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Introduction:  

The use of neuroimaging has enhanced our understanding of the human brain and its 

associated functions. Research and development of these neuroimaging techniques have made it 

possible to study the brain in both healthy and patient populations, including neurological and 

psychiatric conditions (Pinti et al., 2020). The present thesis aims to contribute to the research 

and development of neuroimaging techniques by improving the functional near-infrared 

spectroscopy (fNIRS) technology. The objective of this thesis is to improve the research 

application of fNIRS-based resting state functional connectivity (rsFC) studies and enhance the 

clinical relevance of fNIRS. 

 

Functional Connectivity  

The concept of functional connectivity posits that brain regions exhibiting consistent 

correlations in neural activity form a neural network (Eickhoff and Müller, 2015). The 

characteristics of each network depend on several factors and vary with brain disorders, 

providing important biomarkers of brain health. Robust and reliable functional networks can be 

extracted in both resting state and task-based protocols. Resting state protocols involve 

measuring functional connectivity while the subject is at rest and not engaged in a specific task, 

while task-based protocols involve measuring functional connectivity while the subject performs 

a specific task. However, task-based protocols may present limitations, such as the exclusion of 

participants with preoperative cognitive impairments, physical impairments or due to their age, 

as they require the participant's ability to perform the task (Lemée et al., 2019). These limitations 

can be circumvented by rsFC protocols, which simply necessitate that the participant remains 

still without focusing on any specific task.  Following pioneering research by Biswal and 

colleagues, rsFC has gained popularity for its simplicity and potential to serve as a biomarker of 

brain function (Biswal et al., 1995). Currently, there is ongoing research exploring its potential 

usefulness as a diagnostic and monitoring tool for various brain disorders (Biswal et al., 1995; 
Vemuri et al., 2012; Abdalmalak et al., 2021).  
 

Neurovascular Coupling 

While functional connectivity refers to the connections between regions that exhibit 

consistent correlations in neural activity, neurovascular coupling describes the increase in 

cerebral blood flow following neural activity. Upon brain activation, there is an increase in the 

brain’s metabolic demand for oxygen and glucose leading to local arteriolar vasodilation 

resulting in an increased regional cerebral blood flow. The increase in cerebral blood flow 

following neural activity is referred to as neurovascular coupling. The systemic responses 

induced by neurovascular coupling will eventually result in a rate of oxygen supply to the 

activated brain region which exceeds the brain’s rate of consumption. This disbalance results in 

an increase in oxygenated hemoglobin (HbO) and a decrease in deoxygenated hemoglobin 

(HbR), a phenomenon known as the hemodynamic response. This response can be quantified and 

used to infer brain function with specific neuroimaging techniques, such as functional magnetic 

resonance imaging (fMRI) (Nippert et al., 2018).  
 

fMRI  

Although considered the gold standard in neuroimaging, the fMRI technique does have 

limitations, including poor temporal resolution and limited suitability for certain populations 

(Wijeakumar et al., 2017). Specifically, the use of fMRI is limited when it comes to intubated 



patients due to its lack of portability. This is because moving such patients to the fMRI room can 

pose safety risks. 

 

 

fNIRS 

Recent research has revealed that fNIRS can be used as an alternative to fMRI in the 

assessment of brain activity (Cui et al., 2011). fNIRS presents several advantages over fMRI, 

including higher temporal resolution, allowing for brain signals to be captured every 0.01 

seconds for more precise measurements. Moreover, fNIRS is relatively inexpensive and highly 

portable when compared to fMRI (Wilcox and Biondi, 2015). The portability of fNIRS allows 

for bedside monitoring of patients without the need for them to be transported to specific 

imaging rooms. This feature makes it a useful tool for studying the brain in both healthy and 

patient populations, including those who are unable to undergo traditional imaging techniques 

due to medical conditions or physical limitations.   

 

Measuring brain activity using fNIRS involves shining near-infrared light (650-950 nm) 

onto the scalp. As the light travels through the different cerebral layers, such as the scalp, skin, 

skull, and cerebrospinal fluid, it interacts with various components, including water, lipids, 

hemoglobin, melanin, and cytochrome-c-oxidase, each of which has unique absorption and 

scattering properties at different wavelengths (Scholkmann et al., 2014). Among these 

components, hemoglobin is the primary absorber of near-infrared light, with different absorption 

properties for HbO and HbR. HbO absorption is highest for light with a wavelength below 800 

nm, while HbR absorption is highest for light with a wavelength greater than 800 nm (Pinti et al., 
2020).  
 

The light shined on the scalp diffuses to the biological tissue, reaches the brain cortex, 

and comes back to the surface, carrying valuable information about the hemoglobin 

concentration changes from the brain. The reflected light can be measured with a light detector 

placed apart from the emitter. To assess cortical information, the distance between the source and 

detector needs to be around 3cm. The combination of a source/emitter and a detector is referred 

to as a channel. Since the near-infrared light during its path is primarily absorbed by hemoglobin, 

changes in light attenuation can be used to estimate concentration changes of HbO and HbR. Due 

to the phenomenon of neurovascular coupling, this is an indirect measure of neural activity in the 

underlying brain tissue (Delpy and Cope, 1997).  

 

Seed based correlation analysis (SCA). 

Seed-based correlation analysis (SCA) is a commonly used method to analyze resting 

state fNIRS data. SCA involves extracting the hemoglobin time series, the changes in 

hemoglobin concentrations over the span of the measurement, from a selected seed region, a 

specific fNIRS channel of the brain. Selection of the seed depends on the purpose of the work 

and is typically based on prior knowledge of which brain regions or networks are important for a 

given population. The hemoglobin time-series of the seed channel is then correlated to all the 

other channels spanning the brain to detect regions with coherent time series. SCA relies on the 

assumption that functionally correlated neural networks have similar activity and hemodynamic 

changes, thus being functionally connected. These correlations are then summarized within a 

correlation matrix which can then be projected onto brain models. The major advantage of SCA 



is its relatively straightforward interpretability, which directly shows which regions are most 

strongly functionally correlated with the seed (Cole et al., 2010).  
 

 

 

Signal Contamination by Systemic Physiology   

A major critique of fNIRS pertains to its susceptibility to spurious correlations, or false 

positives, within SCA, which results in the display of non-existent connections. A major culprit 

for these spurious correlations is the fNIRS signal being highly contaminated by systemic 

physiology. fNIRS signal contamination by systemic physiology includes both extracortical 

components and global components such as changes in blood pressure and respiration rate 

(Abdalmalak et al., 2022; Zhou et al., 2021). The signal contamination caused by systemic 

physiology leads to two major issues. Firstly, analyzing the fNIRS signals without removing 

systemic physiology leads to high correlation across the whole brain. Essentially, the fNIRS 

signal shows that every area of the brain is functionally correlated to every other area covered by 

the fNIRS system. The second problem is that systemic physiology leads to high levels of intra-

subject variability. This means that when measuring a single healthy participant multiple times, 

the systemic physiology leads to significantly different functional connectivity patterns being 

produced for each measurement. This is problematic as the functional connectivity patterns of a 

healthy brain should not change drastically over the span of multiple measurements (Abdalmalak 
et al., 2022).         
 

Short channel regression  

Due to the diffusive character of the fNIRS light propagation in the biological tissue, the 

distance between the sources and detectors determines the depth sensitivity of each channel 

(Saager and Berger, 2005). The light detected by a regular fNIRS channel (~ 3cm), probes both 

the cortical and extracortical layers. Thus, regular fNIRS channel deliver hemodynamic 

information from both the cortical and extracortical layers. A problem arises from the fact that 

the extracortical layers are densely vascularized, which leads to majority (~ 94%) of the signal 

measured from a regular fNIRS channel reflecting hemodynamic information from the 

extracortical layers, primarily the scalp (Brigadoi and Cooper, 2015). In 2005, Saager and 

colleagues took advantage of the relationship between the source-detector distance and depth 

sensitivity by employing the use of a channel with a smaller source-detector distance to obtain a 

signal primarily from the extracortical layers. They aimed to decrease the distance between the 

source and the detector to then decrease the depth that the near-infrared light travelled. The 

signal recorded from this short channel (SC) was then subtracted from the standard fNIRS 

channel. This was done with the goal of regressing or removing the extracortical components 

from the fNIRS signal, isolating only the brain’s hemodynamic response (Saager and Berger, 

2005).         

 

Physiological Measurements  

Despite SC regression being a useful method to remove signal contamination caused by 

systemic physiology, it may not contain all the necessary non-neural information to fully 

decontaminate regular fNIRS channels (Scholkmann et al., 2014; Caldwell et al., 2016). To 

address these limitations and increase the sensitivity of the fNIRS signal to the brain, researchers 

have suggested recording additional physiological measurements (Phys) and regressing them 



from the fNIRS signal. Specifically, researchers suggested recording mean arterial pressure 

(MAP) and end-tidal CO2 (Caldwell et al., 2016; Tachtsidis and Scholkmann, 2016).  

 

 

 

GLM Frameworks  

The removal of SCs and Phys is often performed within a General Linear Model (GLM). 

The GLM is a mathematical framework that enables the analysis of complex signals such as 

those produced by fNIRS. Within the GLM framework, fNIRS signals are expanded as a linear 

combination of components called regressors, which are representative of different aspects of the 

signal. For example, the baseline level of blood flow. The inclusion of nuisance regressors such 

as SC and Phys measurements can help to decontaminate the fNIRS signal by accounting for 

non-brain-related physiological changes that may interfere with the signal. By controlling for 

these effects at the statistical level, the accuracy of the fNIRS technique can be improved (Von 
Lühmann et al., 2020).  
 

Rationale and Hypothesis  

Previous work by the Owen Lab demonstrated that a combination of SC + Phys 

regression is a powerful approach to decontaminate fNIRS signals. However, the previous study 

was limited by acquiring data only once from each participant. In the present study, we aim to 

build upon this work by collecting data multiple times from each participant to further 

investigate intra-subject variability. The rationale for this experiment is to identify which 

regressors or combination of regressors can most effectively remove systemic noise from fNIRS 

signals to improve the precision of fNIRS signals and reduce intra-subject variability. Ultimately, 

the goal is to enhance the methodology of fNIRS and improve its research application for 

resting-state functional connectivity (rsFC) studies, as well as its clinical relevance. We 

hypothesize that using a combination of SC and Phys regression will improve the localization of 

fNIRS signals during resting-state data acquisition and reduce intra-subject variability. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Methods: 

 

Experimental Protocol  

This study was approved by the Research Ethics Board at Western University. All 

participants provided written informed consent before participating in the study. Data collection 

was performed at the University Hospital at Western University, London, Canada. The study 

recruited fifteen healthy controls (ten males and five females) with no history of severe brain 

injury. Data was collected three times for each participant, once per session for three different 

days within the span of a week. To reduce variance, each recording occurred at the same time for 

each participant. Data collection was conducted in a dimly lit room, where the participant was 

seated comfortably. Before starting data collection, participants were instructed to close their 

eyes, stay relaxed, and to not focus their thoughts on anything specific. Each data collection 

involved a twelve-minute resting state recording. To ensure the participants did not fall asleep, 

two researchers monitored their behaviour during the recording and then after the recording got 

verbal confirmation from the participant that they did not fall asleep.  

 

fNIRS Signal Acquisition  

Data was collected using a commercially available continuous-wave NIRS system 

(NIRScout, NIRx Medical Systems) with a sampling rate of 3.9 Hz. A 10–20 standard head cap 

was used to attach the sources and detectors to the participants' heads. The optical probe utilized 

in this study was specifically designed by the Owen lab and comprised of 39 detectors and 32 

sources, resulting in 121 source-detector combinations at approximately 3 cm (channels) and 

eight source-detector pairs at 0.8 cm (SC). The sources were LEDs centered at 760 and 850 nm.  

 

fNIRS Preprocessing  

A summary of the pre-processing steps is shown in Figure 1. To conduct data analysis, 

the present study used MATLAB scripts developed by the Owen Lab based on existing Homer 2 

functions (Huppert et al., 2009). Before analyzing the fNIRS data, preprocessing was necessary 

to convert light intensity measurements into hemoglobin concentration changes. Firstly, channels 

with low signal-to-noise ratios (SNRs) were removed, defined as values below 8 based on 

previous experiments using similar fNIRS systems (Novi et al., 2020). SCs with pink noise (1/f 

decay) were also excluded. Pink noise is a type of noise with a power spectral density that 

follows a 1/f power law distribution. Afterward, the modified Beer-Lambert law was employed 

to estimate hemoglobin concentration changes, a biophysical model that relates measured light 

intensity to hemodynamics. Finally, band-pass filtering was applied to the hemoglobin time 

series between 0.009 and 0.08 Hz to mitigate low-frequency drifts and high-frequency 

physiological noise, such as heart rate. Band-pass filtering is a signal processing technique that 

allows for the selection of specific frequency bands, in this case, frequencies that do not 

represent neural signals were removed. 

 

 

 

 

 

 



 
Figure 1. Flow chart summarizing the pre-processing steps for extracting hemoglobin 

concentration changes and Pearson Correlation Coefficients from the functional near-infrared 

spectroscopy (fNIRS) data used in this study. The highlighted part shows the focus of this work. 

The first step involves the removal of channels with low signal to noise ratio (SNR) from the 

light intensity measurements. Following this, the optical density is computed, which is then used 

to extract the hemoglobin concentration changes. The hemoglobin concentrations can either be 

manipulated within the general linear model (GLM) to remove the systemic physiology 

regressors or kept without removal of the regressors. The concentrations are then pre-whitened 

before calculating the Pearson Correlation Coefficients. Adapted from (Abdalmalak et al., 2022).  
 

Physiological Recordings and Preprocessing  

In addition to the fNIRS data, physiological information was acquired simultaneously. 

MAP was measured using a Caretaker system (Caretaker Medical, United States of America) 

which was affixed to the participants’ left arm. The Caretaker system allowed for continuous 

monitoring of these systemic physiological changes at a sampling rate of 1.5 Hz. End-tidal CO2 

was measured using a cannula connected to a capnograph (Oxigraph, Inc., United States) at a 

sampling rate of 804 Hz. The Caretaker system required calibration before data acquisition; 

therefore, it was started 1 minute prior to the start of the experiment. The capnograph was started 

30 seconds before the beginning of the experiment, and the first minute of Caretaker data and the 

first 30 seconds of end-tidal CO2 data were excluded from analysis. This exclusion occurred to 

synchronize the physiological data with fNIRS data. The Caretaker and capnograph data were 

then resampled to match the fNIRS acquisition frequency (3.9 Hz) and band-pass filtered 

between 0.009 and 0.08 Hz.  

 

Removal of Systemic Physiology 

The systemic physiology was removed from the fNIRS signal within the GLM 

framework. A linear model for each hemoglobin time series was used: YHbx = Xβ + ε, which 

consisted of the design matrix (X), model parameters (β), and an error term (ε). The design 

matrix (X) contains explanatory variables, such as SC data (XSC), physiological measurements 

(XPhys), and a constant offset array (XC) which corrects for the baseline of the data. To analyze 

the impact of each regressor, the data was analyzed using three distinct GLM models: SC 



regression only (X ≡ [XC, XSC]), systemic physiology only (X ≡ [XC, XPhys]), and both SC and 

physiology (X ≡ [XC, XSC + Phys]), in which XSC + Phys ≡ [XSC, XPhys]. XSC includes only the good 

SCs, as defined in the fNIRS preprocessing section, to account for heterogenous scalp 

hemodynamics, and both HbO and HbR from the SCs were included in the GLM following 

previous works (Kirilina et al., 2012). The XPhys submatrix used MAP and end-tidal CO2 

measurements. To account for the difference in transit time between systemic physiology and 

fNIRS signal acquired from different brain regions, a maximum time shift of ±20 s was allowed 

for each fNIRS channel and each physiological regressor. The transit time is described as the 

time it takes for the changes in the physiology measured in the periphery to affect the 

hemodynamics in the brain. The optimum time lag was determined as the time shift that yielded 

the highest correlation between the regressor and the regular fNIRS channel. This time shift also 

accounted for any possible synchronization errors between the different acquisition systems (i.e., 

NIRScout, Caretaker and capnograph). Finally, the model parameters (β) were estimated to 

minimize the use of robust regression by the GLM. Despite robust regression reducing the 

impact of outliers within the dataset, it can reduce the accuracy of the analysis leading to 

incorrect conclusions. The filtered signal was written as: Yfiltered = YHbx – Xβ.   

 

Correlation Analysis and Seed-Based Networks - 

To reduce spurious correlations across the brain due to autocorrelation in the time-series, 

pre-whitening was applied in the filtered HbO and HbR concentration time series via an 

autoregressive model. Next, the total hemoglobin (HbT) concentration was estimated as the sum 

of HbO and HbR, and the Pearson correlation coefficient across the regular fNIRS channels was 

computed. The impact of the regression techniques on the correlation distributions for each 

participant was investigated. To do this, group analysis via the concatenation of the correlation 

distributions of each participant was performed. In addition to the correlation distributions, the 

most common rsFC networks that have cortical contributions were extracted using the previously 

validated seed-based method (Biswal et al., 1995). The correlation coefficients were converted to 

Z-scores via Fisher’s transformation, then averaged across participants to compute an average 

correlation matrix per hemoglobin. Finally, a seed (i.e., regular channel) was selected per 

network then back-projected its Z-scores to the brain. The chosen seeds were located at the left 

precentral gyrus over the primary motor cortex (sensorimotor network), left superior temporal 

gyrus (auditory network), and left middle frontal gyrus (FPC network). These specific seeds 

were chosen to their high clinical significance (Biswal et al., 1995) (Beckmann et al., 2005). To 

visualize the seed-based networks, the sensitivity profile of each channel computed through 

Monte Carlo (MC) simulations was used to project to the cortex the correlation value of that 

specific channel with the chosen seed (Aasted et al., 2015). Codes for creating these figures were 

available in the Owen Lab fNIRS library.  

 

 

Intra-Subject Variability  

Finally, the effect of systemic physiology on the intra-variability of the extracted seed-

based rsFC networks was investigated. To this end, the individual variability was quantified by 

computing the Euclidian distance between the seed-based maps extracted at the first and second 

days of measurements. Statistical differences were inferred using two-sided t-tests to compare 

the variability distributions with and without the regression techniques and considered significant 

if p<0.05.  



 

Results:  

 

To address the research question and test the hypothesis of the present thesis, we acquired 

a very rich dataset in which fNIRS data with 8 SCs and additional systemic physiology were 

simultaneously measured from 15 participants at three different days at the same time within the 

same week. The physiological data includes continuous measurements of MAP, end-tidal CO2, 

and oxygen saturation. To our knowledge, there are no published works with such a complete 

dataset as ours. However, due to time constraints, only a subset of the data was analysed. 

Specifically, we decided to focus on the measurements from the first and second days or runs 

from the first 12 participants, and we limited the analysis to SCs, MAP, and end-tidal CO2. 

Although we did not explore everything we could with the acquired data, we highlight that this 

subset is enough to evaluate our original hypothesis.  

 

Systemic Physiology Inflates Correlation Distributions  

 

Figure 2 shows the correlation distributions for HbO, HbR and HbT across the first 12 

participants when fNIRS signals were not regressed, after SC regression, and after SC+Phys 

regression. Notably, the different preprocessing steps has a similar effect on both runs. 

Specifically, both regression techniques (SC only and SC+Phys) were able to shift the HbO and 

HbT correlation distributions towards smaller values reducing the global correlation of the 

fNIRS signal across the brain. This indicates that the global correlations (false positives) seen 

before regression for HbO and HbT are not caused by actual neural activity but rather from the 

contamination of extracerebral hemodynamics in standard fNIRS signals. For HbR, the 

extracerebral oscillations did not significantly impact the correlations.  

 

After applying the regression techniques, the distribution mode, which indicates the most 

frequently occurring value in a distribution of correlation coefficients and corresponds to the 

peak of the distribution curve, exhibited a substantial decrease for both HbO and HbT in both run 

1 and run 2. Specifically, for run 1, the distribution mode without regression was 0.755 for HbO 

and 0.714 for HbT. This decreased to 0.143 for HbO after both SC only and SC+Phys regression 

and 0.143 and 0.102 for HbT after SC only and SC+Phys regression, respectively. Whereas, for 

run 2, the distribution mode without regression was 0.755 for HbO and 0.714 for HbR. This 

decreased to 0.143 for HbO after both SC only and SC+Phys regression and 0.102 and 0.143 for 

HbT after SC only and SC+Phys regression, respectively. In both runs, the extracerebral 

oscillations did not significantly impact the correlations performed using HbR. Interestingly, for 

both runs, the addition of physiological measurements as a regressor (SC+Phys regression) 

within the GLM model did not considerably alter the distribution mode HbO and HbT 

distribution modes. However, it decreased the spread of correlation coefficients by eliminating 

additional covariance unaccounted for by the SC only regression. Specifically, for run 1, 

variance decreased from 0.328 to 0.309 for HbO and 0.336 to 0.309 for HbT between the SC 

only and SC+Phys regression. Therefore, SC + Phys regression decreased the variability of the 

correlations resulting in a greater level of measurement precision.  



 
Figure 2. Combined correlation distributions for hemoglobin concentration time series from 

Runs 1 and 2 of the first 12 participants (n=12) using three different preprocessing approaches. 

The three hemoglobin types shown are oxyhemoglobin (HbO), deoxyhemoglobin (HbR), and 

total hemoglobin (HbT). Preprocessing approaches include no regression (gray), short channel 

regression (SC, red), and short channel and systemic physiology regression (SC+Phys, green). 

The normalized frequency was determined by dividing the counts of each distribution by the 

highest count value. Panels (A)-(C) show the combined correlation distributions for Run 1 of the 

first 12 participants for HbO, HbR, and HbT, respectively. Panels (D)-(F) show the combined 

correlation distributions for Run 2 of the first 12 participants for HbO, HbR, and HbT, 

respectively. Extracerebral regression has a significant impact on the removal of spurious 

correlations (false positives). Graphs were generated using MATLAB. 

 

 

 

 

 

 

 

 

 

 

 

 

 



Removal of Systemic Physiology Localizes Functional Connectivity Maps   

 

Figure 3 illustrates the group average rsFC networks when using the HbT time series for 

the differing regression techniques. The HbT time series was selected as it accounts for both 

HbO and HbR, and previous studies have shown that using HbT provides higher reproducibility 

than using the two chromophores separately (Sheth et al., 2004; Novi et al., 2016; Culver et al., 
2005; Abdalmalak et al., 2022). Figure 3a and Figure 3b represents the rsFC networks formed 

using data collected during run 1 and run 2, respectively. Notably, the different preprocessing 

steps has a similar impact on the rsFC networks generated for both runs. When rsFC networks 

are generated before applying any regression techniques to remove the impact of global systemic 

physiology on the fNIRS signal, there is a high degree of correlation observed throughout the 

brain. This is apparent in Figure 3, where the “without regression” rsFC networks for the 

sensorimotor and frontoparietal cortex (FPC) regions show correlations with most of the other 

brain regions covered by the montage. After applying the regression techniques (SC only and SC 

+ Phys), the rsFC networks for these regions become more localized. This finding demonstrates 

that removal of systemic physiology from the fNIRS signals, eliminates most irrelevant brain 

connections, leaving only the expected connections for these two networks. Interestingly, this 

trend was not seen in the auditory rsFC networks. The rsFC networks generated “without 

regression” show very similar correlations to those generated after applying the regression 

techniques.    

 

 

 

 

   



 
Figure 3. Sensorimotor, Auditory, and Frontal Parietal Cortex (FPC) seed-based networks 

extracted from the average HbT correlation matrix of Run 1 and Run 2 for the first 12 

participants (n=12). Each seed's location is shown in the top row, followed by the resulting 

network without regression, with SC regression only, and with SC + Phys regression. Panels (A) 

and (B) show seed-based networks generated from correlation matrices obtained during runs 1 

and 2, respectively. Z-scores are a standardized measure that allows for comparison of the 

strength of functional connectivity between a brain region and the selected seed. Regression of 

systemic physiology improves network localization and increases agreement with the fMRI 

literature. rsFC networks generated using MATLAB.  

 

 

 

 

 

 

 

 



Decrease of Intra-Subject Variability  

To assess the effect of regressing systemic physiology on intra-subject variability in 

fNIRS rsFC, Euclidean distances between the correlation matrices obtained from Run 1 and Run 

2 were calculated for each participant. Figure 4 depicts the normalized distances for the 

sensorimotor, auditory, and FPC networks, with normalization performed by dividing the 

distances by the maximum values across all preprocessing approaches within each network. For 

the sensorimotor network both SC only (p = 0.0099) and SC + Phys (p = 0.0022) regression 

significantly decreased intra-subject variability. Similarly, for the FPC network both SC only (p 

= 0.0214) and SC+Phys (p = 0.0059) regression significantly reduced intra-subject variability. 

These findings indicate that removal of systemic physiology significantly increases the intra-

subject reliability across the sensorimotor and FPC networks. However, SC + physiology 

regression did not significantly decrease (p >0.05) the intra-subject variability compared to SC-

only regression for these two regions. Despite not being statistically significant, the SC+Phys 

regression appeared to alter the intra-subject variability values, suggesting that the alterations 

observed may provide additional information beyond what is already captured by the SC 

regression. Additionally, the removal of systemic physiology did not significantly decrease (p > 

0.05; Figure 4) the intra-subject variability for the auditory network. Overall, the decrease in 

intra-subject variability after physiological removal using SCs must be considered prior to 

comparing results between different runs; otherwise, any differences among the runs could be 

due to systemic physiology and may not have been originated from actual neural sources.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

Figure 4. Intra-subject variability of seed-based networks estimated through Euclidean distance 

between networks from Run 1 and Run 2 of the first 12 participants (n=12), shown as violin 

plots. The solid dots represent actual distance values, and statistical differences between 

variability distributions are denoted by asterisks (*), indicating a significance level of p<0.05 

with a two-sided t-test. To compare the impact of each regression technique on intra-subject 

variability, distances were normalized by the maximum value across all regression techniques for 

each network. In the Sensorimotor and FPC networks, the application of the regression 

techniques resulted in a significant reduction in intra-subject variability. However, there was no 

significant difference observed between the two regression techniques. Removal of systemic 

physiology did not significantly decrease the intra-subject variability for the auditory network. 

Graphs were created with MATLAB and statistical analyses were conducted using Excel. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Discussion:  

 

The goal of this study was to investigate the impact of systemic physiological variables 

on fNIRS-based rsFC networks by acquiring resting-state data with SCs and additional 

physiological measurements. Our findings corroborate previous studies, indicating that systemic 

physiology can lead to false positives (Figure 2), overestimating rsFC (Mesquita et al., 2010; 

Kirilina et al., 2012; Scholkmann et al., 2014; Caldwell et al., 2016; Tachtsidis and Scholkmann, 

2016). In contrast to prior studies, we evaluated the effectiveness of various regression 

techniques and their effects on the reproducibility of rsFC networks. We found that SC 

regression and SC + Phys regression techniques localized rsFC networks (Figure 3) allowing for 

more precise mapping of brain regions involved in specific cognitive functions. Notably, while 

SC regression reduced the contribution of extracerebral hemodynamics, the remaining signal still 

contained systemic information associated with the MAP and end-tidal CO2 data. Moreover, 

removal of systemic physiology decreases intra-subject variability (Figure 4). Thus, highlighting 

the potential for systemic physiology to hinder the detection of changes in rsFC and impair 

single-subject longitudinal interpretations. Consistent with earlier research, we also found that 

fNIRS could extract rsFC networks that are typically identified with fMRI, but only after 

eliminating systemic physiology and selecting appropriate channels as seeds (Duan et al., 2012).   
 

The findings presented in Figure 2 demonstrate that extracerebral physiology has a 

greater impact on HbO and HbT than on HbR. Specifically, HbO and HbT exhibit a reduction in 

correlation following SC only and SC + physiology regression, while this trend is not observed 

for HbR. These results support earlier studies that have similarly shown HbR to be less sensitive 

to systemic physiology (Franceschini et al., 2003; Tachtsidis and Scholkmann, 2016). This is 

likely because the autonomic nervous system preferentially affects arterioles more than venules 

during vascular drainage. Arterioles are the small blood vessels that supply oxygenated blood to 

the capillaries in the brain, while venules are the small blood vessels that collect deoxygenated 

blood from the capillaries. During autonomic nervous system activity, arterioles are more likely 

to constrict, which reduces blood flow and leads to a decrease in HbO levels. In contrast, the 

venules are more likely to dilate, which increases blood flow and leads to an increase in HbR 

levels. This phenomenon suggests that changes in systemic physiology have a larger impact on 

HbO signals compared to HbR signals (Franceschini et al., 2003; Tachtsidis and Scholkmann, 

2016).  

 

We chose to focus this study on the sensorimotor, auditory, and FPC networks (Figure 3 

and Figure 4) for two primary reasons. Firstly, these networks are known to be robust and have 

been frequently reported across different populations and neuroimaging techniques (Biswal et al., 
1995; Beckmann et al., 2005). Secondly, these networks are clinically significant and offer 

crucial insights into distinct aspects of brain function. For example, the FPC plays a critical role 

in maintaining normal consciousness, and disruptions in this network could indicate a potential 

marker for patients at risk of developing disorders of consciousness (Demertzi et al., 2014; 
Kazazian et al., 2021). Therefore, extracting reproducible rsFC networks for these brain regions 

at the single-subject level is crucial to demonstrate the potential of fNIRS to be used as a tool for 

assessing awareness at the bedside longitudinally. 

 



Based on previous work, we than focused on the rest of the analysis on HbT, generating 

the rsFC networks (Figure 3) and calculating intra-subject variability (Figure 4) using the 

correlation coefficients for HbT (Sheth et al., 2004; Culver et al., 2005; Novi et al., 2016). The 

findings in Figure 3 show removal of systemic physiology localizes the rsFC networks for the 

sensorimotor and FPC regions but not for the auditory region. Similarly, the findings in Figure 4 

show removal of systemic physiology decreased the intra-subject variability within the 

sensorimotor and FPC regions but not in the auditory region. The networks for the auditory 

region may not show change after regressing systemic physiology because it is less susceptible to 

systemic physiological noise compared to other networks. The auditory cortex receives its blood 

supply from the middle cerebral artery, which has a more direct and less variable path to the 

brain compared to other cerebral arteries, making it less vulnerable to systemic physiological 

noise (Mangold and M Das, 2022). Furthermore, the auditory cortex is more optically accessible 

and less likely to be contaminated by systemic physiology because of the reduced thickness of 

the extracerebral components (scalp, skull, and cerebrospinal fluid) between the source/detectors 

and the auditory cortex compared to other brain regions (Brigadoi and Cooper, 2015).  

 

The findings in Figure 4, indicate that removal of systemic physiology from the fNIRS 

signals improves reproducibility of fNIRS-based rsFC networks by decreasing intra-subject 

variability. Interestingly, we found that SC + physiology regression did not enhance intra-subject 

reproducibility when compared to SC-only regression. This suggests that SC regression alone 

may suffice for longitudinal studies at the intra-subject level. However, it is possible that the 

physiological regressors used in our analysis did not fully capture the complexity of systemic 

physiology, and more physiological regressors, such as heart rate, may be needed to further 

decrease the intra-subject variability (Caldwell et al., 2016). Thus, future studies, should focus on 

including more physiological regressors when comparing SC only regression and SC + Phys 

regression. Nevertheless, our findings emphasize the importance of removing systemic 

physiology to extract reproducible rsFC networks.  

 

Previous research has shown that a seed-based approach, as used in this study has been 

reliable in extracting rsFC networks. However, a challenge in using a seed-based approach to 

extract rsFC networks, particularly for standard fNIRS systems, is choosing the appropriate seed 

location for each network, as it involves selecting which channel best represents which region of 

the brain (White et al., 2009; Eggebrecht et al., 2014). To address this issue, the seed locations 

were chosen based off previous studies (Eggebrecht et al., 2014), and the rsFC networks were 

computed for all possible seeds to investigate the effect of alternate seed locations on the 

extracted networks using the SC + Phys regression method.  Interestingly, the highest 

correlations were observed for inter-hemispheric connections with contralateral-homotopic brain 

regions for HbO, HbR, and HbT in most seeds.  

 

When regressing MAP and end-tidal CO2, an important methodological consideration is 

the temporal shift between the peripheral physiological signals and the fNIRS measurements on 

the head due to the transit time of blood circulation. Low-frequency oscillations, such as those 

observed in MAP, measured in the periphery (I.e., finger and toe) have been shown to be 

strongly correlated to the rsFC measured with the BOLD contrast in fMRI with varying time 

delays (Tong et al., 2013). To improve the regression's performance, we allowed a maximum 

shift of ±20 s because these oscillations can arrive at the brain earlier or later than the periphery 



in relation to the measurement sampling. This shift was necessary to account for the difference in 

arrival times of oscillations due to vessel size, pathlength, and flow rate of blood to different 

sites. Our observation that allowing this shift resulted in higher removal of spurious correlations 

compared to zero-lag regressions suggests the importance of considering temporal delays when 

performing physiological signal regression in fNIRS studies.  

 

Although our study investigates different approaches to mitigate the impact of systemic 

physiology on fNIRS signals to improve its clinical and research application, it also has some 

notable limitations. First, we had a limited sample size of 15 participants and our analysis 

focused on only two measurements for 12 out of the 15 participants. We believe that although a 

larger sample size could increase the statistical power of our findings, the observed reproducible 

effect of removing systemic physiology across participants is reassuring and indicates that the 

observed results were not random. Second, motion artifacts (MA) were not removed in our 

preprocessing procedure. MA refer to changes in the fNIRS signal caused by movement or 

motion during data acquisition. Previous studies have shown that MA can severely degrade 

temporal correlations across fNIRS channels and can reflect movement-related changes in the 

amount of light reaching the scalp or changes in the position of the sources and detectors 

(Scholkmann et al., 2010; Novi et al., 2020). Therefore, it is important to remove MA as they can 

influence our interpretation of the results, decreasing the sensitivity and specificity of the 

measurement. Finally, the fNIRS cap was placed on the participant's head using a standard 

procedure based on the 10-20 system, used in electroencephalography (EEG). This system 

involves identifying specific locations on the scalp based on their distance from anatomical 

landmarks like the nasion (bridge of the nose) and inion (back of the head). However, using this 

method could lead to variability in cap placement, which may impact the sensitivity of the probes 

to certain brain regions. To minimize this variability and increase the accuracy of our results, a 

real-time neuro-navigation system which helps us place the caps on the participants head in a 

more precise way can be used (Khoshnevisan and Sistany, 2012). This would help decrease the 

variability and increase the average correlation within each brain network, improving our results 

(Novi et al., 2020). 
 

In conclusion, this study investigated the impact of systemic physiological on fNIRS-

based rsFC networks and evaluated the effectiveness of various regression techniques on the 

reproducibility of rsFC networks. The study found that systemic physiology can lead to false 

positives, overestimating rsFC, and hinder the detection of changes in rsFC. The study showed 

that SC regression and SC + Phys regression techniques localized rsFC networks, allowing for 

more precise mapping of brain regions involved in specific cognitive functions. Furthermore, 

removal of systemic physiology from the fNIRS signals improves reproducibility of fNIRS-

based rsFC networks by decreasing intra-subject variability. Overall, our findings underscore the 

potential for fNIRS as a clinical tool for assessing awareness at the bedside longitudinally.  
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