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Abstract 

 

Global biodiversity is increasingly threatened by the spread of invasive species. 

Understanding the mechanisms influencing the initial colonization and persistence of invaders 

is therefore needed if conservation actions are to prevent new invasions or strive to slow 

their spread. The Eurasian collared-dove (Streptopelia decaocto, EUCO) is one of the most 

successful avian invasive species in North America; however, to our knowledge, no study 

has simultaneously examined the role that climate-matching, human activity, directional 

propagation, and local density have in this invasion process. Our research expands upon a 

cellular-automata-based hierarchical model developed to assess directional invasion 

dynamics to further quantify the impacts of climate, elevation, and land cover type on the 

spread of EUCO in North America. Our results suggest that EUCO’s dispersal patterns can 

largely be explained by the effects of habitat, climate, and environmental conditions at 

different stages of the invasion process rather than some innate preferred north-westerly 

spread. Specifically, EUCO initially colonized warm and wet grassland habitats and tended 

to persist in urban areas. We also found that while EUCO were more likely to spread to the 

northeast of existing habitats, directional preference did not drive persistence and 

recolonization events. These findings highlight the importance of incorporating both 

neighbourhood effects and environmental factors in the modelling of range-expanding 

species, adding to the toolset available to researchers to model invasive species spread. 

Further, our research demonstrates that historical records of invasive species occurrences 

can provide the data resources needed to disentangle the characteristics driving species 

invasion and enable predictions that are of critical importance to resource managers. 

Keywords: Bayesian modelling, Citizen science, Habitat condition, Invasive species, Man- 

agement planning, Range expansion, Streptopelia decaocto 
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Lay summary 

 

• The Eurasian collared-dove is an invasive species in North America. Starting from the 

Bahamas in 1974, it has colonized much of the US and Canada. 

• The dove tended to spread to the northwest, and previous studies suggested that this 

was due to an innate preference for this direction. However, these studies did not 

consider that this might also be explained by habitat selection. 

• We studied doves’ range expansion using data from the Project Feeder Watch citizen 

science study. Our findings suggest that they prefer grasslands and thrive in areas with 

higher temperatures, more precipitation, and higher elevations, with little regard for 

direction. 

• These results add to our understanding of the invasion process of the collared-dove 

in North America, and broadly highlight the importance of historical records to 

disentangle the characteristics driving species invasion that are important to resource 

managers. The new methods can also be applied to understand the spread of other 

invasive species. 
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Graphical Abstract 

 

1 Introduction 

 

Invasive species represent the second most common cause of extinction and pose a major 

threat to global biodiversity through competition, predation, disease transmission, and 

hybridization within native communities (Sala et al. 2000, Bellard et al. 2016, Davis 2003, 

Gurevitch and Padilla 2004). Despite their global influence, management efforts are often 

unable to limit the spread of invasive species (Cohen et al. 2022). Prediction of when and 

where species are likely to expand their ranges requires a quantitative understanding of the 

biotic and abiotic mechanisms responsible, such as geographic variation in the habitat and 
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environmental conditions (e.g., wind, precipitation, temperature) or the presence of 

preferential direction of spread (e.g., anisotropic; Morin et al. 2009). Determining the 

interplay between these characteristics is therefore essential to making effective management 

decisions to stop or slow the spread of invasive species. 

Among all avian invaders, not many have been as successful as the Eurasian collared-dove 

(Streptopelia decaocto, EUCO) in expanding their range and establishing breeding 

populations, making EUCO an excellent case study for the spread of invasives. EUCO is a 

large dove with a distinctive black half-collar at the nape of the neck. EUCO are often 

found in suburbs, farmland, wood edges and open country, foraging seeds, berries and insects 

in flocks (Romagosa 2002). They are generally acknowledged to be nonmigratory, but 

young birds may disperse long distances which aids in the spread of the population 

(Romagosa 2002). 

Native to South Asia and limited areas of southeastern Europe, these doves were 

initially brought to the Americas as a pet and were accidentally released to the Bahamas 

in 1974 (Romagosa and McEneaney 1999, Romagosa 2002). Over the past 48 

years, they have expanded across the continental US, reaching Florida in 1982, California in 

1992, and British Columbia, Canada, in 2000, where their expansion is still ongoing (fig. 1) 

(Romagosa and McEneaney 1999, Romagosa 2002, Koenig 2020). Although a direct 

impact of this invader on native birds through competition has not been observed, concerns 

have been raised about their potential to transmit disease and parasites (Poling and Hayslette 

2006, Romagosa and Labisky 2000, Koenig 2020). Studies show that EUCOs are able to 

transmit a variety of pathogens, including the West Nile virus, Chlamydia psittaci, which 

causes endemic avian chlamydiosis, and Trichomonas gallinae, which causes avian 

trichomoniasis (Rappole et al. 2000, Panella et al. 2013, Donati et al. 2015, Stimmelmayr et 

al. 2012). All of these can be fatal to native birds. Therefore, models predicting their 

invasive spread across international borders must consider the factors driving both initial 

colonization and persistence in an area. EUCOs are known to live in a wide range of 
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habitats, but the association between habitat characteristics and invasion dynamics is not 

well understood. Previous studies found that EUCOs have a particular preference for 

human-altered landscapes including urban and agricultural areas (Fujisaki et al. 2010, 

Sa âd  et al. 2021, Scheidt and Hurlbert 2014). For example, EUCO occurrences in Europe 

are associated with suburban areas with a mixture of shrub and tree cover, often close to 

human-made structures with a constant food supply (Coombs et al. 1981). These findings 

support the “human-activity” hypothesis, which states that anthropogenic changes make new 

environments more invadable by altering native communities and reducing biotic resistance 

(Sax and Brown 2000). Human activity may also offer new niche opportunities such as 

supplementary feeding. 

On the other hand, the “climate matching” hypothesis, states that invasive species have 

a higher probability of success if they are introduced into regions with a climate like that 

found in their native area (Abell án et al. 2017, Redding et al. 2019), as species tend to 

conserve their native climatic niche. Eraud et al. (2007) found that both detection and 

occurrence probabilities are low for EUCOs in elevated areas with high proportions of forest 

coverage. Further, the range of EUCOs is believed to be limited to warmer areas; however, 

it is unclear how much their climatic preference weighs on habitat selection (Fujisaki et al. 

2010, Scheidt and Hurlbert 2014). According to their invasion history in Europe, they seem 

to predominate in areas with warmer temperatures and higher levels of precipitation, similar 

to their native subtropical habitats in Asia; however, their occurrence has also been reported 

in areas as cold as the Ural Mountains in Russia (Hagemeijer and Blair 1997). 

In addition to the dynamic interplay between biotic and abiotic drivers of invasion 

dynamics, a commonly accepted empirical hypothesis originally described by Coombs et al. 

(1981) states that there exists a tendency for EUCO to expand its range in a north-westerly 

arc (see also Slager 2020, Fujisaki et al. 2010). The initial invasions of EUCO in Europe 

and North America both appeared to progress primarily northwestward. In Europe, EUCOs 

started their invasion in Turkey and the Balkans in southeast Europe, then reached Hungary 
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in 1932, Germany in 1943, France in 1950, and Britain in 1955 (Hudson 1965). Similarly, 

their Bahamas-Florida-California-British Columbia invasion route in North America also 

shows a general west-northwest direction (Hooten et al. 2007, Hooten and Wikle 2008). This 

“north-westerly” hypothesis was initially made based on these observations, and later 

quantitatively supported by the study of Bled et al. (2011) that included directionality as an 

explicit component of the expansion dynamics. However, the relationship between direc 

tional movement and environmental factors remains a critical uncertainty in predicting the 

invasion process, not just for EUCOs, but also for other invading species. 

In this study, we take advantage of an international citizen-science dataset collected 

through Project FeederWatch (PFW) to model the invasion dynamics of the EUCO and 

examine how these patterns are affected by habitat and climatic factors across North 

America, while also assessing the role of directional spread. Hierarchical models provide 

users with flexible statistical tools that can incorporate biological hypotheses while 

accounting for sources of sampling bias within count data. Specifically, citizen-science data 

suffers from imperfect detection, and failure to account for imperfect detection can result in 

biased or misleading inferences (MacKenzie et al. 2002). We, therefore, adopt the use of an 

extended cellular-automata-based hierarchical occupancy model (Bled et al. 2011), which is 

a spatially explicit expansion of the dynamic occupancy model (Royle and Kery 2007) to 

model the invasion dynamics of collared-doves. Our modelling approach provides users 

with a straightforward way to express population dynamics parameters (colonization, 

persistence, and recolonization probabilities) as functions of predictor variables, while also 

considering the number of occupied sites in the neighbourhood, directional spread, and 

detection probability. Further, we compare the full model with reduced models to test 

specific hypotheses about the persistence of the doves once sites are occupied and the 

effects of directionality on dispersal. Although we expect that persistence is permanent 

for the doves so that no temporary extinction or recolonization occurs, including 

recolonization makes the modelling framework more broadly accessible for studying the 
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dispersal of other species. For example, plants may leave seeds which can germinate long 

after the initial individuals have disappeared, facilitating a new colonization event (Keeley 

2006). 

While our selection of habitat and environmental covariates was informed by the liter- 

ature (hypotheses detailed previously), our analysis was largely exploratory with regard to 

their relative effects on the colonization and persistence processes. We predict that if the 

“human-activity” hypothesis is supported, occupancy, colonization, and persistence would 

have positive relationships with anthropogenically disturbed habitats. On the other hand, if 

the “climate matching” hypothesis is supported, we would predict occupancy, colonization, 

and persistence to be lower in areas with high elevation and proportions of forest coverage, 

and higher in warmer areas with greater amounts of precipitation. However, the high 

dispersal potential of the EUCO may result in temporal patterns of occupancy that are 

largely independent of landscape features, and more influenced by the spatial arrangement 

of previously occupied sites and northwest directional spread. 

 

2 Methods 

2.1 Data sources 

2.1.1 Occurrence Records 

 

Project FeederWatch is a winter bird monitoring program jointly administered by the Cornell 

Laboratory of Ornithology and Birds Canada (Bonter and Cooper 2012). Wells et al. (1998) 

provides a detailed description of the PFW protocol. Briefly, volunteer participants record 

the highest number of each species seen at one time visiting feeders in their yards during 

survey periods of two consecutive days. These surveys occur at one-week intervals from 
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November through April, and survey days are selected ahead of time to avoid biasing counts 

toward days with high numbers. Participants also provide additional details about the 

location, date, and time of their observations. At the time of writing, the PFW sites were 

located in all US states and all provinces and territories in Canada. The raw PFW data 

collected between 1994 and 2021 contains 342,910 submissions of bird sightings obtained 

from 70,374 unique sites. EUCOs were identified in 18,660 (5.4%) records from 5,619 (8.0%) 

unique sites (fig. 1). 

To understand the patterns of species occurrence at a regional resolution, we 

utilized grid cells as our sample units. We adapted the grid cell structure used by the 

Christmas Bird Count (CBC) to compute the annual total counts of observations reported 

from each cell. The CBC grid divides continental North America into 2,423 grid cells of 

approximately 100 × 100 km (fig. 1) (Meehan et al. 2019). After removing cells covered 

mostly (> 50%) with water, we are left with 2,208 cells as our study area. Among the cells, 

1,134 (51.36%) of them had at least one survey completed during the examined period 

and 646 (29.26%) of the cells had at least one detection record of EUCO. Our models 

consider the number of surveys that include observations of EUCO out of the total number 

of surveys conducted in each cell for each year as the binomial response variable.
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2.1.2 Environmental Variables 

We included a set of eight environmental covariates that have been shown in the literature 

to be biologically influential on the dispersion pattern of EUCO or other similar bird species

(Fujisaki et al. 2010, Scheidt and Hurlbert 2014, Banko et al. 2002, Davies et al. 2007). The 

two climate variables, mean annual temperature and precipitation, were derived from the 

monthly average measurements between 1950 and 2000 downloaded from the ScienceBase 

North America Climate data derived from WorldClim database, at a 30-arc-second-resolution 

(1-km) grid of values. We chose the North America elevation data with the same resolution 

from the ScienceBase North America Elevation data derived from the GTOPO30 dataset 

as a topography indicator. We summarized all variables by computing the average value 

over time in each grid cell. For land cover information, we obtained our raw data from 

the North America Commission for Environmental Cooperation’s North American Land 

Change Monitoring System (NALCMS) land cover map 2015 at 30 meters. To simplify the 

models, we grouped the 19 original land cover classes into five broad categories: forest, shrub, 

grassland, crop, and urban (see table S1 in the Supplementary materials). The proportion 

of each land cover category was calculated for each cell. Unclassified areas within a cell 

were tagged as “other”. We consider grasslands as the reference category for land cover in 

Figure 1:Map of the grid cell structure and the year of initial observation records of the Eurasian 

collared-dove (Streptopelia decaocto) from the Project FeederWatch database in North America. 

Eurasian collared-dove records were collected between 1994 and 2021 (18,660 observation 

reports out of 342,910 surveys) and were grouped by 5-year periods. Map produced using the 

NAD 1983 Albers North America projection (EPSG:102008). Data source for temperature and 

precipitation: ScienceBase North America Climate data (1950–2000); elevation: ScienceBase 

North America Elevation data; forest, shrub, crop, urban and other land cover types: North 

American Land Change Monitoring System (NALCMS) land cover map 2015 (2015). Scale: 

1:30,000,000. 

https://www.sciencebase.gov/catalog/item/4fb545b6e4b04cb937751d3d
https://www.sciencebase.gov/catalog/item/4fb545b6e4b04cb937751d3d
http://www.worldclim.org/
https://www.sciencebase.gov/catalog/item/4fb5495ee4b04cb937751d6d
http://eros.usgs.gov/products/elevation/gtopo30.html
http://www.cec.org/north-american-environmental-atlas/land-cover-30m-2015-landsat-and-rapideye/
http://www.cec.org/north-american-environmental-atlas/land-cover-30m-2015-landsat-and-rapideye/
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our analysis. All environmental variables in our models were constant over time; however, 

further extensions could allow for time-varying covariates in order to investigate temporal 

effects including yearly fluctuations in weather and anthropogenic climate change. Plots 

of the spatial distribution of each covariate are provided in fig. S1 in the Supplementary 

Materials. 

 

2.2 Hierarchical Modelling 

2.2.1 Model Descriptions 

The models applied in this study build on the hierarchical occupancy based cellular 

automata model proposed by Bled et al. (2011), which in turn is based on the methods of 

Royle and Kéry (2007). We largely follow their theory and notation in describing our 

extended models, which take into consideration environmental covariates, separate the 

effect of directional preference in dispersion from the neighbourhood effect and allow the 

strength of the directional influence to be estimated from the data. 

Our full model allows for the incorporation of all three components of dynamic occupancy 

and allows for the separate effects of both neighbourhood density and directionality on each 

of these components. Let µi,t denote the probability that site i ∈ {1, . . . , M} is 

occupied at time point t ∈ {1, . . ., T} based on the value of the covariates and whether it 

and its neighbouring sites are occupied at the previous time point.  The dynamics of 

occupancy status are accounted for by three parameters: initial colonization (the 

probability that a site is occupied for the first time), γ; persistence (the probability that a 

site remains colonized), denoted by ϕ; and recolonization (the probability that a once-

occupied site that was abandoned is occupied again), θ. The initial and recolonization 

events are distinguished by the availability of a site for first colonization, Ai,t, where Ai,t 

= 1 indicates that the site has never been colonized before and, therefore, is available for 
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initial colonization, and Ai,t = 0 otherwise. Let Zi,t represent the true occurrence of the 

species at site i during time period t, so Zi,t = 1 when the site is occupied and Zi,t = 0 

otherwise. Mathematically, 

Zi,t | Zi,t−1  ∼  Bern(µi,t)  (1) 

with Ai,1=0, 

Ai,t = {
0, if ∑ Zi,t

t−1
s=1 > 0

1, otherwise
 (2) 

for t=2,…,T, and 

μi,t = ϕi,t−1Zi,t−1 + 

            γi,t−1(1 − Zi,t−1)Zi,t−1 + 

            θi,t−1(1 − Zi,t−1)(1 − Ai,t−1).  (3) 
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Table 1: Notation for the variables in the cellular-automata-based hierarchical occupancy model for 

Eurasian collared-dove (Streptopelia decaocto) with prior distributions for the model parameters. 

Parameter Description JAGS 

Notation 

Prior 

Distribution 

Input data 

Zi,t Site occupancy state z[i,t]  

Yi,t Number of detections in a site Y[i,t]  

Ki,t Number of visits to a site K[i,t]  

Xi Environmental covariates Elev_Mean[i],  

forest_per[i],  

... 

 

δji⃗⃗  Angle of the vector joining the 

center of cell j and i 

angle1[i, j]  

Derived parameters 

µi,t Site occupancy probability muZ[i,t]  

γi,t Initial colonization parameter gamma[i,t]  

ϕi,t Persistence parameter phi[i,t]  

θi,t Recolonization parameter theta[i,t]  

Ai,t Site availability for initial 

colonization 

A[i,t]  

wij,t Weight of the occupancy status of 

neighbour cell j on the future 

occupancy status of the central 

cell i 

w[i,j,t]  

Model parameters 

γ0t, ϕ0t, θ0t Intristic initial colonization, 

persistence and recolonization 

probability 

lgamma0,  

lphi0,  

ltheta0 

N(0, 1) 

γ1, ϕ1, θ1 Parameters controlling lNeigPhi1,  N+(0, 1000) 
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neighbourhood effect lNeigGamma1,  

lNeigTheta1 

γ2, ϕ2, θ2 Parameters controlling directional 

effect 

lDirePhi1,  

lDireGamma1,  

lDireTheta1 

N(0, 1000) 

γ3...10, 

ϕ3...10, 

θ3...10 

Parameters controlling 

environmental effecs 

lElevPhi1,  

lElevGamma1,  

lElevTheta1,  

... 

N(0, 25) 

δ0 Direction of preference dirSpread U(−π, π) 

p Detection probability p U(0, 1) 
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The dependency on the occupancy of the surrounding cells and on the climate, elevation 

and land cover covariates is then incorporated into the three dynamic parameters. 

Specifically, we define the persistence parameter ϕ as 

logit(ϕi,t−1) = ϕ0t + ϕ1L1i,t−1 + ϕ2L2i,t−1 + ∑ϕk+2Xi,k

8

k=1

(4) 

 

where L1i,t and L2i,t are the covariates reflecting the occupancy density in the neighbourhood 

and the directional preference of dispersion (defined below), respectively, ϕ3 through ϕ5 are 

the coefficients for mean elevation, temperature, and precipitation, and ϕ6 through ϕ10 are 

the coefficients for the effect of the land cover classes (forest, crop, shrub, urban and other) 

with their values estimated with respect to the effect of grassland. Similarly, the initial 

colonization parameter γ and recolonization parameter θ are expressed as 

logit(γi,t−1) = γ0t + γ1L1i,t−1 + γ2L2i,t−1 + ∑γk+2Xi,k

8

k=1

 (5) 

logit(θi,t−1) = θ0t + θ1L1i,t−1 + θ2L2i,t−1 + ∑θk+2Xi,k

8

k=1

. (6) 

 

To take into account the unexplained directional preference of spread, we included two 

covariates, the neighbourhood effect covariate L1i,t and the directional preference covariate 

L2i,t, into the calculations of the dynamics parameters. The neighbourhood effect covariate, 

L1i,t, is calculated as the proportion of cells within the neighbourhood of i that are occupied 

at time t. The directional preference covariate, L2i,t, is calculated as the averaged cosine of 

the angle of difference between the preferred direction of spread and the vector that points 

from the occupied neighbours to the central site i at time t. Let Ni be the set of ni available 

neighbours for site i. Most cells in a square grid will have ni = 8 neighbours, though those 

at the edges will have only ni = 5 and those at the corners will have only ni = 3. In practice, 
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1 

square cells might have anywhere between 1 and 8 neighbours after masking the possible 

range (e.g., removing cells mostly covered by water). Then: 

L1i,t−1 =

∑ Zj,t−1
j∈Ni

ni
 (7)

 

and 

L2i,t−1 =

∑ Zj,t−1
j∈Ni

cos(δ0 − δji⃗⃗ )

ni
 (8)

where δ0 is the angle of the vector defining the preferred direction of spread and δji⃗⃗  is the 

angle of the vector joining the centres of the cells i and j (fig. 2). In our implementation, the 

prior and posterior distributions of the directionality factors, ϕ2, γ2, and θ2, are truncated 

at zero. This is necessary because a positive effect in one direction has exactly the same 

implication as a negative effect in the opposite direction (e.g., the persistence probabilities 

computed when ϕ2 = 1 and δ0 = π/2 or ϕ2 = −1 and δ0 = −π/2 are identical provided the other 

parameters remain the same). Truncating the distribution of these parameters ensures that 

the model is identifiable and that the posterior distributions are not bimodal. 

Note that the range of possible values for L2 depends on the number of values for a cell, 

ni. The maximum range is (−1.00, 1.00), but this only applies to cells with 1 neighbour 

which accounted for just 3 (0.14%) of the cells in our grid. The vast majority of cells, 1,677 

(75.95%), were completely surrounded by other cells so that ni = 8. For these cells, the range 

of L2 is limited to (−0.30, 0.30). These cells will have the most impact on the estimates of 

the directionality effect because they predominate, so we focus on the effect within this range 

in our results. 

The model of Bled et al. (2011) includes directionality in a similar way, except that the 

effects of neighbourhood occupancy and the directional preference are combined into a single 

covariate. To recover their model of the initial occupancy probability from our full model, 
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for example, we need to set γ1 = γ2 = γ∗ in equation (5). The equation then becomes 

logit(γi,t−1) = γ0t + γ1
∗D1i,t−1 + ∑ γk+2Xi,k

8

k=1

(9) 

where 

D1i,t−1 = L1i,t−1 + L2i,t−1 =

∑ wijZj,t−1
j∈Ni

ni
 (10)

as given in Bled et al. (2011, eqn. 12) with wij ∝ 1 + cos (δ0 − δji⃗⃗ ) as in Bled et al. (2011, 

eqn. 14). The same applies also to the definition of persistence and recolonization 

probabilities. A key restriction of this formulation is that it is not possible to separate the 

strength of the neighbourhood effect from the strength of directionality. The assumption of 

this equality means that if the occupancy dynamics of the central site are influenced by 

the proportion of occupied sites in its neighbourhood, then there must be an effect of the 

same strength caused by the directionality preference. By separating the neighbourhood 

effect L1i,t and the directionality preference L2i,t in our full model, we can independently 

assess the impact of what proportion of cells in a neighbourhood are occupied and exactly in 

which direction the neighbouring cells lie. Note that the model of Bled et al. (2011) does 

include the quadratic effect of D1i,t−1 in the linear predictors to account for possible non-

linearity. However, adding the quadratic effects of both the neighbourhood and 

directionality effects, and potentially their interaction, would significantly increase the 

number of parameters, and we have chosen not to include these terms in our full model. 
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Finally, our full model accounts for imperfect detection by incorporating the detection 

probability per survey, p, into the observation process. For the simplicity of the model, we 

assumed the probability of detection given that at least one dove is truly present in a cell to 

be constant for all surveys over all years. The number of detections Yi,t in Ki,t surveys can 

then be modelled as 

Yi,t ∣ Zi,t ∼ Bin(Ki,t, pZi,t). (11) 

 

2.2.2 Model Fitting 

We estimated the parameters of the full model by fitting it to data obtained from all surveys 

in the years 1994 to 2021, and then tested the model by comparing the predicted detections 

of EUCO in 2021 with the actual observation records from the PFW dataset. In particular, 

we computed the area under the curve (AUC) for the reporter-operator curve (ROC) as a 

measure of prediction accuracy. A larger testing data set would be beneficial for assessing the 

Figure 2: Graphical representation of the neighbourhood structure of cells used in the cellular-

automata-based hierarchical occupancy model for Eurasian collared-dove (Streptopelia 

decaocto) A shows the vectors and angles used in directional preference estimation. B1 and B2 

demonstrate an example of calculation for the neighbourhood effect factor L1 (B1) and the 

directionality effect factor L2 (B2). The red arrow indicates the preferred direction of spread and 

∆δ denotes the angle it makes with the vector 𝑗𝑖⃗⃗  pointing from a neighbour j of the central cell i, 

indicated by black arrows. 
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prediction accuracy of the model. However, the models are complex and the primary goal 

of our analysis was to examine the relationships between the predictors and the processes 

governing occupancy and to estimate the parameters of these models. For these reasons, we 

have limited the validation to a single year. If larger data sets are available then more years 

of validation could be used to assess the future predictions of occupancy. 

We analyzed the models in the Bayesian framework. The parameters we incorporated 

with their corresponding notation and prior settings are summarized in table 1. Note that 

the prior distributions for the parameters are all assumed to be independent. The notation 

N(µ, σ2) indicates that the assigned prior was normal with mean µ and variance σ2, U(l, u) 

indicates that the prior was uniform over the interval (l, u), and N+(µ, σ2) indicates that 

the prior was half-normal, following the shape of a normal distribution with mean µ and 

variance σ2 but restricted to positive values. 

To explore the posterior distributions, we employed JAGS, a program for Bayesian 

inference using Markov chain Monte Carlo (MCMC) sampling, controlled via an R script 

running under R 4.2.1 using package rjags 4.10 (Plummer 2022, R Core Team 2021). We 

ran the full model with four chains, for 25,000 iterations after an adaptive phase of 1,000 

iterations and a burn-in of 10,000 iterations. Convergence was assessed with the Brooks–

Gelman–Rubin potential scale reduction factor generated from the burn-in sample (Gelman 

and Rubin 1992, Brooks and Gelman 1998). 

All environmental covariates were scaled prior to the model fitting process. The mean 

temperature, precipitation, and elevation data were standardized to have mean 0 and 

standard deviation 1. The land cover proportions were converted to percentages so that 

they fell between 0 and 100%. Pearson’s correlation coefficient was computed to assess 

potential collinearity among the covariates. 

To interpret the results of our Bayesian model, we report the posterior mean as a point 

estimate and the 2.5% and 97.5%-iles as the bounds of 95% credible intervals (CIs) to 

summarize the posterior distribution, in the format of mean[95% CI]. For example, the 
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estimate of the factor γforest is −4.67[−5.24, −4.11], which indicates strong evidence of a 

negative effect relative to that of grassland given that the range is well below zero and very 

narrow (indicating high precision for estimation). In contrast, the estimate of 0.73[−1.50, 

2.84] for θurban provides no evidence of an effect given that the interval covers 0 and is very 

broad. 

 

2.2.3 Model Comparison 

Along with our full model, we also fit two reduced models to subsets of the data in order to 

test specific hypotheses. The first assumes that the persistence probability is equal to one and 

removes the recolonization process so that each cell remains occupied in all years following its 

initial colonization (mathematically, P(Zi,t+1 = 1|Zi,t = 1) = 1). The second model removes 

the effect of directionality from the model (equivalent to setting ϕ2 = γ2 = θ2 = 0). We 

compared these models using the Watanabe-AIC or Widely Applicable Information Criterion 

(WAIC, Watanabe (2010), Vehtari et al. (2017)) computed via the NIMBLE package for R 

(de Valpine et al. 2017). However, the large number of latent variables meant that we were 

unable to compute the WAIC for the full data set. Instead, we fit the models to a subset of 

the data including only 5 years of observations from sites near the origin of the invasion in 

Florida. Further details and the results of these comparisons are provided in Section S1 of 

the Supplementary Materials. 
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3 Results 

Evidence suggested convergence for the MCMC chains (point estimates of potential scale 

reduction factors ≤ 1.06 for all hyperparameters). The median of the Effective Sample 

Size (ESS) of the sampled parameters was 4391.26, with a minimum of 672.4 (temperature 

effect on initial colonization) and a maximum of 62,857.37 (intercept for recolonization in 

1994). The Receiver Operating Characteristic (ROC) plot suggested that our full model 

produces very good discrimination of the occupied and unoccupied sites (AUC = 0.95, 

95% CI = [0.93, 0.97]). 

 

3.1 Relationship between Parameters and Occupancy 

The per survey detection probability of EUCO was estimated to be very low,  p̂ = 0.0141 

(95% CI = [0.0141, 0.0142]), though the detection probability per cell remains relatively high 

because of the repeated surveys. Among the 2,208 cells considered in the study, 790 cells 

(95%CI =[789, 791]) were estimated to have a probability of occupancy greater than 0.50 in 

2021, whereas the doves were only detected in 363 cells. Among the cells without EUCO 

detection records, doves were estimated to be present in 24 cells with at least one survey 

and 403 cells that were not surveyed at all. Failing to account for detectability would 

underestimate the number of occupied cells by 54.05% (95%CI =[53.98%, 54.12%]). This 

clearly demonstrates the need to account for missed detections (false negatives) when 

modelling a species’ range. 

Estimates of the covariate effects suggested that high probabilities of each stage of the 

colonization processes for EUCOs are associated with distinct environmental conditions (fig. 

3). Specifically, the full model indicated that initial colonization probabilities were higher in 
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grassland habitats and increased with temperature, precipitation, and elevation. However, 

estimates indicated that persistence probabilities were higher in urban areas and increased 

with elevation and recolonization probabilities were higher in urban and grassland habitats. 

Our full model provided strong evidence that the probabilities of the three dynamic 

processes in species occurrence – initial colonization, persistence, and recolonization – all 

increased in response to an increasing proportion of occupied neighbouring areas, L1 (fig. 4, 

left). Posterior means of these coefficients were all well above 0 relative to the width of the 

95% credible intervals and the 95% credible intervals did not cover 0: initial colonization: 

γ̂1 = 3.34 (95% CI = [2.54, 4.00]); persistence: ϕ̂1= 3.33 (95% CI = [2.84, 3.82]); recolonization: 

θ̂1 = 1.14 (95% CI = [0.52, 1.78]). 
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Figure 3: Estimated effects of parameters influencing the initial colonization, persistence and 

recolonization events for the dispersal of the Eurasian collared-dove (Streptopelia decaocto) in North 

America. Effects of the land cover variables (forest, shrub, crop, urban, and other) are estimated with 

respect to the effect of grassland. Within each box, horizontal lines denote posterior means; boxes 

represents 50% credible intervals and vertical extending lines denote 95% credible intervals. Note that 

the prior and posterior distributions of the directionality factors, ϕ2, γ2, and θ2, are truncated at zero.
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Figure 4: Estimates of the probabilities for each occupancy dynamic processes for the dispersion of the 

Eurasian collared-doves (Streptopelia decaocto) in North America as a function of the local density in 

neighbourhood (left) and the directionality factor (right), with 95% credible intervals. The habitat 

covariate was set to the reference (i.e., grassland) and all other covariates were set as mean. The vertical 

dashed lines indicate the bounds on the directionality factor for the majority of cells with 8 neighbours 

(75.95% of all cells). 
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Table 2: Parameter estimates for the full model, 95% credible intervals are shown in brackets. 

Attributes denoted with * are considered to be significant as the 95% CIs for the corresponding 

parameters do not covere zero. 

Covariate Initial Colonization(γ) Persistence(ϕ) Recolonization(θ) 

Temperature 0.78[ 0.49, 1.08]* 0.15[-0.18, 0.50] -0.05[-0.55, 0.45] 

Precipitation 0.59[ 0.43, 0.75]* 0.02[-0.16, 0.20] 0.02[-0.30, 0.31] 

Elevation 0.56[ 0.37, 0.74]* 0.61[ 0.32, 0.91]* -0.17[-0.56, 0.28] 

Forest -4.77[-5.30,-4.26]* -0.02[-0.56, 0.52] -1.40[-2.13,-0.67]* 

Shrub -2.91[-3.59,-2.23]* 0.60[-0.17, 1.36] -1.46[-2.67,-0.19]* 

Crop -3.06[-3.52,-2.61]* 0.06[-0.38, 0.50] -0.79[-1.32,-0.26]* 

Urban -3.19[-4.79,-1.72]* 2.62[ 0.92, 4.41]* 0.39[-1.73, 2.45] 

Other -3.97[-4.72,-3.25]* -0.19[-0.91, 0.54] -0.96[-1.89,-0.03]* 

Neighbourhood Density 3.40[ 2.83, 3.96]* 3.32[ 2.88, 3.77]* 0.90[ 0.32, 1.48]* 

Directional Preference 1.56[ 0.20, 2.89]* 0.24[ 0.01, 0.78] 0.49[ 0.02, 1.40] 

 

All else being equal, the estimate of the initial colonization probability was generally lower 

than that of the other two dynamic occupancy processes, increasing above 50% only when all but 

one of the neighbouring cells were occupied for central cells with 8 available neighbours. The 

average persistence probability is globally high, indicating that doves tended to remain in areas 

once established. Although the estimated probability of recolonization increased with 

neighbouring occupancy, the precision for our estimate was very low. This occurs because there 

is little evidence of local extinction, which is necessary to obtain information about 

recolonization. Estimates from the full model suggest that the doves tend to persist once a cell 

has been occupied, and that any cases in which the doves are observed in a cell in one year, not 

observed for some years, and then observed again are likely the result of missed detection as 

opposed to temporary extirpation. This means that there is little chance for recolonization, so that 
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the data provide almost no information about this process and the factors on which it might 

depend. This conclusion is also supported by the comparisons of the full and reduced models 

which provide strong evidence in favour of the model without recolonization (see Supplementary 

Materials).  

The probabilities of the three occupancy dynamics processes generally also increased with L2 

(fig. 4, right). The largest effect was for the initial colonization probability, which had an 

estimated coefficient of 1.56 (95% CI = [0.02, 2.89]). This corresponds to a change in probability 

from < 0.01 (95% CI = [0.00, < 0.01]) to 0.61 (95% CI = [0.34, 0.82]) across the range (-1,1). 

However, these values apply only to the small number of cells with only 1 neighbour (< 

0.02%). As noted in the Methods, the range of the directionality factor is restricted for the 

vast majority of cells which have 8 neighbours. For these cells, the estimated initial 

colonization probability ranges from 0.02 (95% CI = [0.01, 0.04]) to 0.14 (95% CI = [0.05, 

0.26]) when land cover type is set to its reference value, grassland, and all other covariates 

are set to their means. In comparison, increasing the proportion of occupied cells within the 

neighbourhood from 0.25 to 0.75 when land cover type is set to grass and all other 

covariates are set to their means increases the probability of occupancy from 0.12 (95%CI = 

[0.05, 0.23]) to 0.41 (95%CI = [0.19, 0.65]). We take this as evidence that the density of 

EUCO within the neighbouring cells has a stronger effect on initial occupancy than the 

directionality. Note also that the 95% CI for the probabilities at the end of the range of the 

directionality factor for the majority of cells almost overlap, suggesting there is relatively 

weak evidence that directionality affects the initial occupancy probability. The change in the 

persistence probability across this range was 0.33 (95% CI = [0.09, 0.70]) to 0.74 (95% CI = 

[0.41, 0.94]) under the same conditions. In this case, the 95% credible intervals overlap 

considerably, providing little evidence that directionality affects the probability of 

persistence. Estimates of the effect of directionality on the recolonization probability were 

very uncertain ranging from 0.45 (95% CI = [0.10, 0.85]) to 0.56 (95% CI = [0.16, 0.90]), 

and provide no evidence of a true effect. We estimated the preferred direction of movement 

of EUCO to be N34.20°E, roughly pointing in the Northeast direction, with 95% 
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CI=[N19.70°W, S70.75°E]. However, our full model indicated that the effect of 

directionality was weaker than the neighbourhood effect. 

4 Discussion 

Understanding the factors driving dispersion dynamics is key in modelling invasive 

species range expansion. Specifically, our results highlight the importance of assessing the 

relationship between directional movement and environmental covariates when predicting 

the invasion process for EUCOs, and other invading species. Previous studies of the spread 

of EUCO have suggested that this species increases its range along a preference directional 

gradient (i.e., “north-westerly” hypothesis). However, the model of Bled et al. (2011) 

combines the effects of directionality and density within the neighbouring cells into a single 

term. Our models separate these effects and also incorporate the effects of other predictors. 

The results from the full model provide only weak evidence of directional preference on the 

initial colonization probability, and no evidence of directional preference for persistence or 

recolonization, once the occupancy of neighbouring cells and the environmental covariates 

have been taken into account. Moreover, the direction of preference indicated by our full 

model differs from that suggested in previous studies. The full model also provides strong 

evidence that the occupancy of cells by EUCO depends on the selected environmental 

covariates, such as a proportion of grassland during initial colonization and a propensity to 

persist in habitats with higher proportions of human activities and shrub coverage, 

suggesting support for the “climate matching” hypothesis. Further, the proportion of 

occupied areas surrounding an unoccupied habitat patch is an important factor to consider 

when modelling invasion dynamics.Our results do not support the northwestern preferential 

direction for the invasion spread suggested by Bled et al. (2011), which is rooted in the 

northwestly dispersal hypothesis previously made by Coombs et al. (1981), Fujisaki et al. 

(2010) and Slager (2020). Specifically, our full model provides no evidence that the 

probabilities of the persistence and recolonization of EUCOs depend on the directionality 
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factor once the model accounts for the environmental covariates and once it disassociates the 

effect of neighbourhood occupancy density and directionality preference. We believe that the 

apparent orientation of EUCO spread observed by other researchers is at least partially 

governed by their tendency to colonize certain habitats, e.g. grassland, which happened to lie 

in a specific direction from their point of origin in North Ameria. The full model did provide 

weak evidence of an effect of directionality on the initial colonization probability, but the effect 

is small in comparison to the effect of the neighbourhood effect. Moreover, the model identified 

the preferred direction of dispersal to point to the northeast instead of northwest. Discrepancies 

in directional finding between our results and Bled et al. (2011) are likely, in part, due to the 

inclusion of environmental covariates, differences in the dataset used for the analysis, and/or 

differences in model specification of the neighbourhood effect and directional propagation. 

These are discussed in turn, and in the context of the available literature on the invasive spread of 

EUCOs and previously described habitat selection based on habitat modelling outputs. 

Our results do not support the northwestern preferential direction for the invasion spread 

suggested by Bled et al. (2011), which is rooted in the northwestly dispersal hypothesis 

previously made by Coombs et al. (1981), Fujisaki et al. (2010) and Slager (2020). 

Specifically, our full model provides no evidence that the probabilities of the persistence and 

recolonization of EUCOs depend on the directionality factor once the model accounts for the 

environmental covariates and once it disassociates the effect of neighbourhood occupancy 

density and directionality preference. We believe that the apparent orientation of EUCO 

spread observed by other researchers is at least partially governed by their tendency to 

colonize certain habitats, 

When moving into new habitats, we found a strong correlation between initial occupancy 

probability and habitats with a high proportion of grassland environments and highly 

occupied neighbouring areas. We also observed a moderate tendency of initial occupation of 

areas with higher temperature, precipitation and elevation. EUCOs are more likely to return 

to previously used habitats with human activities and shrub coverage. Their strong tendency 
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to occupy grasslands during initial colonization events may explain their early expansion 

of the range toward and occurrence in the midwestern grasslands of Wyoming, Colorado, 

and New Mexico before 2005, and the apparent avoidance of geographically closer states 

to Florida (the location of initial US occupation), such as North Carolina and Kentucky. 

EUCO’s history of spreading to the Southwest US before dispersing to the North in the 

early years of their invasion may also correspond to their preference for higher temperatures 

and elevation. EUCOs strong tendency to return to urban areas might be one of the reasons 

behind their persistence around Los Angeles since 1999, making Southwestern California one 

of the earliest colonized spots where EUCOs still persist today. 

Several smaller-scale studies have identified temperature and proportion of developed land 

as strong positive predictors for EUCO occurrence (Fujisaki et al. 2010, Scheidt and Hurlbert 

2014, Bonter et al. 2010). For example, the study in Florida by Bonter et al. (2010) estimated 

an occupancy rate ≥ 50% for areas with ≥ 40% low-intensity development or ≥ 20% medium 

and high-intensity development. By separating the three stages of colonization, we show 

that these factors may contribute to higher occupancy by affecting different components 

of the colonization process. While higher temperature is preferable for initial colonization, 

urban land coverage is more attractive to EUCOs returning to a once-colonized habitat. 

This suggests that future researchers pay special attention to the colonization history in 

addition to environmental characteristics when evaluating the vulnerability of habitat to 

invasion. Results further show a slight positive effect of precipitation on the probability of 

initial colonization events, which is generally not characteristic of the grassland environments 

that EUCOs prefer. This result is also inconsistent with Fujisaki et al. (2010), who found 

a negative correlation between species abundance and annual precipitation. Finer-scaled 

studies, which assess the correlation between occupancy probability and precipitation are 

needed to clarify this relationship. 

One possible explanation for the different conclusions regarding the direction of spread from 

our analysis and the work of Bled et al. (2011) is the difference in data selected for the 
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analysis. Specifically, the temporal scales of the input dataset could have partially 

contributed to our rejection of the northwesterly hypothesis. Our analytical timing window 

based on the available data from PFW covered the years 1994-2021, whereas Bled et al. (2011) 

used BBS data from 1986-2006. The earliest years of spread are therefore not captured in our 

models, making direct comparisons difficult. Further, even if direction spread was the main 

driver of initial colonization (which our results suggest is not the case), we would anticipate 

this effect to dampen with time as the species’ movement is restricted by the Pacific Ocean 

to the west. 

Covariates identified as important to the occupancy of EUCOs may also depend on the 

choice of input data. For example, using the PFW dataset, our full model found a slightly 

positive correlation between the initial colonization rate and higher precipitation. In contrast, 

a study conducted with the North American Breeding Bird Survey (BBS) dataset from the 

US reported the effect of precipitation on EUCO occupancy was inconclusive (Fujisaki et al. 

2010). However, another study from the exact same spatial range found the correlation 

to be positive based on data from the BBS but negative based on data from the CBC 

(Fujisaki et al. 2010). The disparity between these findings could be due to differences in 

the sampling period, the data collection protocol, the analytical approach, or the geographic 

coverage of the input datasets. For example, both CBC and PFW are conducted from 

winter to spring (CBC: December–January; PFW: November–April), whereas BBS takes 

place during the summer breeding season (May–July). Even then, CBC counts occur early 

in the winter season, usually before severe winter storms, whereas the PFW volunteers survey 

throughout the winter. As EUCOs are reported as not being able to withstand extremely 

cold conditions, their winter mortality may be reflected by the variance between the CBC 

and PFW (Hengeveld 1988, Fujisaki et al. 2010). Differences in the count methodologies 

may also influence the modelling outcomes. Specifically, counts for both CBC and BBS are 

carried out within predefined areas which means these two datasets are more likely to reflect 

a balanced and broader range of environmental conditions. In contrast, the PFW protocol 
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allows participants to repeatedly report at a location of their choice throughout the winter. 

These locations typically provide supplemental food and occur at the volunteers’ homes, 

backyards, nature centers, community areas, or other locations generally in areas with some 

human development. The resulting dataset may therefore suffer from under-representation 

of areas with lower human population densities and be biased toward specific habitat types. 

A major strength of our modelling approach is the ability to account for multiple factors 

affecting the range expansion of invasive species. Future research on the invasion dynamics 

of EUCOs would benefit from the inclusion of additional factors that we did not consider 

here. For example, research suggests that dispersal is likely to benefit from fragmented 

and small urban habitats (Eraud et al. 2011). Therefore, covariates that reflect the size 

and density of land cover clusters, in addition to their proportion within each cell, may be 

beneficial to include to achieve higher predictive accuracy. The density of free-ranging cats, 

the greatest predator of EUCOs, may also serve as an indicator of mortality affecting their 

ability to colonize and disperse (Eraud et al. 2011). While our models may have captured 

these effects in associated variables (e.g., the proportion of urban areas is likely a proxy for 

cat density (Flockhart et al. 2016)), refinement of covariates will likely improve the precision 

of these models and provide further information about the specific factors affecting dispersal. 

Combining various avian monitoring datasets using an integrative modelling approach would 

also provide researchers with data that covers the full annual cycle, improving our assessment 

of this invasive species’ spread.  

One limitation of our current models is that we have not explored variation in the 

detection probability. More specifically, we assume a binomial model for the number of 

detections within each grid cell in each year implying that surveys within each grid cell are 

independent and that the probability of observing doves is the same for all surveys. We 

made this decision to focus on developing models of the dynamic processes. However, it is 

possible, if not likely, that the probability of detection will vary both spatially and 

temporally. Detection is potentially affected by the density of doves within a cell, so that 
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doves are more likely to be observed where they are more abundant, and may also be 

affected by other predictors. For example, doves may visit feeders more regularly in areas 

where natural food resources are less abundant or where weather conditions are less 

conducive. Failing to account for this variation may impact the models of the dynamic 

processes if they are present, and we plan to develop further models to allow for variable 

detection in the future.  

Our models extend the work of Bled et al. (2011) by individually accounting for the 

effect of neighbourhood occupancy and directional preference on initial colonization, 

persistence, and recolonization events. This approach allowed us to reconsider the 

assumption that assigns the same weight to neighbourhood effect and directional 

propagation. It also enables us to evaluate the effect of directional preference on invasion 

dynamics that are not accounted for by the environmental conditions of the recipient habitat. 

Our models highlight the importance of incorporating both neighbouring effects and 

environmental factors in the modelling and management of range-expanding species. Our 

results offer insights into the habitat preference and potential physiological tolerance of 

EUCO, which may be helpful in understanding the mechanisms contributing to the success 

of this species and other avian invaders. 
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Sa âd, N., S. Hanane, M. D. El Hak Khemis, and K. Farhi (2021). Landscape composition 

governs the abundance patterns of native and invasive Columbidae species along an urban– 

rural gradient and contribute to their partitioning. Biological Invasions 23:2077–2091. 

Sala, O. E., F. S. Chapin, J. J. Armesto, E. Berlow, J. Bloomfield, R. Dirzo, E. Huber-

Sanwald, L. F. Huenneke, R. B. Jackson, A. Kinzig, R. Leemans, et al. (2000). Global 

biodiversity scenarios for the year 2100. Science 287:1770–1774. 

Sax, D. F., and J. H. Brown (2000). Global Ecology and Biogeography - The paradox of 

invasion. Global Ecology and Biogeography 9:363–371. 

Scheidt, S. N., and A. H. Hurlbert (2014). Range expansion and population dynamics of an 

invasive species: The Eurasian collared-dove (Streptopelia decaocto). PloS one 9:e111510. 

Slager, D. L. (2020). Seasonal and directional dispersal behavior in an ongoing dove 

invasion. Journal of Avian Biology 51. 

Stimmelmayr, R., L. Stefani, M. Thrall, K. Landers, F. Revan, A. Miller, R. Beckstead, and 

R. Gerhold (2012). Trichomonosis in free-ranging Eurasian collared doves (Streptopelia 

decaocto) and African collared dove hybrids (Streptopelia risoria) in the Caribbean and 

description of ITS-1 region genotypes. Avian Diseases 56:441–445. 



39 
 

Vehtari, A., A. Gelman, and J. Gabry (2017). Practical Bayesian model evaluation 

using leave-one-out cross-validation and WAIC. Statistics and Computing 27:1413–1432.  

Watanabe, S (2010). Asymptotic Equivalence of Bayes Cross Validation and Widely 

Applicable Information Criterion in Singular Learning Theory. Journal of Machine 

Learning Research 11:3571–3594.  

Wells, J. V., K. V. Rosenberg, E. H. Dunn, D. L. Tessaglia-Hymes, and A. A. Dhondt 

(1998). Feeder Counts as Indicators of Spatial and Temporal Variation in Winter 

Abundance of Resident Birds (Contajes en Comederos Como Indicadores de Variaciones 

Espaciales y Temporales en la Abundancia Invernal de Aves Residentes). Journal of Field 

Ornithology 69: 577–586. 

 


	Invasion dynamics of the European Collared-Dove in North America are explained by combined effects of habitat and climate
	tmp.1701794729.pdf.fieoE

