive clustering process are a number of disjoint clusters.

From said list, we choose a candidate that is near the center of the generated segment

to act as the representative user for the purposes of generating the audit threshold value

and the mobility audit as well. After the centroid list is generated, we apply a straightfor-

ward rigid distance-based clustering that produces a radial border around the centroid.

This captures as many users adhering to equation (3.13) where S is the user’s diameter

coordinate space divided over the number of potential clusters. T is an integer variable

ranging from 1 to 3 representing the mobility of each user (stationary, pedestrian, vehic-

ular) and I represents the tolerances of the users present in the overall user space. This

equation is used to limit the cluster upper limits in both the physical coverage area and

the number of users hosted. It also nearly eliminates the presence of build-to-fail user

clusters scenario.

Maxclusteringdistance = (STunclustered − SImin) (3.13)

3.5.1.2 Container chaining

The optimization model allowed containers with links to exist on multiple edge

devices given the tolerances outlined in equation (3.7). The heuristic model cannot handle

such complex tasks as the placements and interactions can easily grow in complexity quite

rapidly. To address this issue, a reduction step similar to what was done in the user

solution space is implemented. Unlike the user solution space, segmenting and clustering

are not required in their traditional meaning. Instead, containers are chained together

based on their affinities as shown in Algorithm 1.

3.5.1.3 Chain generator

The chain generator aims at maintaining the size and complexity requirements of

the second algorithm. Individually orchestrating the containers will be difficult. Thus,

Chapter 3: Optimal Container Migration/Re-Instantiation in Hybrid Computing
Environments 40

the algorithm generates a master list of all container chains based on the affinity con-

straint (3.7). Container chains are then clustered into singular entities and assigned new

IDs. The new format changes the IDs from integers to floating variables with the integer

digits representing the cluster ID and the fraction digits preserving the container unique

IDs. Anti-affinity is then generated based on constraint (3.8). Once the key elements

of the table are generated, the corresponding computational requirements for each con-

tainer chain is amended based on the aggregated value of contained clusters. Lastly, an

affinity binary variable is generated based on the highest Hmod modifier for each cluster

chain. While this approach guarantees a semi-optimal solution, it is still limited by the

loss of multi-host based solutions due to the over simplification of the affinity constraint

to maintain a lower complexity in the latter algorithm.

Algorithm 1 Chain Generator

Input: C = {1, 2, .., |Nc|}, CD, Segment tables
Output: Cluster & Anti Cluster tables
2: for e ∈ Clustertables(i) do
3: for c ∈ Nc do
4: if (Xce + Xc′e) ≤ 2 or (Xce + Xc′e

original) ≤ 2 then
5: Rename c to ChainID.c
6: update CnChainTable(u(i))
7: end if
8: if (Xce + Xc′e) ≤ 1 or (Xce + Xc′e

original) ≤ 1 then
9: update AntiCnChainTable(u(i))
10: end if
11: end for
12: end for
13: return Cluster & Anti Cluster tables

3.5.2 Auditing stage

Once the users have been placed into clusters and the containers have become

grouped into more monolithic chains, we have to ensure the feasibility of our new solution

space in various aspects. We begin addressing this with the user clusters. Two major

causes of failure have to be avoided. First the tolerance offset from the representative

user violates that of the masked user (cluster host user). The second is a preventative

step to avoid immediate failures related to mobility of the users. To address this issue,

Chapter 3: Optimal Container Migration/Re-Instantiation in Hybrid Computing
Environments 41

an auditing threshold is first enforced on each cluster guided by the following equation

(3.14) where I is the mobility index of the user and i is the cluster number:

Auditthreshold = (Maxiclusteringdistance/2) − I (3.14)

Once the auditing threshold is invoked, all users found in violation of it, based on

their tolerances or mobility, will be checked to ensure that they can remain members of the

cluster and the representative user can be an effective stable substitute. Failed users are

pulled from their host cluster and designated as a free agent under the control of the core

until the next clustering cycle. The next cycle is triggered periodically or when triggered

based on significant degradation in the EC2-MRI performance. The degradation can be

caused by significant changes in the host devices’ number and available resources or the

live portion of the auditing stage offloading a more extensive than allowed number of

users from the clusters to become free agents under the direct core cloud control. Figure

3.5 illustrates the generation of a threshold and an example of a mobility violation-based

user expulsion.

Container auditing on the other hand is relatively more straightforward. By using

the overall size of the container chain, it checks to ensure that the available containers are

placeable while maintaining the latency constraints. In addition, to maintain feasibility

through multiple iterations, a resource-specific over-provisioning is enforced. The margin

limits the maximum resources for a container and removing a whole chain ensures that

the remaining chains remain hostable. This approach is necessary given the relative

opportunistic nature of the used placement algorithm and to avoid build-to-fail states.

Any chains found to be violating this threshold will be removed along with their attached

users from the clusters.

3.5.2.1 Edge device allocation stage

Once the auditing stage is finalized, the edge devices that can house the remaining

cluster chains are polled sequentially and an ordered candidate list is prepared based on

Algorithm 2.

Chapter 3: Optimal Container Migration/Re-Instantiation in Hybrid Computing
Environments 42

Figure 3.5: Auditing stage, the red portion highlights the margin of mobility violation

Algorithm 2 Segmenter

Input: E = {1, 2, .., |Ne|}, U = {1, 2, .., |Nu|}
Output: Segment tables

2: for u ∈ Nu do

3: for e ∈ Ne do

4: if Dp(e(i)) < UserCluster(MaxTolerance) then

5: update SegmentTable(u(i))

6: end if

7: end for

8: Sort SegmentTable(u) based on latency to u(i)

9: end for

10: return Sorted Segment Tables

Segmenter: Generates a single dynamically sized table of candidate edge devices

Chapter 3: Optimal Container Migration/Re-Instantiation in Hybrid Computing
Environments 43

based on their availability within a user latency allowance. The table size is based on the

highest latency threshold. This can result in a significantly large table in cases of densely

placed servers coupled with loose latency requirements, which is addressed in step 4.

The chain generator is polled for each region after all the tables have been generated

to eliminate any edge devices deemed incapable of containing the generated container

chains. The servers are then organized based on latency and computing power. Then,

only the top candidates for each region are maintained and the rest are discarded. The

number of top candidates maintained is based on the density of edge devices found in

each region.

3.5.3 Edge-Controlled Live Orchestration Placement Stage

The model is trigger-activated once a container or VM signals a failure or fails to

respond, enacting Algorithm 3. Starting from the hosting edge node, an iterative check

of the candidate table is initiated. This is followed by sequential requests based on their

ranking. The requested edge devices check their computational availability and their

currently hosted containers for any anti-affinity violations. If none are found, the request

is approved and the algorithm terminates. If the table is exhausted with no solutions, the

edge device raises the request to the core hosting secondary algorithm to orchestrate a

viable solution. At this stage, the drawbacks of the clusters in the first stage are rectified,

but the container chain is removed from the candidates list for that region until the next

periodic operation of the provisioning stage.

3.5.4 Core-controlled Live Orchestration Placement Stage

The heuristic chooses to treat a container differently if it is a free agent from the

start or was removed due to repeated failures. This method maintains overall system

complexity. However, relying on a generic approach, such as a greedy migration or re-

instantiation, would be deemed counter-intuitive because it can keep victimizing a group

of users to an unhealthy edge device or a sub-optimal latency. To address this, the core

can make use of its abundance of resources to orchestrate such stragglers using the original

methods outlined in the OC-MRI model. The main limitation of the optimization model

was the lack of scalability with relation to the solution space. However, while acting as

Chapter 3: Optimal Container Migration/Re-Instantiation in Hybrid Computing
Environments 44

Algorithm 3 Orchestrator

Input: Cluster & Anti Cluster tables, Segment tables, ChainID.c
Output: placement request
3: for i =< sortedsigmenttablesize do
4: while Xsu ̸= 1 do
5: find dcsu = min

c ∈ Cu
{ 1
|V |

∑
v∈V

dcs,v}

6: if ChainID ̸= AntiClustertable(i) then
7: if candidate resource allowance > ChainID resource requirments then
8: poll candidate
9: if placement successful then
10: EXIT
11: end if
12: end if
13: end if
14: end while
15: end for
16: if no candidate found then
17: remove ChainID.c from Cluster, Anti Cluster tables, and Segment tables.

orchestration raised to core cloud controller
18: end if
19: return

a backup to the EC2-MRI model, this is no longer a requirement. When orchestrating

has either failed during the live stage or in the case of the free agents, the core can

use the distance S to create the solution space limits for a single user and perform live

orchestration. The core can tackle this orchestration in two methods based on the number

of entities under its control at the instance of a failure:

1. Use the free agent’s tolerance to generate the solution space.

2. Use the distance S to generate a slightly complex solution space and optimize all

controlled nodes within the influenced region.

3.5.5 Complexity

In contrast to the OC-MRI model, the proposed EC2-MRI heuristic has taken a

number of steps to avoid such a limitation and focused on achieving a lower computational

complexity, even with the discussed two stages. The overall complexity is governed by

the complexity of each of the stages. The complexity of the first stage being O(Nu ×

Chapter 3: Optimal Container Migration/Re-Instantiation in Hybrid Computing
Environments 45

Ne +Nc×Ne) where Nu is the number of users, Ne is the number of host nodes, and Nc

is the number of containers to be placed. However, since this is done only once offline,

this will not impact the system’s overall complexity. On the other hand, the complexity

of the second stage is O(Nc × Ne) under the assumption of the worst case being that

each container is placed freely with zero affinity. Thus, the overall complexity is linear

in the number of containers and host nodes. Using the same values as in the previous

example, the complexity would be in the order of 50 operations.

3.6 Performance evaluation

To best test the two solutions put forth, a suitable device is necessary for both

bench-marking and environment simulation. To evaluate the performance of the proposed

solutions, a physical workstation with 6 Cores and 12 threads of CPU, a 11 GB GPU,

and 32 GB of RAM is used to build the simulation environment and implement both the

OC-MRI and EC2-MRI models.

Three simulation environments of varying size are implemented to represent set-

tings from sporadically populated to densely populated edge environments and to better

represent and highlight the variable nature of edge environments. Once the simulation

environments are properly populated, both models are tested in contrast to two generic

algorithms, namely greedy re-instantiation and migration. These greedy algorithms are

introduced to act as base benchmarks to highlight each of the proposed models’ benefits

and drawbacks. The algorithms’ behavior is created through assigning a higher affinity

to either the migration or the re-instantiation decision variables to force the intended

behavior without allowing for non-solvable states. The resulting latency and downtime

generated by each orchestration approach is measured from the users’ point-of-view to

act as the main metrics for the models’ performance. In addition, other metrics specific

to the clustering algorithm are presented to highlight the efficacy of the proposed cluster-

ing approach. Finally, given that the EC2-MRI is the only implantable solution, further

discussion and metrics related to its inner modules are presented.

Chapter 3: Optimal Container Migration/Re-Instantiation in Hybrid Computing
Environments 46

3.6.1 simulation environment

A number of simulation environments are generated to perform the most compre-

hensive method of testing the two models and the bench markers, with equal distribution

to each size as shown in Table 3.2. Accordingly, the simulation environment is generated

through five stages starting with the user clusters, core placement, edge devices, resource

allocation, and finally container placement. Before any testing takes place, the earlier

seeding of the users and containers gets remapped based on their cross latencies where the

distance between any related entities such as core cloud and edge device is represented

as distance. The only caveat is for any communication taking place over the core-edge

separation region, typically between core cloud and edge devices or end-users, will incur

a flat latency penalty to represent the typical lag of traditional network backbone, which

we are trying to minimize.

Table 3.2: simulation environment size

edge core user clusters

small 15 2 4

medium 55 3 12

large 125 3 21

3.6.1.1 User Cluster Seeding

The EC2-MRI offline stage’s related processing delay is not taken into account to

maintain objectivity, as the users’ clusters assumed to be present in the OC-MRI are used

from the output of the EC2-MRI finalization stage. Additionally, all processing time for

the models left are ignored when measuring the downtime to focus on the orchestration

effect alone. However, the heuristic failed call and response attempts are included as

they are not deemed to be related to processing and are an integral part of the heuristic

model’s behavior.

The user clusters are generated based on the user clustering algorithm outlined

in Section 3.5.1.1 of the heuristic model. Each cluster is occupied with a minimum of

five users and capped at 25 users. To ensure proper clustering, a randomized mobility

metric is attached to the users while ensuring that no highly mobile users are also given

Chapter 3: Optimal Container Migration/Re-Instantiation in Hybrid Computing
Environments 47

stringent latency requirements. This is done to maintain the solvability of the solution

space for all algorithms and maintain the practicality of the simulation environment.

Once the clustering and auditing stages are completed, separate sub spaces are generated

around each cluster. As shown in Figure 3.6, the outline of core edge latency barrier is

highlighted along with the representation of the user clusters and free agents. At this

stage, the only restriction aside from only seeding in the edge space is the overlapping

between user clusters, where the smaller clusters are quashed and made into free agents.

This step is enforced to ensure that no unrealistic latencies occur in the later stages of

simulation environment setup given that the edge devices are generated related to the

cluster centroid.

Figure 3.6: User clusters seeding and core edge latency penalty

Chapter 3: Optimal Container Migration/Re-Instantiation in Hybrid Computing
Environments 48

3.6.1.2 Core Cloud Seeding

The core clouds are first assigned a location within the core designated space.

Following this, a number of servers will be assigned to each of the cores to represent

tray workstation style devices with minimal latencies. Once the servers are assigned to

a distinct core, they are then designated to their specific racks within each core. This

generates the necessary latencies within the data centers and between the core clouds and

user clusters. The delays generated by their placement within the core are not represented

in the latency map. But to maintain accuracy, a latency for inter-rack communication is

randomly assigned in the range of 2-5ms, and 7-10ms for cross-rack communication.

Figure 3.7: Edge device placement with respect to user cluster

3.6.1.3 Edge Device Seeding

The edge devices’ placement in the vicinity of the user clusters impacts both the

possible size of the edge device and its offered resources. The sizes of used edge devices

fall into three generalized tiers: small for devices such as routers, medium representing

devices such as an RSU, and large for devices similar in size and capability to 5G towers.

Chapter 3: Optimal Container Migration/Re-Instantiation in Hybrid Computing
Environments 49

The probability of these placements has been controlled as shown in Figure 3.7. The

regions are split based on their latency with respect to the user clusters. The mapping-

based latency uses a scale from 10ms to 32ms representing typical edge latencies within

levels 2-4 of 5G environments as outlined in [30]. The distribution for each edge device

type is static in all simulation environments generated. The ratios for each used type as

shown in Table 3.3 outline each region’s ratio for total device types from the main pool

based on the assigned percentage.

Table 3.3: Edge device size-based placement

Region

Edge Device Size First Second Third

Small 70% 20% 0%

Medium 30% 65% 35%

Large 0% 15% 65%

3.6.1.4 Resource Allocation

The available resources for services are categorized as either computational power

or memory. The edge devices will have an abundance of either but not both. The unit

of measure for both will be in their capacity to meet the demands of a singular small

container of either type. Table 3.4 shows the allocation based on the size and type.

Table 3.4: Edge node resource Availability

Computation affinity Memory affinity

CPU Memory CPU Memory

Small 4 2 2 5

Medium 9 5 5 9

Large 15 7 8 13

Core 18 12 18 12

3.6.1.5 Container Placement

The containers are categorized through a similar method to the resource allocation

based on the size requirements and their resource affinity. Table 3.5 shows the relation

Chapter 3: Optimal Container Migration/Re-Instantiation in Hybrid Computing
Environments 50

between their size and the required resources. However, they additionally require a

latency threshold. The containers are assigned affinities to represent container chains

performing a singular service where cross communication is required, then the latencies

between them are restricted. Once the containers are randomly distributed between user

clusters, the downtimes assigned to each container relates to its type and size with values

ranging from 2s to 5s with additional time tacked on GPU heavy containers following

the approach in testing used in [31]. The aforementioned affinities and overall latency

requirements are adjusted based on the length of the chain to maintain both solvability

and plausibility. Finally, a 15% anti affinity is assigned to any container not belonging

to the same chain. These probabilities are maintained throughout the general testing.

Table 3.5: Container resource requirements

Computing affinity Memory affinity

CPU Memory CPU Memory

Small 2 1 1 2

Medium 4 2 1 4

Large 7 4 2 6

3.6.2 Downtime and Latency analysis

Both the latency and downtime are generated by the placement distance in the

latency mapping during edge device seeding stage. The ranges used stem from typical

downtimes expected with general current memory based migration techniques [32][33].

The downtime used as input for the models tests relies on the type of container recovering

along with the transfer time associated with the typical size of said containers.

3.6.2.1 Downtime

The proposed optimization and heuristic models are bench-marked against two

base greedy algorithms. The models experience a highly varied downtime response when

transitioning between the small towards the large simulation environments. The resulting

range of downtime experienced has been divided into 10 segments of equal length to better

contrast the different models’ behavior within each time range. The OC-MRI, as is shown

Chapter 3: Optimal Container Migration/Re-Instantiation in Hybrid Computing
Environments 51

in Figure 3.8, performs best in the sporadic environments with high adherence to the

effect of the container type modifier Hmod, with a majority of placements falling within

the 3.25 to 4.75 seconds range. The optimization model maintained great performance

throughout with minimal additional lag even when expanding to the medium and large

simulation environments, peaking at 4 and 5.5 seconds, respectively.

Figure 3.8: Downtime distribution OC-MRI

Following the performance of OC-MRI, the heuristic based approach used in EC2-

MRI performed comparably well with respect to downtime as shown in Fig. 3.9 boasting

similar results. However, it is noteworthy that it experiences a consistent dip in the place-

ment opportunities within the initial 2.5 second range. This is attributed to two factors,

the monolithic chains presence making the use of the low latency of small edge devices

less likely due to their limited resources, and the presence of conflicting modifier Hmod

values within a single chain both leading to higher latencies. Finally, the performance

of the base bench marking algorithms has resulted in a much higher downtimes with

very limited placements in the first 1.5 seconds totaling less than 25% for all simulation

environment sizes combined in each algorithm as shown in Figures 3.10 and 3.11.

Overall, the OC-MRI model maintained the lowest downtime values throughout the

Chapter 3: Optimal Container Migration/Re-Instantiation in Hybrid Computing
Environments 52

Figure 3.9: Downtime distribution EC2-MRI

Figure 3.10: Downtime distribution greedy re-instantiation

Chapter 3: Optimal Container Migration/Re-Instantiation in Hybrid Computing
Environments 53

Figure 3.11: Downtime distribution greedy migration as per [1]

latencies with high adherence rate to the Hmod. The heuristic approach, while showing

a few drawbacks related to container chaining, still maintained comparable downtime

values to the optimization model. The greedy algorithms using the Hmod modifier were

turned into a forced migration orchestration modeling the behavior similar to the recovery

method in [31] had significantly higher downtime regardless of the effect of the container

type. This is due to their simplistic approach, ignoring the container requirements, and

relying solely on their pre-configured biases.

3.6.2.2 Latency

Similar to downtime, the minimum and maximum latencies generated by all models

were used to create 10 time-based segments to allow for better contrast when comparing

the models’ behavior to each other with each latency range. The latencies offered by the

OC-MRI followed a similar trend to its performance in the downtime metric with great

distribution heavily weighted towards lower latencies as shown in Figure 3.12. While the

performance between the small and medium simulation environments was comparable,

a significant lag was generated during the large simulation environment bench-marking

Chapter 3: Optimal Container Migration/Re-Instantiation in Hybrid Computing
Environments 54

Figure 3.12: Latency experienced by the user, OC-MRI.

with a noticeable reduction in the placement opportunities in the lower latency thresholds.

The performance of the EC2-MRI favored the middle range of latencies with a slight offset

towards the upper range in the large simulation environment stage as shown in Figure

3.13. This can be attributed to the necessary shift away from the user caused by the

container chaining favoring the middle and large sized edge computing units.

Both base benchmark algorithms have shown inconsistent latency response to the

increase in the simulation environment size. The results of the greedy recovery mech-

anisms were heavily weighted towards the upper 4ms with little to no change in the

distribution throughout the testing process as shown in Figures 3.14 and 3.15. The

distribution notices a failure to allocate proper placements when approaching the outer

region of the edge space adjacent to the core with the Hmod variable impact on their

operation becoming more negligible. While the EC2-MRI has consistently achieved com-

parable results to the OC-MRI optimal placements, the cost of reducing the size of the

solutions space through container chaining remains an obstacle. A better approach such

as splitting the larger chains or restricting the chaining of medium and large containers

can be beneficial, but at the cost of increasing the complexity and size of the solution

space. Another approach to investigate is more offloading of reliable containers onto the

core.

Chapter 3: Optimal Container Migration/Re-Instantiation in Hybrid Computing
Environments 55

Figure 3.13: Latency experienced by the user, EC2-MRI.

Figure 3.14: Latency under greedy Re-instantiation orchestration

3.6.3 Heuristic Analysis

While the heuristic model has a call and response aspect to it with regards to con-

firming placement availability before attempting to migrate or opting for re-instantiation,

Chapter 3: Optimal Container Migration/Re-Instantiation in Hybrid Computing
Environments 56

Figure 3.15: Latency under greedy Migration orchestration as per [1]

this behavior will naturally create additional overhead delay that can prolong downtime

beyond preset tolerances. To investigate the amount of delay generated from this aspect

of the model’s functionality, Figure 3.16 shows the percentages a solution was achieved in

the first two iterations for varying cluster sizes. The testing was focused on the amount of

clustering for each simulation environment to ensure better stress testing through forcing

longer chains to compete for a lower number of viable edge-devices capable of hosting the

chains as a singular object. As shown, the system maintained a high success rate despite

the varying chain lengths with little degradation when stress testing under a high rate of

container chaining of 60%.

The heuristic approach segmentation is based on a unified set of clustering tech-

niques that don’t differ significantly regardless of the addressed simulation environment

size. This approach is necessary to limit the complexity of the system and the variable

nature of the simulation environments. The clustering techniques used showed minor im-

provements regardless of simulation environment size compared to the OC-MRI model.

This is most visible in figures 3.9 and 3.13.

The clustering stages’ accuracy has a direct impact on the EC2-MRI downtime and

Chapter 3: Optimal Container Migration/Re-Instantiation in Hybrid Computing
Environments 57

small meduim large

Test bed size

0

20

40

60

80

100

120

H
it

ra
tio

 w
ith

in
 tw

o
ite

ra
tio

ns

30% clustering
50% clustering
60% clustering

Figure 3.16: Successful placement within the first two iterations of the EC2-MRI

latencies through two means. Beginning with the clustering accuracy as shown in Table

3.6, the system’s setup stage’s ability to cover the solution space efficiently, creating

reliable clusters, is of high importance. But another aspect that needs to be taken into

account is the number of free agents generated as the overhead of core based orchestration

is best avoided when aiming for lower downtimes. The table shows a high ratio of edge

controlled clusters regardless of the simulation environment size, with free agents’ ratio

never reaching 20%.

Table 3.6: Clustering accuracy

Clustering pre-audit

simulation environment Size
User clusters

edge control

Free agents

core control

Small 92% 8%

Medium 84% 16%

Large 86% 14%

Chapter 3: Optimal Container Migration/Re-Instantiation in Hybrid Computing
Environments 58

Table 3.7: Effect of auditing on error avoidance

EC2-MRI edge fail
simulation environment Size No audit Audit
Small 4 0
Medium 12 5
Large 28 7

The audit stage of the offline setup stage requires a dedicated metric when testing

its efficacy. To measure its effectiveness, an isolated test run on all three simulation envi-

ronments is performed with and without the auditing module. This was done to check the

changes it evokes in the number of failure-generated free agents. As shown in Table 3.7,

the audit stage is able to offload all errors within the small simulation environment and

approximately 40% and 25% reduction during the medium and large tested, respectively,

greatly lowering the cases or unplaceable container user pairs offloaded as free agents in

the orchestration stage.

3.7 Conclusion

Proper placement of edge services has become increasingly critical for both network

service providers (NSPs) and end-users. This work explored container orchestration in a

hybrid computing environment. The various challenges hindering container edge adoption

were identified and discussed. The work presented two solutions while providing detailed

insights on system modeling and building blocks of a container orchestrator. The first is

an integer programming optimization model, namely the OC-MRI model, that addressed

the container orchestration between edge devices and core clouds. The model adhered to a

number of performance and availability-aware constraints. The main target of the model

was to achieve minimal downtime for fault recovery through calculating the decision

variable to either re-instantiate or migrate. The model also achieved lower latencies as

a secondary objective indirectly enforced through the manipulation of constraints and

impact of the downtime variable. Although the proposed model minimized the downtime

and provided noticeable improvements to the latencies, it remained limited by its lack of

scalability and prohibitive time complexity, making real time implementation infeasible.

To address this issue, a heuristic solution was presented through the EC2-MRI

Chapter 3: Optimal Container Migration/Re-Instantiation in Hybrid Computing
Environments 59

model. The algorithm consisted of two stages to maintain the overall system’s ability to

run in real time. The two stages allowed for the highly complex portions to be run on the

core cloud where computation resources are abundant and inexpensive while the latter

stage is implemented on the edge devices where real time decision making is required and

computation resources are scarce. Additional metrics were used to critique the system’s

unique modules and their impact on the overall system’s accuracy to better highlight the

benefits of the EC2-MRI algorithm.

Using the current results as a starting point, we aim to convert the optimization

model into a multi-objective one. This move is necessary to address the issue of the

optimization cost of running the edge device as they have highly variable costs stemming

from their placement and unit size. Another possible improvement is the use of the Hmod

variable. To better utilize it and avoid conflicting magnitudes in container chains, it is

best to convert it into a multiplier type modifier (values below 1 representing ranges of

affinity to migrate, and values above 1 representing re-instantiation) to allow for better

granularity when assigning affinity.

In terms of the heuristic model, the EC2-MRI is currently only reactive. However,

a reactive approach is the natural path when aiming to lower downtime. We must

first address the behavior of the system in a dynamic environment to better adjust the

system. The best approach to address this issue is to start with a mobility model capable

of identifying changes in the trajectories of the user clusters using the current method

of subtractive clustering and making adjustments to maintain the lowest latency and

highest robustness. To develop these venues of research, a heterogeneous intelligent

mobility model will be necessary. Unlike the conventional mobility models currently

used, we propose to use a restricted path based model that will not allow for free motion.

Instead, a preset map of restricted paths representing roads and pedestrian pathways

within streets or large building such as malls and stadiums, where edge computing faces

the highest demands, will be developed. Lastly, we aim to use the input of the OC-MRI

and EC2-MRI to train a machine-learning based model to investigate its efficacy as a real-

time solution when compared to the EC2-MRI from both an accuracy and complexity

point of view. This is paramount given the time-based nature of the solution and the

necessary orchestration to account for failure recovery and users leaving and entering

predesignated statically assigned clusters.

60

Chapter 4

Mobility Aware Edge Computing

Segmentation Towards Localized

Orchestration

4.1 Introduction

Edge Computing was introduced to allow data processing in its locality to bypass

the network backbone overhead [34]. The initial design relied on dedicated servers placed

near the end-users. The design was short-lived as the number of users and services

employing the design grew too quickly. This is highlighted by the increase in global mobile

data which is projected to grow 7-fold, with annual traffic almost hitting one zettabyte,

according to Cisco’s most recent annual report for the period (2018-2023) [35]. This led

to the development of network virtualization and 5G networks [36]. Their development

helped the edge computing paradigm adapt to expected growth by allowing the services to

run seamlessly on existing edge devices and idling networking infrastructure [37]. Hence,

edge computing grew from a minor portion of the entire network into a significant part

of it that is no longer a homogeneous set of servers, such as those found in core clouds.

Proper management of the edge computing environment became an attractive research

problem [5, 38]. The concept of dynamically shifting services to serve users better emerged

in edge computing orchestration. The orchestration of services in the edge environment

considers the end-user’s localization, services required, and the available edge devices

along with their computational capabilities. Such a complex task has been rightfully

delegated to the core clouds, given the edge deployment’s sporadic nature which makes

it challenging to take it on. However, with the increased adaptation of popular low latency

services such as AR, E-health, and IoV, the idea of orchestrating off-site and engaging

the network backbone becomes less feasible [39]. A new method must be introduced

Chapter 4: Mobility Aware Edge Computing Segmentation Towards Localized
Orchestration 61

to shift the orchestration process to the edge to maintain its advantages required by

low latency services. While becoming more powerful and numerous, edge devices still

cannot approach the core clouds’ capabilities and the resources necessary to handle the

orchestration process in its current monolithic format [40].

The edge resources are limited by design. Thus, increasing devices’ resources to

resolve this issue is not feasible. A possible approach to this problem would be the

segmentation of the edge environment into more manageable pieces. While promising at

first glance, this approach loses favor due to the need to properly handle several entities:

services, edge devices, and end-users; each with its own set of constraints:

• Services: Share a common trait of requiring low latencies, but differ in other at-

tributes, mainly in the amount of computational resources needed and their type;

between GPU processing services in infotainment and AR apps due to heavy CPU

processing such as gaming, asset tracking, and autonomous ride-sharing [41].

• Edge devices: Differ in their computational resource capabilities as well in both

type and magnitude. Additionally, they hold their own unique set of constraints,

such as their coverage area, energy costs, communication method, and OPEX costs.

• End-users: Between smart vehicles, unmanned drones, and pedestrians, the end

users’ traits vary greatly, such as in mobility from stationary to highly mobile;

communication methods such as WiFi, 5G, and Bluetooth; communication format,

such as V2X and D2D, and the services each requires.

When these entities are taken into account, the process of segmenting the edge

space while safeguarding each of their requirements becomes harder to grasp. Thus, while

segmenting the edge environment is paramount to our goal of edge-based orchestration,

a simple system is not feasible. In contrast, an advanced system will be prohibitively

complex based on the available resources of typical edge devices. A traditional approach

of geographical grid-based segmentation would not suffice as it will significantly limit the

optimal local solution. On the other hand, a highly granular and advanced clustering

method can achieve low optimality differences between global and local optimal. However,

it will likely falter when faced with high mobility users and spiral into a continuous

Chapter 4: Mobility Aware Edge Computing Segmentation Towards Localized
Orchestration 62

cycle of updates between subspaces due to users exiting and entering. Finally, end-

users have several communication methods within the edge space that makes a geo-

based approach ill-advised. Using geographical partitioning can isolate users from a local

optimal placement due to geographical distance, even if their latency is better than a

physically closer edge device.

Therefore, we introduce a new system to address the above challenges. The pro-

posed segmentation system is comprised of three different modules. The first module

separates high and low mobility users into two distinct layers representing pedestrian

and vehicular mobility to better manage end-user mobility. The subspaces are created

by clustering each mobility layer separately with different settings tailored to mobility

type while allowing the newly formed layers to overlap in the coverage area. The second

module virtually localizes the end-users based on their latencies instead of geo-location

in a new map. Finally, the last module uses the previous two modules’ inputs to resolve

frequent update pitfalls and complexity limitations. It achieves this by laxly clustering

the end-users while allowing more nomadic users to exist outside of the defined subspaces.

The remainder of the chapter is organized as follows. In Section 4.2, the back-

ground of edge computing and related works are discussed. Then, the design and the

architecture of the segmentation scheme are explained in Section 4.3. Next, in Section

4.4, the simulation setup is summarized, and the results are evaluated. Finally, the

chapter concludes in Section 4.5 with pointers to our future work.

4.2 Related Work

A majority of the existing literature focuses on orchestrating micro-service chains

across geo-distributed mega-scale data centers. The dimensionality problem has recently

attracted attention. Bouet et al. [42] offered a graph-based algorithm that takes the

maximum MEC server capacity and consolidates as many users as possible at the edge

into MEC clusters to maximize edge-based processing through spatial partitioning of the

geographic area. Their approach considers capacity violations while allowing the cells of

the same server to always be contiguous.

Guan et al. [43] tackled MEC region dimensionality by minimizing the number of

possible handovers through clustering. They relied on a randomized algorithm dividing

Chapter 4: Mobility Aware Edge Computing Segmentation Towards Localized
Orchestration 63

a metropolitan area into disjointed clusters. The proposed system is capable of finding

sub-optimal partitions that can achieve their set goals.

Tran et al. [44] focused on creating geographically compact clusters. They intro-

duced a novel stochastic geo-aware partitioning heuristic algorithm that offers multiple

solutions for different trade-offs between cost minimization and geo-awareness.

Lyu et al. [45] addressed MEC scalability problems pertaining to the massive

number of devices. The author focused on resolving the issue by building a framework

for offloading tasks without coordination among devices. The proposed system operated

on the edge devices and involved an offloading scheme to minimize the signaling overhead.

Wang et al. [46] tackled user mobility by relying on the predictability of vehicles’

mobility patterns and presented a 5G mid-haul design strategy that connects each Central

Unit to a suitable subset of Distributed Units. The proposed system’s main aim is to

manage the edge computing resources required to handle peak vehicle-to-cloud V2C

application load among all Central Units, showing that it can be significantly reduced.

You et al. [47] proposed an iterative Coverage Efficient Clustering Algorithm. The

system aims to maximize coverage efficiency under delay constraints. For example, it

resolves the Flying Ad-Hoc Networks (FANETs) conflict between area coverage efficiency

and delay performance by alternately optimizing cluster heads, positions, and transmit

powers in each iteration. The works above choose to focus on delay and cost as the

objectives to minimize.

The focus of our research problem in this work is different from the problem

(latency-based partitioning), the optimization objective (orchestration load and time),

and constraint (solution space size) of the previous works discussed.

4.3 System Design

The system’s main aim is to segment the edge environment into smaller subspaces

to allow for edge-based orchestration. However, this approach can lead to lower local

optimal service placements if not adequately performed due to isolating suitable candidate

edge devices. It can also lead to counterproductive re-segmentation cycles if subspaces

created are not stable and require frequent updates. The system breaks the process of

segmenting the edge space through three modules as shown in Figure 4.1. The virtual

Chapter 4: Mobility Aware Edge Computing Segmentation Towards Localized
Orchestration 64

localization module creates a latency-based map of the total edge space. Second, the

mobility segregation module separates the end-users into separate layers based on their

mobility. Finally, the lax clustering module uses simple clustering techniques to create

sub-spaces for each end-user type sharing all edge devices within the coverage area. Below

we outline the details of each module’s inner workings.

Figure 4.1: System overview

4.3.1 Virtual localization

To address the end-users heterogeneous communication nature, we make use of the

virtual localization module. It sets the preliminary solution space using the latencies of

the end-users and edge devices to localize them. The results are a single-layered 2D map

with all users and edge devices placed based on their networking latencies concerning

each other. This makes it more manageable for the latter processing modules to generate

a healthy subspace capable of achieving the system’s target and maintaining it.

4.3.2 Mobility-based layer creation

In this module, the localized end-user output gets fragmented into separate maps.

Each user is polled for mobility and split into either low mobility representing pedestrians

and stationary users or high mobility users representing vehicular and unmanned users.

The results are two distinct maps of end-user overlaid upon the same edge devices map

previously generated. This module’s output achieves two goals. First, segregating based

Chapter 4: Mobility Aware Edge Computing Segmentation Towards Localized
Orchestration 65

on the mobility of the users further segments the edge computing environment into

smaller subspaces. Second, the generated subspaces can be clustered in the following

module in such a way to match their mobility better, avoiding failure conditions.

4.3.3 Lax clustering

This module uses clustering techniques to split the two maps generated by the

second module into smaller subspaces. The main clustering feature is its disjoint na-

ture, specifically the allowance of large gaps between each cluster. While the system

is compatible with most clustering techniques, we choose k-means and radial cluster-

ing due to their low computational requirements when the clustering space is limited.

The clustering of low mobility users relies on k-means due to their ability to isolate

densely populated regions. At the same time, its shape will have little impact due to

the users’ aforementioned low mobility. On the other hand, radial clustering is set up

with additional padding to accommodate users’ mobility without allowing the subspace

to deteriorate quickly. Furthermore, the clustering of low mobility users separately allows

this subspace to accommodate more entities without growing too complex.

4.4 Simulation and results

To properly test our environment, a robust edge computing simulator is necessary.

Several popular edge environment simulators are considered such as iFogSim [48], Myi-

FogSim [49], EdgeCloudSim [50], and YAFS [51]. While the other simulators are more

user-friendly, including a GUI interface in iFogSim, EdgeCloudSim is chosen as the main

simulating environment in this work. This choice was based on several criteria that suited

our needs. The simulator is required to have:

• An easily customizable mobility and localization class to represent the end-user

behavior.

• A robust generic orchestrator.

• A modular design to support robustness and easiness.

Chapter 4: Mobility Aware Edge Computing Segmentation Towards Localized
Orchestration 66

EdgeCloudSim’s built-in orchestrator is based on European Telecommunications

Standards Institute (ETSI) MEC orchestration method [52] capable of orchestrating,

offloading, and load balancing between edge devices. The simulation is implemented on

a workstation consisting of an eight-core CPU, 11GB DDR5 VRAM GPU, and 32 GB

Ram.

The performance evaluation metrics used in simulation are chosen to evaluate the

system performance for minimizing the solution space without impacting the optimal

placements. Additionally, they are chosen while ensuring the system’s robustness to user

mobility, especially concerning its ability to avoid the need for frequent updates. These

evaluation metrics are listed below:

• Network delay: Corresponding to the impact of the system’s segmentation on the

orchestration, local versus global optimal.

• Task failures due to mobility: Corresponding to the impact of limiting the or-

chestration space and the possibility of losing end-users during the operation post

orchestration.

• Task failures due to VM capacity: Corresponding to the impact of limiting the

orchestration space and the possibility of losing service during the operation post

orchestration due to saturating the limited set of edge devices.

• Cluster health: Corresponding to the rate of change within the segmented subspace

over the run-time.

To better represent the varied nature of services on the edge computing environ-

ment, the simulator implements four service types: AR, E-health, Gaming, and Info-

tainment. The services are chosen to cover the unique aspects of the popular services

found in the edge. Each has a unique combination of 13 attributes, including task length,

active/idle period, and delay sensitivity.

The simulation is conducted using a single simulation setup but an incremental

increase in the mobile device count in increment steps of a hundred over six cycles.

The test is iterated 25 times for accuracy. The results below show the simulation’s

aggregated outcomes for the unsegmented monolithic approach, single layer (no mobility

segregation), and the proposed dual-layer clustering schemes.

Chapter 4: Mobility Aware Edge Computing Segmentation Towards Localized
Orchestration 67

Figure 4.2 highlights the importance of the virtual localization layer on the proposed

scheme’s performance. Without it, the network delay remains susceptible to growth

with the increase in mobile devices. However, using network virtualization, both with

and without mobility segregation, leads to a significant reduction in the delay end-users

experience. This is attributed to promoting the latencies mapping over the geographical

mapping, thus avoiding cases where heterogeneous communication methods not matching

physical closeness.

Figure 4.2: Impact of virtual localization on delay

In Figure 4.3, the scheme’s performance in operating using the isolated edge re-

sources within each subspace is illustrated. The results show that the scheme has suffered

a slight setback at the lower ranges of user density. This is due to the subspace’s over-

saturation, causing the orchestrator to overwhelm the limited number of edge devices.

Chapter 4: Mobility Aware Edge Computing Segmentation Towards Localized
Orchestration 68

Figure 4.3: Impact of segmentation resource restrictions

The failure rate gap fluctuates within a range of approximately 7%. Upon approach-

ing 600 users, the difference in failed tasks is much lower. We can address these issues

by introducing more complex clustering techniques on the edge device layer. However,

segmentation reaching such high values is rare.

The segmentation process allows for the orchestration within the edge space. How-

ever, the orchestration’s limited operation while being the target can become counterpro-

ductive. A great indicator of this is the failure rate due to users exiting the subspaces.

Figure 4.4 shows that the system achieves low task failure relating to the user’s mobility.

We can observe a growing gap caused by the mobility segregation module. It plateaued

at a low failure rate up to 10% lower than the latter even when the number of users in

the simulation approaches 600. This is due to the tailored treatment of mobility-aware

Chapter 4: Mobility Aware Edge Computing Segmentation Towards Localized
Orchestration 69

segmentation, such as the use of radial clusters with padding to prolong the period where

a subspace maintains a user’s relation at the cost of a marginal increase in the subspace

members.

Figure 4.4: Impact of user mobility on edge space robustness

The created subspaces become an isolated orchestration problem. The duration

of the subspace’s viability must be considered to ensure that the subspaces created re-

main representative and do not require frequent updates. Figure 4.5 shows the dual-layer

clustering and single-layer cluster’s health degradation. The cluster health metric is cal-

culated based on the number of clusters users lost and new users added over the total

number of subspace users. This facilitates monitoring how well each subspace segmen-

tation can maintain its original setup after several mobility cycles. The single-layer

clustering (no mobility segregation) offers marginally improved cluster health compared

Chapter 4: Mobility Aware Edge Computing Segmentation Towards Localized
Orchestration 70

to its counterpart up to the 400 mobile devices simulated. However, this advantage

quickly dissipates beyond that boundary with the loss of health of more than 2% com-

pared to dual-layer clusters. This is attributed to the Lax clustering approach limiting

the cluster’s size based on density which remains low up to the 300 mobile device thresh-

old, making it easy for low mobility users to exit the subspace. However, once the users

number increases beyond the 300 range, the dense regions grow in number and coverage,

making it more accommodating to the user’s mobility.

Figure 4.5: Impact of user mobility on cluster health degradation

Figure 4.6 focuses on the clustering approach and its impact on subspace robust-

ness. With strict clustering, the system fully segments the edge space, and no user can

exist outside of a cluster. While being a wanted trait, as shown in the figure, this leads to

a significant degradation in the subspaces. The significance of lax orchestration is high-

Chapter 4: Mobility Aware Edge Computing Segmentation Towards Localized
Orchestration 71

lighted by its stability regardless of the increase in the number of users. Furthermore,

showing the limited changes to subspaces shows that each created subspace can remain

usable for much longer periods of time, thus engaging the segmentation system less often.

Figure 4.6: Impact of clustering method on subspace robustness

4.5 Conclusion

In this work, we proposed a system for edge computing space segmentation. The

target of this system is to break down the monolithic edge environment into robust

edge orchestration-friendly subspaces. To our knowledge, the approach of segregating

users’ mobility and virtual localization was not addressed in the edge computing current

Chapter 4: Mobility Aware Edge Computing Segmentation Towards Localized
Orchestration 72

literature. We have proposed and evaluated a three-layered system. The solution, while

not optimal, remains a practical approach. For future work, our next step is to refine

the clustering methods concerning mobility, specifically supporting heterogeneous users

mobility types. We also aim to consider the edge device layer in our system design besides

the user layer.

73

Chapter 5

Modular Simulation Environment Towards

OTN AI-based Solutions

5.1 Introduction & Motivation

5.1.1 Motivation

The adaptation of virtualized networking architecture is currently on the rise due

to multiple attractive networking and security factors, such as lower costs, high adapt-

ability, increased robustness, reduction in latency [53], better intrusion detection[54, 55],

and increased networking anonymity [56]. This push shifts the availability and place-

ment of the networking architecture from monitored locations with technicians on hand

to a more sparsely located deployment that is meant for a more automated operation

approach [57]. To maintain the robustness in such setups, redundancies and other more

advanced techniques are employed. Heuristic-based solutions were effective to a certain

extent. Still, these solutions have reached an eventual bottleneck with the increased

complexity of the networking architecture and the highly variable nature of the deployed

environments. Artificial Intelligence (AI) based solutions were practical approaches in

other venues due to their ability to adapt each instance based on the local deployment

environment and continuous dynamic changes to maintain a high efficacy [58]. However,

unlike many of their counterparts, networking-based ML solutions lack publicly available

datasets. This lack can be traced back to several compounding factors ranging from net-

work operators’ fears for their users’ privacy, their protection of Intellectual property and

patented networking architecture, and exploitation of the datasets in finding methods to

attack their internal networks [59]. This scarcity can be more apparent in contemporary

networking architectures such as 5G and optical transport networks (OTNs), where new

Chapter 5: Modular Simulation Environment Towards OTN AI-based Solutions 74

datasets are challenging to find in a volume adequate to perform proper ML testing and

debugging.

5.1.2 Available Simulators

Several recent vendor-based solutions have allowed researchers and companies to

progress their work without real-life data [60, 61, 62, 63]. Their solutions are primarily

subscriptions based and may entail a costly initial investment in the form of dedicated

hardware, add-on libraries, or features based on the accuracy type and volume of data

required. Table 5.1 outlines a few of the more popular available solutions along with

their features and requirements.

Table 5.1: Simulation Environment Comparison

Simulator Cost Features & Requirements

B
uiltin

M
obility

O
ptical netw

orking
5G

Full Stack

Scriptable

Packet
capture

Local sim
ulation

C
loud

service

G
U
I
based

C
onfigurable

N
etw

ork
Traffi

c

A
bnorm

al C
onditions

Injection

Sum
o
Integration
Packet

Loss

Traffi
c
G
room

ing
Latency

O
perating

System

B
atch

operations

U
nrestricted

E
lem

ent
C
ount

Opensource
NS3 (GNS3) Free H#H#H# - H# G# B
NS2 Free H#H#H# - - H# G# U
OMNeT++ Free H#H#H# H# - H# H#H#H# G# B
QualNet Free H# - G# - H# H#H#H# G# W
ONS Free G# G#G# - H#H#H# H# W

Vendor

NETSIM†* Yearly 4500+ H#H# H#G# H# - H# H# W - -
ADVA Quota based H#H# H#G#H# H#G#H# G# W - H#
Optiwave Systems†* Yearly 3200+ H#H#G# H#G#H# G#H# - G# W - H#
MATLAB (Simulink)† Yearly 600-2400 H#H#H# H# - H#H# - H#H# B - H#

 = Natively available; H# = Indirectly available; G# = Externally available; - = Not available;
W,U,B = windows,Ubuntu,Both; †has academic discounts; *end-user tool available

Starting with the opensource simulators, NS3 and its windows variation GNS3

boast a large scientific following. This is because the system developed a robust base

that attracted many users to build their dedicated simulation tools on top of it. In

addition, the ongoing support of the community makes it an increasingly attractive tool

Chapter 5: Modular Simulation Environment Towards OTN AI-based Solutions 75

for newcomers and veteran researchers. For 5G and OTN-based simulations, there are

several NS3/GNS3-based solutions available.

• 5G-LENA is one of the NS3-based modules that can simulate 5G New Radio

(NR) cellular networks. The simulator is an evolution of the famous LENA, the

LTE/EPC Network Simulator with a robust uplink scheduling control as high-

lighted in [64]. It is currently being developed and maintained by the Mobile

Networks group CTTC (Centre Tecnològic de Telecomunicaciones de Catalunya).

It is a full stack simulation of the 5G NR setup that allows the user full utility and

control over the simulation depth and configurations.

• Photonic WDM Network Simulator (PWNS) is one of the NS3-based modules used

in the simulation of OTN-based networking. While the tools it offers are of great

use, the lack of development and community updates of its base hindered its pop-

ularity as it is difficult to integrate it with more current NS3 releases.

OMNet++, similar to NS3, is a general networking simulation environment with

a vital support and development community. However, unlike NS3 or GNS3, it boasts

a more friendly and robust GUI-based interface, making it a more attractive option for

development.

• Simu5G OMNeT++ module allows researchers to simulate and benchmark solu-

tions on an easy-to-use framework. It offers support to optimization tools such

as CPLEX and can be integrated with other modules from the INET Framework,

allowing network scenarios where 4G and 5G coexist.

• The optical networking OMNeT++ module allows researchers to implement OTN-

based topologies with unique structures, such as Optical switches, amplifiers, etc. In

addition, the advantage of fully controlling the placement and capabilities of each

component allows for better testing and integration with other solutions during

testing. Moreover, its support community remains active with slight compatibility

issues with the latest OMNeT++ releases.

On the other hand, for vendor-based simulators, NetSim is one of the indus-

try’s leading paid 5G NR simulation tools. It offers End-to-End simulation of 5G net-

works, GUI-based with drag and drop capabilities, packet animator, results in dashboard,

Chapter 5: Modular Simulation Environment Towards OTN AI-based Solutions 76

packet-level simulation with detailed packet trace, event trace, and NR log file genera-

tion. Additionally, it offers a fully controllable app-related user behavior and integration

with mobility-based solutions such as SUMO. Unlike open source solutions, it allows for

cloud-based subscription, letting researchers develop the topologies locally but run the

simulation environments on the cloud, forgoing the need for advanced hardware require-

ments.

The vendor and open source features offer an attractive combination, but it becomes

cumbersome for complete end-to-end simulations. For example, suppose the user opts for

a vendor-based solution. In that case, they could be constrained by the number of users

included in the license, limiting the size of their simulations, forcing multiple iterations to

achieve desired results, or forced to purchase additional packages. On the other hand, if

the user opts for an open-source solution, they will face setup-related issues and possible

hardware-based limitations, causing similar simulation size-related challenges.

5.1.3 Contribution

To address these issues, we propose a modular-based simulation system that max-

imizes the user’s ability to simulate 5G and OTN-based environments. The system is

set up to allow multiple devices to run concurrently to achieve a more extensive encom-

passing simulation. Additionally, it allows the mixed use of multiple solutions, further

increasing the user’s throughput and adaptability. This is achieved by exploiting the use

of packet files as both input and output in addition to a controlling file-triggered script

to monitor and trigger the various system modules when ready.

The remainder of this chapter is organized as follows: Section 5.2 describes the sim-

ulator including all of its internal modules. Then, Section 5.3 evaluates the performance

of the proposed and developed simulator using multiple testing methods. Moreover, it

discusses the achieved results. Finally, Section 5.4 concludes the chapter.

5.2 Simulator Description

The system comprises four independent components to maintain its modular na-

ture, with the outputted files being the only interaction between them, as shown in

Figure 5.1. This allows the users to capitalize on the systems’ two main benefits. First,

Chapter 5: Modular Simulation Environment Towards OTN AI-based Solutions 77

it allows for both single and distributed operations by relying on the script to direct and

synchronize the number of devices used using file creation as triggers. Second, the system

allows multiple simulation methods for 5G and OTN. In what follows, a brief description

of each of the four modules is provided.

Figure 5.1: System Design.

5.2.1 Mobility module

This module is responsible for mimicking the real-life nature of the mobility used

in the simulator. This is achieved by using SUMO and OSM wizard. The user begins by

isolating the map section to be simulated using the OSM web interface and allocating

the number of vehicles and pedestrians. Once generated, the user can further enhance

the quality of the mobility simulation by editing the city properties XML files to replace

generic values and assign more realistic ones. This creates sumo-compatible demands for

a synthetic population by adjusting population-related aspects.

• Population:

– Inhabitants and demographic division

– Households distribution

– Employment patterns

• Location-based:

Chapter 5: Modular Simulation Environment Towards OTN AI-based Solutions 78

– Bus lines and stops.

– Schools, workplaces, Malls.

• Time-based:

– Work hours

– Education hours

– Opening/ losing times for specific locations like Malls, stadiums etc.

This can also help generate abnormal test events as the user can create massive

congestion or everyday public events. This is important for proper testing of ML-based

solutions to ensure the training and testing include aberrant events improving the quality

of the resulting models.

5.2.2 5G module

This module attaches 5G-based traffic demands to the mobility captured earlier.

Unlike the mobility generation stage, the 5G module can leverage pipelining techniques

to increase the simulation output volume. This is done in multiple ways based on the 5G

simulator used. The most common open-source application for this is NS3 or its windows-

based variation GNS3, and the vendor-based Netsim application. The script first prompts

the user to check for the mode of operation, either singular or distributed, and choose

the available applications. Based on that selection, if the language is fully scriptable (as

outlined in Table 5.1), the script can invoke the application using the sumo file as bases

or, in the case of Netsim, can prepare and guide the user through the GUI-based steps

necessary to get the simulation started. In either mode, the PCAP file generation will

be capped using the XML sumo file outlining the number of communication elements in

each setup. This will trigger subsequent steps once that number of PCAP files is achieved

or a timeout is reached.

Once the simulation is finalized, the PCAP files are collected and renamed using

batch renaming software to conform to each app’s varying naming convention in cases

where the file naming is not fully customizable. The output is then saved in the master

simulation folder.

Chapter 5: Modular Simulation Environment Towards OTN AI-based Solutions 79

5.2.3 OTN module

Currently, the OTN module has been tested only on OMNeT++. The script feeds

the PCAP files using some of the software’s built-in functions. The OTN network is

built using disjointed pairs to allow various path variations to occur concurrently. The

OMNeT++ simulator offers a fully customizable OTN structure, including editable com-

ponents such as optical amplifiers, switches, lines, receivers, etc. The traffic grooming is

generic but can be customized using community-based libraries accessible to the users.

Once the resulting PCAP file reaches the final destination node, the script captures the

file edit and triggers the OTN output.

Each PCAP file stream is truncated to isolate only the initial input and final

output. It is then renamed based on the User ID initiating node and destination nodes.

This information is used later on and extracted by the script to generate the networking

latency metrics.

5.2.4 Output processing

After the PCAP files begin populating from each simulation environment, the script

can trigger idling local resources to start processing and extract relevant metrics such as

latencies, packet loss, error rates, etc. This is done using two methods: MATLAB for

scripting only, and Wirediff for more graphic and open-source options. Once the data has

been collected, it is saved as either a MAT File or a TXT file based on the user selection.

5.3 Performance evaluation

5.3.1 Objective

To ensure the system’s usability for ML purposes, we need to ensure that its overall

capabilities match or exceed those of its individual components working separately. To

best test, two main attributes are identified as the focus of evaluating the quality of the

data collected as a whole and the number of differences between each variation. This is

done to ensure that the data the variations output is cross-compatible, a crucial attribute

to ensure the correctness of any ML-based solutions built based on the dataset.

Chapter 5: Modular Simulation Environment Towards OTN AI-based Solutions 80

5.3.2 Metrics

The metrics used to measure the effectiveness of the simulator are chosen to offer

a comprehensive view of the system’s functionality. The three metrics are:

1. The similarity of the data outputs of the different 5G module variations in the form

of an encompassing conformity score.

2. The simulation time required for the components tested for both monitored and

automated portions to highlight the human factor required.

3. The amount of data collected during those simulations in the form of users per

simulation session of comparable length.

5.3.3 Testing methods

To properly test the system capabilities given the intended accessibility, the testing

is done on three desktop devices with identical capabilities limited to average specifi-

cations. The testing is done for both singular and distributed setups. The variations

tested are limited to the windows-based solutions with GNS3, and Netsim used for the

5G traffic simulation, while the OTN is handled using OMNeT++. The following tests

are conducted:

• Singular mode with a static sumo environment running independently on multiple

5G-only environments running a unified single application type on all users.

• Singular mode with a static sumo environment running independently on multiple

variations of the entire system.

• Distributed mode with a static sumo environment running collaboratively on both

the cloud Netsim and NS3 variations.

• Distributed mode with multiple sumo environments running collaboratively on the

cloud Netsim and NS3 variations.

• Distributed mode with multiple sumo environments running on NS3, running col-

laboratively.

Chapter 5: Modular Simulation Environment Towards OTN AI-based Solutions 81

The above combination of tests provide full coverage of the most common use

scenarios of the system with a focus on the volume of data produced, its conformity with

variations, and the quality it provides for use in ML discussed below.

5.3.4 Results

To showcase the system viability, we first test the output of the 5G generation mod-

ule variations to ensure their output can exist within the same data stream for ML usage

without creating any biases or related issues. Figure 5.2 shows the output conformity

(calculated using equation (5.1)) of simulating Video streaming, VOIP, and File transfer

services on all users in the following environments: NS3, OMNeT++, and NetSim. The

results show high conformity of the data outputted across all three variations compared

to Netsim with a slight reduction in VOIP traffic. These high levels are achieved due

to the highly configurable nature of the application deployment in all three applications,

with NS3 and OMNeT++ offering the most control.

Conformity = 6(Latencyreq) + 4(Demanddur) + 2(Demandfreq) + 3(PacketAvgSize)

(5.1)

Figure 5.2: Single app conformity compared to Netsim.

However, manually adjusting the application deployment is neither scalable nor

compatible with the system’s goal of low maintenance. Therefore, to test the system’s

automatic attachment of applications to users based on the demographic data supplied

Chapter 5: Modular Simulation Environment Towards OTN AI-based Solutions 82

in SUMO, we test the system mentioned above. Figure 5.3 shows the system’s confor-

mity after allowing them to use built-in functions applicable to manage the application

distribution among the users. Results show slightly lower conformity but remain within

an acceptable range for ML purposes. The increased variation can be positive, especially

when building resilient ML-based systems.

Figure 5.3: Heterogeneous app conformity compared to Netsim.

After ensuring that multiple system variations are viable, we shift our focus towards

the quantity of data generated. Two main cases are in consideration:

1. Creating multiple runs on a single geographic area best suited for testing related

to 5G and edge computing.

2. Creating a massive simulation over multiple geographic areas.

Figures 5.4 and 5.5 compare the aggregate simulation runtimes, including the duration

of required user interaction for hybrid and pure open-source distributed-based solutions.

Table 5.2: 5G Simulator Output Volume

Number of Users

OMNeT++ +900

Matlab +700

NS3 +900

Netsim 500

Chapter 5: Modular Simulation Environment Towards OTN AI-based Solutions 83

The results illustrated in Figure 5.4 show that the use of Netsim required the most

monitored setup time. At the same time, it offloaded the need for local hardware resources

but required more user intervention in the setup stage due to its method of sumo mobility

extraction. On the other hand, Figure 5.5 shows the NS3-based solution, and its highly

scriptable nature allowed for better-automated simulation. Another aspect to consider,

shown in Table 5.2, is the main shortcoming of using Netsim due to licensing-related

limited number of simulated users. While it is considered a hindrance to the local solution

and offers a slight increase in the number of simulated users, it requires more time and

reservation of the resources.

Figure 5.4: Simulating iteration of a single limited size environment.

5.4 Conclusion

In this chapter, we presented a viable simulation system that uses a combination

of state-of-the-art environments to address the ongoing issue bogging down the develop-

ment of AI-based systems in next-generation networking environments, especially in 5G

and optical networking. The system considered combinations of paid and open-source

solutions to work seamlessly to achieve the highest diversity and volume of data possible.

The system testing results show considerable improvements over traditional approaches

with minimal increase in the requirements or the need for dedicated hardware. The sys-

tem can be improved further by developing the pipelining apparatus controlled by the

Chapter 5: Modular Simulation Environment Towards OTN AI-based Solutions 84

Figure 5.5: Simulating a single large environment.

script to allow for better handling of the live feed of PCAP files while the simulation’s

earlier stages are ongoing to reduce the needed runtimes further. In addition, packaging

the system using OS or VM images reduces the necessary setup and know-how to create

customized datasets.

85

Chapter 6

Throughput Latency Targeted RL Spectrum

Allocation In Heterogeneous OTN

6.1 Introduction

The current trend in user services have become more complex and stringent in na-

ture, with 5G setting the trend with its own set of core services, including enhanced mo-

bile broadband (eMBB), ultra-reliable low latency communication (URLLC), and massive

machine-type communications (mMTC) [65]. Some of these services require high band-

width and low latencies, often simultaneously. Traditional networking archetypes are not

able to fulfill such requests while acting as the main backbone[66]. Thus, the adoption of

optical networking is more critical. However, while optical networking can handle such

large volumes of data, the physical nature of using light as a medium presents unique

challenges. The rigid physical nature of using light as a medium limits the system’s abil-

ity to continuously optimize its network payload, especially with a projected larger and

highly varied traffic throughput than traditional networks have ever experienced. This

mismatch creates a need for multiplexing the low-rate traffic demands into optical wave-

length channels. However, this process involves using electronic switching equipment,

which is counter-intuitive to optical networking, offsetting the benefit of continuous op-

tical transport.

To address this, the concept of spectrum allocation was developed, which entails

changes to network design and resource allocation algorithms to enable better network

bandwidth through lower electronic switching. For a period of time, this was sufficient

and allowed optical networks to easily surpass traditional networking. However, all the

algorithms and solutions that were investigated reached a bottleneck in terms of possible

improvements. This is largely due to the rigid spectrum granularity employed by the

prevalent methods in the archaic fixed grid optical transport networks (OTNs) [67]. In

Chapter 6: Throughput Latency Targeted RL Spectrum Allocation In Heterogeneous
OTN 86

recent years, there has been an improvement in spectrum allocation, with the ability

to allocate it flexibly or ”slice it off” based on the demands in elastic optical networks

(EONs) [68]. The migration to EONs from fixed-grid has proven to be effective, partic-

ularly in meeting the demands of 5G-based services. The main methodology used was

to reduce the need for electrical re-multiplexing by assigning optical slots in wavelength

division multiplexing (WDM) for grouped stable demands through a process called rout-

ing and wavelength assignment (RWA) [69]. Initially, the focus was on maximizing the

survivability of the networked traffic in the early optical networking architectures. In

recent years, it has developed into routing and spectrum assignment (RSA), with a shift

in focus towards lowering the need for electronic switching to maximize the benefits of

modern optical networking architecture [70]. However, with high transmission rates from

400 Gbit/s to 1 Tbit/s, the variably segmented spectrum slots range from 37.5 GHz to

400 GHz. A disorganized placement of optical demands within a lightpath can create

numerous variably sized placed empty slots that are sporadically placed. This occurs

when demands are eventually extracted while traversing the various optical nodes. This

phenomenon is referred to as spectral fragmentation. It can be challenging to reuse the

freed bandwidth resources due to the increased blocking probability.

To better illustrate this problem, particularly in a futuristic environment, Figure

6.1 depicts a use case were traditional spectrum allocation (SA) fails to correctly allocate

the URLLC traffic generated during limited events, such as a metaverse virtual reality

(VR) concert. Unlike traditional broadcasted events, such as televised sports events

that mainly involve latency-tolerant downstream traffic, the VR concert involves tens

of thousands of virtual attendees who view the main event while interacting with each

other via their VR avatars. This requires both downstream and upstream traffic that

are latency-sensitive, with sessions that can last from a few minutes to 3-4 hours [71].

Such events will become more frequent in the future. The figure highlights how ignoring

the short-lived nature of such demands results in more fragmentation, while the bottom

portion shows a better placement that results in fewer fragments.

Consequently, fragmentation causes future demand allocation to get delayed until

the next time slot, hoping to land on large enough contiguous slots or trigger a reallo-

cation to create sufficient slots. Both options are either costly or time-intensive, making

them counter-intuitive for the purposes of OTN. To resolve this issue, the current state-

Chapter 6: Throughput Latency Targeted RL Spectrum Allocation In Heterogeneous
OTN 87

Metaverse
VR Event VR

Metaverse
VR Event VR

Static SA schemes

Dynamic SA schemes

Spectral space

Spectral space
Stable

Stable

Stable

Stable Stable

StableStable

Stable StableStable Stable

Stable

StableStableStable

Stable

Stable Stable

Stable

Stable

High blocking probability slot Low blocking probability slot

Figure 6.1: Dynamic demands impact on fragmentation

of-the-art research proposes resource allocation schemes to reduce fragmentation. These

proposed approaches are mainly designed at the electrical and optical layers, which can be

categorized into “Intuitive”, “Straightforward”, and “Conventional” spectrum allocation

approaches. The latter can be further categorized into “First”, “Random”, “Last”, and

“First-Last” Fits. In addition, slightly more advanced methods rely on historical usage

patterns, such as the least and most used slots. However, even with significant improve-

ments when using reactive and proactive methods, such approaches may quickly result in

a similar bottleneck, as noted by Chatterjee et al. [72]. Due to the abundance of available

spectrum in the past, the main shortcomings of the approaches that garnered attention

were focused solely on lowering energy demands [73] and reducing the required optical

infrastructure [74]. However, even with the major advances in WDM-based optical net-

works, the wavelength continuity constraint remains challenging in current networking

demands. This constraint requires the same wavelength to be used on all hops in the

end-to-end path of each connection and limits our ability to adjust or reroute demands

mid-path without incurring prohibitive costs in both energy and time. Additionally, the

highly virtualized and customizable 5G networking infrastructure creates a different im-

pact constraint stemming from the rapid changes the network can experience based on

Chapter 6: Throughput Latency Targeted RL Spectrum Allocation In Heterogeneous
OTN 88

the time of day and other factors. Traditional SA schemes do not adequately account for

this high dynamicity.

In this work, we design a machine learning (ML) based spectrum allocation algo-

rithm capable of capturing the varying dynamicity of each node and making live adjust-

ments to the optical path spectrum allocation process to maintain low fragmentation and

latency typical of EONs, namely deep reinforcement learning (RL) this specific type of

ML was chosen because it suits the solution method given our node specific approach

and our need to tune our spectral allocation approach to the unique set of demands each

node experiences at specific times of the day achieving a better fit compared to globally

developed optimization techniques or other types of ML [75]. The main contributions of

this work are:

• Minimizing bandwidth fragmentation by designing a fully observable environment-

based Q-learning RL model.

• Operating in a non-episodic continuous environment iterating actions from previous

cycles till the model output plateaus.

• Introducing a dynamic search window to isolate the reward and punishment mech-

anism to increase the accuracy of the critic’s output and avoid jitters.

• Reducing the scheme actor complexity while maintaining low overhead by imple-

menting bidirectional spectrum allocation that focuses on pushing the edges while

clearing the central portion of the spectrum.

• Making node-based offloading decisions to traditional networking infrastructure,

relying on the individual demand’s latency constraints.

The remainder of this work is organized as follows. In Section 6.2, the motivation

and problem definition is outlined. In Section 6.3, the current related works are discussed

for the fixed grid, EONs, and their hybrids. Section 6.4 outlines the model operation

along with the proposed spectral slicing process. Section 6.5 discusses the simulation

environment and the various metrics used to benchmark along several baseline algorithms.

Finally, Section 6.6 concludes with a brief summary of the achieved results and outlines

plans for future improvements.

Chapter 6: Throughput Latency Targeted RL Spectrum Allocation In Heterogeneous
OTN 89

6.2 Motivation and Problem definition

In the early stages of optical networking, the advantages of lower power consump-

tion and higher bandwidth were the main attracting features for industry and researchers.

As a result, most of the research focused on attributes such as survivability/resilience and

energy consumption. This direction in research was reasonable at the time, given the type

of traffic being serviced. However, this changed with the rise of 5G applications with the

new URLLC classification that requires ultra-low latencies while still demanding heavy

bandwidth. Such services include augmented reality (AR)-assisted surgery, live sports

events streaming, and online gaming among others [76]. The current trend expects those

requirements to increase under 6G networks and beyond. Furthermore, network traffic

and user connectivity are expected to grow as the number of mobile 5G subscriptions

worldwide is expected to reach 4.8 Billion by 2026, posing further challenges for these

networks [77]. These trends have shifted the focus from energy preservation to latency

and throughput.

One of the main challenges of optical networking compared to traditional electrical

networking is the handling of data streams. In contrast, the best solution currently

favored by the majority in optical networks is spectrum allocation. These methods

mainly rely on intelligently organizing traffic demands before converting them to optical

format to reduce or eliminate the need to handle this task before arriving at their final

destination.

Previous research on spectrum allocation relied on advanced mathematical formula-

tions in the form of optimization models and heuristic algorithms to handle the demand

organization task. However, while creating benefits, these approaches are costly from

both time and expenditure points of view. Additionally, the deployment environment

must significantly mimic the development environment to ensure proper operation [78].

With the highly dynamic nature of next-generation networks (NGNs), 5G included, such

an assumption is not reasonable. To address this, machine learning (ML) solutions were

sought in the field of OTN spectrum allocation with trend-setting positive results for en-

ergy purposes. This opens a new path to address the issue of servicing the new demand

paradigms, such as URLCC, within increasingly dynamic environments typical in the

upcoming NGNs as illustrated in Fig. 6.2 showing the impact of treating all demands

Chapter 6: Throughput Latency Targeted RL Spectrum Allocation In Heterogeneous
OTN 90

mMTC
Short-lived

urlcc
stable

eMBB
Stable

eMBB Short-

lived

urlcc
stable

Urlcc
Short-lived

eMBB
Stable

mMTC Short-
lived

Before
Traditional SA

After

urlcc
stable

urlcc
stable

Urlcc
Short-lived

eMBB
Stable

eMBB Short-

lived

eMBB
Stable

mMTC
Short-lived

mMTC Short-
lived

mMTC
Short-lived

urlcc
stable

eMBB
Stable

eMBB Short-

lived

urlcc
stable

Urlcc
Short-lived

eMBB
Stable

mMTC Short-
lived

Before
Dynamicity Aware SA

After

urlcc
stable

urlcc
stable

Urlcc
Short-lived

eMBB
Stable

eMBB Short-

lived

eMBB
Stable

mMTC
Short-lived

mMTC Short-
lived

Figure 6.2: Traditional vs. Dynamicity Aware SA

equally from a duration point of view where short-lived demands can create a large num-

ber of fragments when placed along long-lived demands instead of trying to distance or

isolate them from each other.

6.3 Literature Review

To best capture the current academic research direction and the related issues, the

section has been divided based on the targeted problem being addressed, mainly focusing

either on the spectrum fragmentation in EONs, traditional OTN setups, or combinations

of them. The subsequent section focuses on the shift of focus toward the dynamicity of

serviced demands and its impact on the aforementioned spectrum allocation solutions.

It also proposes approaches to mitigate its impact.

6.3.1 Spectrum Fragmentation

To best capture the current academic research direction and the related issues, the

section has been divided based on the targeted problem being addressed, mainly focusing

either on the spectrum fragmentation in EONs, traditional OTN setups, or combinations

of them. The subsequent section focuses on the shift of focus toward the dynamicity of

serviced demands and its impact on the aforementioned spectrum allocation solutions.

It also proposes approaches to mitigate its impact.

Chapter 6: Throughput Latency Targeted RL Spectrum Allocation In Heterogeneous
OTN 91

6.3.2 Spectrum Fragmentation

Given the rigid nature of light transport, proper planning in the form of spectrum

organization ensures better usage of each lightpath by allowing the highest usage ratio in

the initial node and lowest blocking probability in subsequent intermediary nodes. Even

before the widespread of EONs, researchers foresaw this drawback and created different

approaches for each unique case.

Yu et al. [79] took into account the gradual shift towards elastic optical networking

and the increased strain it places on SA solutions, which increases the blocking proba-

bility. The authors tackled the spectrum fragmentation problem by creating a unified

system aiming solely on lowering the bandwidth blocking ratio (BBR) compared to the

state-of-the-art RSA algorithm. The proposed solution showed improved performance in

more highly connected networks, which they expect to be the future of OTN topologies.

Papanikolaou et al. [80] formulated a joint multi-layer planning problem and pro-

posed two distinct integer linear programming (ILP) formulations to solve it, achieving

significant cost and power savings.

Zhao et al. [81] proposed a novel model based on a mutual backup that can improve

the control plane’s survivability in a software defined elastic optical network (SwD-EON),

providing survivability to unicast and anycast traffic demands. They formulated an ILP

to find the optimal solution with additional spectrum resources required when survivable

multipath routing is used.

Weiqi et al. [82] introduced a heuristic algorithm for spectrum allocation, referred

to as ”heuristic,” which considers path delay, optical energy use, and electrical energy

consumption. Their devised approach effectively reduces the average path delay without

affecting energy efficiency. This was achieved by utilizing the ’Frequency First’ strategy,

leveraging the distribution of IP links (IPLs) to lower the average path delay without

adversely affecting energy performance.

Kaur et al. [83] pursued a more unique heuristic approach based on a wind-driven

technique to optimize spectrum allocation in optical networks in terms of hyper-volume

and set coverage indicators boasting consistent improvements under varying load condi-

tions.

Finally, Lee et al. [84] proposed a new bio-inspired spectrum allocation algorithm,

boasting a short convergence time when performing lightpath conversion in the IP-over-

Chapter 6: Throughput Latency Targeted RL Spectrum Allocation In Heterogeneous
OTN 92

WDM networks. Their solution’s main advantage relies on variations to ossified local

solutions, improving the possibility of finding a better global solution and reducing up to

20% of energy consumption and computation time compared to other heuristic algorithms

and mutation-based conventional genetic algorithms.

6.3.3 Dynamicity

Next-generation networking has brought not only an increase in traffic volume, but

also a variety of traffic types. Consequently, this has led to a significant increase in the

dynamicity of serviced demands in optical networks. To address this, traditional sporadic

offline spectrum allocation (SA) approaches have shifted towards live proactive solutions.

Researchers have proposed various ML and big data analytics techniques to overcome

the challenges that cannot be handled using traditional approaches, making them highly

beneficial in optical communications and networking.

Manias et al. [85] introduced a solution that tackles dynamicity by intelligently al-

locating optical resources to provide robustness in the network to handle any fluctuation

in demand with minimal over-provisioning using optimization modeling as well as heuris-

tic solutions that adjust their configuration based on the traffic and optical paths they

manage. Khan et al. [86] proposed that ML and big data analytics can provide better

outcomes for optical networks, especially in the face of their increasing dynamicity and

software-defined nature. Yang et al. [87] proposed a dynamic unsupervised fuzzy cluster-

ing scheme for achieving higher accuracy, while Zhao et al. [88] created self-optimizing

optical networks. On the other hand, Musumeci et al. [89] gave a broader view of the

impact of using ML on EONs, along with a few potential ML-based solutions. Yan et al.

[90] tackled resource management using reinforcement learning. Similarly, Chen et al.

[91] used Deep Reinforcement Learning for a total EON solution that tackled routing,

modulation, and the spectrum assignment (RMSA) processes simultaneously. Yang et al.

[87] proposed a mechanism for achieving zero-touch operation in optical network archi-

tecture. Proietti, et al. [92] introduced an ML-based quality of transmission estimation

scheme for lightpath provisioning with intra-domain and inter-domain traffic.

Chapter 6: Throughput Latency Targeted RL Spectrum Allocation In Heterogeneous
OTN 93

6.3.4 Limitations of Previous Works

The previous research has provided valuable insights into various aspects of optical net-

work management. However, there are still some gaps to be filled. Although the existing

works have made significant contributions in reducing energy consumption, improving

throughput, and minimizing fragmentation, they have largely overlooked the coexistence

of traditional networks and their compatibility with optical ones. Moreover, while AI-

based solutions have shown promise in improving demand routing and organization within

the spectrum, there is still room for further improvement. Therefore, in this study, we

aim to focus on the organization technique employed by our proposed solution to offer a

more tailored and customized approach per region/node, addressing the aforementioned

gaps.

6.4 Throughput Latency First Reinforcement

Learning (TLFRL) SA Model

To achieve our objective of improving throughput by optimizing spectrum utiliza-

tion, we adopt a node-specific approach. Each node is individually configured to enhance

the subsequent nodes’ ability to handle additional demands. Reinforcement learning is

used due to its ability to leverage the current network status and configuration to opti-

mize nodal models, leading to more resilient models that can dynamically adapt to the

changing demands over time [93]. The next subsections detail the system’s two primary

modules, the actor and critic, along with the environment-specific components developed

alongside them to further improve their accuracy.

6.4.1 Environment Setup for SA in Optical Networks

The system employs a solution window of a specific length to identify the center

and classify the direction of spectrum allocation. This is then followed by creating a

table of all the distances between the nodes used mainly by the critic that estimates the

value function in the RL environment. The slot size for the flex grid is set to half that of

the smallest demand to ensure sufficient granularity without increasing the complexity

unnecessarily. Figure 6.3 illustrates the key elements in setting up the environment for

Chapter 6: Throughput Latency Targeted RL Spectrum Allocation In Heterogeneous
OTN 94

optimal spectrum allocation in optical networks showing the solution space split and

enforcement of grooming direction based on the original spectral position of the groomed

demand.

Figure 6.3: Environment Illustration

6.4.2 The Actor in the RL-based SA Proposed Solution

The actor’s actions are determined by the critic’s feedback for each demand after the

first iteration. Figure 6.4 illustrates the cluster detection stage and a spectrum allocation

example where the demand follows the allocation direction-based on its position relative

to the center of the solution window.

The clustering cycle begins by searching for immutable demands i.e. those that

are not under the control of the current allocating node (already placed/groomed). Once

found, two anchor clusters are designated based on the longest chain of contiguous im-

mutable demands. The anchor cluster is then used to allocate spectrum slots based on

the magnitude of the penalty for each demand.

The offloading action, illustrated i Figure 6.5, is determined by the demand’s la-

tency tolerance and the cumulative score from the previous and current rounds. When

the current utilization level of the total solution space surpasses a dynamic threshold, it

is offloaded.

6.4.3 The Critic in the RL-based SA Proposed Solution

The critic is an integral component of the reinforcement learning system, which

takes the results of the actor on the environment and outputs its own quantitative anal-

yses to guide future cycles of the model behavior. Similar to the actor, which focuses

Chapter 6: Throughput Latency Targeted RL Spectrum Allocation In Heterogeneous
OTN 95

Figure 6.4: Spectral allocation action

Figure 6.5: Offloading action

on demands and their placement, the critic output is directed towards each demand’s

spectrum to scale the reward/penalty allotted based on the distance between the allo-

cating node and the critiquing node. This is shown in Figure 6.7 where n is the spectral

allocating node, and i is the critiquing node. another aspect that had to be taken into

account is the Average demand size each node experiences and how to use it to more ac-

curately calculate what would be considered a fragment Fig. [6.6] visualizes the method

we chose to calculate split our spectrum and identify fragments. Equation 6.1 eliminates

the inherent biases toward offloading for all demands approaching their final destina-

tion node, causing over usage of the offloading function and negatively impacting earlier

nodes’ scores.

The RL actor’s behavior outlined earlier is isolated in nature to its root node;

however, its impact cascades impact to all subsequent nodes making it imperative to

find a method to capture to properly guide the actor’s future iterations. The critic

behavior outlined in algorithm 4 shows the use of the scaling factor shown in Fig 6.7

to penalize the fragment-causing demands based on the overall distance traversed with

induced fragments.

scaledscore =
di ∗ scoredemandn

i∑i
n d

(6.1)

The search window is dynamically sized based on the groomed demand wavelength

width as shown in Equation 6.2, where TCsearchwindow is the window facing the center,

and ACsearchwindow is the window facing away from the center. This is done to ensure

Chapter 6: Throughput Latency Targeted RL Spectrum Allocation In Heterogeneous
OTN 96

Figure 6.6: Demand distribution illustration example

Algorithm 4 TLFRL Critic

Require: iImmutableDemands ≥ 0 ;
AActionableDemands ≥ 0

2: while searchposition ̸= seachwindow do
3: if searchslotn ̸= utilized then
4: scaledscoreAn −−
5: end if
6: if S

diwidth
> Xoffloaded then

7: scaledscoreAn −−
8: end if
9: end while

that the areas closer to the edge are more impacted than the center.

ACsearchwindow = G ∗ S
diwidth

TCsearchwindow =
1

2
G ∗ S

diwidth

(6.2)

The fragmentation scoring, F , within each search window is based on the frequency

of unutilized slots and distance from the demand based on Equation 6.3, where e is the

Chapter 6: Throughput Latency Targeted RL Spectrum Allocation In Heterogeneous
OTN 97

Table 6.1: Table of Variables

Variable Definition
n Allocating node
i Critiquing node
d Physical Distance between nodes n to i
e Length of the search window
s Current search slot
x Spectrum utilization ratio
U Slot occupancy
C Current demand
F Current demand Fragmentation score
S Search window total size
G Current demand width

width Spectral width

𝑑1

𝑑…

𝑑…

𝑑𝑖

𝑑…

Figure 6.7: Scaling factor calculation

search window maximum length away from the demand, s is the current search slot

starting at zero, x value capped at one representing utilization ratio, and the binary

variable U is based on the state of the search slot to be used in conjunction with the

scalar from Equation 6.1 to calculate the state for each demand.

F =
e∑
s

xUCe−s (6.3)

6.4.4 Training Variations

During the final stages of the TLFRL’s development, we isolated several candidate

approaches to best operate and train our RL model. Initially, the system is trained

solely using the initial demand as seeds. Allowing unutilized slots to expand until the

Chapter 6: Throughput Latency Targeted RL Spectrum Allocation In Heterogeneous
OTN 98

total demand payload got depleted. To maintain correct critic scoring, variable x in

equation 6.3 is used to block the inflated penalty resulting from the continuously emptying

solution space by minimizing the fragmentation penalty, especially along the final hops

preventing incorrectly trained RL actors. In addition to the training method above, two

other variations are investigated.

• Treating all new demands as immutable without directly involving them in the

training process.

• Fully integrating the new incoming demands upon arrival into the RL training

alongside the initially seeded demands.

The most effective SA performance is achieved when new demands are treated as im-

mutable. As a result, the system is able to reach a plateau more rapidly than when

compared to integrating the demands, with comparable results discussed in the following

section.

6.5 Performance Analysis

We require a comprehensive test environment setup using 5G demands services

across isolated OTN long chains to accurately assess the performance of the proposed

solution. The subsequent sections detail the specific aspects of the environment configu-

ration utilized.

6.5.1 Generating Realistic 5G-Based Demands

To properly represent the dynamic nature of a number of research efforts generated

simulation environment to that effect such as [93], We develop a realistic testbed to

generate the necessary 5G-based demands using SUMO [94] to mimic a densely populated

urban environment. Subsequently, the 5G traffic is managed using NS3, incorporating

5G-LENA built on it [95]. We customize NS3/5G-LENA to include core 5G services

such as URLCC, mMTC, and eMBB-based demands like 8K video streaming, immersive

gaming (including AR and VR), and tele-medicine. This ensures a highly diverse range of

demands, from those with stringent latency requirements to those with heavy bandwidth

needs.

Chapter 6: Throughput Latency Targeted RL Spectrum Allocation In Heterogeneous
OTN 99

6.5.2 Simulation Environment

The simulation and RL model are developed on a single workstation, operating

sequentially, equipped with an i7-8700K processor, 32Gb RAM, and GTX1080TI GPU.

The RL model is built and tested on PyQlearning Python reinforcement learning library,

in conjunction with TensorFlow.

6.5.3 Test Scenarios and Metrics

To thoroughly evaluate the primary objectives of our system, the following test

scenarios are conducted:

• Fragmentation ratios of the three system variations;

• Throughput

• Latency ratios of TLFRL with offloading allowed and blocked

6.5.4 Benchmarks

Two representative approaches are chosen to compare the performance of the pro-

posed TLFRL scheme. The first is a MILP-based solution based on the work of Zhang

et al. [96] applied on a fixed grid approach to show the advantages of the system’s use

of flex vs. fixed grid. The second benchmark is based on the heuristic portion from

the work presented by Santos et al. [97] built on flexible-grid to represent current solu-

tions adapted to the most recent spectrum setup changes in DWDM. The performance

of our approach focuses on throughput against that of traditional survivability-focused

SA approaches.

6.5.5 Results

Figure 6.8 shows the fragmentation results for all three variations of our solution.

It is clear that there is a distinct advantage for the immutable approach in handling

new demands, followed by the initial seeds only variation and, finally, the full integration

model which exhibits clear shortcomings. The continuous re-feeding of the RL with

new and neutral demands may explain this outcome, especially when the initial seeding

Chapter 6: Throughput Latency Targeted RL Spectrum Allocation In Heterogeneous
OTN 100

already provided comprehensive coverage of demand types and destinations. However,

in the immutable approach, the addition of new demands enhanced the impact of the

reward function, resulting in a slight improvement over the initial approach.

Figure 6.8: TLFRL’s variations fragmentation comparison

Figure 6.9 highlights the throughput under increasing demand load. To more ef-

fectively assess this metric, all nodes are loaded with a cross-section of demand types

comparable to the initial seed, minimizing the likelihood of size-based blocking and accu-

rately representing high-demand periods. Our solution stands out from the accompanying

benchmarks due to its sophisticated chain specific allocation technique, offloading capa-

bilities, and optimal spectrum utilization. The fixed grid approach, which lags behind

our solution, demonstrates the impact of proper spectrum allocation compared to the

greedy-based approaches presented in the introduction section.

Figure 6.9: Throughput comparison

Chapter 6: Throughput Latency Targeted RL Spectrum Allocation In Heterogeneous
OTN 101

Figure 6.10 displays the latency violations that occur under progressively heav-

ier traffic loads. For this test, in addition to the fully functional TLFRL, we include

the disabled offloading variation to emphasize the minimal impact on latency caused

by relying on traditional networking. We observe that the heuristic algorithm consis-

tently underperforms compared to the other algorithms. The TLFRL algorithm and its

variants maintain lower violation rates, albeit with small differences. Nonetheless, con-

sidering the minor latency differences into account compared to the throughput increase

achieved by the TLFRL, this demonstrates the limited cost incurred to achieve the noted

improvements.

Figure 6.10: Latency violations comparison

Lastly, to check if using an RL-based approach will have an impact on the specific

slots within the spectrum, Figure 6.11 illustrates the TLFRL’s ability to offer a stable

spectral assignment. The top row shows our system results in two clusters and has lower

usage of the spectral window midsection. Compared to the heuristic approach in the

lower row, it is observed that the placement is more haphazard, which can lead to more

blocking probability with increased loads.

Demand stability

Spectral slots

Figure 6.11: Spectral biases

Chapter 6: Throughput Latency Targeted RL Spectrum Allocation In Heterogeneous
OTN 102

6.6 Conclusion

In this chapter, we aimed to address the spectrum allocation problem in EONs

while targeting improved throughput based on fragmentation while respecting latency

constraints. We tackled the spectrum allocation process issues with several enhancements

that enabled the RL model to train faster and achieve better results by dynamically

reducing the granularity of the spectrum slots. Implementing immutable demands further

reduced the solution space under average conditions. Additionally, we extended the

spectrum allocation to traditional networking through an intelligent offloading scheme.

Simulation results showed the system’s minimal latency lag compared to the MILP and

heuristic SA benchmarks, but with a significant increase in throughput.

In future research, we plan to extend our solution to accommodate multicast traf-

fic grooming. We would also like to explore the implementation of time-of-day-based

configurations of TLFRL to handle demand changes influenced by social factors.

103

Chapter 7

Transfer Learning-Accelerated Network

Slice Management for Next Generation

Services

7.1 Introduction

Next-Generation Networks (NGNs) are continuously being developed to improve

networking performance and meet the users’ ever-increasing demands. Three main ser-

vices are currently the focus of 5G, namely Enhanced Mobile Broadband (eMBB), massive

Machine-Type Communications (mMTC), and Ultra Reliability Low-Latency Commu-

nications (URLLC). Each service type requires a unique set of requirements to function

properly. Given the rigid and closed nature of traditional Radio Access Network (RAN)

solutions, hosting these types of demand in the future is impractical. The RAN has

evolved through various changes to address its inherent challenges, including developing

Centralized RAN (CRAN) and Virtualized RAN (vRAN). However, the lack of open

interfaces and the reliance on proprietary hardware and software have hindered progress

in making breakthrough improvements. the current research is tackling this issue on

multiple domains such as edge computing [98], and 5G core [99] but remain hindered by

the domains themselves. To overcome this Open RAN (O-RAN) upgrade has recently

been introduced with much-needed flexibility and openness by utilizing virtualization,

disaggregation, and most integral an open architecture [100].

Since its initial stages of development, O-RAN has been designed to enhance 5G

systems by integrating virtualization elements along with Artificial Intelligence (AI) and

Machine Learning (ML) techniques into its fundamental architecture. The introduction

of two innovative modules, the near-Real-Time RAN Intelligent Controller (near-RT

RIC) and non-Real-Time RAN (non-RT RIC). The Non-Real Time RIC is responsible

Chapter 7: Transfer Learning-Accelerated Network Slice Management for Next
Generation Services 104

for handling the Orchestration and Automation functions in O-RAN. It manages radio

resources, layer procedures, and policy optimization, focusing on integrating AI/ML

models to support the operation of Near-Real Time RIC functions. This integration

helps to improve guidance, parameters, policies, and overall stats within O-RAN. The

Near-RT RIC, on the other hand, enables near-real-time optimization, control, and data

monitoring of O-CU and O-DU nodes in live timescales (between 10 ms and 1 s). This

is achieved by applying the policies generated by the AI/ML models computed/trained

by the non-RT RIC. [101].

The demands of application and use cases in 5G networks are increasing in re-

quirements and are expected to grow in volume for the foreseeable future. This led to

a bottleneck in traditional reactive traffic management approaches attempting to meet

these strict requirements of latency and reliability [102], especially when it comes to

placement routing and traffic steering. To address this, Network virtualization was intro-

duced to offer enhanced control over routing. Several solutions were developed to address

these gaps effectively and to accommodate the dynamic nature of 5G better, focusing on

different aspects of O-RAN. Among these, Intelligent Traffic Steering (TS) and Service

Placement (SP) strategies have emerged as popular approaches [103].

Although TS and SP can effectively enhance the management of network functions

and related aspects in O-RAN, their known limitations present a challenge in further

improving their effectiveness for optimizing 5G demands in O-RAN. These limitations

include the requirements to effectively orchestrate and coordinate various virtualized

network components at individual levels. This complexity is further exacerbated due to

the fluctuating nature of 5G demand patterns, widely differing networking requirements,

and the necessity for immediate decision-making based heavily on accurate and timely

data. In most cases, this data is limited in availability or quality, which inhibits the

potential benefits of 5G O-RAN.

Although TS and SP significantly impact network functions management and re-

lated aspects in O-RAN, their inherent limitations, including lack of scalability, hinder

the potential advancements in optimizing 5G demands in O-RAN. To overcome these

limitations, proficient orchestration and coordination among various virtualized network

components are necessary. Additionally, managing 5G demand is complex due to its dy-

namic nature, diverse service requirements, and immediate data-driven decisions, which

Chapter 7: Transfer Learning-Accelerated Network Slice Management for Next
Generation Services 105

require timely, accurate, and reliable data. Unfortunately, the accuracy and timeliness

of the required data are often limited by availability or quality issues, hence, hindering

most of the sought after benefits.

Given the limitations mentioned above, it is evident that managing each demand

separately is not a feasible approach. Thus, it is necessary to categorize and group

the numerous demands based on their shared constraints within certain demand groups.

Consequently, we focus on optimizing specific demand group constraints and achieving

optimal utilization in a more efficient and effective manner. The concept of network

slicing offers itself as the best-fitting tool to achieve our goal. This concept, gained

widespread recognition when standardized in the 3rd Generation Partnership Project

(3GPP) in 2018 [104].

This Thesis presents a zero-touch Network Slicing (NS) management solution com-

prised of three key elements: a Transfer Learning (TL) augmented Deep Q-Learning

model, a repository for a local slice and RL agents, and, an Intelligent Controller heuris-

tic as illustrated in Fig. 7.1. The solution aims to develop a set of agents and ready-to-use

slices that are specifically designed for each O-RAN environment. The proposed solution

first clusters the global demand set into groups based on three demand types and their

constraints. Secondly, driven by the heuristic, the ML model creates agents for future

slice instantiation and saves the agent for future use or transfer learning input.

The remainder of this chapter is organized as follows. In Section 7.2, we review

the state-of-the-art literature. The motivation and problem definition are outlined in

Section 7.3. The ML-based system’s mathematical model and corresponding heuristic

component are discussed in-depth in Section 7.4. Section 7.5 presents and discusses our

simulation and its results. Finally, Section 7.6 concludes the thesis.

7.2 Related Works

Network slicing techniques is an area of interest for the research community, with

the aim to improve the utilization and segmentation of 5G and next-generation demands

[105]. However, there is a lack of focus on the management of O-RAN NS in general,

beyond a specific use case. Most proposals in the literature are addressing specific cases

Chapter 7: Transfer Learning-Accelerated Network Slice Management for Next
Generation Services 106

Figure 7.1: Network-slicing in O-RAN

in current O-RAN such as network function placement and traffic routing, which are

NP-hard problems [106].

7.2.1 Optimization-based solutions

Due to the high complexity of the above-mentioned problems, optimization-based

approaches became the next logical research tool. Motalleb et al. [107]tackled the chal-

lenge of improving the O-RAN overall performance by combining network slicing and

power allocation strategies in an O-RAN system. To achieve this, The authors propose

using a mixed-integer nonlinear programming (MINLP) framework to create a joint op-

timization model that optimizes resource allocations among various network slices while

minimizing energy consumption. Their approach makes O-RAN more flexible and effi-

cient in meeting cater to diverse service in future 5G and beyond network deployments.

Chapter 7: Transfer Learning-Accelerated Network Slice Management for Next
Generation Services 107

Foroughi et al. [108] proposed a multi-objective optimization solution for NS in

vRAN and O-RAN. The solution aims at optimizing multiple factors simultaneously,

including quality of service (QoS), capital expenses (CAPEX), operational expenses

(OPEX), and the transport network. The authors addressed O-RAN slice planning and

design as a multi-objective binary optimization problem. The problem was solved us-

ing simulated annealing. Additionally, the authors introduced a slice-aware optimization

model that aimed at minimizing CAPEX and OPEX while ensuring optimal quality of

service. To do this, they took into account the transport network capacity, edge nodes,

and front-haul delays. Their model achieved an average cost reduction of 70% within the

tested network.

7.2.2 AI-based solutions

Yu et al. [106] presented an in-depth examination of the implementation and

performance of dynamic 5G network slicing techniques across multiple network oper-

ators specifically for vehicular emergency scenarios. The authors designed and evalu-

ated a multi-operator network slicing framework to dynamically allocate and manage

network resources, and prioritizing emergency vehicular communication traffic. They

evaluated the framework via simulation measuring key performance metrics such as la-

tency, throughput, and resource utilization. The results showed that the proposed multi-

operator network slicing framework significantly improved network performance and reli-

ability by ensuring prioritized, low-latency communication for emergency services, partic-

ularly during high-demand emergencies. Their paper emphasized the potential benefits

of their approach for enhancing real-time response and coordination during vehicular

emergencies.

Thaliath et al. [109] explored the concept of predictive automation in the context of

network slicing within an O-RAN. The authors’ proposed a closed-loop predictive model

that utilized ML algorithms to proactively optimize network resources. This model learns

from historical network performance data to anticipate future service demands and adjust

the network slices accordingly, ensuring optimal performance. The study showed that

predictive approaches can significantly improve the efficiency and quality of service in

an O-RAN system, enabling seamless adaptation to varying network conditions and user

requirements.

Chapter 7: Transfer Learning-Accelerated Network Slice Management for Next
Generation Services 108

Tamim et al. [110] chose to tackle the issue of network availability as the main

goal and proposed an optimized deployment strategy for the virtualized O-RAN units in

the O-Cloud to minimize the network’s outages. Their Binary Integer Programing (BIP)

model is optimized by employing placements to minimize the per-VNF and the SFCs’

downtime and their redundant ones, maximizing the network’s overall availability while

adhering to the O-RAN-specific requirements.

Kak et al. [57] proposed an ML-based solution to forecast network traffic and op-

timally allocate radio resources across various network slices. Their aim is to enhance

the effectiveness of network resource management. The solution Focuses on eMBB and

mMTC slice types, emphasizing the importance of forecasting and subsequent slice re-

configuration. The testing results showed that the solution enables more autonomous,

flexible, and responsive networking solutions, particularly in 5G and beyond network

environments.

Duong et al. [111] tackled the constraints that come with the increased openness

and virtualization of O-RAN especially when it comes to availability guarantees arising

from either software or hardware failures. They created a decomposition model for the

design of reliable O-RAN deployment under a dedicated virtual network function (VNF)-

protection scheme. Their proposed model maximizes the network’s yearly availability by

providing a placement decision for all O-RAN VNFs and their backup instances. The

model is solved by a column generation algorithm making it a scalable algorithm for

large-scale 0-RAN deployments capable of producing near-optimal solutions in reasonable

computational times regardless of the network scale.

Boateng et al. [112] leveraged the application of blockchain technology to spec-

trum trading in the context of NS in RAN to enable slice creation and autonomous slice

adjustment. The authors also introduced a three-stage Stackelberg game framework for

incentive maximization. A multi-agent deep reinforcement learning (MADRL) method

is designed to achieve Stackelberg equilibrium (SE). The work simulation results demon-

strate the effectiveness of the proposed method in terms of utility maximization and

fairness.

Filali et al. [113] developed a two-level RAN slicing approach utilizing the O-

RAN architecture to efficiently allocate communication and computation RAN resources

among URLLC end devices. They formulated the resource slicing problem as a single-

Chapter 7: Transfer Learning-Accelerated Network Slice Management for Next
Generation Services 109

agent Markov decision process for each RAN slicing level and used a deep reinforcement

learning algorithm to solve it. Simulation results showed that the solution effectively met

the quality of service requirements of URLLC.

Chergui et al. [114] presented an energy-aware Artificial Intelligence (AI) algorithm

for Zero touch network and Service Management (ZSM) closed-loop automation. The

algorithm uses statistical federated learning (StFL) to predict KPIs within a decentralized

slicing architecture while adhering to stringent service level constraints. Compared to

centralized constrained deep learning alternatives, and the proposed method exhibited

significant improvements while also reducing the violation rate by a considerable margin

in comparison to FedAvg. When analyzing many concurrent slices, the authors ensured

the resulting solution would boast significant scalability and sustainability advantages

over its predecessors.

Previous solutions shown effectiveness within their spheres but commonly lack scal-

ability, particularly in relation to traditional optimization methods. Machine Learning

(ML) solutions, while addressing certain network slicing (NS) challenges, they lack mo-

bility and zero-touch capabilities due to their specialized focus. These limitations make

integration into standalone O-RAN environments a challenge. Hence to overcome these

drawbacks, we propose a solution leverages AI techniques to overcome these drawbacks.

It’s designed for independent deployment, adapting operations to maintain optimal 5G

demand-based slices. This is achieved utilizing Reinforcement Learning and Transfer

Learning using a unique reactive heuristic.

7.3 Motivation and Problem Definition

The mission-critical 5G applications such as Automatic Vehicle Locator (AVL)

for task-sensitive vehicles and latency/reliability-based applications such as Augmented

Reality (AR)-assisted surgery, Vehicle-to-Everything (V2X) communications, live sports

events streaming, and online gaming are the leading areas that benefited from the 5G

revolution. These applications are at the forefront of further development in Beyond 5G

(B5G) and 6G networks under the use case of URLLC. However, network traffic and

user connectivity are expected to grow rapidly in the upcoming years as the number of

Chapter 7: Transfer Learning-Accelerated Network Slice Management for Next
Generation Services 110

mobile 5G subscriptions worldwide is expected to reach 4.8B by 2026 and pose further

challenges for these networks [77].

The 5G revolution and projected advancements in Beyond 5G (B5G) and 6G net-

works provided faster and more reliable wireless communication, making Internet con-

nectivity a ubiquitous feature of everyday life as initially highlighted in [115] focusing

on the heterogeneity and resulting interference along with their impacts. the work was

expanded on recently in [116] critiquing a number of solutions that have been introduced

since. Along with all the challenges the impact of such services has become evermore

multifaceted and integral across various critical sectors, such as:

• Internet of Things (IoT): With enhanced connectivity, IoT expands support to vast

number of connected devices, enabling the advancement of smart homes, cities,

factories, and agriculture.

• E-Health: Facilitating the realization of remote patient monitoring, telemedicine,

and even remote surgery. Advanced healthcare technologies like AI diagnostics and

personalized medicine become more stable, accessible, and efficient.

• Industry 4.0: Enabling real-time data sharing, remote machinery control, and in-

creased automation resulting on more efficient and flexible factories.

• Autonomous Vehicles and Drones: require reliable, fast, low latency, and high

capacity communication.

• AR/VR: Expedite the advancements in Augmented Reality (AR) and Virtual Re-

ality (VR), enabled more immersive experiences and practical applications in areas

like education, training, and entertainment.

To distinguish between such a highly divergent services, 5G categorized its ap-

plications into three major categories based on their specific requirements for optimal

performance. These categories are:

1. eMBB covers services that need high data-rate transmissions and provide enhanced

broadband experiences. This includes 4K/8K video streaming VR or AR.

Chapter 7: Transfer Learning-Accelerated Network Slice Management for Next
Generation Services 111

Table 7.1: URLLC use cases

Type Description Example

Low Latency
with High Re-
liability

Applications Requiring very low latency (on
the order of milliseconds) and extremely high
reliability (up to 99.999%)

Autonomous vehicles,
factory automation,
and remote surgery.

Low Latency
with Moder-
ate Reliabil-
ity

Applications that tolerate slightly lower lev-
els of reliability, but the need for quick re-
sponse times remain, with occasional data
packet loss not having critical consequences.

AR/VR applications
and online gaming.

Moderate
Latency with
High Relia-
bility

Applications requiring highly reliable com-
munication to maintain stability, but the ac-
ceptable latency could be slightly higher than
in life-critical applications.

Smart grid and fleet
Management

Low Latency
with High
Data Rates

Applications requiring high data rates in
real-time.

ITS and remote con-
trol of heavy machin-
ery

2. mMTC focuses on supporting large scale, low-cost, low-energy consumption ap-

plications mainly associated with the Internet of Things (IoT), including Smart

meters, Asset tracking devices, and Connected agricultural sensors.

3. URLLC targets applications requiring very low latency and ultra-high reliability,

such as Autonomous vehicles, Remote surgery, and Industrial automation and con-

trol.

Managing these services can be complex, especially because each category has in-

formal subdivisions. For instance, URLLC can be divided based on the variation in

constraints it has, as shown in table 7.1. These challenges are most noticeable in the

front to mid-haul regions due to their sporadic placement. Therefore, there have been

significant academic and industrial efforts to address them, including the development of

O-RAN, one of the leading platforms tailored toward 5G integration.

As the O-RAN architecture enables the utilization of AI and ML across all its

layers, leading to more intelligent solutions and improved performance in shorter time

than primitive heuristic-based solutions . However, to take advantage of this, it is crucial

to continuously optimize the resource allocation for services within O-RAN. To achieve

Chapter 7: Transfer Learning-Accelerated Network Slice Management for Next
Generation Services 112

this, it is paramount to ensure that the 5G related O-RAN components, mainly the near-

RT RIC, O-RAN Centralized Unit (O-CU), and O-RAN Distributed Unit (O-DU), are

utilized efficiently based on the combination of active 5G applications.

One main aspect differentiating O-RAN from its RAN predecessors is its full vir-

tualization. Although this offers several benefits, it also presents a set of challenges due

to the varied inter-component latencies and capabilities. Given this new dimension of

complexity, placement techniques that deal with applications individually are bound to

reach a bottleneck due to scalability limitations and processing time. A more efficient

method of overcoming these challenges is to process the 5G demands in bulk; a well-

known method capable of such a task is network slicing. Network slicing divides the

physical network into multiple virtual ones, called slices. Each slice can be indepen-

dently managed and optimized to suit our specific application type and its constraints,

allowing for more efficient use of network resources and improved performance.

This work presents an extended zero-touch scalable solution within the O-RAN

architecture. The system is comprised of four main components: a heuristic algorithm to

control and automate the other three components to allow for zero-touch capabilities, a

Deep Reinforcement learning (DRL) model as the primary slice creation tool, a transfer

learning model to improve the outcomes and processing time of the RL model, and finally,

a repository holding the network slices and trained RL agents for creating network slices

and training additional agents, ultimately ensuring successful deployments as shown in

Fig. 7.2.

The DRL is used to create the agents capable of slicing the network for each

set of grouped 5G applications optimizing both latency and reliability. These agents

are trained on three distinct sets of constraints to account for the differences in 5G

applications discussed earlier. The heuristic algorithm handles the storing of slices and

agents, triggering new agent creation, or activating stored agents based on incoming

applications and their similarity to the trained RL agent’s input.

To evaluate our end-to-end solution, we build a large-scale O-RAN environment

and utilized real 5G datasets to stress test the developed solution properly. This ensures

it is future-proof under projected increasing scale and dynamic network conditions.

Chapter 7: Transfer Learning-Accelerated Network Slice Management for Next
Generation Services 113

Figure 7.2: System Overview

7.4 System Description

The system’s composed of two core modules: the ML engine illustrated in Fig.

7.3, and the heuristic module. The ML engine consists of a Deep reinforcement learner

augmented by a compatible transfer learning model. This is triggered by the heuristic

module output. The heuristic module matches the correct stored agent to reduce the

training cycle length and ensure consistent performance during the deployment period.

The system’s repository is controlled by the heuristic module and used to create the slices

when a capable agent is available, then store both newly created agents and resulted

networking slicing decision. The system core can handle the three 5G demand types:

URLLC, eMBB, and mMTC. The following sections outline the DRL model formulation

and the heuristic algorithm.

7.4.1 Machine learning component

The engine’s goal is to optimize the placement location of all O-RAN VNFs and

their one-to-one backup components, ensuring maximum availability of the deployed

slice. To achieve this, an optimization problem is formulated with the objective function

to minimize the downtime incurred by the VNFs hosted on the commercial-off-the-shelf

Chapter 7: Transfer Learning-Accelerated Network Slice Management for Next
Generation Services 114

Figure 7.3: TL augmented RL System

(COTS) servers. The engine receives a request from the heuristic to create an O-RAN

slice with a required number of VNFs, a set of candidate servers available to the network

service provider (NSP), and candidate agents to apply transfer learning where possible.

The engine aims to place all the VNFs and their backup components to minimize the

overall downtime across all SFC as shown in Eq. 7.1. This objective applies to all three

use cases. Each use case has specific constraints that are tailored to the engine. These

constraints are outlined in the following sections.

The objective function, Eq. 7.1, aims at minimizing the total downtime across all

hosted VNFs. The downtime of a VNF on a server is calculated by dividing its recovery

time (RT) by its Mean Time to Fail. This same calculation is used to determine the

downtime of a server. The sum of these values represents the downtime of a VNF hosted

on a specific server.

min
∑

servers

∑
V NFs

[[
RTvnf

MTTFvnf
+

RTserver
MTTFserver

]]
× θvnf,server (7.1)

Each use case for O-RAN has its own unique operational and functional constraints.

Our ML engine considers these on a per-use case basis to ensure that any deployment is-

sued is tailored correctly. For URLLC deployments, we focus on are optimizing reliability

while strictly adhering to latency. For eMBB deployments, we consider the data trans-

fer capacities of all the servers and maximize the SFC availability. Finally, for mMTC

deployments, we aim at efficiently serve as many end-user equipment as possible while

Chapter 7: Transfer Learning-Accelerated Network Slice Management for Next
Generation Services 115

meeting the minimum number of servers set by the NSP. The equations provided below

list the specific constraints for each type of deployment.

7.4.1.1 eMBB constraints

Eq. 7.2 ensures that server “server” is capable of providing uplink data rates that

are equal to or exceed the uplink data rates threshold set for eMBB for all hosted VNFs

“vnf”.

θvnf,server × ULserver ≥ ULη × θvnf,server∀vnf ∈ V NFs, ∀server ∈ Servers (7.2)

Eq. 7.3 ensures that server “server” is capable of providing downlink data rates

that are equal to or exceed the downlink data rates threshold set for eMBB for all hosted

VNFs “vnf”.

θvnf,server ×DLserver ≥ DLη × θvnf,server∀vnf ∈ V NFs, ∀server ∈ Servers (7.3)

To ensure that the links between the SFC VNFs meets the bandwidth requirements

for O-RAN eMBB use cases, Eq. 7.4 ensures that the bandwidth of all the links of the

hosting server is equal to or greater than eMBB bandwidth threshold.

θvnf,server×BWserver ≥ BWη × θvnf,server∀vnf ∈ V NFs, ∀server ∈ Servers (7.4)

As part of the operational constraints of O-RAN, Eqs. 7.5, 7.6, 7.8, 7.9, 7.11, and

7.12 ensure that no VNF can be hosted on a server that does not have enough CPU cores

or memory capacity. Each use case can have the required CPU and memory set by the

NSP. Hence, each use case has a different threshold as shown in the equations.

V NFs∑
v=0

Servers∑
s=0

ς
req
veMBB

< ςavails × θv,s (7.5)

Chapter 7: Transfer Learning-Accelerated Network Slice Management for Next
Generation Services 116

V NFs∑
v=0

Servers∑
s=0

ξ
req
veMBB

< ξavails × θv,s (7.6)

7.4.1.2 URLLC constraints

The core constraint of URLLC is to ensure that the links between each dependent

VNF have a latency less than or equal to the latency threshold set by O-RAN URLLC

deployment specifications. Eq. 7.7 depicts this constraint showing an iteration of all

VNFs and servers, but only considering servers that have VNFs hosted on them.

V NFs∑
v=0

Servers∑
s=0

V NFs∑
vd=0

Servers∑
sd=0

ls,sd ≥ l
thresholdURLLC
v,vd × θv,s × θvd,sd (7.7)

V NFs∑
v=0

Servers∑
s=0

ς
req
vURLLC

< ςavails × θv,s (7.8)

V NFs∑
v=0

Servers∑
s=0

ξ
req
vURLLC

< ξavails × θv,s (7.9)

7.4.1.3 mmTC constraints

For mMTC, Eq. 7.10 improves efficiency by reducing the needed number of hosting

servers. The NSP can set a parameter called ς to limit the agent to using no more than ς

servers.. If no solution is possible with ς servers, the engine will incrementally add more

candidate servers while notifying the NSPs until a solution is found. This constraint

enables NSP to increase servers efficiency and hence serve more UEs per location on a

massive scale using the same server infrastructure. However, this comes at the cost of

computational resources, which NSPs can control by adjusting ς.

|SFCs|∑
∂=0

S
UniqueCount
∂ ≤ εthresholdmMTC (7.10)

Chapter 7: Transfer Learning-Accelerated Network Slice Management for Next
Generation Services 117

V NFs∑
v=0

Servers∑
s=0

ς
req
vmMTC

< ςavails × θv,s (7.11)

V NFs∑
v=0

Servers∑
s=0

ξ
req
vmMTC

< ξavails × θv,s (7.12)

7.4.1.4 Transfer learning

For improved accuracy and faster deployment, we decided to incorporate a TL

component to enhance our RL. We used transfer learning’s domain adaptation technique

to leverage agents that were already trained based on earlier slice requirements and O-

RAN data collected from Non-real-time RIC (source domain). This allowed us to adapt

to a new set of slice requirements and O-RAN data (target domain), as shown in Eq.

7.13. With xt and yt representing the input data and labels from our historical data. We

chose this method because it is the most straightforward and effective approach for our

environment, where the distribution of data in the target domain is only slightly different

from the source domain, which is often the case in real-world networking deployments.

θ∗target <<< min
θ

∑
(xt,yt)∼Dt

[L(M(xt; θ), yt)] (7.13)

7.4.2 Heuristic component

Although the RL can efficiently create slices and agents, it still cannot be considered

as a zero-touch solution as it still requires an intelligent driver. To address this, we

developed a heuristic solution to trigger agents and slice creation at the DRL. Fig. 7.4

outlines the operational steps of the heuristic algorithm. The heuristic algorithm as the

system driver covers the entire process, from the initial scenario of an empty repository

to the eventual stability where the need for ML becomes negligible.

Algorithm 5 shows the triggering methodology adopted by our heuristic along with

automated adjustment of the agent creation rate from the initial stages till the system

reaches a stable state. This is necessary because, in the earlier stages, more agents are

Chapter 7: Transfer Learning-Accelerated Network Slice Management for Next
Generation Services 118

Figure 7.4: Heuristic Driver overview

Algorithm 5 Heuristic driver.

Require: Ssimilarity−index,Ssimilarity−threshold;
Asimilarity−index,Asimilarity−threshold ;
Alearning−threshold

2: New incoming 5G demand set
3: if Ssimilarity−index > Ssimilarity−threshold then
4: Use stored slice image
5: Check slice Fit
6: if Stored Slice creation fails or Fit fails then
7: if Asimilarity−index>Asimilarity−threshold then
8: search for the best-fit agent to create a new slice
9: if Asimilarity−index>Alearning−threshold then
10: Create and Store the new slice
11: Update Alearning−threshold
12: end if
13: Trigger new agent creation
14: end if
15: end if
16: end if
17: Engage RL
18: if Asimilarity−index > Alearning−threshold then
19: Augment with TL
20: Update Alearning−threshold
21: end if

Chapter 7: Transfer Learning-Accelerated Network Slice Management for Next
Generation Services 119

Figure 7.5: MTTF Across All Placed VNFs for mMTC Application
needed to improve the impact of the transfer learning part of our model. Later the rate

of agent production is reduced to focus on direct slice implementation. The variables

Asimilarity−threshold represent the similarity threshold used to trigger a new learning

cycle vs. enforced direct slicing using the existing agents, while Ssimilarity−threshold is

used as a bias adjuster that is updated after each cycle to shift operation away from

creating new agents based on the robustness of the agent and slice repositories. The size

of the repository is important especially when tacking model drift-related loss of accuracy

typical in such scenarios [117].

7.5 Performance Evaluation

Our simulation setup consists of the O-RAN environment, key metrics outlined

in table 7.2, and 5G application-based generated datasets. To evaluate our proposed

heuristic-driven ML engine, we deployed our agent in an environment with the incoming

requests for each 5G application type as packets per second from UEs to every VNF

for a one day period (1440 timesteps) through a discrete event simulator, following the

specifications presented in [118]. The slice failure at any VNF is tracked over a period of

several months.

The chart shown in Fig. 7.5 demonstrates how our solution performance compares

to the traditional individualized approach algorithm. We used the MTTF per VNF in

Chapter 7: Transfer Learning-Accelerated Network Slice Management for Next
Generation Services 120

Table 7.2: O-RAN Environment and Metrics Description

Attribute Description Distribution

VNF ID Unique ID of VNFs available Range 0-99

VNF types List of O-RAN component
types

Near-RT RIC, O-CU, O-DU

RT Recovery time Normal distributed random variable,
Mean 0.008, Var. 0.005

CPU Number of Cores available for
each component

Near-RT RIC: 8 O-CU, O-DU: 4

Memory Available RAM in GB Near-RT RIC: 16, O-CU, O-DU: 6

MTTF Mean time between failures Exponential distributed random
variable, Mean 2100

MTTR Mean Time To Recovery Normal distributed random variable,
Mean 0.05, Var. 0.03

DL Downlink GB Uniform distributed random vari-
able, Range 17-35

UL Uplink GB Uniform distributed random vari-
able, Range 8-20

Bandwidth specifies the available band-
width in (GHz)

Dist. Uniform, 1-3

Chapter 7: Transfer Learning-Accelerated Network Slice Management for Next
Generation Services 121

Figure 7.6: MTTF Across All Placed VNFs for eMBB Application

minutes for mMTC slices during the testing period as the comparison metric. Based on

the chart, it highlights the advantages our approach has produced across most VNFs. The

89 VNf snapshot shows our solution, while dealing with placement in bulk, maintained

its advantages compared to the benchmarking algorithm working on an individual based,

giving it more opportunity for optimization, but given its approach to the placement

of the three chains more often than not it creates less optimal placements; this can be

attributed to greedy approach in the second hop particularly resulting in a bad list of

choices for the final chain especially when the latency requirements constraints limit it

to adjacent units only.

In Fig. 7.6, it can be seen that the eMBB simulation results show comparable

results mMTC. This confirms the advantages of our approach of segregating the slices

and agents based on application types and treating each slice based on its unique traits.

Fig. 7.7 on the other hand, has shown simulation only slight improvements com-

pared to the other two service types. This is due to the URLLC service restrictive

constraints outlined in the section above, which resulted in limiting our slice capabilities

when compared to the individualized approach. while these results were expected there

is room for improvement discussed in the conclusion section that we aim to explore.

even with the limitations imposed by our grouped bulk processing, our solution

Chapter 7: Transfer Learning-Accelerated Network Slice Management for Next
Generation Services 122

Figure 7.7: MTTF Across All Placed VNFs for URLLC Application

Figure 7.8: Impact of TL on Agent training

Chapter 7: Transfer Learning-Accelerated Network Slice Management for Next
Generation Services 123

Figure 7.9: Impact of TL on Agent training

remains consistent in it targeted improvements with an 11.31% overall increase in MTTF,

as illustrated in Fig. 7.8. These findings highlight the benefits of using NS deployment

and management over traditional approaches regarding robustness, fault tolerance, and

recovery. even in URLCC maintained, such improvements across the testbed were with

approximately a 5.16% increase.

Finally, we aimed to validate the impact of TL on the proposed RL. To achieve

this, we compared the performance of our TL-augmented setup to the standalone RL, as

illustrated in Fig. 7.9. Using the TL in its basic form still results in a significant decrease

in training time, especially in eMBB. This reduction in the training time is advantageous

as it allows for more frequent agents update, which in hand, will reduce the amount

of time it takes for our model to achieve stability regardless of the O-RAN deployment

scale.

7.6 Conclusion

We presented a zero-touch solution for managing 5G network slicing. Our solu-

tion uses a heuristic-guided TL-augmented RL implemented within O-RAN. the solution

has effectively minimized downtime while still complying with O-RAN’s operational and

functional limitations. The solution is highly adaptable and can easily accommodate

sudden changes to the deployed network. The system uses unique and locally available

information, facilitating easier integration. The performance of the proposed system

is evaluated in comparison to traditional approaches using industry-standard 5G traffic

datasets. The evaluation results show that the proposed system consistently achieves

Chapter 7: Transfer Learning-Accelerated Network Slice Management for Next
Generation Services 124

lower downtime than the traditional algorithms. For future work, we aim to expand the

RL environment by incorporating additional state parameters to enable more effective

deployment of larger O-RAN. additionally, we would like to investigate the approach of

using the constraints of the requests directly instead of grouping based on type first,

resulting in heterogeneous slices when it comes to the types occupied but more aligned

constraints, which theoretically should produce better optimally despite the slight in-

crease in complexity. As for the TL, we have begun retooling the portion of our system

to use Partial Fine-tuning approaches as well as investigate Transfer learning normal-

ization techniques to improve the augmentation in both production speed and accuracy.

Finally, we intend to implement our solution in real-world O-RAN deployments to better

test its performance under a larger set of URLLC traffic.

125

Chapter 8

Conclusion

8.1 Introduction

The continued evolution and penetration of technology in our daily lives has led to

a rapid acceleration in their application and networking requirements. More and more

enterprises and businesses are adopting 5G-based services such as URLLC, eMMB, and

eMTC. However, adopting such technologies required high virtualization of the network-

ing structure that brought many enabling features but also introduced several challenges,

such as the urgent need to improve the performance and efficiency of such systems, which

may be achieved by properly placing the available services, especially within the scarce

resources typical in the edge computing environment. Another non-trivial challenge is op-

timizing the use of the highly stable and massive throughput of OTN networks to better

support 5G services. A third challenge is managing 5G services within O-RAN, espe-

cially with the increased dynamicity of the demands. To that end, this thesis proposed

using various optimization modeling and machine learning techniques in three different

domains; Edge computing (front-haul), O-RAN (Mid-haul), and OTN (backbone). In

particular, the first part of the thesis focused on using optimization modeling techniques

to improve downtime through orchestration. The second part of the thesis created a sim-

ulation environment for 5G in OTN and trained an RL model to enhance the spectrum

allocation scheme towards lower fragmentation and better throughput. The third part

of the thesis proposed employing Network slicing using TL-augmented RL to achieve

zero-touch 5G optimization in O-RAN.

The remainder of this chapter summarizes the contributions achieved, the schemes

developed in this thesis, and the probable future research directions.

Chapter 8: Conclusion 126

8.2 Summary of Contributions

Chapter 3 formulated the container orchestration problem within an edge comput-

ing environment as a Mixed Integer Linear Programming (MILP) to minimize downtime.

While effective at orchestration, the complexity of the solution made it best suited for

benchmarking. The problem was then reduced further into a heuristic scheme to enable

practical implementation. Results showed that the optimal solution achieved a global

minimum, and the heuristic scheme achieved lower downtime unhindered by the reduc-

tion in solution space even across the various testbeds with different densities. Chapter

4 extended the previous work by introducing a better segmentation scheme for edge

computing space to reduce the solution space and allow for local orchestration. Due to

the containers’ stringent demands coupled with users’ dynamic nature within an edge

environment, grid or static methods are inefficient. Hence, the proposal of lax clustering

techniques as a tool to create the subspaces. Chapter 5 utilized various simulation tools

to create a modular 5G OTN simulation environment. Due to its distributed nature, the

resulting solution could create large datasets with minimal equipment. Chapter 6 pro-

posed using reinforcement machine learning techniques to better place 5G flows on the

spectrum within isolated optical paths. The work in Chapter 6 achieves lower fragmenta-

tion and decreased blocking, leading to better throughput. In Chapter 7, the topic of 5G

placement within O-RAN was addressed to reduce complexity. The 5G applications were

categorized into three main types. Heuristic and machine learning techniques, mainly a

TL-augmented RL engine, were used to create customized network slices. The solution

achieved Positive results the demands being grouped and processed in bulk.

8.3 Future Research Directions

This thesis explored the use of optimization modeling and machine learning tech-

niques to automate systems more efficiently and intelligently, with each of the three

solutions developed showing impactful results in their respective target. Despite the

novel solutions and algorithms that were developed in this thesis to tackle the various

challenges of B5G zero-touch systems, several challenges still need to be addressed. These

challenges are of technical, economical, regulatory, and social nature, given the multi-

Chapter 8: Conclusion 127

national, multi-industry, and multi-technology ecosystem that the zero-touch systems

will create. This section presents future research directions that can be explored toward

more efficient and intelligent systems, with specific examples for each of the three systems

considered in this work.

8.3.1 Technical Challenges:

Many technical challenges need to be addressed in 5G-based systems, which offer numer-

ous opportunities for researchers to explore. Some of these challenges include complexity,

management overhead, and reliability, to state a few. Researchers can use various tech-

niques and methods to overcome these challenges, such as data analytics, Deep learning,

optimization, and game theory. Here are three examples of potential future research

directions that can build on the work presented in this thesis.

8.3.1.1 Edge Computing Segmentation and Container Orchestration

The research discussed in Chapters 3 and 4 can be expanded in various ways. One poten-

tial expansion is to include more metrics like container hierarchy, Kubernetes backups,

and other management systems and consider their role in the decision-making process for

orchestration. Furthermore, examining the energy efficiency of the process and triggering

mechanism could lead to greater energy savings for service providers and devices while

maintaining performance and reducing the frequency of orchestration cycles.

8.3.1.2 Optical Simulation and Spectrum Allocation

The work presented in Chapters 5 and 6 can be extended in several research directions.

To better simulate the environment of 5G and OTN, the granularity of OTN paths im-

plementation can be improved using state-of-the-art ROADMs and other unique optical

networking components to better simulate the optical aspect of the networks. Another

possible extension is using advanced classification techniques to detect and forecast the

flows to proactively allocate the spectrum achieving better stability for OTN transmission

despite the projected increased heterogeneity of B5G and NGNs.

Chapter 8: Conclusion 128

8.3.1.3 Network Slicing in O-RAN

Chapter 7’s work can be expanded by exploring various research directions. One such

direction is to divide the NS agents based on more attributes like latency requirements

and security demands. This can enhance the NS allocation process. Another potential

extension is to refine the heuristic scheme for identifying O-RAN states where it is better

to redeploy full NSs instead of creating them using the existing agents working solely on

remaining available resources.

8.3.2 Economical Challenges:

When creating Zero-touch systems, addressing the economic challenges they present is

important. Advanced machine learning techniques should be used to create efficient

models to reduce both CAPEX and OPEX. Additionally, virtualization technology can

be used to share physical infrastructure and equipment among multiple vendors. For

B5G zero-touch systems, new and innovative business models are necessary, as traditional

models are ineffective in the complex multi-industry and multi-technology ecosystem they

create. Game theory can be utilized to develop these models, as it can handle the diverse

nature of B5G systems.

8.3.3 Regulatory Challenges:

Another challenge is the regulatory and standardization process for future zero-touch

systems. This is crucial given that such standards are needed to determine the ap-

plication requirements, communication protocols, security practices, and other operation

mechanisms for an efficient zero-touch system. To that end, the different standards devel-

opment organizations such as the Internet Engineering Task Force (IETF), International

Telecommunication Union (ITU), and 3rd Generation Partnership Project (3GPP) need

to develop and ratify the standards to govern B5G systems. For example, the communica-

tion standards needed to enable and facilitate 6G communication within a heterogeneous

network setup.

Chapter 8: Conclusion 129

8.3.4 Social Challenges:

The social aspect of zero-touch systems is crucial due to concerns that they may replace

humans, particularly in sectors like network engineering. In this field, it’s important for

developers and technicians to treat patients as individuals rather than just statistics.

Skeptics worry that standardized approaches could be a weakness, relying too much on a

one-size-fits-all approach rather than traditional techniques. Therefore, it’s essential to

create intelligent systems that act as support tools rather than complete replacements

for human actions and interactions.

130

References

[1] A. Machen, S. Wang et al., “Live service migration in mobile edge clouds,” IEEE

Wireless Communications, vol. 25, no. 1, pp. 140–147, 2018.

[2] grand view research. [Online]. Available:

https://www.grandviewresearch.com/industry-analysis/

5g-services-market

[3] S. Pongratz, “The role of intelligent ran and automation,” Jun

2022. [Online]. Available: https://www.delloro.com/the-role-of

-intelligent-ran-and-automation/

[4] A. Moubayed, A. Shami, P. Heidari, A. Larabi, and R. Brunner, “Edge-enabled

v2x service placement for intelligent transportation systems,” IEEE Transactions

on Mobile Computing, vol. 20, no. 4, pp. 1380–1392, 2021.

[5] ——, “Cost-optimal v2x service placement in distributed cloud/edge environment,”

in 2020 16th International Conference on Wireless and Mobile Computing, Net-

working and Communications (WiMob). IEEE, 2020, pp. 1–6.

[6] A. Moubayed and A. Shami, “Softwarization, virtualization, and machine

learning for intelligent and effective vehicle-to-everything communications,” IEEE

Intelligent Transportation Systems Magazine, vol. 14, no. 2, p. 156–173, 2022.

[Online]. Available: http://dx.doi.org/10.1109/MITS.2020.3014124

[7] O. Sefraoui, M. Aissaoui, M. Eleuldj et al., “Openstack: toward an open-source

solution for cloud computing,” International Journal of Computer Applications,

vol. 55, no. 3, pp. 38–42, 2012.

[8] B. I. Ismail, E. M. Goortani et al., “Evaluation of docker as edge computing plat-

form,” in 2015 IEEE Conference on Open Systems (ICOS), 2015, pp. 130–135.

Chapter 8: Conclusion 131

[9] U. Awada and J. Zhang, “Edge federation: A dependency-aware multi-task dis-

patching and co-location in federated edge container-instances,” in 2020 IEEE In-

ternational Conference on Edge Computing (EDGE), 2020, pp. 91–98.

[10] C. Costache, O. Machidon et al., “Software-defined networking of linux containers,”

in 2014 RoEduNet Conference 13th Edition: Networking in Education and Research

Joint Event RENAM 8th Conference, Chisinau, Moldova, 2014, pp. 1–4.

[11] D. M. Manias and A. Shami, “The need for advanced intelligence in nfv man-

agement and orchestration,” IEEE Network, vol. 35, no. 1, pp. 365–371, Jan-

uary/February 2021.

[12] H. Hawilo, M. Jammal et al., “Orchestrating network function virtualization plat-

form: Migration or re-instantiation?” in 2017 IEEE 6th International Conference

on Cloud Networking (CloudNet), Turin, Italy, 2013, pp. 1–6.

[13] A. Barbalace, M. L. Karaoui et al., “Edge computing: The case for heterogeneous-

isa container migration,” in Proceedings of the 16th ACM SIGPLAN/SIGOPS In-

ternational Conference on Virtual Execution Environments, 2020, pp. 73–87.

[14] T. G. Rodrigues, K. Suto et al., “Hybrid method for minimizing service delay

in edge cloud computing through vm migration and transmission power control,”

IEEE Transactions on Computers, vol. 66, no. 5, pp. 810–819, 2016.

[15] M. Alam, J. Rufino et al., “Orchestration of microservices for iot using docker and

edge computing,” IEEE Communications Magazine, vol. 56, no. 9, pp. 118–123,

2018.

[16] K. Kaur, S. Garg et al., “Edge computing in the industrial internet of things en-

vironment: Software-defined-networks-based edge-cloud interplay,” IEEE Commu-

nications Magazine, vol. 56, no. 2, pp. 44–51, 2018.

[17] O. I. Abdullaziz, L. C. Wang et al., “Enabling mobile service continuity across

orchestrated edge networks,” IEEE Transactions on Network Science and Engi-

neering, vol. 7, no. 3, pp. 1774–1787, 2020.

Chapter 8: Conclusion 132

[18] O. Oleghe, “Container placement and migration in edge computing: Concept and

scheduling models,” IEEE Access, vol. 9, pp. 68 028–68 043, 2021.

[19] K. Govindaraj and A. Artemenko, “Container live migration for latency critical

industrial applications on edge computing,” in 2018 IEEE 23rd International Con-

ference on Emerging Technologies and Factory Automation (ETFA), vol. 1, 2018,

pp. 83–90.

[20] F. Wang, J. Xu et al., “Joint offloading and computing optimization in wireless

powered mobile-edge computing systems,” IEEE Transactions on Wireless Com-

munications, vol. 17, no. 3, pp. 1784–1797, 2017.

[21] M. Alicherry and T. Lakshman, “Optimizing data access latencies in cloud sys-

tems by intelligent virtual machine placement,” in 2013 IEEE 32nd International

Conference on Computer Communications (INFOCOM), Turin, Italy, 2013, pp.

647–655.

[22] S. Vaucher, R. Pires et al., “Sgx-aware container orchestration for heterogeneous

clusters,” 2018 IEEE 38th International Conference on Distributed Computing Sys-

tems (ICDCS), pp. 730–741, 2018.

[23] D. M. Manias et al., “Machine learning for performance-aware virtual network

function placement,” in 2019 IEEE Global Communications Conference (GLOBE-

COM), 2019, pp. 1–6.

[24] D. M. Manias, H. Hawilo, M. Jammal, and A. Shami, “Depth-optimized delay-

aware tree (do-dat) for virtual network function placement,” IEEE Networking

Letters, vol. 2, no. 3, pp. 149–153, Sept. 2020.

[25] Raritan, “Datacenters of the future: A shifting landscape from the core to

the edge.” [Online]. Available: https://www.raritan.com/eu/landing/

datacenters-of-the-future-whitepaper/thanks

[26] R. Alsurdeh, R. N. Calheiros et al., “Hybrid workflow scheduling on edge cloud

computing systems,” IEEE Access, vol. 9, pp. 134 783–134 799, 2021.

[27] J. W. Chinneck, “Binary and mixed-integer programming,” 2016.

Chapter 8: Conclusion 133

[28] R. M. Karp, “Reducibility among combinatorial problems,” pp. 85–103, 1972.

[29] Q. Liu, C. F. Kwong et al., “A fuzzy-clustering based approach for madm handover

in 5g ultra-dense networks,” Springer’s Wireless Networks, pp. 1–14, 2019.

[30] D. Burstein, “Edge computing architecture impact on latency,” 2020.

[Online]. Available: https://stlpartners.com/edge-computing/

edge-computing-architecture-impact-latency/

[31] R. A. Addad, D. L. C. Dutra et al., “Fast service migration in 5g trends and

scenarios,” IEEE Network, 2020.

[32] M. Terneborg, J. K. Rönnberg et al., “Application agnostic container migration

and failover,” 2021 IEEE 46th Conference on Local Computer Networks (LCN),

pp. 565–572, 2021.

[33] H. M. Dur, “A container-based code offloading framework for mobile edge comput-

ing applications,” 2021, middle East Technical University.

[34] A. Moubayed, A. Shami, P. Heidari, A. Larabi, and R. Brunner, “Edge-enabled

v2x service placement for intelligent transportation systems,” IEEE Transactions

on Mobile Computing, vol. 20, no. 4, pp. 1380–1392, 2021.

[35] C. Bravo and H. B”ackstr”om, “Edge computing deployment strategies:

Whitepaper,” Ericsson.com. Ericsson, April, vol. 13, 2020. [Online]. Available:

https://www.ericsson.com/en/reports-and-papers/white-papers

/edge-computing-and-deployment-strategies-for-communication-

service-providers

[36] H. Hawilo, M. Jammal, and A. Shami, “Network function virtualization-aware

orchestrator for service function chaining placement in the cloud,” IEEE Journal

on Selected Areas in Communications, vol. 37, no. 3, pp. 643–655, 2019.

[37] Cisco, “Cisco annual internet report (2018–2023),” 3 2020. [Online]. Avail-

able: https://www.cisco.com/c/en/us/solutions/collateral/

executive-perspectives/annual-internet-report/

white-paper-c11-741490.html

Chapter 8: Conclusion 134

[38] I. Shaer, A. Haque, and A. Shami, “Multi-component v2x applications placement in

edge computing environment,” in ICC 2020 - 2020 IEEE International Conference

on Communications (ICC), 2020, pp. 1–6.

[39] M. Huang, W. Liu, T. Wang, A. Liu, and S. Zhang, “A cloud–mec collaborative

task offloading scheme with service orchestration,” in IEEE Internet of Things

Journal, vol. 7, no. 7, pp. 5792–5805, 7 2020.

[40] M. Abu Sharkh, A. Ouda, and A. Shami, “A resource scheduling model for cloud

computing data centers,” in 2013 9th International Wireless Communications and

Mobile Computing Conference (IWCMC), 2013, pp. 213–218.

[41] TierPoint, “Edge computing strategic guide,” 6 2020. [Online]. Available:

https://www.tierpoint.com/edge-computing-strategic-guide/

[42] M. Bouet and V. Conan, “Geo-partitioning of mec resources,” A. for Comput-

ing Machinery, Ed. New York, NY, USA: Workshop on Mobile Edge Communi-

cations (MECOMM ’17), 2017, pp. 43–48.

[43] X. Guan, X. Wan, J. Wang, X. Ma, and G. Bai, “Mobility aware partition of

mec regions in wireless metropolitan area networks,” in - IEEE Conference on

Computer Communications Workshops (INFOCOM WKSHPS),, I. Infocom, Ed.

HI: Honolulu, 2018, pp. 1–2.

[44] D. A. Tran, T. T. Do, and T. Zhang, A Stochastic Geo-Partitioning Problem for

Mobile Edge Computing. in IEEE Transactions on Emerging Topics in Computing,

2020.

[45] X. Lyu, H. Tian, L. Jiang, A. Vinel, S. Maharjan, S. Gjessing, and Y. Zhang,

“Selective offloading in mobile edge computing for the green internet of things,”

IEEE Network, vol. 32, no. 1, pp. 54–60, 2018.

[46] N. Wang, X. Wang, P. Palacharla, T. Ikeuchi, and W. Xie, “Mobility-aware 5g

midhaul network design for optimizing edge computing resources,” in 2019 Optical

Fiber Communications Conference and Exhibition (OFC). IEEE, 2019, pp. 1–3.

Chapter 8: Conclusion 135

[47] W. You, C. Dong, X. Cheng, X. Zhu, Q. Wu, and G. Chen, Joint Optimization

of Area Coverage and Mobile Edge Computing with Clustering for FANETs. in

IEEE Internet of Things Journal, 2020.

[48] H. Gupta, A. V. Dastjerdi, S. K. Ghosh, and R. Buyya, “ifogsim: A toolkit for

modeling and simulation of resource management techniques in the internet of

things, edge, and fog computing environments,” Software: Practice and Experience,

vol. 47, no. 9, p. 2017, 2017.

[49] M. M. Lopes, W. A. Higashino, M. A. M. Capretz, and L. F. Bittencourt, “My-

ifogsim: A simulator for virtual machine migration in fog computing,” In UCC ’

Companion, vol. 17, pp. 47–52, 2017.

[50] C. Sonmez, A. Ozgovde, and C. E. Ersoy, “An environment for performance

evaluation of edge computing systems,” Trans Emerging Tel Tech, vol. 29, 2018.

[Online]. Available: https://doi.org/10.1002/ett.3493

[51] I. Lera, C. Guerrero, and C. Juiz, “Yafs: A simulator for iot scenarios in fog

computing,” IEEE Access, vol. 7, pp. 91 745–91 758, 2019.

[52] G. Etsi, “Multi-access edge computing (mec); framework and refer-

ence architecture,” ETSI, Tech, vol. 2019, 2019. [Online]. Available:

https://www.etsi.org/deliver/etsi

[53] F. Callegati, W. Cerroni, C. Contoli, and G. Santandrea, “Performance of network

virtualization in cloud computing infrastructures: The openstack case,” in 2014

IEEE 3rd International Conference on Cloud Networking (CloudNet). IEEE, 2014.

[54] A. Moubayed, M. Injadat, A. Shami, and H. Lutfiyya, “Dns typo-squatting domain

detection: A data analytics & machine learning based approach,” in 2018 IEEE

Global Communications Conference (GLOBECOM), 2018, pp. 1–7.

[55] L. Yang and A. Shami, “Ids-ml: An open source code for intrusion detection system

development using machine learning,” Software Impacts, vol. 14, pp. 100–446, 2022.

Chapter 8: Conclusion 136

[56] D. Melkov and S. Paulikas, “Security benefits and drawbacks of software-defined

networking,” in IEEE Open Conference of Electrical, Electronic and Information

Sciences (eStream), 2021.

[57] A. Kak, V.-Q. Pham, H.-T. Thieu, and N. Choi, “Demo: A disaggregated o-ran

platform for network slice deployment and assurance,” in IEEE Conference on

Computer Communications Workshops (INFOCOM WKSHPS), 2022, pp. 1–2.

[58] D. Rafique and L. Velasco, “Machine learning for network automation: overview,

architecture, and applications [invited tutorial],” Journal of Optical Communica-

tions and Networking, 2018.

[59] A. Sebbar, K. Zkik, Y. Baddi, M. Boulmalf, and M. D. Ech-Cherif El Kettani,

“Secure data sharing framework based on supervised machine learning detection

system for future sdn-based networks,” in Machine Intelligence and Big Data An-

alytics for Cybersecurity Applications. Springer, 2021.

[60] T. Tetcos, “Tetcos: Netsim - network simulation software, india,” 2022. [Online].

Available: https://www.tetcos.com/

[61] A. Oliveira and T. Vazão, “Generating synthetic datasets for mobile wireless net-

works with sumo,” in Proceedings of the 19th ACM International Symposium on

Mobility Management and Wireless Access, 2021.

[62] p. networks, “Nettest 5g network emulators,” 2022. [Online]. Available:

https://www.polarisnetworks.net/5g-network-emulators.html

[63] A. Oliveira and T. Vazão, “Generating synthetic datasets for mobile wireless net-

works with sumo,” 2021.

[64] M. Kalil, A. Shami, A. Al-Dweik, and S. Muhaidat, “Low-complexity power-

efficient schedulers for lte uplink with delay-sensitive traffic,” IEEE Transactions

on Vehicular Technology, vol. 64, no. 10, pp. 4551–4564, Oct. 2015.

[65] S. R. Pokhrel, J. Ding, J. Park, O.-S. Park, and J. Choi, “Towards enabling critical

mmtc: A review of urllc within mmtc,” IEEE Access, vol. 8, pp. 131 796–131 813,

2020.

Chapter 8: Conclusion 137

[66] E. Aqeeli, A. Moubayed, and A. Shami, “Power-aware optimized rrh to bbu allo-

cation in c-ran,” IEEE Transactions on Wireless Communications, vol. 17, no. 2,

pp. 1311–1322, 2017.

[67] M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka,

“Spectrum-efficient and scalable elastic optical path network: architecture, ben-

efits, and enabling technologies,” IEEE Communications Magazine, vol. 47, no. 11,

2009.

[68] l. qiang, “Fixed grid vs flexible grid,” Huawei Enterprise Support Community,

2020. [Online]. Available: https://forum.huawei.com/enterprise/en/

fixed-grid-vs-flexible-grid/thread/641227-875

[69] F. S. Souza, D. L. Guidoni, and G. R. Mateus, “Formulations for the rwa problem

with traffic grooming, protection and qos in wdm optical networks,” Proceedings -

IEEE Symposium on Computers and Communications, 2012.

[70] O. Awwad, A. I. Al-Fuqaha, and A. Rayes, “Traffic grooming, routing, and wave-

length assignment in wdm transport networks with sparse grooming resources,”

Computer Communications, vol. 30, no. 18, pp. 3508–3524, 2007.

[71] L.-H. Lee, T. Braud, P. Zhou, L. Wang, D. Xu, Z. Lin, A. Kumar, C. Bermejo, and

P. Hui, “All one needs to know about metaverse: A complete survey on technolog-

ical singularity, virtual ecosystem, and research agenda,” arXiv preprint, 2021.

[72] B. C. Chatterjee, S. Ba, and E. Oki, “Fragmentation problems and management

approaches in elastic optical networks: A survey,” IEEE Communications Surveys

and Tutorials, vol. 20, 2018.

[73] A. Celik, A. AlGhadhban, B. Shihada, and M.-S. Alouini, “Design and provision

of traffic grooming for optical wireless data center networks,” IEEE Transactions

on Communications, vol. 67, no. 3, 2019.

[74] I. Corporation, “Evolving the awareness of opti-

cal networks,” The Evolution of Optical Networking, 2019. [On-

line]. Available: https://www.infinera.com/white-paper/

evolving-the-awareness-of-optical-networks/

Chapter 8: Conclusion 138

[75] L. Yang and A. Shami, “A lightweight concept drift detection and adaptation

framework for iot data streams,” IEEE Internet of Things Magazine, vol. 4, no. 2,

pp. 96–101, 2021.

[76] S. Aleyadeh, A. Moubayed, P. Heidari, and A. Shami, “Optimal container

migration/re-instantiation in hybrid computing environments,” IEEE Open Jour-

nal of the Communications Society, vol. 3, pp. 15–30, 2022.

[77] 5G Americas, “Global 5G Connections Forcast,” Accessed Oct. 26, 2022, 2022. [On-

line]. Available: https://www.5gamericas.org/wp-content/uploads/

2022/03/Global-5G-forecast.png

[78] H. Hawilo, M. Jammal, and A. Shami, “Network function virtualization-aware

orchestrator for service function chaining placement in the cloud,” IEEE Journal

on Selected Areas in Communications, vol. 37, no. 3, pp. 643–655, 2019.

[79] X. Yu, L. Lu, Q. Zhu, Y. Zhao, A. Nag, and J. Zhang, “Spectrum-entropy-

minimized routing and spectrum allocation in ip over mixed-fixed/flex-grid optical

networks,” Photonics, vol. 9, 2022.

[80] P. Papanikolaou, K. Christodoulopoulos, and E. Varvarigos, “Joint multilayer plan-

ning of survivable elastic optical networks,” in 2016 Optical Fiber Communications

Conference and Exhibition (OFC), 2016, pp. 1–3.

[81] B. Zhao, X. Chen, J. Zhu, and Z. Zhu, “Survivable control plane establishment

with live control service backup and migration in sd-eons,” Journal of Optical

Communications and Networking, vol. 8, no. 6, 2016.

[82] W. Jin, R. Gu, Y. Tan, and Y. Ji, “Proactive grooming with delay optimization in

sliceable elastic optical network,” IEEE Access, vol. 7, 2019.

[83] H. Kaur and M. Rattan, “Wind driven based heuristic solution for multiobjective

traffic grooming in optical networks,” Wireless Personal Communications, vol. 110,

no. 3, 2020.

[84] C. Lee, M. Noh, and W. Seok, “Fast convergence bio-inspired traffic grooming

for energy-efficient ip-over-wdm networks,” in 2020 International Conference on

Chapter 8: Conclusion 139

Information and Communication Technology Convergence (ICTC), 2020, pp. 1064–

1066.

[85] D. M. Manias, M. Jammal, H. Hawilo, A. Shami, P. Heidari, A. Larabi, and

R. Brunner, “Machine learning for performance-aware virtual network function

placement,” in 2019 IEEE Global Communications Conference (GLOBECOM),

2019, pp. 1–6.

[86] I. Khan, L. Tunesi, M. Chalony, E. Ghillino, M. U. Masood, J. Patel, P. Bardella,

A. Carena, and V. Curri, “Machine-learning-aided abstraction of photonic inte-

grated circuits in software-defined optical transport,” in Next-Generation Optical

Communication: Components, Sub-Systems, and Systems X, vol. 11713, 2021, pp.

145–150.

[87] H. Yang, Q. Yao, A. Yu, Y. Lee, and J. Zhang, “Resource assignment based on

dynamic fuzzy clustering in elastic optical networks with multi-core fibers,” IEEE

Transactions on Communications, vol. 67, no. 5, 2019.

[88] Y. Zhao, B. Yan, D. Liu, Y. He, D. Wang, and J. Zhang, “Soon: self-optimizing

optical networks with machine learning,” Optics express, vol. 26, no. 22, 2018.

[89] F. Musumeci, C. Rottondi, A. Nag, I. Macaluso, D. Zibar, M. Ruffini, and M. Tor-

natore, “An overview on application of machine learning techniques in optical net-

works,” IEEE Communications Surveys & Tutorials, vol. 21, no. 2, 2018.

[90] B. Yan, Y. Zhao, Y. Li, X. Yu, J. Zhang, Y. Wang, L. Yan, and S. Rahman, “Actor-

critic-based resource allocation for multi-modal optical networks,” in 2018 IEEE

Globecom Workshops (GC Wkshps). IEEE, 2018.

[91] X. Chen, J. Guo, Z. Zhu, R. Proietti, A. Castro, and S. B. Yoo, “Deep-rmsa: A

deep-reinforcement-learning routing, modulation and spectrum assignment agent

for elastic optical networks,” Optica Publishing Group, 2018.

[92] R. Proietti, X. Chen, K. Zhang, G. Liu, M. Shamsabardeh, A. Castro, L. Velasco,

Z. Zhu, and S. J. Ben Yoo, “Experimental demonstration of machine-learning-aided

qot estimation in multi-domain elastic optical networks with alien wavelengths,”

Journal of Optical Communications and Networking, vol. 11, no. 1, 2019.

Chapter 8: Conclusion 140

[93] M. A. Sharkh, A. Kanso, A. Shami, and P. Öhlén, “Building a cloud on earth: A

study of cloud computing data center simulators,” Computer Networks, vol. 108,

pp. 78–96, 2016.

[94] P. A. Lopez, M. Behrisch, L. Bieker-Walz, J. Erdmann, Y.-P. Flötteröd, R. Hilbrich,

L. Lücken, J. Rummel, P. Wagner, and E. Wießner, “Microscopic traffic simulation

using sumo,” IEEE Intelligent Transportation Systems Conference (ITSC), 2018.

[95] K. Koutlia, B. Bojovic, Z. Ali, and S. Lagén, “Calibration of the 5g-lena system

level simulator in 3gpp reference scenarios,” Simulation Modelling Practice and

Theory, vol. 119, 2022.

[96] Y. Zhang, Y. Zhang, S. K. Bose, and G. Shen, “Migration from fixed to flexible

grid optical networks with sub-band virtual concatenation,” Journal of Lightwave

Technology, vol. 35, no. 10, 2017.

[97] J. Santos, A. Eira, and J. Pires, “A heuristic algorithm for designing otn over

flexible-grid dwdm networks.” J. Commun., vol. 12, no. 9, 2017.

[98] S. Aleyadeh, A. Moubayed, P. Heidari, and A. Shami, “Optimal container

migration/re-instantiation in hybrid computing environments,” IEEE Open Jour-

nal of the Communications Society, vol. 3, pp. 15–30, 2022.

[99] A. Chouman, D. M. Manias, and A. Shami, “A reliable amf scaling and load

balancing framework for 5g core networks,” in 2023 International Wireless Com-

munications and Mobile Computing (IWCMC), 2023, pp. 252–257.

[100] M. Polese, L. Bonati, S. D’Oro, S. Basagni, and T. Melodia, “Understanding O-

RAN: Architecture, Interfaces, Algorithms, Security, and Research Challenges,”

arXiv preprint arXiv:2202.01032, 2022.

[101] H. Lee, J. Cha, D. Kwon, M. Jeong, and I. Park, “Hosting AI/ML workflows on

O-RAN RIC platform,” in IEEE Globecom Workshops (GC Wkshps. IEEE, 2020,

pp. 1–6.

Chapter 8: Conclusion 141

[102] H. Hantouti, N. Benamar, T. Taleb, and A. Laghrissi, “Traffic Steering for Service

Function Chaining,” IEEE Communications Surveys and Tutorials, vol. 21, no. 1,

pp. 487–507, 2019.

[103] M. Dryjański, L. Ku lacz, and A. Kliks, “Toward Modular and Flexible Open RAN

Implementations in 6G Networks: Traffic Steering Use Case and O-RAN xApps,”

Sensors, vol. 21, no. 24, p. 8173, 2021.

[104] S. Wong, B. Han, and H. D. Schotten, “5g network slice isola-

tion,” Network, vol. 2, no. 1, pp. 153–167, 2022. [Online]. Available:

https://www.mdpi.com/2673-8732/2/1/11

[105] F. Guillemin, A. Aimi, T. Kerdoncuff, and S. Rovedakis, “Reference architecture for

slicing in lorawan networks (updated version),” Ph.D. dissertation, Orange Labs,

2022.

[106] R. Yu, G. Xue, and X. Zhang, “QoS-Aware and Reliable Traffic Steering for Ser-

vice Function Chaining in Mobile Networks,” IEEE Journal on Selected Areas in

Communications, vol. 35, no. 11, pp. 2522–2531, 2017.

[107] M. Karbalaee Motalleb, V. Shah-Mansouri, and S. Nouri Naghadeh, “Joint power

allocation and network slicing in an open ran system,” arXiv e-prints, pp. arXiv–

1911, 2019.

[108] P. Foroughi, P. Martins, P. Nivaggioli, and J.-L. Rougier, “Slice-aware open radio

access network planning and dimensioning,” in 2022 IEEE 96th Vehicular Technol-

ogy Conference (VTC). IEEE, 2022, pp. 1–7.

[109] J. Thaliath, S. Niknam, S. Singh, R. Banerji, N. Saxena, H. S. Dhillon, J. H. Reed,

A. K. Bashir, A. Bhat, and A. Roy, “Predictive closed-loop service automation in

o-ran based network slicing,” IEEE Communications Standards Magazine, vol. 6,

no. 3, pp. 8–14, 2022.

[110] I. Tamim, A. Saci, M. Jammal, and A. Shami, “Downtime-aware o-ran vnf de-

ployment strategy for optimized self-healing in the o-cloud,” in 2021 IEEE Global

Communications Conference (GLOBECOM), 2021, pp. 1–6.

Chapter 8: Conclusion 142

[111] Q. H. Duong, I. Tamim, B. Jaumard, and A. Shami, “A column generation al-

gorithm for dedicated-protection o-ran vnf deployment,” in 2022 International

Wireless Communications and Mobile Computing (IWCMC). IEEE, 2022, pp.

1206–1211.

[112] G. O. Boateng, G. Sun, D. A. Mensah, D. M. Doe, R. Ou, and G. Liu, “Consortium

blockchain-based spectrum trading for network slicing in 5g ran: A multi-agent deep

reinforcement learning approach,” in IEEE Transactions on Mobile Computing,

vol. 22, no. 10. IEEE, 2023, pp. 801–815.

[113] A. Filali, B. Nour, S. Cherkaoui, and A. Kobbane, “Communication and compu-

tation o-ran resource slicing for urllc services using deep reinforcement learning,”

IEEE Communications Standards Magazine, vol. 7, no. 1, pp. 66–73, 2023.

[114] H. Chergui, L. Blanco, L. A. Garrido, K. Ramantas, S. Kukliński, A. Ksentini, and

C. Verikoukis, “Zero-touch ai-driven distributed management for energy-efficient

6g massive network slicing,” IEEE Network, vol. 35, no. 6, pp. 43–49, 2021.

[115] M. Mirahmadi, A. Al-Dweik, and A. Shami, “Interference modeling and perfor-

mance evaluation of heterogeneous cellular networks,” IEEE Transactions on Com-

munications, vol. 62, no. 6, pp. 2132–2144, 2014.

[116] A. Moubayed, A. Shami, and A. Al-Dulaimi, “On end-to-end intelligent automation

of 6g networks,” Future Internet, vol. 14, no. 6, p. 165, 2022.

[117] D. M. Manias, A. Chouman, and A. Shami, “Model drift in dynamic networks,”

IEEE Communications Magazine, vol. 61, no. 10, pp. 78–84, 2023.

[118] M. A. Siddiqi, H. Yu, and J. Joung, “5g Ultra-Reliable Low-Latency

Communication Implementation Challenges and Operational Issues with

IoT Devices,” Electronics, vol. 8, no. 9, 2019. [Online]. Available:

https://www.mdpi.com/2079-9292/8/9/981

Sam Aleyadeh, Curriculum Vitae

Sam Aleyadeh

EDUCATION

University of Western Ontario London, Ontario
Ph.D. Computer Anthropology 2018 - Present
Dissertation: Towards Zero Touch Next Generation End-to-End Network Management
Academic advisor: Dr. Abdallah Shami

Queens University Kingston, Ontario
M.Sc. Computer Science 2012 - 2014
Dissertation: Road And Driver Monitoring System
Academic advisor: Dr. Hossam Hassanein

Queens University Kingston, Ontario
B.Sc. Computer Engineering 2007 - 2012

PUBLICATIONS

Published

Sam Aleyadeh, Abbas Javadtalab, and Abdallah Shami. Modular Simulation Environment Towards
OTN AI-based Solutions. arXiv preprint arXiv:2306.11135, 2023.

Sam Aleyadeh, Abdallah Moubayed, Parisa Heidari, and Abdallah Shami. Optimal container
migration/re-instantiation in hybrid computing environments. IEEE Open Journal of the
Communications Society, 2022.

Sam Aleyadeh, Abdallah Moubayed, and Abdallah Shami. Mobility aware edge computing
segmentation towards localized orchestration. 2021 International Symposium on Networks, Computers
and Communications, 2021.

Najah Abu Ali, Sam Aleyadeh, Fatiha Djebbar, Akram Alomainy, Maha Muhamed Ali Almaazmi, and
Shaikha Al Ghaithi. Performance evaluation of routing protocols in electromagnetic nanonetworks.
IEEE Access, 2018.

Sam Aleyadeh, and Abed El-Hamid Taha An IoT-Based architecture for waste management. IEEE
International Conference on Communications Workshops, 2018.

Najah Abu Ali, Sam Aleyadeh, Fatiha Djebbar, and Akram Alomainy Evaluation of data dissemination
schemes in electromagnetic nanosensor networks. IEEE Global Communications Conference, 2018.

Sam Aleyadeh, Sharief Oteafy, Hossam Hassanein Scalable Transportation Monitoring Using The
Smartphone Road Monitoring (SRoM) System. The 5th ACM symposium on the development and analysis
of intelligent vehicular networks and applications, 2015.

Under Review

1

143

Sam Aleyadeh, Curriculum Vitae

Sam Aleyadeh, Abbas Javadtalab, and Abdallah Shami Throughput Latency Targeted RL Spectrum
Allocation In Heterogeneous OTN. journal

Sam Aleyadeh, Ibrahim Tamim, and Abdallah Shami Transfer Learning Accelerated Network Slice
Management for Next Generation Services journal

RESEARCH AND WORK EXPERIENCE

University of Western Ontario London, On
Research Assistant, Optical Transport Networking Spectrum Allocation project 2021-Present
Created an end-to-end modular simulator encompassing user mobility, 5G traffic generation, and

optical transport and multiplexing. as well as developed a novel Spectrum allocation solution utilizing
Reinforcement learning agents on isolated optical paths to improve throughput utilization through
lower spectral fragmentation.

Academic advisor : Dr. Abdallah Shami

Research Assistant, Edge Computing container orchestration Project 2018-2021
Formulated a Mixed Integer Linear Programming orchestrator for containers within edge computing

environments developed specifically for highly stringent services targeting lower downtimes. Extended
the solution into a viable heuristic solution for realistic live deployments beyond benchmarking
purposes only.

Academic advisor : Dr. Abdallah Shami

Alfaisal University Riyadh, Kingdom of Saudi Arabia
Primary Researcher, Smart City Waste Management System 2015-2016
Designed and implemented an Android and Arduino-based prototype-based smart city system for

monitoring and organizing garbage collection cycles. The system controls collection routes utilizing a
predictive algorithm to minimize impact on ongoing traffic as well as prevent overfilled garbage bins

Queens University Kingston, Ontario
Research Assistant, Transportation and Road Condition Monitoring Project 2013-2014
Designed and implemented an Android client-server system and prototype that uses smartphones

and vehicle onboard diagnostic tools to monitor roads for potholes, in addition to dangerous driving
patterns (high-speed weaving, hard stops, and drifting). Upon detection, road-related reports are sent
to the map engine to populate interactive and heat maps, while driving-related reports are sent with
relevant data to law enforcement agencies.

Academic advisor : Dr. Hossam Hassanein

Researcher, Wireless Body Area Network Project 2012-2013
Designed and implemented an Android system capable of monitoring vital health signs such as ECG

and detecting health anomalies from the collected data. The prototype is built using shimmer sensors
(WBAN), a smartphone, a WBAN smartphone interface, and a database server. The system allows
healthcare providers to monitor live vitals from their smartphones; upon detection, the system alerts
the incident’s preconfigured emergency service facilities.

144

	Towards Zero Touch Next Generation Network Management
	Recommended Citation

	Towards Zero Touch Next Generation Network Management
	Sam_Aleyadeh_s_CV thesis

