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Abstract
In the realm of multivalued functions, certain specimens run the risk of being elementary or
complex to a fault. The Lambert W function serves as a middle ground in a way, being non-
representable by elementary functions yet admitting several properties which have allowed for
copious research. W utilizes the inverse of the elementary function xex, resulting in a multival-
ued function with non-elementary connections between its branches. Wk(z), the solution to the
equation z = Wk(z)eWk(z) for a “branch number” k ∈ Z, has both asymptotic and Taylor series
for its various branches.

In recent years, significant effort has been dedicated to exploring the further generalization
of these series. The first section of this thesis focuses on the generalization and representation
of series for any branch of the Lambert W function. Rather than the principal branch in the real
plane, non-principal branches are of most interest. Behaviour of these branches’ approxima-
tions is studied near branch cuts and for large-indexed branches. This analysis is supported by
both images of curves in domain space and domain-colouring of entire regions.

Subsequent sections will focus on a new class of functions which resemble Lambert W.
These share a “fundamental relation” with the Lambert W, enabling the previous series to be
generalized even further. The complexity of the nested functions will increase throughout these
sections. Initially, functions are utilized that are multivalued in a single, elementary fashion.
Later, these will be replaced with functions which have more complex branch behaviour.

Keywords: Lambert W, special functions, asymptotic series
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Abstract for a Lay Audience
Back in secondary school, one may have learned about functions in math class. One property
that is fundamental to the definition of a function is the so-called “vertical-line test”: a curve
represents a function if a vertical line passes through said curve only once. In the same class,
one may remember learning about inverses of functions, which “cancel” out the other function
and leaves only the input. For example, the function f −1 is the inverse of another function f if
f −1( f (x)) = f ( f −1(x)) = x.

When combining these two ideas, some contradictory examples may arise. There has been
another oft-forgotten aspect of math not yet mentioned: the horizontal line test. When a hori-
zontal line passes through a curve only once, the corresponding function has an inverse. How-
ever, higher-level mathematics ignores this rule for some cases. The Lambert W function is
one such case, being the inverse of a function which fails the horizontal line test.

As we must still obey the vertical line test, sections of the Lambert W function are treated
as separate entities called “branches”. Due to W being a function which is impossible to write
out in simpler terms, we need to represent each branch in another way. This thesis focuses on
the use of sums of other functions to approximate the branches of W. In addition, we use the
same sums to approximate branches of functions similar to W to lay groundwork for future
functions which have branches.
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Chapter 1

Introduction: Series Over Multivalued
Functions

Multivalued functions defy the broadest definition of a mathematical function. Even at their
most basic, we receive two or more outputs for some domain. Sidestepping this violation of
a most elementary concept in mathematics can be done with a certain methodology - treating
separate functions as interdependent components of a whole function. Treating intervals of
the image as unique “branches”, the theoretical union of which being a complete inverse of a
function, allows for more rigorous analysis.

1.1 Taylor Series for an Elementary Multifunction
An illuminating example of Taylor series arises from one of the most basic inverse functions.
For the family of univariate power functions of the form f (z) = zn, z ∈ C, n ∈ Z, the inverse
function must be categorized into different branches. From here on, branches will be denoted
with k unless noted otherwise. Letting n = 2, we obtain the near-trivial case of the square root
function. Both branches are can be represented on the real plane, merely differentiated by the
sign out front.

For n ≥ 2, entire branches only appear in the complex plane. Every branch is thus separated
by a factor of e

2ikπ
n , k ∈ Z. Though this is done by undergrads as an introductory exercise in

complex analysis, it is still worth investigating as a multivalued function. And, as these are
analytic functions on a disc in C not including 0, they admit power series representations. For
n = 2, the positive branch of f (z) at z0 has the following power series representation, given by
Benghorbal in [20].

√
z =
√
π

2

∞∑
ℓ=0

z
1
2−ℓ

0 (z − z0)ℓ

Γ( 3
2 − ℓ)ℓ!

(1.1)

And with some work, this can be generalized to any value of n ∈ N:

n
√

z = e
2ikπ

n

∞∑
ℓ=0

√
π

2
z

1
n−ℓ

0 (z − z0)ℓ

Γ(1 + 1
n − ℓ)ℓ!

, k ∈ Z (1.2)

Here, k is the branch number of the function we are attempting to approximate.

1



2 Chapter 1. Introduction: Series OverMultivalued Functions

Figure 1.1: A handful of Taylor series approximations for the principal branch of the function
x

1
3 . To the right, the error function (1.3) is plotted for the same approximations. Note that the

axes are uneven on the right. This was done to highlight error.

Figure 1.2: Taylor series approximations for each branch of x
1
3 as images of the domain curve

C = 2eit.

As an example, let n = 3 and z0 =
1
2 . The real principal branch, k = 0, is plotted in Figure

1.1 and compared with various Taylor series approximations with different numbers of terms
N. In addition, it is worth defining an error function E(x) as follows:

E(z,N) = |
√
π

2

N∑
ℓ=0

z
1
3−ℓ

0 (z − z0)ℓ

Γ(4
3 − ℓ)ℓ!

− z
1
3 | (1.3)

Now, when plotting the other branches, another method is necessary. This is due to the
four-dimensional nature of functions in C, which can be captured by domain coloring. We may
also use images of curves. By defining a curve C in the domain space, we can compare the
images of C under both the function and its approximations. Setting C = 2eit and k = 0, 1, 2,
we obtain a more complete picture of the accuracy of our previous Taylor series. Here, the
branches are separated by dashed radial lines from the origin. Within each branch, the Taylor
series approximations act the same, being accurate to the image under the cube root function.

Other elementary multifunctions also have trivial connections between their branches. For
example, arcsin(z) has branches defined as (−1)k arcsin0(z) + kπ, k ∈ C, where arcsin0(z) is the
principal branch of arcsine. More important to our purposes later, the complex logarithm has



1.2. Series Approximations of The Lambert W Function in R 3

branches separated by a factor of 2ikπ, k ∈ Z. To get approximations of these functions, one
needs only to make respective adjustments to their series.

1.2 Series Approximations of The Lambert W Function in R
All of the prior examples of multifunctions arise from inverting periodic elementary functions.
The question of branches becomes more complicated once extra elements are added, even if
said elements are not complicated themselves. In [1], the delay differential equation

ẏ(t) = ay(t − 1)

is solved with the inverse of the function f (t) = tet, also known as the Lambert W function.
The Lambert W function’s branches are not elementary in their relation with each other.

Over R, two branches exists, labeled as the principal branch and the -1 branch. A branch cut
exist at x = −1

e , with the principal branch defined over the interval [−1
e ,∞) and the −1 branch

defined over [−1
e , 0). As x→ ∞, the principle branch asymptotically approaches ln x.

For the principal branch, a few well-known series are already defined. For example, the
principal branch has a Taylor series with a radius of convergence of 1

e and is defined as follows:

W0(x) =
∞∑

n=1

(−n)(n−1) xn

n!
, |x| <

1
e

(1.4)

As this Taylor series is quite limited in its convergence, other series have been found that
converge to W asymptotically. To receive these, start with an approximation W0(x) ≈ ln x + u.
Then, by plugging the approximation back in the original definition:

x(ln x + u)eu = x

=⇒ u = − ln(ln x) + v

=⇒ e−v = 1 −
ln(ln x)

ln x
+

v
ln x

After defining τ = ln(ln x)
ln x and σ = 1

ln x , the above equation is known as the “fundamental
relation”.

e−v − 1 + τ − vσ = 0 (1.5)

Utilizing Stirling numbers, Comtet [17] found a solution to this relation in the form of an
asymptotic series. The numbers within the brackets represent Stirling cycle numbers. Further-
more, another expansion was found by Jeffrey [21] which utilizes Stirling 2-subset numbers.
These asymptotic series are written as:

W0(x) = ln x − ln(ln x) + u (1.6)

where u is, respectively,
∞∑

n=1

n∑
m=1

[
n

n − m + 1

]
(−1)n−mσn−m

k τ
m
k

m!
(1.7)



4 Chapter 1. Introduction: Series OverMultivalued Functions

Figure 1.3: Asymptotic approximations of the principal branch of W using (1.7). On the top,
we fix p = 0 and vary N. On the bottom, we instead fix N = 5 and vary p. The graphs on their
right are their respective forward error plots.

∞∑
n=1

n−1∑
m=0

{
m + n − 1

m

}
≥2

τn
k(−1)m+n−1

n!(1 + σk)m+n (1.8)

Additionally, define un,m to be the n,m-th term of u. Both of these approximations will be
integral to the following sections of the paper, as they can be generalized to any branch.

Shifting focus back to the principal branch for the moment, it is also worth mentioning a
development found by Kalugin in [22]. The nested natural logarithm within the approximation
of W0 can be replaced by an ”anstaz” p + ln x, giving a new approximation

W0(x) = ln x − ln(ln x + p) + u (1.9)

σ =
1

p + ln x
, τ =

p + ln(p + ln x)
p + ln x

This is possible due to (1.5) being invariant under this change. From here on, the term p will be
referred to as a ”p-correction”, due to its effect on the asymptotic series. To show this quality,
we compare the series at p = 0 with increasing values of N against various values of p for a
fixed N = 5. Though the approximations at smaller values of x behave more erratically for a
varying p, our series converge significantly earlier than by increasing N.

In [14], it was shown that these series could be generalized to any branch. This is due to
the same property that allowed us to add the p-correction: invariance. Approximating Wk(z) =
lnk z + u, where lnk z = ln0 z + 2kiπ, k ∈ Z, we get the same fundamental relation, albeit with
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Figure 1.4: A plot of |E1| against z = x + iy. The plot shows that E1 cannot be simplified to
zero.

different definitions of τ and σ. With generalized component functions in our inventory, we
recieve an asymptotic series for any kth-branch of the Lambert W function:

Wk(x) = lnk x + ln0(lnk x) + u (1.10)

σk =
1

lnk x
, τk =

ln0(lnk x)
lnk x

1.3 W and multivalued functions in computer algebra
Research on Lambert W has significance for computer algebra systems beyond its own ap-
plications. Computer algebra systems have always had trouble manipulating and simplify-
ing expressions containing multivalued functions. Early versions of Maple would simplify
√
−x → i

√
x. Substituting x = −1 into this simplification resulted in 1 = −1. Although this

does not happen now, other problems persist. For example, consider the two expressions

E1 =
√

z + 1
√

z − 2 −
√

(z + 1)(z − 2) , (1.11)

E2 =
√

1 + z
√

2 − z −
√

(1 + z)(2 − z) . (1.12)

One of these is zero everywhere in the complex plane, and one is not. Early versions of Maple
would simplify both to zero, while current versions do not simplify either. We can discover
graphically which it is by substituting z = x + Iy into each expression and then plot |E1| and
|E2| as a 3-D plot. The plots are shown in Figures 1.4 and 1.5.

A similar difficulty is seen in Maple’s integration.∫
dz

√
1 + z

√
2 − z

=

√
(1 + z)(2 − z)
√

1 + z
√

2 − z
arcsin(2z/3 − 1/3)

From the above discussion, the leading fraction is identically 1.
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Figure 1.5: A plot of |E2| against z = x + iy. The plot shows that E2 is zero everywhere in the
complex plane. The random surface is the result of rounding errors.

A contributory blame for these problems it the unfocused thinking about multivalued func-
tions in the literature. Working with the branches of W, we are forced to improve on this
confusion. For example, the Digital Library of Mathematical Functions (DLMF) displays the
following formulae (and, of course, many more)

Log z = ln z + 2πik , (1.13)
Arctan z = arctan z + kπ , (1.14)

Arctan u ± Arctan v = Arctan
( u ± v
1 ∓ uv

)
. (1.15)

We see that Log z has a ‘hidden’ variable k, as does Arctan z. This implies that the equation
(1.15) has 3 hidden variables. The equation betrays the attitude that branch selection can be
postponed, or even relegated to a user and not a problem for the DLMF. This is not possible
with W, because the branches are not trivially related, and decisions must be made at the time
of definition and implementation. The first paper [1] used the Log z notation, but quickly (the
same year) [2] the notation

lnk z = ln z + 2πik

was proposed as a replacement. Although the proposal has not exactly gone viral, it will be
used here.

Another way in which W is relevant to other studies is the shift in emphasis from the
domain of the function to the range. It is in the range that branches are decided, rather than the
domain. Influencers such as Kahan [3], however, focus entirely on branch cuts. The DLMF
accompanies each definition of a multivalued function with a diagram of the branch cuts, but
never with a diagram of the range. Further, the literature typically refers for a specific function
to ‘the’ branch cut; here we show that each branch has different branch cuts and again simplistic
approaches are inadequate.

We can note that Riemann surfaces are implicitly an acknowledgement that ranges are
important, in that they layer range information over the function domain. Also the unwinding
number can be regarded as a method to transfer ranch information back to the domain.



Chapter 2

Series for non-principal branches

2.1 Introduction
The Lambert W function owes its current status1 in no small part to computer algebra systems,
because they enabled the dissemination of information about W more widely than conventional
publishing. Since W allowed algebra systems to return closed-form solutions to problems
from all branches of science, users discovered W in ways that a literature search could not.
Lambert W is multivalued, like arctangent or logarithm, and hence has branches. An important
difference between the elementary multivalued functions and W is the fact that the branches
of arctangent are trivially related, in that they differ by π; similarly, the branches of logarithm
differ by 2πi. There is no simple relation between the branches of W, and each branch must be
labelled separately and studied separately.

Definitions

The branches of the Lambert W function are denoted Wk(z), where k is the branch index. Each
branch obeys [1]

Wk(z)eWk(z) = z , (2.1)

and the different branches are distinguished by the definition

Wk(z)→ lnk z for |z| → ∞ . (2.2)

Here, lnk z denotes the kth branch of logarithm [2], i.e. lnk z = ln z + 2πi, with ln z as defined in
[4]. Definition (2.2) of the branches of W is also illustrated in Figure 2.1 below.

The principal branch W0(z) takes real values for z ≥ −e−1 and has been extensively studied.
For example, the function T (z) = −W0(−z) is the exponential generating function for labelled
rooted trees [5]; the convex analysis of W0 was developed in [6]; in [7], it was shown that W0

is a Bernstein function, and a Stieltjes function, and its derivative is completely monotonic;
numerous papers have proposed numerical schemes for evaluating W0(x) for x ∈ R, a recent
example being [8]; a model of chemical kinetics in the human eye uses W0(x) in [9].

In contrast, non-principal branches k , 0 have been less studied, but nonetheless have
applications. The branch W−1(z) takes real values for −e−1 ≤ z < 0. The real-valued function

1Citation counts as of July 2023: Google scholar 7278; Web of Science 4160.

7
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W−1(− exp(−1 − z2/2)) was used in [10] to obtain a new derivation of Stirling’s approximation
to n! and Vinogradov has presented applications in statistics both for W−1(x) [11] and W0(x)
[12].

2.2 Expansions
An important difference between W0 and all other branches is behaviour at the origin. W0

is analytic at the origin, and its Taylor expansion is known explicitly; in contrast, all other
branches are singular at the origin. Our interest here is to study asymptotic expansions both for
|z| → ∞ and for |z| → 0, of non-principal branches.

In [13], de Bruijn obtained an asymptotic expansion for W0(x) when x → ∞; this was ex-
tended to the complex plane in [1], and to other branches in [14]. None of the papers attempted
numerical tests of the series, neither for their accuracy, nor for exploring where the series are
convergent and where purely asymptotic. This is the first aim here.

Further, having obtained an expansion for large x, [1] stated

A similar but purely real-valued series is useful for the branch W−1(x) for x < 0.
We can get a real-valued asymptotic formula from the above by using log(−x) in
place of Log(z) and log(− log(−x)) in place of log(Log(z)). [...] This series is not
useful for complex x because the branch cuts of the series do not correspond to
those of W.

We improve upon this point by proposing new, explicit series for all non-principal branches
k , 0, and testing them numerically.

2.2.1 Branch structure
To focus our discussion, we consider the plots shown in Figure 2.1. The left-hand axes show
values of z in the domain of W(z). The right-hand axes show values of Wk, where the branch
indicator k is important; that is, the right axes show the ranges2 of W. Although only one set of
axes is used to show the domain, this is a simplification which avoids multiple figures. There
are actually several different domains, coinciding with the different branches of W. In contrast
to more familiar multi-valued functions, such as ln z, the different branches Wk(z) do not share a
single common domain. Specifically, the singular points and the branch cuts of Wk(z) vary from
branch to branch. In Figure 2.1, the different branch cuts for different branches are compressed
onto the negative real axis (of the left set of axes) using the colours red and green. For the
principal branch W0, the branch cut consists only of the red-coloured portion of the axis, i.e.
x ≤ −1/e, and the green segment is not a branch cut; the point x = −1/e is the singular point.
For the branches k = ±1, there are two branch cuts, coloured red and green; they meet at
x = −1/e. It is best to think of the cuts as distinct, even though they share a singular point
and also extend along the same axis. The distinction is that the red cut for k = −1 maps to the
boundary between W0 and W−1, with the boundary belonging to W−1, while the green cut maps
to the boundary between W1 and W−1, with the boundary belonging to W−1. Similarly, the red

2Note the plural. We regard each branch of Wk as a separate function with its own domain and range [15].
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Figure 2.1: The domains (left-hand axes) and ranges (right-hand axes) of the branches of the
Lambert W function. The branches of W collectively fill all of the right-hand complex plane,
although any one branch occupies only a disjoint strip of the plane. Each branch has a domain
consisting of the entire complex plane, although the branch cuts differ according to the branch.
The continuous curves in the range are constructed piecewise by mapping the circles succes-
sively with the different branches.

cut for k = 1 maps to the boundary between W0 and W1, but now the boundary belongs to W0.
In contrast to the red cuts, the green cut maps to the boundary between W1 and W−1, with the
boundary belonging to W−1.

The origin is a second singular point for W1 and W−1. For all other branches, i.e. k ≥ 2
and k ≤ −2, the red and green cuts merge into a single cut extending along the whole of the
negative real axis, with the point z = −1/e no longer being a singular point, and only the origin
being singular. Two circles, both alike in dignity3, are plotted in the domain; they are described
by the equation z = reiθ with r = 200 and r = 0.05 and −π < θ ≤ π. The circles are drawn so
that one end of each circle touches the branch cut, while the other end stops short of the cut.
This plotting convention reflects that the θ interval is closed on the top of the cut, when θ = π.

The right-hand axes in Figure 2.1 show the ranges of the branches Wk. The branch bound-
aries are shown as black dashed lines. The curves plotted are the results from applying succes-
sively W−2,W−1,W0,W1,W2 to the two circles shown in the left-hand axes. The colour-coded,
but otherwise continuous, curve in the positive-real half-plane corresponds to the large circle,
while the small circle maps into two curves: the small closed curve around the origin and the
continuous curve in the negative real half-plane.

3This whimsical Shakespearian reference emphasises the mathematical point that previous investigations have
concentrated on the large circle and neglected the equally important small circle.
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2.2.2 Asymptotic expansions
We briefly summarize Poincaré’s theory of asymptotic expansions [16, Ch.1]. We begin with
an example.

g(x) =
∫ ∞

0

e−xt dt
1 + t

=

∫ ∞

0
e−xt(1 − t + t2 − t3 + . . .) dt

=
1
x
−

1!
x2 +

2!
x3 −

3!
x4 +

4!
x5 − . . . (2.3)

The series in 1/x does not converge for any x, but if we substitute x = 10 into the equation, we
obtain (evaluating the integral using Maple)∫ ∞

0

e−10t dt
1 + t

= 0.0915633 . . . = 0.1 − 0.01 + 0.002 − 0.0006 + 0.00024 − . . . (2.4)

Adding the first 4 terms, we obtain the approximation 0.0914, which approximates the integral
with an error 0.00016. Our sum omitted the 5th term, and we note that its value, 0.00024,
bounds the observed error. It is typical of asymptotic series that the error is bounded by the
first omitted term in the sum.

The theory of asymptotic expansions generalizes the functions x−k used in the example,
with a sequence of gauge, or scale, functions {ϕn(x)} obeying the condition ϕn+1(x) = o(ϕn(x))
as x→ ∞. The series formed from these functions,

g(x) =
N∑

n=1

anϕn(x) , (2.5)

has the property that it becomes more accurate as x → ∞. Typically, the error is bounded by
the omitted term ϕN+1(x). For an asymptotic expansion, the limit N → ∞ is of less interest
than the limit x → ∞, and will not exist for a non-convergent expansion. This paper uses
scale functions ϕn(z) = 1/ lnn(z). In order for the functions to decrease with n, we require that
| ln z| > 1, which in turn requires |z| > e or |z| < e−1. Then they form an asymptotic sequence
both in the limit |z| → ∞ and |z| → 0.

2.2.3 Outline
In section 2.3, we revisit the derivation of the expansion of W given in [1] for large arguments,
replacing the imprecise notation Log with the precise notation lnk z defined above. We then use
graphical methods to add to earlier treatments by demonstrating the accuracy of the approxima-
tions for the different branches. Although not all asymptotic expansions are convergent series,
the expansions given here are convergent for some arguments. We show this convergence, but
do not analyse the regions in detail.

In section 2.4, the main motivation for this paper is taken up: the expansions for non-
principal branches of W around the origin. We show that the key idea is to define a shifted
logarithm which matches the asymptotic behaviour at the origin. Again we also consider con-
vergence, and we uncover an unexpected result that several series, although based on different
starting assumptions, none the less converge to correct values. The rates of convergence, how-
ever, are different, with the series based on shifted logarithms being best.
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Figure 2.2: A comparison between the exact value of W and the one-term and two-term ap-
proximations in (2.6). The dashed curve is the exact value. The colours show where the branch
boundaries are predicted to be by the approximations.

2.3 de Bruijn series for large z

Since the branches of W are defined so that Wk(z) asymptotically approaches lnk z, we consider
Wk(z) = lnk z + v(z), and assume v = o(lnk z). Then (2.1) gives

(lnk z + v(z)) elnk z+v = (lnk z + v(z)) zev = z .

To leading order, e−v = lnk z, and assuming that v lies in the principal branch of logarithm, the
approximation is (note the different branches of logarithm)

Wk(z) = lnk z − ln0(lnk z) + u(z) . (2.6)

Neglecting temporarily the u(z) term, we compare in Figure 2.2 the one-term and two-term
approximations to W. The colour coding shows where the approximations think the branch
boundaries are. The term lnk z alone is a significant over-estimate, and the branch boundaries
are not close, but two terms, although under-estimating, are encouragingly closer. Our main
interest, however, is the behaviour after including u(z). Substituting (2.6) into (2.1) and intro-
ducing

σ =
1

lnk z
, and τ =

ln(lnk z)
lnk z

, (2.7)

we can show that u obeys (more details of this demonstration are given below)

1 − τ + σu − e−u = 0 . (2.8)

Equation (2.8) was solved for u by Comtet [17] as a series in σ:

u =
N∑

n=1

cn
(−σ)n

n!
, (2.9)

cn =

n∑
m=1

(−1)n−m

[
n

n − m + 1

]
σ−mτm

m!
, (2.10)
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where
[

n
n−m+1

]
is a Stirling Cycle number [18, p. 259], and we have written the series going

to N terms, for later reference. The form of the expansion appears to be unchanged from the
principal branch, but this is because the branch information is hidden in the variables σ and τ.
The derivation of the expansion is for an asymptotic series, as defined in §2.2.2. Such series
are not necessarily convergent4, but in [21], the series (2.6) together with (2.9) was studied for
x ∈ R and the series was shown to converge for x > e. The question naturally arises of where
the series for principal and non-principal branches converge for z ∈ C.

Since we are dealing with the accuracy and convergence of series on multiple domains
of z and for multiple branches of W, we wish to avoid analyzing each branch separately and
being tempted to present multiple repetitious plots of results. We thus use the plot shown in
Figure 2.3 to summarize our findings. The plot accumulates maps of the large circle shown
above in Figure 2.1 under successive branches Wk; these plots are compared with maps made
by the corresponding series approximation (2.9) using 2 terms of the summation. The contours
correspond to circles of radii r = 50, 10, 5, 3, 1, e−1. In each case the dashed curve is W and the
solid curve is the series approximation.

In Figure 2.3, we focus first on the approximation for the principal branch, indicated by
the red curves. We see that for r > 3, the accuracy is acceptable, and improves for larger r, as
expected. Since we are considering an asymptotic approximation, we fix the number of terms
in the summation to 2, and consider changes with r. We note in particular that the exact and
approximate curves for r = 50 are practically indistinguishable to the human eye. We can also
investigate the convergence of the series. For r > 10 we can take more terms of the summation
and observe improved accuracy (data not shown), indicating the series is convergent for larger r
values (as well as asymptotic). For smaller values of r, the series loses accuracy, and in parallel
fails to converge, the extraneous curves swamping the figure. Therefore, for r < 3 we plot only
the values of W0 and remove the distraction of the failed approximations.

Both the W curves and the approximations are smooth across the branch boundaries. This
reflects the properties that

Wk(−x) = lim
y↑0

Wk+1(−x + iy) , for x < −1/e , and (2.11)

lnk(−x) = lim
y↑0

lnk+1(−x + iy) , for x < 0 . (2.12)

This does not ensure that the boundaries between the branches of W and of the approximations
agree, although they approach each other with improved accuracy.

For branches k , 0, we observe something that is unexpected, namely, that the approx-
imations show evidence of remaining accurate for all values of r down to r = e−1. Indeed,
the series appear convergent. This is difficult to justify graphically, but can be checked by ex-
tended summation for values where graphical evidence is weakest. In Table 2.1 we calculate
approximations to W−1(−1/e) = −1 and W−1(−0.4) using increasing numbers of terms in the
sum. Adding up large numbers of terms in a sum can require additional intermediate precision
for accuracy. For the table, Maple’s default 10-digit accuracy had to be increased to 30 decimal
digits for sums of more than 50 terms. The numerical results indicate convergence, but do not
constitute a proof.

4Indeed, some authors define an asymptotic series as one that does not converge [19].
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N value for x = −e−1 value for x = −0.4
∞ −1 −0.9441 − 0.4073 i
40 −1.1568 − 0.1565 i −0.9665 − 0.3495 i
70 −1.1190 − 0.1188 i −0.9259 − 0.3800 i

100 −1.0997 − 0.0996 i −0.9232 − 0.4055 i
160 −1.0789 − 0.0788 i −0.9448 − 0.4183 i

Table 2.1: Numerical tests of convergence for the expansion (2.9). The row N = ∞ refers
to the value of W that the series is trying to reach. The series appears convergent, although
painfully slowly.

K K K K

K

K

K

Figure 2.3: A systematic test of expansion (2.9), using two terms of the summation. Each
continuous curve is a concatenation of mappings of the same large circle using successively
the various branches of W and of its approximations. The dashed curves are the exact values of
Wk while the solid curves are the approximations. The contours correspond to circles of radii,
from right to left, r = 50, 10, 5, 3, 1, e−1. The approximations to the principal branch for r < 3
are so bad that they distract from the plots and have been omitted. For non-principal branches,
all approximations are plotted.
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2.4 de Bruijn series for small z

A new feature associated with the analysis around the origin is the disappearance from the
asymptotic analysis of the principal branch. Figure 2.4 shows a plot of values of Wk computed
on a circle of radius r = 1

20 and centred at the origin. The principal branch, shown in red, is
the small closed curve around the origin, while all other branches form the continuous curve
on the far left. It is important to note a difference between W0 and W−1. The real values of W0

occur in the middle of its range, or to put it another way, the real values of W0 do not coincide
with the branch boundaries. In contrast, the real values of W−1 occur on one of its branch
boundaries. We want this difference to be reflected, if possible, in the asymptotic forms we
use. As in the previous section, the leading asymptotic term is logarithm, and the problem is to
match the branches of the logarithm term to W−1, and more generally to all Wk for k , 0. Two
possible asymptotic approximations are shown in Figure 2.4 as the vertical lines to the right
of the curve showing the values of W. The right-most line is the approximation lnk z which
was already used for the previous section. Since W−1(−0.01) = −6.473, i.e. purely real, but
ln(−0.01) = −4.605+ πi and ln−1(−0.01) = −4.605− πi, it is clear that the approximations that
worked well in the previous section, do not work here. For this reason, we introduce what we
call a ‘shifted log’ by the definition

Lk(z) = lnk z − sgn(k)iπ , for k , 0 . (2.13)

We see that for this function L−1(−0.01) = −4.605, and so is purely real where W−1 is real.
This function is plotted in Figure 2.4 as the straight line in between the other two contours.
Notice that W−1(−e−1) = −1, and L−1(−e−1) = −1 also. Of course, W−1(z) is not differentiable
at z = −e−1, but L−1(z) is differentiable, showing that more terms in the series will be needed
for numerical accuracy.

Having matched the leading-order behaviour of Wk using the shifted logarithm, we repeat
the approach used above of substituting into WeW = z.

(Lk(z) + v(z)) exp(Lk(z) + v(z)) = (Lk(z) + v(z)) (−z) exp(v(z)) = z
v(z) = − ln(−Lk(z)) + u(z) .

It might seem that u will follow a pattern like ln(ln(−Lk)), but this is not so.

(Lk(z) − ln(−Lk(z)) + u)) exp(Lk(z) − ln(−Lk(z)) + u))

= (Lk(z) − ln(−Lk(z)) + u)
−z
−Lk(z)

exp(u) = z .

Rearranging gives

1 −
ln(−Lk(z))

Lk(z)
+

u
Lk(z)

− e−u = 0 . (2.14)

Thus, if we redefine σ, τ by

σ =
1

Lk(z)
and τ =

ln(−Lk(z))
Lk(z)

, (2.15)

we can return to (2.8) and (2.9).
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Figure 2.4: A comparison of possible asymptotic approximations to Wk for small circles around
the origin. Two candidates are shown: lnk z used for large circles and a new shifted logarithm.
Note that W−1(x) and the shifted logarithm are both purely real (although not equal, alas) for
the same range of arguments. For completeness, the map of the principal branch is also shown
(in red) to emphasize that it does not participate in the asymptotic behaviour.

It is remarkable that the fundamental relation (2.8), originally derived for the principal
branch, has now reappeared twice: once for any branch (|z| ≫ 1) and now for |z| ≪ e−1.
Since (2.13) was chosen so that it is purely real where W−1 is real, we first compare plots for
−e−1 ≤ x < 0. Figure 2.5 compares W−1(x) with two approximations, sum 2.9 for N = 0 and
for N = 3. They are most accurate near x = 0 as expected.

Figure 2.6 shows a comparison in the complex plane for branches from k = −2 to k = 2.
The contours are maps of small circles of radii r = 0.15, 0.05. The series approximation was
limited to N = 1 in order to obtain a visible separation of the exact and approximate contours.
Recall that smaller values of r correspond to contours further to the left.

2.5 A surprising convergence

The approximation (2.7) used for |z| ≫ 1 was discarded for |z| ≪ −e−1 because the branch
boundaries were not aligned with the function near negative infinity. One could expect there-
fore that its accuracy would be bad, or wrong, or it would possibly return values for branches
not requested. It is therefore surprising that in spite of starting from dismal estimates, the ap-
proximation manages to achieve results of reasonable accuracy. In Table 2.2, a comparison is
made between series (2.9) based on (2.15) with the rejected series based on (2.7). Out of cu-
riosity, we have tabulated the competing approximations when summed to one-term, two-terms
and four-terms. The preferred series always performs better, but the other series also achieves
good accuracy. As stated several times, (2.15) has the advantage of returning real values when
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Figure 2.5: Plots of W−1(x) and approximations based on (2.9) together with (2.15). The solid
red line shows W−1, the dashed green line shows (2.9) for N = 0, while the blue dotted line
shows N = 3.
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Figure 2.6: Comparison of Wk, k , 0 and (2.9) using (2.15). The series uses N = 1 in order the
separate the function and the approximation. The boundary between k = −1 and k = 1 is the
negative real axis both for the function and for the approximation.
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x k Wk lnk x Lk(x) Eq (2.7) N = 0 Eq (2.15) N = 0
−0.1 −1 −3.58 −2.30 − πi −2.30 −3.66 − 0.94i −3.15
−0.01 −1 −6.47 −4.61 − πi −4.61 −6.32 − 0.60i −6.13
−0.1 −2 −4.45 − 7.31i −2.30 − 3πi −2.30 − 2πi −4.58 − 7.61i −4.20 − 7.50i
−0.01 −2 −6.90 − 7.08i −4.61 − 3πi −4.61 − 2πi −6.96 − 7.40i −6.66 − 7.22i

x k Wk Eq (2.7) N = 2 Eq (2.15) N = 2 Error (2.7) Error (2.15)
−0.1 −1 −3.577 −3.405 − 0.127i −3.591 0.213 0.013
−0.01 −1 −6.473 −6.416 + 0.035i −6.481 0.066 0.008
−0.1 −2 −4.449 − 7.307i −4.448 − 7.314i −4.442 − 7.305i 0.0074 0.0071
−0.01 −2 −6.896 − 7.081i −6.891 − 7.086i −6.894 − 7.079i 0.0069 0.0039

Table 2.2: Comparison of series (2.9) combined with (2.7) and then with (2.15). The various
approximations are printed in adjacent columns for easy comparison. The errors reported in
the last two columns report the errors in the 4-term summations.

W−1 is real, so we stick to our preferred series and do not pursue further discussion of this
point.



Chapter 3

Further Notes on Convergence

Though chapter 2 focuses on convergence of asymptotic expansions for non-principal branches
of Wk(z), some considerations were left out. For example, there are now two variants of the
series for each expansion of u, but shared components of both have yet to be optimized. Fur-
thermore, only images of curves in C have been utilized rather than the whole complex plane.
This chapter will focus on exploring these questions to assist with future computations.

3.1 Optimizing Asymptotic Approximations

In the previous two chapters, the parameter p was introduced as an invariant transformation
which alters the convergence properties of W∗

k (z). Here, W∗
k (z) represents a general asymptotic

expansion of Wk(z). This parameter allows for an extended region of convergence, but we
are lacking a thorough look into how p can be utilized more effectively. Thus, this section
will investigate how much p can improve a series, allowing for lower numbers of terms and
improved accuracy.

As will become custom in later sections, an appropriate place to start is the principal branch
of W(x) in R. Utilizing expansion (1.7) in W∗

0(x), we end up with several values of p which
reduce the error to zero at fixed values x0 ∈ R. As shown in 3.1, plotting |W0(x0) −W∗

0(x0)| for
different term values N reveals the oscillatory nature of the error. Each plot crosses the p-axis
several times, and each choice of N has a separate set of zeroes.

Figure 3.1 highlights that distinct choices of x0 determine the set of error-minimizing p
values as well. Moving over to C presents an abstraction of this issue, as values of z0 with the
same modulus but different arguments θ will have different errors. Over the complex principal
branch, plotting the error |W0(z0)−W∗

0(z0)| in figure 3.2 shows that p cannot reduce the error to
0 for all θ. In fact, the question of finding the objectively best value of p would require p to be
redefined as a function of z0 and N rather than a constant.

This itself is a dubious task, as there are several values of p which minimize the error
for any given z0. Instead, a more efficient method is to find a constant p which reduces N
while also keeping error low for values of z surrounding z0. Special attention must be given
to the behaviour of the error around each zero, as more erratic behaviour spells out less stable
convergence. Figure 3.3 shows that, for the real principal branch W0(x), more “stable” zeros of
W(x)−W∗

0(x) occur later as the error varies wildly for smaller values of p. Plotting W∗
0(x) again

18
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Figure 3.1: At fixed values of x0 in W0(x0), error can be reduced to 0 for various p. However,
optimal p values do not carry over for other values of x0.

Figure 3.2: The error plot |W0(z0) −W∗
0(z0)| for fixed moduli r = 1, 2 and several values of the

argument θ. Here, N = 5 and u’s expansion is (1.7).

N=5 N=10 N=15
x = 1 3.066594076 3.632618669 3.870615051
x = 2 2.790452350 3.400177010 3.663439218

Figure 3.3: Above, W(x0)−W∗
0(x0) is plotted with respect to p for various values of x0 using the

same expansion of u as before. Here, N = 15. In the table below, Maple’s RootOf command is
used to find a zero close to p = 4 for the different values of x0 and N.
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Figure 3.4: W∗
0(x0) plotted with two different zeroes of the error for x0 = 1. Here, the values of

p were found using N = 10 and (1.7) for u.

with the values of p found in 3.3 shows greatly improved convergence, especially compared to
a more unstable zero.

3.2 Convergence Over the Complex Plane
Previously, when testing the accuracy of W∗

k (z) in C, we had only utilized images of circles
in complex space. Though this does provide a relatively low-storage method of studying the
properties of our prior series, there is something crucial left out of our discussion. Namely, we
are left without a generalized view of C as a whole. To build up to a more complete picture,
start by utilizing properties of the circles from chapter 2.

By taking a circle reiθ, we may vary the radius for moderately small values, say 1 < r < 4.
Letting p = 0 and N be large in our thought experiment, we want to find the intervals of θ for
which the approximations lose convergence. The principal branch will be a suitable starting
point for this investigation, as decreasing z will cause the loss of convergence there earlier than
non-principal branches. Furthermore, the approximations are symmetric about the real axis.
This hints at a region of instability which carries a symmetrical shape.

Starting with a large radius of r = 3 with N = 70 in figure 3.5, we manually record the
values of θ for which W∗

0(reiθ) loses convergence. Descreasing the radius shows that the region
which W∗

0(x) diverges expands as r becomes smaller. Between r = 2 and r = 1, the two
divergent intervals of θ combine into a single interval. A collage of all the circles reiθ is plotted
in figure 3.6.

Though this works fine at establishing a general shape of the region of divergence, it must
be noted that the previous task was done by brute force. Each circle required some trial-and-
error to find its appropriate intervals. Thus, one may be compelled to find a more rigorous
way to plot the region. This can be done via domain coloring, where the function is defined as
|Wk(z) − W∗

k (z)|. We will use this function on its own later, but by additionally recording the
last value of the difference within a tolerance after several iterations, we get a cleaner picture
of the region of divergence. This is shown in figure 3.7, where black and white regions are the
most divergent.

Now that a region of divergence has been established, it is appropriate to look at the raw
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Figure 3.5: Manual selection of intervals of θ where W∗
0(reiθ) diverges from W0. From top to

bottom, r = 3, 2, and 1, with N = 70 and p = 0 using (1.7).
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Figure 3.6: Circles from 3.5 (along with others) plotted together, showcasing their intervals of
divergence.

Figure 3.7: The circles from 3.6 put over a more complete region of divergence.
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Figure 3.8: Domain coloring of the error of W∗
0(z) using (1.7). From left to right, {N, p} =

{5, 0},{10, 0}, and {5, 3.066594076}.

behaviour of the error over C. In the prior example, the error was constrained by a tolerance.
Now we ignore that tolerance. Two ways of imaging the accuracy of W∗

k (z) for all of z ∈ C
are as follows: plot Riemann surfaces, or do more domain coloring. Though Reimann surfaces
may look more impressive, the visual clutter of two surfaces make domain coloring the better
option.

To do the domain coloring, return to the initial definition of the error function: |Wk(z) −
W∗

k (z)|. Starting with the complex principal branch, the values of z where W∗
k (z) diverges lie in

a circular region to the right of the origin. Setting p = 0 and increasing N reduces the size of
this region. In figure 3.8, the convergent regions are represented by warm colors. Conversely,
W∗

k (z) diverges for values of z in the cool-coloured region. Referring back to figure 3.3, using
the value of p for x = 1 and N = 5 now results in a drastically altered plot. Though the
convergent region accomodates smaller values on the positive real axis, more of the complex
plane diverges around the origin.

Imaging the −1 and 1 branches reveals drasically different divergent regions of C. Wheras
the divergent region of the principal branch is symmetric over the positive real axis, the diver-
gent regions of the 1 and −1 branches are semicircular. Furthermore, both regions are reflected
versions of each other over the real axis. Adding values of p from 3.3 has an effect similar to
the princpal branch; smaller values on the positive real axis now converge at the cost of a larger
divergent region.
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Figure 3.9: Domain coloring of the error for the 1 branch (left) and −1 branch (right). {N, p} =
{5, 0} in the top two plots and {5, 3.066594076} in the bottom two.



Chapter 4

A Family of Functions Related to Lambert
W

Compared with other well-known non-elementary multifunctions, the Lambert W function has
rather interesting behaviour over all of its branches. As shown previously, the manner in which
each branch is connected is non-trivial. Other well-studied special functions have rather ele-
mentary connections between branches. For example, take the Jacobi elliptic functions. sn z
and cn z are doubly periodic, and their multivalued inverses consequently have branches seper-
ated by a factor of either period.

When attempting to find any other multivalued function which has non-trivial connections
between branches, it is worth looking back to functions related to W itself. The second ap-
proximation (1.8) found in [21] arose from the study of the inverse functions of xαex, and this
can be taken even further. A curious side-effect of the fundamental relation and its malleblility
is that it extends to a family of functions related to W. To get to these results, we must first
establish some analytical properties of these functions.

4.1 Analysis of Select Functions
Say we have some function g(x) over R. Through composition with the function f (x) = xex,
we obtain a family of functions of the form g(x)eg(x). Similar to the Lambert W function is the
resulting class of inverse functions. These are of the form

W(x)eW(x)

where W(x) = (g−1 ◦W)(x). Let this family of functions be denoted by L, where each W is a
member. This family of functions has rather fascinating members, and it is worth starting our
analysis with specific cases. For example, set g(x) = 1

x . In this case,W(x) = 1
W(x) .

On R, this function has a branch cut at x = −1
e . The two branches are defined in a fashion

quite different to W. The −1 branch is defined over the interval [−1
e , 0), and its range only

covers the interval [−1, 0]. Conversely, the principal branch,W0(x) = 1
W0(X) , is defined over the

interval [−1
e , 0)
⋃

(0,∞). The asymptotic behaviour has also changed relative to the Lambert W
function. Rather than converging to ln x as x → ∞, we instead have a principal branch which

25
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Figure 4.1: W = 1
W(x) plotted on the real axis. The two branches are colored with blue and red,

respectively.

Figure 4.2: y = sin(x)esin(X) compared with its inverse W0(x) = arcsin0(W0(x)). The principal
branch’s inverse is highlighted in blue on the left.

is bounded below by 1
ln x as x → ∞. The only place which this choice ofW(x) behaves like W

is a small neighbourhood around the branch cut.
Say we instead let our function g(x) be an elementary trigonometric function, as this in-

troduces periodicity. Begin by letting g(x) = sin x, which results in the inverse function
W(x) = arcsin(W(x)). As we are adding a periodic function, W will no longer shoot off to
infinity. What we lose with this is replaced by the addition of another type of branch via the
arcsin function. For l ∈ Z, any real branch of W(x) = arcsin(W(x)) can be expressed by the
equation

Wℓ(x) = arcsin0((−1)ℓW(x)) + ℓπ (4.1)

where arcsin0(x) is the principal branch of arcsine, defined on the interval [−1, 1].
This function is, in all reality, a doubly-indexed multivalued function. However, any

branches which arise from composing arcsin with non-principal branches of Wk(z) will re-
sult in values on the complex plane. Utilizing Riemann surfaces shows this is more detail. For
arcsin0, let the branch number of Wk vary. In 4.1, each “charisma” 1 of some givenW(z) broadly

1This term was pinned by my MSc advisor, Dr. David Jeffrey, to descibe the Riemann surface for individual
branches of multifunctions.
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Wk(z) Wk(z) arcsin0(Wk(z)) 1
Wk(z)

ℜ

ℑ

Table 4.1: Riemann surfaces for differentWk(z), with the branches colored separately to denote
branch number from k = −2 to k = 2.

resembles corresponding charisma of the nested Wkz. As it is quite difficult to distinguish the
Riemann surfaces between some branches, it is also worth looking at the two-dimensional
branch structure for elements of L. For Wk(z), the branch structure is defined parametrically by
z = it − t cot t. Thus, the branch structure ofWk(z) can be defined as z = g−1(it − t cot t). In this
parametric equation, g−1 is the inverse of the function that appears in f (z) = g(z)eg(z). A couple
of examples are plotted in figure 4.3.

4.2 The Fundamental Relation and The Lambert Family
Much like how the properties of inverse functions were exploited in the previous section, it can
be shown that any element of L will also obey the fundamental relation (1.5). A convenient
consequence of this generalization is that series expansions of any W ∈ L will be easy to
obtain, which is the focus of chapter 5. Though what follows is not a rigorous proof, it will be
sufficient in extending the usage of (1.5).

Take the expression g(z)eg(z), where g is an invertable function over C. Then, the function
(g−1 ◦Wk)(z) = Wk(z) is the solution to the equation

Wk(z)eWk(z) = z (4.2)

This equation also obeys the fundamental relation. To show this, we may approximateWk(z) ≈
g−1(lnk z + p + u). By substituting this into the previous equation, we obtain what gives rise to
the fundamental relation from before.

W(g−1(lnk z + u))eW(g−1(lnk z+u)) = z

=⇒ z(lnk z + u)eu = z
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Figure 4.3: Branch structures for W ∈ L over C. W{k,ℓ}(z) = arcsinℓ(Wk(z)) is pictured on the
left,Wk(z) = 1

Wk(z) on the right. On the left, arcsine branches are separated by dotted lines, and
Wk(z) branches are conversely distinguished by dashed lines.



Chapter 5

Asymptotic Series Expansions for
Members of L

As the fundamental relation has been generalized to any function Wk(z) ∈ L, our new goal
is to investigate the resulting series expansions. There are several ways to go about this task.
First, a naive approach where we let the inverse nesting function g−1(z) act upon an asymptotic
expansion W∗

k (z). We can also nest approximations as a method of understanding how different
types of series interact. Though the first approach can be utilized as a tool for extending
previous findings, the second method is more appropriate for numerical analysis of series.

Similar to previous chapters, there will be a focus on members of Lwhich compose elemen-
tary functions with f (z) = zez. However, it is crucial to also look into Wk(z) which compose
Wk(z) with other special functions. Said special functions include Wk(z) itself and the Jacobi
elliptic integrals. Tools for this analysis broadly resemble the ones from Chapter 2, where the
effects of varying N and p on images of domain curves are most nascent.

5.0.1 A Naive Approach
Establishing how the convergence properties of some W∗

k (z) will carry over to a corresponding
W∗k(z) is vital to understanding approximations of any Wk(z). The inverse nesting function
g−1(z) will not fundamentally change the convergence of the interior expansion W∗

k (z); on the
real plane, the approximation will consistently converge on the interval determined by p as
N → ∞. Though this forgoes deeper investigation into how series interact, it establishes a
baseline approximation for the correspondingWk(z). As such, we start our analysis by simply
composing a function with an asymptotic approximation of Wk(z).

Start by defining Wk(x) = 1
Wk(x) . On the real plane, this function has only two branches as

the reciprocal function is single-valued. As was hinted to before, the approximations ofW0(x)
will be convergent on the interval [e,∞) for sufficiently large N and p = 0. Checking this for
increasing N shows that this is the case in figure 5.1. Similarly, adjusting the value of p shows
that, for N = 10, extended accuracy can be achieved by using p = 6 in W∗

0(x).
An important detail of this specific case is the lack of convergence to the negative com-

ponent of the principal branch. Though an approximation with N = 10 and p = 6 already
showcases greatly improved convergence over smaller positive values, the other partition of
the principal branch sees no improvement. Increasing N and p together will further improve

29
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Figure 5.1: Approximations of W0(x) = 1
W0(x) with independent variations of N and p using

(1.7). On the left, p = 0 and on the right, N = 10.

Figure 5.2: Approximations of images underWk(z) = 1
Wk(z) using (1.10) and (2.15) with (1.7),

respectively. On the left, r = 4. r = 0.3 on the right.

convergence for x > 0 at the cost of more computer storage, but convergence for x < 0 is still
tenuous.

Over C, the results will be much the same. To exploit the time-and-storage-saving proper-
ties of p, the following portion of this section will utilize graphs of N = 10 and varying values
of p to showcase various W∗k(z) for large z. For sufficiently small z, values around p = 1 are
used. Using images of circles, the properties of the approximations are preserved. The images
are continuous at branch cuts and show greatest error near the principal branch cuts.

These asymptotic expansions will retain their properties and results for more complicated
functions as well. Straight away, this can be shown for simple trigonometric functions. Each
equivalent branch of arcsinℓ(z) will retain the shape of the images in C. However, one must
have a sufficiently large value for p while approximating the principal branch in R. Otherwise,
W∗

0(x) only starts to converge at x = 1. This is due to W∗
0(x) falling outside the domain of

arcsin(x) as N → ∞ for p = 0 on the x-axis. In figure 5.3, the sine and cosine cases ofW∗
{k,ℓ}(C)

are plotted in C, where C is a circle of radius r = 1. Utilizing larger values of p, we already
see improved convergence in the principal branch.

The results for the trigonometric cases are repeated when elliptic integrals are introduced,
albeit with branches repeating in two directions. The most basic function in this class is the in-
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Figure 5.3: Approximations ofW{k,ℓ}(z) for the sine and cosine cases in C, respectively. Here,
the images are of a circle of radius r = 1 using the series (1.7).

complete elliptic integral of the first kind, F(x|m), which is the inverse to the function sn(x|m)1.
This is also known as the elliptic sine, where m is a parameter called the modulus. The elliptic
sine function itself is a doubly-periodic function whose periods are integer-multiples of the
complete elliptic integral of the first kind, K(m).

K(m) =
∫ 1

0

ds
√

1 − s2
√

1 − m2s2
(5.1)

Thus, the doubly-indexed inverse can be defined as followed:

F{ℓ, j}(z|m) =
∫ z

0

(−1)ℓds
√

1 − s2
√

1 − m2s2
+ 2ℓK(m) + 2 jiK′(m); ℓ, j ∈ Z (5.2)

The trigonometric form of F(x|m) should also be mentioned, as it will be necessary in the next
section:

F(φ, k) =
∫ φ

0

1√
1 − (k sin(θ))2

dθ (5.3)

Here, φ is called the amplitude, defined in relation to z by z = sin(φ).
As with the trigonometric functions, the structure of the images of circles is preserved

between all branches. This behaviour will still be observed when varying m. As m → 0
sn{ℓ, j}(z|m) degenerates into sinℓ(z), W(z) becomes the doubly-indexed case from before. So
far, only functions with trivial relations between branches (or singular-valued functions) have
been used. To add another layer of complexity, let the function acting upon W be another
multifunction whose branches are not connected in an elementary fashion. One such function
is the Lambert W function itself.

In this case, W will be a doubly-indexed multifunction whose branch structure will be
the branches of Wk(z) nested inside each individual branch of Wℓ(z), so the images will vary
drastically between branches. Though the images will change depending on the branch, the
convergence properties of W∗

k (z) will be retained. In figure 5.3, this is shown to be the case
over C.

1The notation-related choice of writing (x|n) is done merely to distinguish the form of the integral being used.
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Figure 5.4: Approximations ofW{0,0,0}(z|m) = F{0,0}(W0(x)|m) for various values of the modulus
m in C. The images are of a circle of radius r = 0.8 using (1.7), with each approximation (in
color) set against their respective expected image (in black).

Figure 5.5: Approximations of W{k,ℓ} = Wℓ(Wk(z)) over C using images of a circle of radius
r = 1 and the approximation (1.7).
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5.0.2 Accuracy and Efficiency of Nested Series

In addition to having some function g−1(z) act upon one of the previous approximations W∗
k (z),

nesting series of the two functions serves as a mode of studying approximations ofW as well.
Any choice of g−1(z) which acts upon W in the correspondingW may have its own Maclaurin,
Taylor or asymptotic series which interacts with the asymptotic approximations for W. Com-
pared with the previous section, they will be more expensive to compute as more terms are
being generated. However, they allow for a space where the accuracy of purely series-based
approximations can be studied.

The Reciprocal Function

An analysis of this method would benefit from a treatment similar to the previous section.
Hence, let the nesting function g−1(z) start simple and progressively increase in complexity.
Though we could utilize a fresh set of functions, attacking the topic of nested series in the
same order as before will work just as well. First, let g−1(z) = 1

z . This function itself has a
power series representation in the form of:

1
z
= lim

M→∞

M∑
a=0

(−1)a(z − 1)a, |z − 1| < 1 (5.4)

Nesting this series with W∗
k (z) admits a new approximation forWk(z) = 1

Wk(z) .

1
Wk(z)

= lim
M→∞

lim
N→∞

M∑
a=0

(−1)a
N∑

n=1

n∑
m=1

(lnk(z) − lnk(ln0(z)) + un,m − 1)a (5.5)

This approximation converges on the interval [P, 2e2] in R, where P is determined by the
choice of p. Letting N = 10 and p = 6 again, plotting the series over R reveals an incidental
feature of the approximation for smaller values of M. Though the series will converge to
the naive method as M increases, a smaller number of terms M tends closer to the expected
values of W0(x). To show this distinction, figure 5.6 has unconstrained axes to exaggerate the
horizontal displacement between approximations.

This artifice of convergence appears overC as well. For smaller values of M on the principal
branch, the approximations tend closer to the actual result near smaller values of z. However,
larger values of M cause the approximation to converge to the naive method as they did in
R. Another detail to note is that, as apposed to the naive method, the nested series does not
approximate any other branches ofWk(z) when N = 10 and p = 6. This can be seen in 5.7, and
is due to non-principal branches of W∗

k (z) lying outside the region of convergence of (5.4) for
all z.

Trigonometric Functions

For trigonometric functions, there is a cache of approximations to choose from. As with the
reciprocal case ofW, these will endow the nested functions with their benefits and deficits. For
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Figure 5.6: A nested series approximation of W0(x) = 1
W0(x) for various numbers of terms M

using (1.7) and (5.4). N = 10 and p = 6.

Figure 5.7: The analog to figure 5.6 in C, showing the divergence of the nested series for larger
values of z.
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Figure 5.8: Real nested approximations ofW{0,0}(0) = arcsin0(W0(x)) for different numbers of
terms M. Here, we are using (1.7).

arcsinℓ(x), there is the power series representation of the form

arcsin0(z) = lim
M→∞

M∑
a=0

2a!
(2a + 1) · (2aa!)2 z2a+1, |z| < 1 (5.6)

As opposed to the series expansion of 1
x , this series approximation converges on the interval

[−1, 1]. In R, arcsinℓ(x), ℓ ∈ Z is only defined on that same interval for any branch ℓ. Thus, the
nested series approximation

arcsinℓ(Wk(z)) = lim
M→∞

lim
N→∞

M∑
a=0

N∑
n=1

n∑
m=1

(−1)2a+ℓ+12a!
(2a + 1) · (2aa!)2 (lnk(z) − lnk(ln0(z)) + un,m)2a+1 (5.7)

will only converge in the annular region |z| < e. However, the series also can only converge in
the region |z| > e due to the asymptotic approximation of W. This means that, much like the
reciprocal case, the series will not converge anywhere unless we use a non-zero value for p.

This is immediately reflected in figure 5.8, which plots W∗
{k,ℓ}(x) = arcsinℓ(Wk(x)) over R.

With N = 10 and p = 6, the approximations rapidly converge to the naive approximation as M
increases. Setting p = 0, there is no convergence over the entire real axis. A peculiar detail to
note here is that, while the naive method receives numerical results faster in Maple, plots over
R generate quicker using the nested approximation.

Though the interval of convergence does not pose an issue in R once a suitable p is chosen,
it presents a problem in C. Plotting the same approximations for a circle of radius r = 1 in
figure 5.9 reveals that the nested series only approximates the principal branch. The strange
occurrence of the nested plot processing faster does not carry over to C either. To remedy this
divergence outside the region |z| < e, instead use the asymptotic approximation of arcsin0(z)
adapted from Wolfram’s function database [23].

arcsin0(z) =
z

2
√
−z2

(ln0(−4z2) −
∞∑

a=1

( 1
2 )az−2a

aa!
), |z| > 1 (5.8)

Here, the expression (1
2 )a is the falling factorial.
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Figure 5.9: In C, the prior approximation does not work as well outside of the principal branch.

The nested series will now converge over region |z| > e, which immediately reduces its
efficacy over R. However, this new nested series is significantly more viable in C. Numerical
computations for the value of circles of various radii at θ = π4 reveal improved convergence for
larger z when using (1.7).

Approx. Actual (5.6) (5.8)
r = 1 0.51796 + 0.32236i 0.51796 + 0.32236i 57.44165 + 284.66003i
r = 2 0.80180 + 0.50176i 0.80576 + 0.50648i 0.95174 + 0.37443i
r = 3 0.96798 + 0.66421i 0.93853 + 0.56976i 1.06515 + 0.63378i
r = 4 1.06254 + 0.79881i -3.85739 - 3.57794i 1.12423 + 0.79402i
r = 5 1.11979 + 0.90486i -120.75376 - 41.20515i 1.16185 + 0.90754i

2 However, the goal of introducing a significantly more complicated expansion was to also
approximate non-principal branches over C. How well does the new nested series work? Using
the same input values for the k = 1 branch of W reveals significant improvement over (5.6).

Approx. Actual (5.8)
r = 1 -0.3114514153 + 2.395873006i -0.3114557123 + 2.395759954i
r = 2 -0.1819677714 + 2.388373026i -0.1818759992 + 2.388355000i
r = 3 -0.1818759992 + 2.388355000i -0.2096472982 + 3.165540976i

Jacobi Elliptic Functions and Nested Lambert W

Delving back into special functions serving as the nesting function within a givenWk(z), cau-
tion must be taken as certain functions have rather complicated series. Specimens such as
Bessel functions and Legendre polynomials contain gamma functions and binomial coefficients
in their series representations, but are still relatively small. They are merely teetering on the
precipice of complexity; other special functions have significantly more cumbersome represen-
tations that do not justify the use of nesting series over the naive method.

The incomplete elliptic integral of the first kind F(x|m) is one function whose expansions
test this method’s justification. In, [26] Campbell defines a series approximation for the com-

2To fit the width of this paper, the approximations have been taken to 5 decimal places.
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Figure 5.10: On the real principal branch of W(φ, 1
2 ) = F{ℓ, j}(Wk(φ), 1

2 ), the nested series con-
verges to the naive method for small A and B when using (1.7).

plete elliptic integral of the first kind for any modulus m:

K(
√

m) =
∞∑

a=0

2
2a + 1

Pa(2m − 1) (5.9)

Here, Pn is a Legendre polynomial. Though this can be used to shift between branches of
F{ℓ, j}(z|m), the trigonometric form of F has the following expansion, taken from [24]:

F{0,0}(φ,m) = lim
A→∞

lim
B→∞
φ +

A∑
a=1

B∑
b=1

b−1∑
c=0

( 1
2 )b

(
2b
c

)
(−1)a+b−c22a−2b+1(c − b)2amb

b!(2a + 1)!
φ2a+1 (5.10)

This expansion converges to F(φ,m) in the region |φ| < 1, or |z| < π2 . Thus, the resulting nested
series representation forW{k,0,0} will converge over the annular region a < |φ| < e in C.

Though this series is rather complicated, it is surprisingly efficient when approximating
the correspondingW{k,ℓ, j}(φ,m) = F{ℓ, j}(Wk(φ),m) Utilizing (5.10) for the real principal branch
reveals thatW∗

{k,ℓ, j}(φ,m) converges for a relatively small number of terms. On R, the distinction
between approximations of A = B = 3, 5 and 15 is not made apparent until well after φ > e.
In fact, figure 5.10 needs to have unconstrained axes to show this distinction. On the principal
branch {0, 0, 0} in C, similar results are produced for the images of a circle of radius r = 1. As
the series diverges near branch cuts of Wk(z), only the principal W branch sees convergence of
the nested series.

Due to this, it may be tempting to use an asymptotic approximation for F(φ,m) as we did
for arcsine. Quickly referencing Wolfram’s function database [25] again shows that this task
falls off the edge into unnecessary complexity. Returning to the path of the last section, nesting
series representations of W with itself is a markedly more straightforward task. Set g−1(z) =
Wℓ(z) such thatW{k,ℓ}(z) = g−1(Wk(z)) = Wℓ(Wk(z)). Straight away there are already two types
of approximations for this function, utilizing Taylor and asymptotic expansions respectively.

W{0,0}(x) = lim
N→∞

N∑
n=1

(−n)(n−1) (W∗
k (z))n

n!
(5.11)

W{k,ℓ}(z) = lnℓ(W∗
k (z) − ln0(q + lnℓ(W∗

k (z))) + u(W∗
k (z)) (5.12)
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Figure 5.11: The images of a circle of radius r = 1 under the same nested series approximation
ofW(z) in C.

For the asymptotic approximation of the outer Wℓ(z), M represents the number of terms and q
will be its equivalent of p.

Some combinations of these series will not be compatible. For example, the asymptotic
series converges on |z| > e. However, W0(e) = 1, which lies outside the disc where the Taylor
series converges. Conversely, it is not productive to nest the Taylor series within the asymptotic
series for the same reason. Set N = M = 10 and p = q = 6 for the double asymptotic and
Taylor approximations. Performing some numerical experiments on the principal branch {0, 0},
the series work as intended.

Approx. Actual (5.12) (5.11)
x = 0.1 0.08392849326 0.763667512 + 1.946141996i 0.08392848685
x = 1 0.3856588411 0.292661907 -1.917421339 ×1025

x = e 0.5671432904 0.5503190697 -4.315820393 ×1069

The double asymptotic nested approximation also performs well for large values of z on non-
principal branches. To save on computational cost, N = M = 5 and p = q = 3. Taking a circle
of radius r = 1, test the series at θ = π2 for various branches {k, ℓ}:

Approx. Actual (5.12)
{0,0} 0.3856588411 0.221002047
{1,0} 1.090550373 + 1.112595928i 1.093629601 + 1.097310628i
{1,1} -0.3495901090 + 6.567206636i -0.3483494787 + 6.566825783i
{2,1} 0.5144314992 + 6.580476820i 0.5147020294 + 6.581230717i
{2,2} -0.1459094909 + 12.77422370i -0.1458524964 + 12.77419438i

5.0.3 Some Special Cases
To close out the chapter, there are a few special cases ofW(z) that are of particular interest. The
functions that have been covered so far retain the branch structure of Wk(z) itself. There has
been a semblance of the original function which anchored each member of L to Wk(z), but this
does not tell the whole story. Some functions in L are more elementary functions, and some
may not carry the aforementioned branch structure of Wk(z) at all.



39

Figure 5.12: Naive and nested series approximations ofW(x) = x on R using (1.7).

Going back to Wk(x) = g−1(Wk(x)), letting g−1(x) = xex will return W(x) = x. Though
trivial, this is an elementary function which does not preserve the branch structure of Wk(z). In
fact, all branches will degenerate into a single branch under composition. There are, however,
still series expansions for thisW(x) which arise from the methods covered earlier in the chapter.
Define the series expansion for g−1(z) = zez as follows:

zez = lim
M→∞

M∑
m=0

xm

(m − 1)!
(5.13)

This series converges for all z as M → ∞. How will the different branches affect the accuracy of
correspondingW∗(z)? Furthermore, how accurately can the identity function be approximated
with the previous series?

Over R, the same results play out for both the naive and nested series methods. Though
most of W(x) = x can be approximated with either the Taylor or asymptotic expansions of
W0(x), there is a gap between the two approximations. Of most interest is the behaviour in
the non-convergent regions of x for both the Taylor and asymptotic series in the naive method.
As plotted in figure 5.12, the nested series diverge asymptotically. However, the naive method
approximations start to diverge, but quickly go to x = 0 after reaching a minimum of y = −1

e .
On C, the degenerated branch structure allows for a more nuanced aspect of approximation.

As all the branches are together as one, different branch approximations in the series will give
different approximations of the same image. Choosing to be repetitive, use images of a circle
of radius r = 1 again. The image is itself, but the Naive method has imperfections similar to
those highlighted before. The images in C are plotted in figure 5.13. As reflected in said figure,
the increased accuracy seen in W∗

k (z) for any non-principal k admits higher accuracy for the
same number of terms N and correction p.

The nested series has a more dubious time approximating the curve, however. Though the
Taylor series of g−1(z) = zez converges for all z as M → ∞, the series does not converge quickly
for finite M. Thus, when plotting the nested series representation of z in figure 5.14, the images
will wind around the naive method image before diverging.

The identity function is not the onlyW that eschews the branch structure of Wk(z). Define
g−1(z) = ez such thatWk(z) = eWk(z). This function is the inverse of the function f (z) = z lnk(z).
Though the branches have not degenerated like with the identity function, the branches of
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Figure 5.13: Naive approximations of a circle of radius r = 1 using W∗(z) and (1.7). Here,
N = 10 and p = 6.

Figure 5.14: Nested series approximation of z for various terms numbers M of the zez Taylor
series, where W∗

k (z) is using (1.7). N = 10, p = 6 and k = 1.



41

Figure 5.15: Comparisons of approximations of the principal branch ofW0 = eW0(x) over R. On
the right, the Taylor series approximation of W0(x) at x = 0 is used. Similarly, the right image
uses the asymptotic approximation with (1.7). Here, N = 10 and p = 6.

Wk(z) = eWk(z) are not as neatly defined as with Wk(z). In C, each branch k and its conjugate
branch −k overlap with each other but are not equivalent. Branch continuity still exists between
the images in each branch, but now images intersect with images in other branches.

Pulling back the complexity, the same methods from before can be used to approximate
the real principal branch of the corresponding Wk(z). Said principal branch is defined on the
interval [−1

e ,∞), with a branch cut at (x, y) = (−1
e ,

1
e ) shared with the -1 branch. Using the

taylor series for ez

ez = lim
M→∞

M∑
m=0

zm

m!
(5.14)

which converges for all z as M → ∞, the only limitations of W∗0(x) will be the limitations of
W∗

0(x). Plotting naive and nested series approximations in figure 5.15, the results for all the
other examples are reflected yet again.



Chapter 6

Conclusion

Though this coverage has not been exhaustive, it is meant as a starting point for the numerical
analysis of non-elementary functions. These functions fill a strange niche in the realm of
mathematics, seemingly violating the definition of a function when considered in its entirety.
The Lambert W function itself is a stranger among strangers in this regard, as its branches are
not related in a trivial fashion. However, years of research have already lent us a comprehensive
understanding of W. This thesis is meant to supplement and add upon our knowledge of W
through the applications it has discussed.

This thesis has discussed ways to expand the uses of asymptotic approximations of the
Lambert W function. First, we focused on generalizing previously established series to any
Wk(z) in C for k ∈ Z. Additionally, the accuracy of generalizations was discussed and a new
series was posed to approximate non-principal branches at small z. A new family of functions
was introduced as well, and prior approximations were used to estimate individual members of
this family. This concluded with a short analysis of members which arise from more elementary
functions.

Looking forward, a future goal of related research is a more comprehensive look at W.
The nesting functions used cover a handful of properties, but there was limited consideration
of periodic functions. Additionally, there are other multivalued functions which exhibit non-
trivial branch cuts. An example from astrophysics is the inverse of Kepler’s law, where the
branches of the eccentric anomaly are determined by the eccentricity of the orbit. Multivalued
functions are a field still open to generalization and analysis, and this is merely an exploration
of these aspects.
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