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Abstract 

Neuromelanin (NM) is an insoluble dark pigment molecule that is found in the substantia 

nigra of the human brain. Due to its paramagnetic nature, NM can be imaged using MRI in the 

form of neuromelanin sensitive contrast. This method, known as Neuromelanin Sensitive 

Magnetic Resonance Imaging (NM-MRI) allows non-invasive imaging of the human substantia 

nigra through its by-product, NM. NM-MRI research has been mostly done using lower field 

strength (3 or 1.5 Tesla) MRI scans. The advent of high field strength imaging, e.g., 7 Tesla (7T) 

provides the opportunity to study neuromelanin production sites with higher spatial resolution 

and enhanced detail. Since NM-MRI research has not been conducted with high field strength 

imaging platforms, it is unknown whether the techniques used for quantifying NM at a lower 

field strength reliably extend to a high field strength platform. In the absence of this information, 

it is impossible to establish whether these two sequences generate the same estimates of NM. 

Thus, before it is possible to harness the advantages of high field strength imaging, it is critical to 

investigate the convergence of NM-MRI signal between 3T and 7T NM-MRI. The current study 

employs a within-subjects design to answer this question. Neuromelanin sensitive images were 

obtained from 28 healthy adult participants at both 3T and 7T. NM images were segmented both 

manually and with the help of a standard atlas. NM in the substantia nigra was quantified in the 

form of Contrast to Noise Ratio (CNR). Spearman’s rank order correlations assessed statistical 

dependence between the ranking of participant CNR values at 3T and 7T. We found that CNR 

values at 3T predicted those at 7T when standard deviation (as opposed to the mean) of the 

background region was used for defining noise. In addition, CNR values didn’t increase with an 

increase in field strength. In fact, CNR values at 7T were lower as compared to 3T. This effect 

was mainly due to a disproportionate increase in noise at 7T. An increased susceptibility noise is 
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a common trade-off for better contrast associated with high field strength imaging. We discuss 

our findings and comment on the utility of employing high field strength NM- MRI. 

 

Keywords: Neuromelanin, neuromelanin sensitive contrast, contrast to noise ratio, manual 

segmentation, atlas-based segmentation, substantia nigra, crus cerebri  
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Summary for Lay Audience 
 

Dopamine is a neurotransmitter that involved in learning, reward processing, and 

motivation. A by-product of normal dopamine metabolism in humans, neuromelanin has recently 

been used to gain a deeper understanding of the human dopamine system. Because of its 

magnetic nature, neuromelanin gives a unique signal when imaged using a family of magnetic 

resonance imaging (MRI) sequences. These sequences generate neuromelanin sensitive contrast 

but has only been investigated in low field strength MRI. The advent of high field strength MRI 

has advanced the visualization of the brain because of its superior spatial resolution. Leveraging 

the benefits of high field strength imaging bears the promise of furthering our current 

understanding of neuromelanin and the dopamine system. However, before these benefits can be 

harnessed for neuromelanin research, it is critical to test if the image processing techniques and 

statistical analyses used for quantifying neuromelanin signal at low field strength provide reliable 

estimates of neuromelanin quantification at a high field strength imaging platform. Thus, the 

current research aims to investigate if estimates of neuromelanin converge between 3 Tesla (low 

field strength ) and 7 Tesla (high field strength) MRI scans. For this purpose, we scanned 

participants using both 3T and 7T MRI scans to obtain neuromelanin sensitive images. Images 

were analyzed using different techniques to assess NM-MRI signal strength in neuromelanin rich 

areas, as compared to areas with no neuromelanin. In this paper, we discuss our findings and 

comment on the utility of employing high field strength imaging for studying neuromelanin 

signal.   
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1  Introduction 

1.1. Human Dopaminergic System  

The human dopaminergic system supports a plethora of physiological, psychological, and 

behavioural processes including executive functioning (Monchi et al., 2016), reward processing 

(McClure et al., 2004), mood regulation (Dunlop & Nemeroff, 2007; Radwan et al., 2019), 

motivation (Berridge, 2004), and neuroendocrine control (Dunn et al., 2012). Due to its widespread 

modulatory effects, the dopamine system remains one of the most widely researched biological 

systems since it was first discovered in the 1950s (Yeragani et al., 2010).  

Extensive research in both animals (Brake et al., 2000; McArthur et al., 2005) and humans 

(Egerton  et al., 2016; Pruessner et al., 2004) has shown that the dopamine system is particularly 

sensitive to pre- and post-natal environmental factors including malnutrition (Alamy et al., 2012; 

Susser et al., 2008), stress (Sinclair et al., 2014), exposure to toxic substances (Kim et al., 2021) 

and well as abuse and trauma (Sheu et al., 2010). Moreover, critical aspects of human cognition 

modulated by dopamine, such as attention, and goal-oriented behaviour change significantly 

during childhood, adolescence, and early adulthood (Hartley & Sommerville, 2015; Li et al., 

2010).  

1.1.1.  Limitations in Studying the Human Dopamine 

System 

The current understanding of the development of the dopamine system stems largely 

from experiments conducted with non-human animals. These studies have limited translation 

across species since sources of influence as well as developmental timing can vary significantly 

(Gatzke-Kopp, 2011). Comparatively speaking, neural development occurring in the early 
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postnatal period in several animal models corresponds to processes that appear to occur in 

humans prenatally (Clancy et al., 2001).  

In humans, the gold standard for studying the dopaminergic system in-vivo is positron 

emission tomography (PET). This technique involves an intravenous administration of a 

radioligand of dopamine e.g., [11C] raclopride to detect behaviour and/or pharmacologically 

induced changes in the synaptic concentration of dopamine. Since PET scans require radiation 

exposure, they are mainly used for diagnostic purposes and in clinical populations and are 

deemed an unsuitable tool for imaging developing brains.  

These limitations regarding invasiveness and translatability have been mitigated by recent 

advances in Magnetic Resonance Imaging (MRI). It is now possible to non-invasively obtain 

direct measures of dopamine availability, using MRI, in the form of a neuromelanin sensitive 

contrast. This technique known as Neuromelanin Sensitive Magnetic Resonance Imaging (NM-

MRI) capitalizes on the paramagnetic properties of neuromelanin, a by-product of dopamine 

metabolism.   

1.2.  Neuromelanin  

Neuromelanin (NM) is a dark, insoluble neuronal pigment formed as a by-product of the 

metabolism of cytosolic dopamine in the human brain (Sulzer et al., 2000). Higher 

concentrations of NM are found primarily in the dopaminergic neurons of the substantia nigra 

(Zucca et al., 2004) and the noradrenergic neurons of the locus coeruleus (Ito et al., 2017). NM is 

also found in several distinct regions of the brain including the hypothalamus, medulla 

oblongata, cerebellum, and the premotor cortex (Zucca et al., 2014). Animal studies in rats 

(Zecca et al., 2008), frogs (Kemali & Gioffré, 1985), dogs (DeMattei et al., 1986), and monkeys 

(Herrero et al., 1993) have found NM containing neurons in these animals  
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NM is formed via a cascade of reactions beginning with the iron-dependant oxidation of 

excessive cytosolic dopamine and catecholamines. This oxidation results in the formation of 

highly reactive called quinones. Quinones can attach to aggregated proteins with β-structured 

configurations. This process initiates an oxidative polymerization process giving rise to 

eumelanin and pheomelanin (subtypes of melanin) containing compounds. Eumelanin and 

pheomelanin have the capacity to bind significant amounts of metals, particularly iron. 

Through the process of macroautophagy, the resulting material that cannot be degraded is 

engulfed by autophagic vacuoles. These vacuoles subsequently fuse with lysosomes and other 

autophagic vacuoles containing lipid and protein components. Consequently, organelles 

containing a combination of NM, metals e.g., iron, lipid bodies, and a protein matrix are formed 

within the SN (Zecca et al., 2000; Zucca et al., 2014; Zucca et al., 2018).  

Figure 1 

Mechanisms for Biosynthesis of Neuromelanin in the Human Substantia Nigra 

           

Note. Excess dopamine in the brain is prone of oxidation due to the presence of iron in 

dopamine rich areas of the brain such as the SN. This oxidation can lead to the creation of 

reactive intermediates that undergo polymerization reactions. Consequently, dopamine 

molecules are joined together to form larger chemical structures. The polymerization of 

oxidized dopamine leads to the formation of neuromelanin precursors e.g., euromelanin. 
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These precursors undergo the process of macroautophagy and fuse with lysosomes and 

autophagic vacuous. Eventually, they bind with other molecules including lipids, 

proteins, and metal ions to form NM-containing organelles (Sulzer et al., 2018). 

 

1.2.1. Biological Role of Neuromelanin 

Historically, NM was thought to be an inert waste product of dopamine metabolism with 

no function. However, research has shown a dual effect of NM as neuroprotective and 

neurotoxic, depending on its cellular environment. Since NM has the capacity to bind with metal 

ions, it can sequester excess amounts of these potentially toxic ions into vesicles preventing them 

from exerting cytotoxic effects. In addition, NM can serve to protect against oxidative stress 

caused by a lack of antioxidants and an excess of quinones and semi-quinones in catecholamine 

rich areas of the brain (Zecca et al., 2008). On the other hand, NM is released from dying 

neurons in extracellular space. The metal ions bound to NM are also released along with it. This 

may trigger neurodegenerative processes such as those underlying parkinsonism (Xing et al., 

2018). 

1.2.2.  Age-related Accumulation of Neuromelanin 

 NM is absent at birth and first appears between the age of 2- and 3-years in the human 

SN (Cowen, 1986). The accumulation of NM appears to follow an inverted U-shaped pattern, 

increasing steadily until the age of between 40- and 50-years followed by a decline there 

onwards (Xing et al., 2018). 
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Figure 2 

Changes in Contrast to Noise Ratio of NM-MRI Signal with Age 

 

Note.NM accumulation follows an inverted U-shaped pattern. It increases from birth until 

middle age and then decreases steadily there onwards. In cases of neurodegenerative 

disorders e.g., Parkinsonism, the degradation of NM containing organelles (and NM-MRI 

signal subsequently) are much more rapid after the onset of disease (Xing et al., 2018). 

1.3. Neuromelanin Sensitive Magnetic Resonance 

Imaging (NM-MRI) 

The NM-iron complexes present in the NM organelles are paramagnetic in nature and can 

therefore be non-invasively visualized using a family of MRI sequences known as NM-MRI 

(Cassidy et al., 2019). Typically, NM-MRI is based on T1-weighted turbo spin echo (TSE) pulse 

sequence (Wieland et al., 2021). Initially, the shortened T1 relaxation times in NM-rich areas 

was thought to be responsible for the high signal in these areas (Sasaki et al., 2006). Subsequent 

research showed that although NM-MRI relies on T1-weighted turbo spin echo (TSE) sequences, 
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these sequences can be influenced by unintended magnetization transfer (MT) effects due to the 

extended train of refocusing pulses in multi slice image acquisitions (Trujillo et al., 2017). 

Indeed, MT pulse preparation of NM-MRI signal yields a higher contrast even at low field 

strength MRI (e.g., 1.5T; Nakane et al., 2008) 

While other methods for studying dopamine in vivo exist, NM-MRI has attracted the 

attention of researchers for its ability to non-invasively image the brain. Since this technique 

doesn’t require radiation exposure, it is safe for use in developing populations. 

1.3.1. NM-MRI: A Non-Invasive Proxy Measure for 

Dopamine Functioning  

Cassidy and colleagues (2019) demonstrated NM-MRI as a non-invasive proxy measure 

for dopamine functioning the human brain. They conducted a series of analysis comparing NM-

MRI with pre-established techniques for imaging the dopamine system. A significant positive 

correlation was found between the quantity of NM measured by NM-MRI and other imaging 

modalities i.e., PET and functional MRI. In addition, Cassidy and colleagues (2019) conducted 

histological analyses of post-mortem brain tissues in the substantia nigra to quantitatively assess 

the presence of NM. These brain specimens were later imaged with a NM sensitive contrast. A 

strong positive correlation was found between estimates of neuromelanin quantified via 

histological and NM-MRI.  

1.3.2. Utility of NM-MRI for Neuropsychiatric 

Research  

Several studies have also established the utility of NM-MRI for capture meaningful 

differences in midbrain and striatal dopamine levels amongst those with Parkinson’s disease 
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(Matsuura et al., 2013; Ohtsuka et al., 2014) and schizophrenia (Horga et al., 2021; Ueno et al., 

2022), disorders characterized by a substantial decrease and increase in dopamine levels 

respectively. Not only has the technique proven useful for discriminating between individuals 

with Parkinson’s Disease from those without it, Cassidy and colleagues (2019) found that NM-

MRI signal can capture biologically meaningful variation across anatomical subregions within 

the substantia nigra. Moreover, NM-MRI was also able to replicate the known anatomical 

topography of dopamine neuron loss within the substantia nigra.  

NM-MRI has also been studied in the context of cocaine dependence. Cassidy and 

colleagues (2020) found NM-MRI to be a reliable measure for distinguishing between those with 

a history of cocaine use and age/sex-matched controls. A significant increase in NM-MRI signal 

was found in those with a cocaine dependence disorder.  

Together, these studies substantiate NM-MRI as a reliable and valid measure of studying 

dopamine functioning in vivo.  

1.4. Quantifying NM-MRI Signal 

NM-MRI signal can be quantified in the form of a Contrast to Noise Ratio (CNR)—the 

relative difference in signal intensity between an area containing neuromelanin organelles and 

surrounding white matter (Salzman et al., 2021). A higher NM-MRI CNR has been found in 

areas known to contain neuromelanin, such as the SN (Chen et al., 2014) or the LC (Langley et 

al., 2017). On the other hand, a low NM-MRI CNR is found in regions known to have little to no 

neuromelanin e.g., cerebral peduncle (Wang et al., 2021), brain stem (Xing et al., 2022), and crus 

cerebri (Cassidy et al., 2020; Ueno et al., 2022; Wengler et al., 2020). Calculating CNR  for 

quantifying NM-MRI signal has been extensively studied and validated across different age 
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groups (Al Haddad et al., 2023; Xing et al., 2018) and diagnostic categories (Isias et al., 2016; 

Wengler et al., 2021; Ueno et al., 2022). 

1.4.1. Atlas-based Segmentation Approach  

One approach to identifying a region of interest (ROI) and a background/reference region 

is atlas-based segmentation. Atlas-based segmentation involves utilizing a pre-segmented 

reference image (atlas) and transforming its segmentation onto a new target image through image 

registration. This process of image registration helps reduce variations in brain anatomy and 

positioning between the atlas and the target image by calculating a deformation field. The 

deformation field contains information regarding how each voxel in the atlas image should be 

transformed to align with the target image and remove differences in neuroanatomy between the 

two images. 

1.4.1.1.  Advantages of the Atlas-based Segmentation 

Ease of Access. Atlases are readily available and can be time and cost-efficient since they 

drastically reduce manual labour costs.  

Voxel wise Analysis of Contrast to Noise Ratio. Standardized atlases can be used to perform a 

voxel wise analysis of CNR. The normalization of both a participant’s brain image and an atlas 

in the same space allows us to achieve accurate registration between subjects across all voxels 

contained within a brain region and across brain regions. A voxel wise analysis is useful for a 

detailed investigation of the topographical patterns and tissue characterization in different 

regions of the brain and/or within a specific brain area (Cassidy et al., 2019). Voxel wise 

analyses can be used to combine data from multiple subjects and investigate population-level 

effects. This helps identify consistent patterns of activity or differences across subjects. 

Conversely, a voxel-wise analysis enables whole-brain exploration without requiring a priori 
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assumptions about specific regions of interest, thereby revealing unexpected activations or 

interactions. 

1.4.1.2.  Limitations of Atlas-based Segmentation 

Anatomical variability. Since the atlases are created from a sample different than that it is used 

for, anatomical variations among different individuals can lead to challenges in accurately 

registering the atlas to the target image leading to inaccurate segmentations (Rao et al., 2017). 

Atlas-based segmentations have a low accuracy when defining boundaries in small regions This 

can be problematic especially in cases of overlapping anatomical structures. 

Utility for brain images from patient populations. Moreover, atlas-based approaches struggle 

significantly in cases of neuropathology whereby idiosyncratic changes in brain tissue and 

structures can affect image alignment and segmentation accuracy. 

1.4.2. Manual Segmentation Approach  

Manual segmentation of ROIs is a fundamental, gold standard technique used in MRI 

image processing to delineate specific structures and areas within images. This process involves 

a trained human expert in neuroanatomy (e.g., neuroradiologist) to carefully draw the boundaries 

around the desired regions for each participant individually using specialized software. 

1.4.2.1. Advantages of Manual Segmentation  

High Accuracy and Validity. Manual segmentation technique arguably provides the most 

accurate characterization of neuronal tissue and localization of specific structures within an 

image (Magadza & Viriri, 2021). This is a fundamental step for measuring volumes, tracking 

changes over time, and studying relationships e.g., connectivity pattern between structural and/or 

functionally distinct brain areas.  



 10 

Anatomical Specificity. Manual segmentation approaches have higher levels of specificity and 

sensitivity than automated approaches, especially when small brain structures are being 

investigated. Often these approaches can serve as a ground truth against which the performance 

of automated segmentation algorithms is evaluated. 

1.4.2.2. Limitations of Manual Segmentations 

Time-Consuming and Labor-Intensive. Manual segmentations require a human expert and are 

therefore quite costly. In addition, the process of manual delineating complex brain structures 

with sufficient accuracy can be a laborious endeavour.  

1.5.  Ultra-High Field Strength Neuromelanin Imaging 

NM-MRI experiments have primarily been conducted at a 3 Tesla (3T) MRI field 

strength. The choice of MRI field strength can influence the quality of neuromelanin imaging. 

Neuromelanin has subtle contrast characteristics and achieving a high spatial resolution in NM-

MRI can be challenging because neuromelanin production nuclei e.g., substantia nigra (SN) and 

locus coeruleus (LC) are significantly small and therefore harder to image and localize. This 

explains the dearth of research probing the impact of development on midbrain nuclei, the actual 

sites for dopamine production. Indeed, several studies in the past have investigated 

developmentally meaningful changes in the dopamine system by examining physically larger 

areas of the brain e.g., the striatum (Tang et al., 2001) and the prefrontal cortex (Del Arco & 

Mora, 2008; Garris et al., 1993).  

Higher resolution is necessary to accurately differentiate and visualize NM from 

surrounding tissues. This can be achieved through ultra-high field strength imaging, such as by 

employing 7 Tesla (7T) MRI scanning. High field strength scanner can potentially enhance the 

contrast between neuromelanin-containing areas (e.g., the SN) and other brain structures thereby 
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improving sensitivity and specificity to NM-MRI imaging. Hence, NM-MRI images generated 

from a high-field strength MRI scanner bear the promise of providing a unique opportunity for 

studying the functional and anatomical organization of midbrain dopaminergic nuclei with 

enhanced cortical detail, reduced blurring between gray and white matter and a significantly 

higher signal to noise ratio (Kerchner, 2011).  

While 7T MRI has several advantages over 3T, it is not without its limitations. Some 

challenges associated with 7T MRI include increased susceptibility to artifacts caused by 

magnetic field inhomogeneities and longer scan times due to higher resolution imaging. In 

additional, the significant differences in contrast and anatomical detail between 3T and 7T makes 

it challenging to accurately compare MRI data acquired from the two field strengths. Hence, 

before we can harness the benefits of ultra-high field strength NM-MRI imaging, it is critical to 

determine whether the statistical techniques and neuroimaging processing used for segmenting, 

quantifying, and analyzing neuromelanin-containing regions at 3T transfer reliably to 7T NM-

MRI. In this case, a higher convergence between the two field strengths would make us 

relatively confident that the molecular quantification from the sequences reliably generate the 

same estimates of NM. 
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Figure 3 

NM-MRI iImages Acquired from the Same Person at Both 7T and 3T                                                          

                                                      
Note. (A) NM-MRI images acquired at 7T & (B) NM-MRI images acquired at 3T. The 

cortical detail and contrast are significantly increased in the (A) compared to (B). Slice is 

clearly showing the midbrain. The SN has a better tissue contrast in 7T vs 3T. 

1.6. Research Objective and Hypothesis 

The purpose of this study, therefore, is to determine whether estimates of NM content 

obtained from 3T NM-MRI images reliably converge with those acquired using 7T NM-MRI 

scans. We hypothesize that there would be strong positive correlation between contrast to noise 

ratio (CNR) based estimates of NM sensitive signal 3T and 7T. Moreover, we expect a higher 

CNR value at 7T as opposed to 3T for each participant due to the enhanced spatial resolution and 

contrast quality characteristic of high field strength imaging.  

2. Methods 

2.1.  Participants 

A community sample consisting of 28 healthy adult participants between the ages of 19-

73 years (mean age = 45.5 yrs., # of females = 16) was recruited from London, Ontario. 

A B 
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Participants were recruited via advertisement postered by the Centre for Functional Metabolic 

Mapping for voluntary participation in a structural imaging study. The dataset was 

commissioned by Biogen, a technological firm in Boston, USA with provisions made for 

scientific and research purposes. Inclusion criteria were age over 18 years, no MRI 

contraindications, and no history of psychiatric and/or neurological disorders. All procedures 

were approved by Western University’s Ethics Review Board. Written informed consent was 

acquired from each participant. 

Figure 4 

Illustration of the Research Design of the Current Study  

        

2.2. Magnetic Resonance Imaging Acquisition Protocol  

Whole-brain 3D anatomical (T1-MPRAGE), and NM-sensitive 3D multi-echo GRE 

volumes were obtained from all participants at both 3T and 7T field strengths, using Siemens 

MAGNETOM 3T Prisma Fit with a 32-Channel Head Coil and Siemens MAGNETOM 7T MRI 

Plus 32-Channel Head Coil scanners respectively. This research design provided the opportunity 

to conduct a within-subject estimation of NM content across the two field strengths and directly 

compare the convergence in NM estimations. 
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Figure 5 

Age Distribution of the Sample 

 

2.2.1    Image Acquisition at 3-Tesla  

2.2.1.1.    Anatomical Acquisition 

T1-weighted (T1w) image was acquired at 3T for processing the NM-MRI images with 

the following parameters:	spatial resolution = 1x1x1 mm3; repetition time (TR) = 2300 ms; 

inversion time (TI) = 900 ms; flip angle = 9°; echo time (TE) = 2.98 ms; field-of-view (FOV) = 

240 x 256 x176 mm3; Number of slices = 176; in-plane acceleration, GRAPPA = 2; bandwidth = 

210 Hz/pixel.  

2.2.1.2. NM-MRI Acquisition 

The parameters for 3D multi-echo GRE volumes obtained at 3T were set as follows: 

spatial resolution = 0.60 x 0.60 x 1.5 mm3; TR = 54 ms; flip angle = 16°; TE = 23.54 ms; FOV = 

263 x 350 x 350 mm3; in-plane acceleration, GRAPPA = 2; slice thickness; 1.5 mm; number of 

slices = 36; bandwidth = 130 Hz/pixel. 
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2.2.2.    Image Acquisition at 7-Tesla  

2.2.2.1.      Anatomical Acquisition 

The parameters for the T1w image acquired at 7T were as follows: spatial resolution = 

0.70 x 0.7 x 0.7 mm3; TR = 6000 ms; TI = 2700 ms; flip angle = 4°; TE = 2.70 ms; FOV = 220 x 

220 x 146 mm3; in-plane acceleration, GRAPPA = 3; bandwidth = 140 Hz/pixel.  

2.2.2.2.   NM-MRI Acquisition 

NM MRI images collected using the 7T MRI scan had the following parameters: spatial 

resolution = 0.40 x 0.40 x 1.0 mm3; TR = 75 ms; flip angle = 8°; TE = 8.80 ms; FOV = 144 x 192 

x 52 mm3; in-plane acceleration, GRAPPA = 2; slice thickness; 1 mm; number of slices = 53; 

bandwidth = 250 Hz/pixel.  

2.2.3.    NM Image Quality Control 

Quality control checks were performed according to the procedures outlined by Salzman 

and Colleagues (2021). Briefly speaking, all images were visually inspected for motion artifacts, 

abrupt shifts in signal intensity exhibiting a linear pattern that disregards typical anatomical 

boundaries, and sufficient coverage of the ROIs (SN and CC).  

3. Data Analysis and Results  

NM content was not related to participants’ age or sex at either 3T or 7T. This was true 

across both atlas-based and manually segmentation methods. 

3.1. Atlas-based Segmentation Method    

All analyses were conducted in the native space of the participant using MATLAB 

scripts. We obtained template masks of SN and CC used in Cassidy and colleagues (2019) from 

the researcher to identify voxels corresponding to the ROI and the background respectively. 
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These masks were created in MNI space by manual tracing of the CC and SN on a composite 

NM-MRI image (created by averaging MNI NM-MRI scans of 40 healthy individuals). SN and 

CC masks were inverse transformed into the native space of all participants at both 3T and 7T.  

This procedure was conducted using Statistical Parametric Mapping Software (SPM-12) 

within MATLAB. First, we co-registered each participant’s NM image with their T1w scan. The 

co-registered T1w image was then segmented using SPM-12’s tissue probability masks. Inverse 

and forward deformation fields were calculated at the segmentation step. The inverse 

deformation field describes how the atlas image needs to be deformed to match the anatomy of 

the participant. The calculated inverse transformation was applied to both the CC and SN masks. 

This process warped the segmented atlas from the common stereotaxic space back to the 

subject's image space. This process was done for each participant at both 3T and 7T. 

Figure 6 

NM-MRI scan at 3T showing the Substantia Nigra and the Crus Cerebri 

 

Note. The substantia nigra, highlighted in red appears as a hyperintense (lighter) region 

on NM-MRI scan while the crus cerebri, highlighted in green is hypointense i.e., darker 

and has less contrast. 
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3.1.1. Data Analysis: Atlas-based Segmentation 
 

Participants’ 3T and 7T images were masked using their respective SN and CC atlases to 

identify voxels contained within these regions. CNR in the SN was calculated as:  

𝐶𝑁𝑅!"# =
𝑆𝐼$%&'()*(+)	-+./) − 𝑆𝐼0/%'	01/1&/+	

𝑆𝐼0/%'	01/1&/+
 

where 𝑆𝐼$%&'()*(+)	-+./) is the mean signal intensity within SN voxels and 𝑆𝐼0/%'	01/1&/+ is the 

mean signal intensity of all voxels within the crus cerebri, a region adjacent to the SN with little 

to no neuromelanin.  

This equation for calculating CNR has been extensively used in NM-MRI research 

(Ohtsuka et al., 2018, van der Pluijm and collegues 2021; Wang et al., 2021; Xing et al., 2018). 

3.1.2. Results: Atlas-based Segmentation 

A box plot was created from the CNR values to identify potential outliers. Values 

considered outliers (n = 4) and eliminated from further statistical analyses.  

We computed a Spearman’s rank correlation coefficient to assess the statistical 

dependence between the ranking of participant CNR values at 3T and 7T. We found a small 

negative correlation between the two variables that failed to reach significance, r(22) =  - .14, p = 

.50, Mean CNR3T = 0.51; CNR7T = 0.74 
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Figure 7 

Relationship Between Mean CNR for NM-MRI signal at 3T with that at 7T 

 
 

Note. A small non-significant correlation was found; Spearman’s rho: -.14, p = .50 

The CNR values obtained with the atlas-based segmentation were unexpected since the 

same participant provided data at both 3T and 7T. Therefore, we expected the rank ordering of 

participants with respect to their CNR values to remain consistent between the two field 

strengths. Upon visual inspection in ITK-SNAP, it became clear that the inverse transformed 

atlases were not accurately overlaid on the SN for participant. The mask seemed to lack 

specificity and was observed to be encroaching on what is considered the CC.  
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Figure 8 

Atlas-based Segmentation at 3T                                                                 

                                        

Note. (A) Overlay of inverse transformed SN atlas, shown in red, on top of the participant’s 

anatomy. Green circle highlights voxels of the crus cerebri (lower intensity, no neuromelanin) 

erroneous identified by the atlas as SN, demonstrating a lack of specificity. Blue circle 

corresponds to SN voxels that were omitted by the atlas, demonstrating a lack of sensitivity of the 

atlas as a template mask. (B) NM-MRI image showing the midbrain of the participant without the 

atlas overlaid.  

Figure 9 

Atlas-based Segmentation at 7T                                                                                                 

                             

A B 

B A 
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Note. (A) Overlay of inverse transformed SN atlas, shown in red, on top of the participant’s 

anatomy. Green circle highlights voxels of the crus cerebri erroneous identified by the atlas as 

SN, demonstrating a lack of specificity. (B) NM-MRI image showing the midbrain of the 

participant without the atlas overlaid.  

3.2. Manual Segmentation 

As an alternative, to the atlas-based segmentation approach, we obtained manually 

segmented masks of the SN for each participant individually. To this end, the SN in the NM 

images was manually segmented by a trained neuroradiologist (L.H.) for each NM-MRI image 

for 25 participants using ITK-SNAP (v3.8.0) at 3T & 7T. Each binarized manually segmented 

drawing of the SN were used to identify SN voxels within its corresponding NM-MRI image. 

These segmentations allowed us to conduct a region of interest (ROI) based analysis of CNR in 

the native space of the participant. 

Background distribution was defined by the crus cerebri. To identify voxels 

corresponding to the crus cerebri, we inverse transformed the crus cerebri mask obtained from 

Cassidy and colleagues (2019) into the native space of each participant. This was achieved using 

SPM-12.  We applied the inverse transformation matrix acquired during the normalization of 

NM-MRI image for each participant to the normalized crus cerebri image.  
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Figure 10 

Manual Segmentation at 3T                                                                                                   

                              

Note. (A) Shows manual segmented mask at 3T created by a neuroradiologist overlaid on its 

corresponding image. Compared to the inverse transformed atlas, the manually segmented masks 

have a higher sensitivity and specificity. (B) NM-MRI image showing the midbrain of the 

participant without the atlas overlaid.  

Figure 11 

Manual Segmentation at 7T 

                                    

Note. (A) Shows manual segmented mask at 7T created by a neuroradiologist overlaid on its 

corresponding image. Compared to the inverse transformed atlas, the manually segmented masks 

have a higher sensitivity and specificity. (B) NM-MRI image showing the midbrain of the 

participant without the atlas overlaid.  

 

 

 

 

A B 

A B 
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3.2.1.  Data Analysis: Manual Segmentation 

CNR values were calculated using a custom MATLAB script. To obtain CNR estimates, 

for each participant, we subtracted the mean signal intensity (SI) within all voxels corresponding 

to SN from the mean signal intensity within voxels corresponding to the crus cerebri. The result 

was then divided by the background intensity (i.e., mean signal intensity in the crus cerebri) as:  

𝐶𝑁𝑅!"# =
𝑆𝐼$%&'()*(+)	-+./) − 𝑆𝐼0/%'	01/1&/+	

𝑆𝐼0/%'	01/1&/+
 

This process was done for both 3T and 7T images for each participant. 

3.2.2.  Results: Manual Segmentation 

To identify and eliminate potential outliers. CNR values were transformed into z-scores. Values 

greater than 3.5 or less than -3.5 were considered outliers (n = 2) and eliminated from further 

statistical analyses. 

We computed a Spearman’s rank correlation coefficient to assess the relationship 

between CNR values at 3T and 7T. We found a modest positive correlation between the two 

variables that failed to reach significance, r(21) =  .42, p = .05, Mean CNR3T = 0.0621; CNR7T = 

0.071 
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Figure 12 

Relationship between Mean NM-MRI CNR at 3T and 7T Using Manual Segmentation 

 
 
 

Note. A modest positive correlation was found; Spearman’s rho = .42; p = .05 

4. Exploratory Analyses  

Given that the comparison was conducted with data acquired from the same participant at 

both 3T and 7T, an only modest correlation was surprising. Hence, we conducted some 

exploratory analyses to further investigate the results we obtained.  

4.1. Boundary Drawing of Manually Segmentations 

A potential reason for the modest correlation observed pertains to the differences in the 

way the boundaries of the SN were drawn for 3T vs 7T images by the neuroradiologist. To 

investigate this possibility, a fellow graduate student in our lab, Aria Fallah conducted 

exploratory analyses by comparing the volume of SN across 3T and 7T using the manually 

segmented images.  
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For each participant, the total number of voxels within the ROI i.e., SN were multiplied 

by voxel dimensions of the image to obtain final volume estimates at both 3T and 7T. 

Similar to the results for the CNR values, only a modest correlation was found between 

3T and 7T volumes:  rs(23) = .490, p = .012. This finding lends support to the explanation for our 

CNR estimates.  

Figure 13 

Relationship Between Substantia Nigra Volumes in (mm3) at 3T and 7T 

 

Note. Volumes at 3T and 7T were only moderately correlated; Spearman’s rho = .49, p 

= .01. Image created from data published in Fallah, 2023. Data was used with 

permission from the author. 

4.2. Same Mask for 3T and 7T NM-MRI Images 

To potentially mitigate the effect of differences in boundary drawings for manually 

segmented atlases, we sought to co-register 7T images (NM and manually segmented atlas) with 

the 3T images, using SPM-12.  This process, however, was only partially successful. We were 

able to co-register a subset of participant NM images (n = 20). However, because of the the lack 
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of sufficient anatomical landmarks within the binarized atlases, SPM-12 did not have nearly 

enough information to successful execute the co-registration procedure. As an alternative, we 

used a participant’s manually segmented atlas at 3T to mask both 7T and 3T images and identify 

the voxels within the SN. Using the same mask partially circumvented the problem of 

differences in SN volumes between the two field strengths. CNR was calculated as described 

above.  

A boxplot was created with the CNR values to identify potential outliers. In addition, 

CNR values were transformed into z-scores. Values greater than 3.5 or less than -3.5 were 

considered outliers (n = 1) and eliminated from further statistical analyses.  

A non-significant small Spearman’s rank correlation was found between CNR at 3T and 

7T using this method:  r(17) = .303, p = .20, Mean CNR3T = 0.196; CNR7T = 0.164 

Figure 14 

Relationship Between Mean NM-MRI CNR at 3T and 7T Calculated  Using Manually 

Segmented Substantia Nigra Mask at 3T 
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Note. Non-significant small convergence was found between 3T and 7T; Spearman’s 

rho= .3, p = .20  
 

4.3. Other Mathematical Equations for CNR 

4.3.1.    Standard Deviation of Background as Noise 

In the NM-MRI literature, another method for calculating CNR consists of using the 

Standard deviation of the background region as the denominator (Isaias et al., 2016; Lee et al., 

2021; Wang et al., 2018). This provides a measure how spread out the values in the background 

distribution are around the mean.  

4.3.1.1. Manually Segmented Images  

We applied the following formula of calculating CNR from the NM-MRI images co-

registered 3T and 7T images (as described in 3.3.2.). This analysis allowed us to examine in 

difference in CNR values as a function of the model used for calculation.  

 

𝐶𝑁𝑅!"# =
𝑀𝑒𝑎𝑛	𝑆𝐼$%&'()*(+)	-+./) −𝑀𝑒𝑎𝑛	𝑆𝐼0/%'	01/1&/+	

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑	𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛	𝑜𝑓	𝑆𝐼0/%'	01/1&/+
 

A boxplot was created with the CNR values to identify potential outliers. In addition, 

CNR values were transformed into z-scores. No outliers were found. 

The CNR at 3T and 7T was strongly associated,  r(18) = .791, p < .001, Mean CNR3T = 

3.99; CNR7T = 1.34 
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Figure 15  

Relationship Between Mean NM-MRI CNR at 3T and 7T Calculated Using the Standard 

Deviation of Crus Cerebri to Define Background Noise on Manually Segmented Images  

 

Note. Significant large correlation was found between 3T and 7T; Spearman’s rho= .80, p 

< .001. Analyses were conducted on data from manually images segmented images co-

registered to 3T native space of the participant  

 

4.3.1.2. Images Segmented Using an Atlas  

We repeated the analysis outlined in 4.3.1.1. using images segmented via the Cassidy 

Atlas to investigate if the atlas-based approach also yields different CNR values as a function of 

the model used for calculation. 

CNR values were calculated using the equation in 4.3.1.1. as: 

𝐶𝑁𝑅!"# =
𝑀𝑒𝑎𝑛	𝑆𝐼$%&'()*(+)	-+./) −𝑀𝑒𝑎𝑛	𝑆𝐼0/%'	01/1&/+	

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑	𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛	𝑜𝑓	𝑆𝐼0/%'	01/1&/+
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CNR values were plotted in the form of a boxplot to identify potential outliers. No 

outliers were found. CNR at 3T and 7T were strongly associated,  r(18) = .761, p < .001, Mean 

CNR3T = 10.523; CNR7T = 3.983 

Figure 16  

Relationship Between Mean NM-MRI CNR at 3T and 7T Calculated Using the Standard 

Deviation of Crus Cerebri to Define Background Noise on Images Segmented Using a 

Standard Atlas  

 
 

Note. Significant large correlation was found between 3T and 7T; Spearman’s rho= .76, p 

< .001. Analyses were conducted on data from images segmented using the Cassidy atlas.  

 
4.3.2.  Square Root of Standard Deviations as Noise 

Another model for calculating CNR is described by Partridge and colleagues (2011) in the 

context of Diffusion weighted MR imaging whereby the mean of signal intensity of the ROI with 

contrast is subtracted from a background ratio and the result is divided by the square root of the 

sum of standard deviation of the contrast region and the background region.  
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We adapted the formula described in their research for calculating NM-MRI CNR as 

follows: 

	𝐶𝑁𝑅 = 	
𝑀𝑒𝑎𝑛	𝑆𝐼$- −𝑀𝑒𝑎𝑛	𝑆𝐼00

5𝑆𝐷00 + 𝑆𝐷$-
 

Where 	𝑆𝐼$- and 𝑆𝐼00  correspond to the mean signal intensity within the Substantia Nigra and 

Crus Cerebri respectively. 𝑆𝐷00  and 𝑆𝐷$- denote the standard deviations of Substantia Nigra and 

Crus Cerebri. This formula was applied to the co-registered 3T and 7T NM-MRI images.  

A boxplot was created with the CNR values 2 data points were identified as outliers. 

CNR at 3T and 7T were moderately associated,   r(18) = .515, p =.02, Mean CNR3T = 7.86; 

CNR7T = 4.62.  

Figure 17 

Relationship Between Mean NM-MRI CNR at 3T And 7T Calculated Using the Square 

Root of Standard Deviations to Define Background Noise 

 

Note. Significant medium correlation was found between 3T and 7T; Spearman’s rho= .5, p = .02 

 



 30 

4.4. NM-MRI Signal Quantification Without a 

Background Region 

Despite its accuracy and benefits, manually segmented drawings of atlases can be an 

expensive, time consuming, and labour-intensive process, as it relies on the expertise of the 

person performing the segmentation. Therefore, researchers are increasingly trying to find 

alternative methods for reliably obtaining measures of CNR.  In some cases, a combination of 

manual and automated methods may be used to enhance efficiency and accuracy while 

minimizing human effort. 

In our analyses, although the SN masks were manually segmented by the 

neuroradiologists, the background intensity was still being defined using an atlas obtained from 

Cassidy and colleagues (2019). This atlas of the CC was developed by obtaining an average of 

manually segmented drawing from a set of NM-MRI drawings (n = 40) acquired at 3T. 

Consequently, the inverse transformed CC masks have lower levels of specificity for capturing 

CC voxels than their manually segmented SN counterparts.  

Here, we tried two approaches to calculating CNR that do not require a binarized mask for 

generating a background intensity distribution.  

4.4.1.    Root Mean Square Contrast  

The root mean square contrast (RMS contrast) is a measure used to quantify the variation 

in pixel intensity within an image. It provides insight into the overall level of contrast and 

variability present in the image. 

Here, we used the RMS contrast method to estimate CNR by computing a ratio of the 

overall contrast within the ROI and that within the rest of the image.  
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𝐶𝑁𝑅!2$ =
𝑅𝑜𝑜𝑡	𝑀𝑒𝑎𝑛	𝑆𝑞𝑢𝑎𝑟𝑒	𝑆𝐼$%&'()*(+)	-+./)	
𝑅𝑜𝑜𝑡	𝑀𝑒𝑎𝑛	𝑆𝑞𝑢𝑎𝑟𝑒	𝑆𝐼!1'(	34	(51	+6).1	

 

A significant medium to large Spearman’s correlation was found between CNR at 3T and 

7T using this method r(21) = .70, p < .001, Mean CNR3T =1.862; CNR7T = 1.332 

Figure 18   

Relationship Between Mean NM-MRI CNR at 3T And 7T Calculated Using the Root 

Mean Square Method 

 

Note. Significant medium to large correlation was found between 3T and 7T; Spearman’s rho= 

.70, p < .001 

 
4.4.2.      Signal to Noise Ratio 

CNR is a measure that considers the contrast between different regions of interest in an 

image while accounting for the noise level. However, when a background region can’t be 
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delineated, a simple signal to noise ratio can be computed. SNR is a ratio of the signal strength to 

the noise level in the data. It focuses on the overall quality of the signal and how well it stands 

out from the noise. 

Signal to noise ratio was calculated as: 

𝑆𝑁𝑅	 =
𝑀𝑒𝑎𝑛	𝑆𝐼$%&'()*(+)	-+./)	

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑	𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛	𝑜𝑓	𝑆𝐼!1'(	34	(51	+6).1	
 

 A boxplot was created with the CNR values. In addition, CNR values were transformed 

into z-scores to identify potential outliers (n = 1) 

 CNR values at 3T and those at 7T were moderately associated, r(17) = .47, p = .04, 

Mean CNR3T =2.667 ; CNR7T = 2.189   

Figure 19 

Correlation Between Mean NM-MRI CNR At 3T and 7T Obtained by Calculating Signal to Noise 

Ratio 

 
 

 
Note. Significant small to medium correlation was found  r= .47, p= .04 
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5. Discussion  

NM-MRI imaging is a growing field with applications for both applied and basic research. 

Advancements in MRI including a higher spatial resolution, increased contrast to noise ratio, 

enable us to non-invasively image the brain with enhanced sensitivity to its structural, functional, 

and metabolic facets. To this end, our ability to capitalize on the advantages of these 

advancements for NM-MRI research has been limited. Without evidence regarding the validity 

to molecular volumetric quantification of NM rich areas, we cannot be confident in the estimates 

obtained using advanced high field strength MRI. The objective of the current research study is 

to determine if estimates of NM-MRI signal at 3T reliably predict those obtained at 7T. We 

utilized the two most commonly used image segmentation approaches for this purpose. 

Moreover, we also conducted several exploratory analyses to gain a more comprehensive 

understanding of our findings.  

We found that estimates of NM-MRI signal between 3T and 7T did not converge for neither 

the atlas-based approach nor the manually segmentation approach when quantified using the 

mean of crus cerebri as the background. However, using standard deviation of the background 

region as noise led to convergent estimates of NM-MRI CNR. While the mean of the background 

region has been used by several NM-MRI studies to define noise, CNR is typically defined as the 

ratio of mean of the signal to the standard deviation of the noise.  

The choice of using standard deviation instead of the mean is based on the statistical 

properties of noise. Noise is often assumed to follow a Gaussian (normal) distribution with zero 

mean. In such cases, the standard deviation captures the spread or magnitude of the noise, which 

is a measure of the variations from the mean noise level. Using the standard deviation in the 
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denominator makes sense because it scales the CNR by the variability of the noise, which gives a 

better indication of the relative strength of the signal compared to the noise level. If the mean of 

the noise were used instead, it might not accurately reflect the variations and the true influence of 

the noise in the image, as the noise could have a mean value close to zero (which is often the 

case for Gaussian noise), but still have significant fluctuations. 

For images segmented via an atlas, while the standard deviation formula yielded a significant 

rank order correlation between CNR estimates at 3T and 7T, the mean CNR value for 7T was 

drastically smaller than the mean CNR value for 3T. This could be because we used an atlas 

created at 3T to mask the images at 7T which was prompted by a dearth of midbrain atlases 

created from 7T brain images. As a rule of thumb, an atlas should have similar characteristics 

(e.g., field strength and resolution) to the target images. Using an atlas that does not match the 

target images can result in poor segmentation accuracy. Moreover, this can also increase the 

likelihood of partial volume effects — lower segmentation accuracy causing by mixed voxel 

intensities at tissue boundaries. Hence, it is important to have atlases that are as closely related 

(with respect of MRI properties) to target images as possible. With the increased availability and 

popularity of high field strength imaging, we hope that atlases that accurately delineate brain 

structures at 7T would be more accessible to researchers. Alternatively, automated (e.g., U-net; 

LeBerre et al., 2019) and deep learning algorithms (e.g., NigraNet; Gaurav et al., 2022) are 

becoming an increasingly popular choice amongst researchers for segmenting NM-MRI scans 

due to their cost and time-efficient nature. Establishing the validity of these tools for segmenting 

the SN is a valuable endeavour for future research in the field of NM imaging. 

Co-registering 3T and 7T NM-MRI images presented the biggest challenge when 

employing the manual segmentation strategy. The two scanners have different orientations, 
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resolutions, and distortions due to the inherent differences in field strength. This makes it 

significantly harder to compare and/or integrating data across field strengths. As such, 

accounting for these differences is crucial for conducted a cross-compatibility analysis. In the 

present study, we used SPM-12 to co-register participant images at 3T with 7T. This was done to 

alleviate some of the aforementioned concerns by making the native space of the participants 

uniform across field strengths. The amount of movement required to co-register was quite 

significant. Furthermore, the amount of anatomical detail in binarized manually segmented 

masks is virtually non-existent. SPM-12 uses probability maps to characterize tissue types and 

identify neuroanatomical structures and the lack of detail makes it quite hard for a software like 

SPM-12 to successfully co-register images and masks with one another. Future research should 

explore the use of a more robust platforms such as Advanced Normalization Tools (ANTs) or 

automated machine learning software like Greedy within ITK-Snap for image registration.  

We didn’t observe an increase in CNR with an increase in magnetic field strength. This is 

contradictory to previous research. Several studies have found an increase in CNR with 

increasing field strength (Pohmann et al., 2016; Schäfer et al., 2008). In our sample, while 

contrast was higher for 7T (M = 214.80) than 3T (M = 209) to a certain extent, the increase in 

noise was disproportionately higher at 7T (M = 162.80) than 3T (M = 108). Moreover, the 

distribution of the CC for 7T (SD = 40.78) was significantly more spread out than that at 3T (SD 

= 9.75). This problem was further exacerbated by the small sample size in our study. Variance 

and dispersion of the background distribution is directly related to noise in the data. Crucially, it 

decreases CNR. These findings may help explain the lack of field strength-based increase in 

CNR within our sample.  
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Contrary to findings from previous research (Xing et al., 2018), we did not find a 

significant decrease in NM with increasing age. In addition to the small sample size, the age 

range of participants in this study was also significantly narrower than that reported in Xing and 

colleagues (2018)’s research. Since the highest increase in NM content is mostly seen during 

childhood and adolescence, it is not surprising that we failed to find an effect of age on NM 

levels in our study. Replicating our study using a larger sample with a wider age range would 

afford us a better opportunity for examining such effects.  

Aside from age and biological sex, no other demographic information was obtained from 

participants. NM levels within the brain can vary due to a variety of factors including 

medications (specifically dopamine antagonists and agonists), biological expression of enzymes 

e.g., tyrosinase (Jin et al., 2023), and the presence of psychiatric illnesses such as schizophrenia, 

depression, and psychotic disorders (Wengler et al., 2021). These factors should be statistically 

accounted for when calculating NM-MRI CNR to avoid confounding results. 

Considering our results pertaining to the lower CNR value and higher noise levels at 7T, we 

recommend 3T MRI as a more suitable imaging tool for neuromelanin sensitive contrast. The 

choice between 7T and 3T MRI depends on the specific clinical or research. Higher magnetic 

field strength is not “universally” better than a lower field strength. Susceptibility to distortion 

induced artifacts, inhomogeneity of magnetic fields, and partial volume effects are some of the 

major limitations for 7T NM-MRI research. The SN is a small midbrain nucleus that is affected 

significantly by signal degradation factors. Within the context of NM-MRI, research has focused 

on the optimization of techniques and MRI acquisition parameters for 3T (Salzman et al.,2021; 

Wengler et al., 2020). Since ultra-high field strength imaging is still in its early stages of 

development, there is a lack of specialized protocols for image acquisition and contrast 
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enhancement. As ultra-high field strength imaging becomes more accessible and prevalent within 

research, hardware, sequences, and protocols would become increasingly sophisticated, 

advanced, and reliable. This would make it possible to achieve the best possible imaging quality 

and reduce challenges unique to high-field MRI.  
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