
UNIVERSITY OF OKLAHOMA

GRADUATE COLLEGE

GPS DISCIPLINED RFSOC SYNCHRONIZATION, TIMING, AND

PERFORMANCE CHARACTERIZATION IN BISTATIC RADAR SYSTEMS

A THESIS

SUBMITTED TO THE GRADUATE FACULTY

in partial fulfillment of the requirements for the

Degree of

MASTER OF SCIENCE

By

MICHAEL ORTIZ-CHEEK

Norman, Oklahoma

2023

GPS DISCIPLINED RFSOC SYNCHRONIZATION, TIMING, AND

PERFORMANCE CHARACTERIZATION IN BISTATIC RADAR SYSTEMS

A THESIS APPROVED FOR THE

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

BY THE COMMITTEE CONSISTING OF

Dr. Nathan Goodman, Chair

Dr. Justin Metcalf

Dr. David Schvartzman Cohenca

© Copyright by MICHAEL ORTIZ-CHEEK 2023

All Rights Reserved.

iv

Table of Contents

List of Figures .. ix

Abstract .. xiii

Chapter 1: Introduction ... 1

1.1 Background and Motivation .. 1

1.2 Proposed Solution ... 4

1.3 Outline ... 7

Chapter 2: Signal Characterization ... 9

2.1 Motivation ... 9

2.2 EndRun Ninja Precision Timing Module .. 10

2.2.1 Layout ... 10

2.2.2 Command Line Interface on Ninja and Commands Used 12

2.2.3 Bash Scripting ... 12

2.3 Signal Acquisition with the 5950 RFSoC Module 13

2.3.1 Linux Command Line Interface ... 13

2.3.2 “acquire” Example Program and Initialization Files 13

2.3.3 Bash Scripting and Automating File Transfer 15

v

Chapter 3: Signal Characterization Results .. 19

3.1 Frequency Drift Characterization .. 19

3.1.1 Experiment Objectives ... 19

3.1.2 Challenges .. 20

3.1.3 Setup ... 22

3.1.4 Signal Analysis ... 24

3.1.5 Results .. 29

3.2 Timing Drift Characterization ... 34

3.2.1 Experiment Objectives ... 34

3.2.2 Setup ... 34

3.2.3 Signal Analysis ... 36

3.2.4 Results .. 38

3.3 Absolute GPS Time Single Pulse Characterization 43

3.3.1 Experiment Objectives ... 43

3.3.2 Setup ... 44

3.3.3 Signal Analysis ... 46

3.3.4 Results .. 49

Chapter 4: Synchronization Architecture .. 51

vi

4.1 Motivation and Objectives .. 51

4.2 Equipment ... 53

4.2.1 Pentek Model 5950 ... 53

4.2.2 Ninja ... 59

4.3 Field Programmable Gate Array Code .. 59

4.3.1 Overview .. 59

4.3.2 Block Diagrams and Intellectual Property Blocks 60

4.3.3 AXI Communication Protocol and AXI4-Stream 62

4.4 Coherent Processing Interval Control Block ... 63

4.5 Modifying Analog-to-Digital Converter Functionality 71

4.6 Modifying Digital-to-Analog Converter Functionality 74

4.6.1 Original DAC Configuration .. 74

4.6.2 Custom AXI4-Stream IP .. 75

4.7 Timing Tolerances of Solution .. 82

4.8 Implementation Issues ... 86

Chapter 5: Conclusion ... 90

5.1 Conclusions ... 90

5.2 Future Work .. 91

vii

Appendix A: Code .. 93

Signal Characterization Setup: .. 93

Frequency Drift Bash Script .. 93

Timing Drift Bash Script ... 96

GPS Single Pulse Bash Script ... 99

Signal Characterization Analysis: ... 104

Main (Shared by all three experiments) .. 104

Setup (Shared by all three experiments) .. 105

Analysis (Frequency Drift) .. 112

rfsoc_analyze (Frequency Drift) .. 116

Plot (Frequency Drift) ... 117

Analysis (Timing Drift) ... 120

Plot (Timing Drift) ... 123

Analysis (GPS Single Pulse) ... 126

Plot (GPS Single Pulse) ... 129

Solution Code .. 130

radar_control.v ... 130

radar_control_reset.v ... 138

viii

axis_dac_switch.v .. 141

References ... 145

ix

List of Figures

Figure 1: Example of frequency drift between transmitted and received signals. .. 3

Figure 2: EndRun Ninja Port Diagram ... 11

Figure 3: A sample from the bash script used in the first characterization experiment

showing the length of the call needed to start “acquire” without using a script. .. 16

Figure 4: UI created by bash script for easy modification of “acquire” operation.

... 17

Figure 5: An example of jagged I/Q results from a data and a close zoom of the

peaks of each channels’ I/Q FFT. ... 25

Figure 6: Manual frequency drift I/Q results at a 101 Hz offset. 27

Figure 7: Manual frequency drift results. ... 28

Figure 8: Frequency drift results for two Ninja units operating without GPS

discipline. .. 30

Figure 9: Frequency drift results for two GPS-disciplined Ninja units. 32

Figure 10: The results of cross-correlation between a single set of 10MPPS signals

captured from two GPS-disciplined EndRun units ... 37

Figure 11: All 1000 cross correlations generated from data acquired by the 5950.

... 38

Figure 12: The highly aliased results of a timing drift experiment done between the

two Ninja units without GPS discipline. ... 39

x

Figure 13: The lag within each individual cross-correlation at which the cross-

correlation value was highest. ... 40

Figure 14: The first hour of the above results shown in more detail. 41

Figure 15: Maximum Lag in the 10MPPS signal after reliable GPS lock was

achieved. ... 42

Figure 16: A sample of "simultaneously" triggered single pulses from each

EndRun. .. 47

Figure 17: Highlighting the precise time between each of the pulses displayed

above. .. 48

Figure 18: The results of the characterization of the single pulses. 50

Figure 19: The beginning of the path an arbitrary waveform takes within the 5950's

original block diagram. ... 54

Figure 20: An arbitrary waveform unable to be correctly synthesized by the 5950’s

DAC due to frequency issues. ... 57

Figure 21: An arbitrary waveform (LFM) that can be more correctly synthesized by

the 5950’s DAC.. .. 58

Figure 22: An overview of the complete modified block diagram used in the 5950.

... 61

Figure 23: A timing diagram showing how two IP blocks interact using the AXI4-

Stream protocol. .. 63

Figure 24: The “radar_control” block and each of its inputs and outputs. 65

xi

Figure 25: The “radar_control” block, along with the constants and reset logic,

including “radar_control_reset”. ... 68

Figure 26: Vivado timing diagram showing operation of “radar_control” block

given certain inputs. .. 69

Figure 27: The path the signal associated with the TRIG front-panel input on the

5950 takes originally. .. 72

Figure 28: The same TRIG signal is rerouted to the “radar_control” block, and the

ADC trigger output from the “radar_control” block is routed to where the TRIG

signal used to go. ... 73

Figure 29: A section of the block diagram whose purpose is controlling the DAC

and ADC, showing no trigger signal for the DAC. ... 75

Figure 30: The new path an arbitrary waveform takes through the block diagram.

... 79

Figure 31: A timing diagram showing the outputs of the “radar_control” and

axis_dac_switch blocks in a simulated environment in Vivado. 81

Figure 32: A closer look at the above timing diagram, confirming that the signal

streamed by axis_dac_switch is indeed 32768 samples long at the 1GS/s DAC

sampling rate used in initialization files throughout this research effort. 82

Figure 33: Clock cycle period ... 83

Figure 34: Delay between dac_trigger rising edge and axis_dac_switch streaming

first sample of arbitrary waveform. .. 84

xii

Figure 35: Ideal delay between dac_trigger rising edge and adc_trigger rising edge.

... 85

Figure 36: The error constant throughout all attempts to compile. 87

xiii

Abstract

 Distributed radar geometries offer multiple advantages over monostatic

pulse-Doppler radar, but synchronizing frequency and timing for transmitting and

receiving nodes in a distributed system is required to more accurately detect range

and Doppler frequency. A GPS-disciplined bistatic radar synchronization system

design running on an RF System-on-Chip (RFSoC) transceiver and GPS-

disciplined precision timing reference is detailed, and the features and limitations

of these two individual systems are examined. To better understand error tolerances

of relevant signals produced by the timing reference used in the synchronization

system, in-depth analyses of frequency drift, timing drift, and jitter are conducted

and described both with and without GPS disciplining. Custom-designed FPGA IP

designed to implement transmit and receive pulse-Doppler radar functionality in

the RFSoC-based system is introduced.

1

Chapter 1: Introduction

1.1 Background and Motivation

 Bistatic radar, defined simply as a radar system in which the transmitting

and receiving antennas are not collocated, can be useful in military and other

applications. Although the main condition for a radar system to be considered

bistatic is if the transmitting and receiving antennas are in different locations, often

the entire system supporting the antennas will be split in two as well [1]. This

includes the onboard clocks, reference signals, local oscillator (LO) and other

timing-critical infrastructure, which can introduce problems when said clocks are

not properly synchronized.

 When the transmitting and receiving nodes in a bistatic radar system are

separated by enough physical distance to preclude use of the same timing

references, both units will use their own clock to perform radar operations. Using

the same reference, or at least synchronizing each node’s reference, is especially

important in pulse-Doppler radar applications, where the timing and frequency

coherence of the pulse repetition intervals (PRIs) allows the detection of Doppler

frequencies [2]. Even if the model and manufacturer of the references in both the

transmitter and receiver are the same, if the two separated units each use their own

2

clock, physical differences in each clock from manufacturing imperfections,

differences in temperature, and more ultimately lead to timing errors of different

kinds that are not present in a traditional monostatic system.

 Primary among these timing errors are frequency drift and jitter, which

affect bistatic pulse-Doppler radar’s measurements by shifting target range and

Doppler frequency. The transmitting node of a bistatic system knows the precise

time at which it transmits a pulse, but if the receiving side of the system does not

know the start time, the perceived distance of a target will be shifted by the speed

of light times the amount of time the receiver is off by. Similarly, if there is a

difference in LO between the transmitter and receiver, the receiver will interpret

that difference as a Doppler frequency, even if the target is stationary. Therefore, a

synchronization system becomes necessary to keep the transmitter and receiver in

line. Figure 1 shows the concept of frequency drift graphically. In this example, the

receiving node’s clock runs faster than the transmitting node, so the signal it

receives appears to have a lower frequency. The difference in frequency can be seen

when sampling the received signal at period intervals from the perspective of the

transmitting node. This concept is at the heart of the frequency drift calculations

made during this research effort.

3

Figure 1: Example of frequency drift between transmitted and received signals.

 Because the transmitter and receiver are physically separated and prone to

frequency drift and timing jitter, not only is it important to synchronize the two

systems to minimize relative drift between the two, but information about the

frequency and jitter tolerances of the synchronizing subsystem are needed in post-

processing to create the best possible error tolerance estimates.

4

1.2 Proposed Solution

 This research effort aims to not only create a solution that synchronizes both

frequency and absolute initial start time between arbitrarily separated transmitters

and receivers of a bistatic radar system in order to address the issues described

above, but also to characterize the frequency and jitter tolerances of the system used

to synchronize the transmitter and receiver to mitigate the issues described above.

 This research effort was designed around the Pentek Quartz Model 5950

Radio Frequency System on a Chip (RFSoC), henceforth referred to as the 5950.

This Pentek board is powered by the Xilinx Zynq UltraScale+ RFSoC Field

Programmable Gate Array (FPGA) and features an eight channel Analog to Digital

Converter (ADC) and an eight channel Digital to Analog Converter (DAC), which

are fully customizable using the onboard FPGA’s block diagram, an editable visual

representation of the FPGA’s functionality, hard Intellectual Property (IP) (defined

in Section 4.3.2), and example programs provided by the Pentek company.

As only one RFSoC was available, testing on two separate units was not

possible, but because the overall goal was to synchronize a separate transmitter and

receiver, a fully functional setup would include two 5950 units, one for transmitting

and a separate for receiving.

5

 Timing synchronization is provided by signals transmitted by Global

Positioning System (GPS) satellites. Because the 5950 does not natively receive

GPS signals1, Ninja Precision Timing Modules by EndRun Technologies are used

to synchronize the RFSoC. The 5950 accepts a 10 MHz reference signal that it uses

to discipline its own internal clocks, and this reference signal is provided by a Ninja

unit. In addition to the 10 MHz reference signal, the Ninja units have the capability

of creating square waves of varying frequency, as well as single pulses at user-

specified absolute GPS times. As discussed later in this thesis, these signals will be

used in varying ways to synchronize the RFSoC with GPS time. Chapter 2 discusses

in-depth experiments conducted to characterize signal stability, providing an end

user with relevant signal tolerances that can be taken into account in performance

characterization.

As there are two separate synchronization issues present in bistatic radar

systems, the issues of frequency and time synchronization can be addressed

separately. The 5950 includes the ability to bypass internally generated clock

signals and synchronize its clocks to an externally generated 10MHz reference

signal. This feature is tested and verified to work in the first signal characterization

experiment (Section 3.1.5). Frequency synchronization is therefore solved ‘out of

1 The Pentek 5950 RFSoC’s product description and datasheet mention native GPS
support but do not go into depth on the matter, and evidence of GPS integration
was not found in the 5950’s block diagram or provided example programs.

6

the box’ by the 5950, given a 10MHz signal with known frequency drift

characteristics.

Chapter 3 discusses the other issue present in bistatic radar systems, that of

timing synchronization, or synchronizing the transmitter’s and receiver’s start time

triggers, as this issue is not solved out of the box. In summary, custom FPGA code

was developed to convert a trigger signal from the Ninja units into internal triggers

for the 5950’s DAC and ADC to match a Coherent Processing Interval (CPI)

pattern, with fixed PRI and duty cycle. To deal with a lack of support for trigger

signals in the 5950’s DAC (discussed in Section 4.6), an additional block of FPGA

code was developed to provide basic trigger support, allowing the 5950’s DAC to

transmit a predetermined arbitrary waveform for a predetermined amount of time

starting after the rising edge of its new trigger signal.

 The problem of bistatic radar synchronization is not a new one, and

researchers have discussed different methods of synchronizing separate bistatic

transmitters and receivers. In his book “Bistatic Radar”, Nicholas J. Willis

discusses sending synchronization signal from transmitter to receiver over a variety

of methods, such as landline or RF using direct or indirect line of sight, all of which

either require extra infrastructure or could limit the locations at which the bistatic

system us used [1]. Willis also briefly mentions using GPS to synchronize both

signals, coincidentally the topic of this paper, but provides no other information on

7

this method. Other methods of timing synchronization discussed in published

literature also employ GPS, using a 1 pulse-per-second (PPS) signal to synchronize

two nodes of a bistatic system in time, frequency, and phase [3]. Another research

team discussed a way to estimate frequency drift in post-processing by mixing the

transmitted and received signals and applying a band-pass filter [4]. Efforts to

implement multistatic radar for 3-D wind fields have led to the creation of passive

multistatic radar systems whose receiving nodes are synchronized perfectly by

signals sent from the transmitting node [5]. Although all innovative and valid

methods of bistatic radar synchronization, the solution outlined through this

research effort attempts to implement active, rather than estimated, synchronization

without any restrictions on location or communications infrastructure.

1.3 Outline

The work in this paper involves characterizing time and frequency

performance of an EndRun Ninja Precision Timing Module, specifically with

respect to how it affects bistatic radar performance in relation to the timing and

coherency issues discussed earlier in this chapter. The research this thesis describes

also involves how to use the signals produced by the Ninja to discipline a Pentek

Model 5950, modified to be able to transmit and receive signals in a pulsed radar

pattern. In Chapter 2, the thesis will describe the characterization of three types of

8

signals produced by the Ninja with respect to timing and frequency issues, namely

frequency drift of the 10MHz sinusoidal signal, timing drift of the 10 million

pulses-per-second (MPPS) square wave, and the jitter of a single pulse generated

at a specific GPS UTC time. After thorough characterization, in Chapter 3 the paper

will explore a solution to reduce the aforementioned timing and coherence issues

in undisciplined bistatic radar systems using the Ninja as a GPS-disciplined timing

and frequency reference and a pair of Pentek 5950 units. Finally in Chapter 4, the

thesis will discuss shortcomings of the currently implemented solution and outline

areas of further development to address those shortcomings.

9

Chapter 2: Signal Characterization

2.1 Motivation

 In order to know the limitations of the reference signals being proposed for

synchronization, the signals need to be measured, and characterized in terms of

their timing errors. Because the 10MHz signal from the Ninja is the signal proposed

to be used to synchronize the 5950’s clocks, it is important to characterize this

reference signal’s stability in the frequency and time domains. In a bistatic system

where both the transmitter and receiver are run on their own clocks, one clock’s

frequency drift with respect to the other results in a perceived Doppler shift, even

if the target is stationary with respect to both the transmitter and receiver.

Characterizing the frequency drift will allow for tolerances in Doppler frequencies

to be accounted for when creating error estimates.

 Although the 10MPPS signals from the two Ninjas’ PPO ports are not

planned to be used directly in the research effort’s solution, this signal still provides

valuable insight to the stability of the 10MHz signal. The two signals are derived

from the same oscillator onboard the Ninja [6], therefore characterizing the timing

shift of the 10MPPS signal will also characterize the 10MHz’s drift in the time

domain, rather than frequency domain. Characterizing timing is easier with a square

10

wave than with a sinusoidal wave, since pure or near-pure tones have little to no

bandwidth compared to a square wave.

 The absolute GPS time single pulse from two separate Ninja units are the

signals proposed to be used as “starting pistols” for both the transmitter and

receiver. The start time trigger signals provide absolute coherent processing

interval (CPI) start time to the transmitter and receiver, and because error in the

absolute start time of transmitter and receiver results in error in perceived target

distance, the amount of jitter of these trigger pulses with respect to each other will

define target distance tolerances.

 This chapter discusses three experiments that were devised to characterize

these three signals in relevant ways, including the equipment used, relevant settings

for the equipment, the methods used to extract the characterizations from raw data,

and discussions providing context for the results of the characterizations.

2.2 EndRun Ninja Precision Timing Module

2.2.1 Layout

 The Ninja Precision Timing Module (PTM) can provide many output

customized connections, but only a few were used in this research effort. Figure 2

shows a diagram of the available connections [7].

11

Figure 2: EndRun Ninja Port Diagram

Three of the available connections were used throughout this research. Port A was

configured as a 10MHz output. Port G, the programmable pulse output (PPO), a

versatile port used to output pulse trains of varying frequencies and duty cycles as

well as the absolute GPS time single pulse, was configured as both a square wave

and a GPS trigger. Port E was used as a 1PPS signal, where each pulse occurs as

close to each GPS second as possible. The antenna port was also used in

experiments where the Ninja units were disciplined by GPS.

12

2.2.2 Command Line Interface on Ninja and Commands Used

 The Ninja is configured and operated using a command line interface (CLI)

and runs the standard Linux command shell bash. This CLI can be accessed by

serial port or SSH. EndRun provides a detailed list of commands in the Ninja user

manual. The most commonly used commands in this research effort were:

• cpuio – Shows the status of the PPO port.

• cpuioconfig – Allows the user to change the frequency of the pulse train

from the PPO port or to turn the port off.

• triggerppo – Allows the user to schedule an absolute GPS time single pulse.

Another use for the CLI on the Ninja units was running “Joe’s Own Editor” (JOE).

This text editor is loaded on the Ninja units by default and can be used to create

bash scripts.

2.2.3 Bash Scripting

 Like the 5950, the Ninja supports bash scripting to automate processes.

Because the kinds of commands used in the Ninja CLI are limited, the only time

bash scripting was used on the Ninja during the three signal characterization

experiments was during the absolute GPS time single pulse jitter characterization

experiment. The script developed for this experiment automated the process of

13

setting multiple single pulses on a pair of Ninja units using the triggerppo command

so that the jitter between them could be characterized.

2.3 Signal Acquisition with the 5950 RFSoC Module

2.3.1 Linux Command Line Interface

 The 5950 features a Linux-based CLI accessible by serial port or Secure

Shell (SSH), allowing the user to easily interact with the 5950. The CLI allows the

user to create bash scripts, connect to other computers on a local network, edit

initialization files, and run programs.

2.3.2 “acquire” Example Program and Initialization Files

 Pentek included four example programs, written in C, with the 5950. The

first three, “acquire”, “acquireEth”, and “dacquire”, handle different use cases of

the ADC and DAC onboard the 5950. The fourth example program, “show_info”,

provides the user information about the 5950. The program “dacquire” is discussed

in Chapter 3, as it was not used in the signal characterization experiments but was

used later in this research effort.

 The “acquire” program builds on an extensive Board Support Package

(BSP), which contains hundreds of C and C header (.h) files that interface with the

14

RFSoC’s FPGA to access the 5950’s ADC data through the 5950’s Direct Memory

Access (DMA) cores. The original “acquire” example program shipped by Pentek

was used during all three characterization experiments.

 While the C code for “acquire” is included with the BSP to allow the end

user to modify its operation, the program itself relies heavily on hard-coded and

undocumented memory locations to interface with the FPGA, making it difficult to

understand the full details of various commands. A user can, however, modify how

“acquire” operates through initialization files and command line arguments.

Initialization file arguments, all defined in the BSP User’s Manual, that were

modified to meet the signal acquisition needs of this research effort include:

• chanmask – Specifies the ADC channel(s) to be used.

• loop – Specifies the number of individual data buffers to be captured.

• xfersize – Specifies the size of individual buffers in bytes. (Sample data size

was set to 16 bits/sample consistently throughout the research effort)

• numbuf – Specifies the number of DMA buffers of ‘xfersize’ each to be

created for use in a circular buffer.

• brdfreq – Specifies the board clock frequency.

• adcfreq – Specifies the frequency of the ADC clock, which is derived from

the board clock.

15

• adcgatesrc – Specifies which input provides the trigger signal to the

program, where a trigger signal initiates the capture of an individual data

buffer.

• wfile – specifies the name of the file created. Because multiple files were

created per experiment, this argument was only modified in bash scripts to

serialize file names.

• wsize – Specifies the number of bytes to be saved to the file whose name is

specified by ‘wfile’ per loop count. This is distinct from the total number of

bytes captured as determined by ‘xfersize’, but cannot exceed the value set

for ‘xfersize’.

 Unlike the FPGA code and “acquire” example program, custom

initialization files were developed for each characterization experiment to meet the

specific data collection needs of the experiment.

2.3.3 Bash Scripting and Automating File Transfer

 Running BASH scripts on the 5950 module proved to be an invaluable part

of the signal acquisition process. As shown in the results of the three timing

characterization experiments discussed below, each experiment involved hundreds

of individual signal acquisitions and transfers to the PC used to analyze the signals

over Trivial File Transfer Protocol (TFTP). Ideally, these acquisitions would be

16

evenly spaced apart, and automating the acquisition and transfer process allows

acquisitions to be as evenly spaced as possible. Additionally, because bash scripts

allow the use of variables set during runtime, running “acquire” from a bash script

rather than manually allows for much easier overrides of the initialization file than

manually appending all command line arguments to the end of the executable call.

Figure 3 shows the length of the command line argument needed to call “acquire”

without the bash script, while Figure 4 shows the bash script guiding the user

through different setup options before calling “acquire” itself.

Figure 3: A sample from the bash script used in the first characterization
experiment showing the length of the call needed to start “acquire” without using

a script.

17

Figure 4: UI created by bash script for easy modification of “acquire” operation.

 The use of bash scripting in the following three characterization

experiments resulted in greater uniformity of the time between signal acquisitions

and an extremely reduced workload in running the experiments. Greater uniformity

of time between signal acquisitions leads to more accurate depictions of the data

points obtained from signal analysis. The results shown later plot data points evenly

spaced, as the time the signals used to create each data point were captured was not

recorded. Unlike the initialization files, all three characterization experiments used

18

nearly identical bash scripts, since the bash scripts allowed for were set during

runtime rather than hard-coded.

19

Chapter 3: Signal Characterization Results

3.1 Frequency Drift Characterization

 As discussed in Section 1.1, a combination of real-time synchronization

between signals and knowledge of frequency tolerances is critical in accurately

measuring Doppler velocities of targets. The real-time synchronization of separate

transmitter and receiver clocks are discussed in Chapter 4, but the signals used to

achieve real-time synchronization are discussed here. Specifically, the 10MHz

signals generated by two GPS-disciplined Ninja PTMs were captured using a single

Pentek 5950 and analyzed for frequency drift in MATLAB.

3.1.1 Experiment Objectives

 The first experiment was designed to characterize how much the 10MHz

signals produced by both Ninja units drift in frequency with respect to each other.

Mean and standard deviation characterize whether the drift has an offset and how

much the drift varies within the timeframe of the experiment. These characteristics

are relevant to the end user, as they can be used to quantify error statistics when

using a Ninja to discipline a radar system in the field.

20

3.1.2 Challenges

Collecting enough of the required data at a high enough sample rate to

analyze for a minute frequency drift presented several challenges, and a significant

amount of time was spent on hardware and software configurations that ultimately

were not able to provide the data needed.

The first attempts made at characterizing frequency drift employed a brute

force strategy. The idea was that if enough continuous data is captured at once, that

the frequency drift could be easily observed in the Fourier transform of the collected

data as a secondary peak after the much larger 10MHz peak. The issues with this

approach soon became clear, as the Tektronix DPO 70604 oscilloscope used could

not capture and transmit the required amount of data over the VISA over Ethernet

interface implemented in MATLAB to be able to discern such a small frequency in

the frequency domain. Anti-aliasing features on the oscilloscope also prevented us

from observing the frequency drift directly by undersampling the signals.

The next approach was to take short, coherent data captures using the

oscilloscope and a modified MATLAB script that prompted the oscilloscope for

those data captures at defined time intervals to maintain coherence. The aim of this

method was to determine the phase of each data capture compared to a MATLAB-

generated 10MHz sinusoidal signal. The phases for each data capture would form

a new signal, the frequency of which would be the frequency drift δf between the

21

two signals. Figure 1 displays this concept on a much smaller scale. In that example,

the receiving node’s clock runs 0.75 Hz faster than the transmitting node’s clock.

The transmitted signal was 5 Hz, so the signal that the receiving node captured

appeared to be 4.25 Hz. This 0.75 Hz offset can be shown by sampling the received

signal at the frequency of the transmitted signal. For this signal characterization

experiment, however, the signals being characterized are several orders of

magnitude larger than the expected frequency difference. It would be impractical

to sample one ~10 MHz signal at the other signal’s ~10 MHz frequency to discern

a sub-1 Hz frequency difference. Instead, the MATLAB-generated signal was used

to create a matched filter for the captured signal. This would reveal how the phase

of each captured signal compared to the ideal signal over time. Rather than

sampling the imperfect captured signal at the transmitted signal’s frequency, this

effectively samples the captured signal at a multiple of the transmitted signal’s

frequency. This approach ultimately failed on the Tektronix oscilloscope

mentioned earlier as well as on a newer Agilent Infiniium DSO80804B oscilloscope

that also supported VISA commands over Ethernet. The underlying issues seemed

to be related to the amount of time needed for the oscilloscopes to receive and

process the commands being longer than the timing requirements for the data

collections.

After determining that programming an oscilloscope for coherent data

capture was neither practical nor likely the best option, our attention shifted to the

22

5950 RFSoC as a means for data collection and transmission, due to the onboard

FPGA’s high sample rate and ability to acquire and store much larger amounts of

data than the oscilloscopes previously being used. However, a challenge with

preparing the 5950 for the manner of data acquisition needed to characterize

frequency drift was the lack of documentation for the options available when

running the onboard data acquisition program “acquire”. An appropriate sample

rate of 250 MHz was selected, but when this value was used for the overall board’s

frequency in the initialization file used to customize the operation of “acquire”,

collected data did not appear at the correct frequency. It was not until Pentek

support was contacted that it was learned that the board clock rate must fall between

1 and 4GHz inclusively, but the ADC clock could in fact be set to 250MHz. Such

information was not included in the documentation for the “acquire” program or

the 5950, in general, and several other options listed in the initialization file were

either ill defined, had no supporting documentation (including value limits), or

both.

3.1.3 Setup

 The 10 MHz reference signals from two Ninja units were connected to

channels 1 and 2 of the 5950. The first Ninja’s 10MHz output was also connected

to the 5950’s clock input to discipline the 5950’s internal board clock. As shown in

23

Figures 8 and 9, using this reference signal locks the frequency drift results for the

first Ninja around 0, allowing the difference between the two Ninjas to be more

easily observed. Finally, the first Ninja’s PPO output was used as an experiment

trigger; hence, it was connected to the 5950’s trigger (TRIG) front panel input. The

Ninja’s PPO setting was set to 100PPS so that data captures would occur every 0.01

seconds.

The initialization file for this experiment was similar to the initialization

files used to characterize other signals from the Ninja units. The relevant values set

in the initialization file for this experiment were:

- loop is set to 1000.

- xfersize is set to 65536 bytes.

- numbuf is set to 1000.

- brdfreq is set to 1GHz.

- adcfreq is set to 250MHz.

- wsize is set to 65536 bytes.

These settings were chosen to meet the needs of the experiment. A balance was

needed between high-resolution data and data file sizes that were practical to

transfer and analyze, so a board frequency and an ADC frequency of 250MHz were

chosen, along with transfer and write sizes of 65536 bytes. The number of loops

24

and buffers being set to 1000 allowed the 5950 to capture 1000 individual data

captures per overall call of “acquire” without the DMA running out of space.

3.1.4 Signal Analysis

 Analysis of the signals’ relative frequency drift with respect to each other

relies on the 100PPS trigger signal supplied to the 5950 by the first Ninja and can

be thought of in terms of the idea of fast time and slow time used in monostatic

pulsed radar. The 100PPS signal can be thought of as slow time, signaling a capture

of 32768 samples every 0.01 seconds, the equivalent of a pulsed radar’s PRI. The

ADC’s 250MHz clock, which triggers each individual sample capture, can be

thought of as fast time. Each 1000 sets of 32768 samples were correlated with a

complex ideal 10MHz signal in MATLAB, which served as a downconversion and

low pass filter of the data. This created a 1000-point dataset for each channel

representing the phase of each of the 1000 data captures with respect to the ideal

10MHz. The FFTs of each phase data are taken, and the peaks of the FFTs are

recorded as the dominant frequency offset from 10MHz. This is the same process

described in Section 3.1.2. If the peak of the FFT is at 0 Hz as shown for channel 1

in Figure 5, then the δf of that signal is 0Hz. Channel 2 in Figure 5, for example,

would have a δf value of approximately -3 millihertz.

25

Figure 5: An example of jagged I/Q results from a data and a close zoom of the
peaks of each channels’ I/Q FFT.

Figure 5 shows an example of phase data from the matched filter process.

The FFT of the phase data shows that while the frequency of channel 1’s phase is

centered around 0 Hz, channel 2’s phase data is centered around approximately -3

Hz. When jagged phase results such as those shown in Figure 5 were discovered,

the conclusion was made that the RFSoC required arbitrary amounts of time

between data captures to write the data from memory into a file. [8]. These arbitrary

amounts of time caused the data collection to be incoherent, causing the phase data

26

to appeared jagged, just as they do in Figure 5, rather than a smoother slowly

oscillating line corresponding to δf, as was originally expected.

Because the goal was to gain phase information from the matched filter

process, this seemed to present an obstacle in the data collection process, unless it

could be shown that this slightly incoherent phase information could still produce

reliable δf results. After another data collection on the RFSoC using an external

signal generator as a trigger also showed similar coherency issues, a manual test

was done to determine to what extent data captured slightly incoherently produced

predicted results in a more controlled environment. The test consisted of the 5950

acquiring a 10MHz signal from an external signal generator, but the frequency was

manually adjusted by 2Hz between every set of “coherent” data captures. The phase

and frequency results of this experiment are shown in Figure 6:

27

Figure 6: Manual frequency drift I/Q results at a 101 Hz offset.

28

Figure 7: Manual frequency drift results.

Figure 6 displays the phase data from the final offset tested, which was 100

Hz. Despite the jaggedness of both channels’ phase data, the overall flatness of

channel 1’s phase compared to the sinusoidal nature of channel 2’s phase data help

show the validity of this method. The coherency issues are still present, but the

manual frequency drift using the same matched filtering process described above

clearly shows the correct frequencies (accounting for aliasing) in Figure 7, which

shows the frequency drift observed throughout the frequency sweep. Each data

29

point was found by calculating the peak of the FFT of that frequency offset’s phase

results. The data shown in Figure 7 aliases at ±50 Hz. This experiment verified that

frequency drift information can still be reliably captured from slightly incoherent

data captures, and this method of determining frequency drift from slightly

incoherent captures was determined to be valid.

3.1.5 Results

 Initial versions of this experiment were run before either Ninja unit were

ever connected to their GPS antennas or locked on to a GPS signal. Figure 8 shows

a clear offset of approximately 3.77 millihertz with a standard deviation of 0.406

millihertz and a change in drift over the course of over 30 hours can be seen between

the two Ninjas. The 5950’s clock was referenced to the 10MHz signal from the first

Ninja, so Figure 8 only provides information about the relative drift between the

Ninjas, rather than information about the absolute drift of either of the two. Spikes

that occur at the same time in both channels’ results are believed to be the result of

timing issues internal to the 5950, as the two Ninja units were not directly connected

throughout the entire experiment.

30

Figure 8: Frequency drift results for two Ninja units operating without GPS
discipline.

 In addition to characterizing the frequency drift of undisciplined Ninja

units, Figure 8 provides an additional piece of information crucial to the overall

research effort: verification that the 5950 supports clock disciplining for both its

ADC and DAC out of the box. The default setting for brdclksrc (Board Clock

Source) in the original initialization file for “acquire” provided by Pentek is “int”,

which stands for internal. This setting, according to the initialization file, instructs

the 5950 to generate a clock signal internally and to use an external reference clock

to discipline it if available. An external clock reference signal was available to the

31

5950 during this experiment and the setting for brdclksrc was left unchanged, but

the assumption that the 5950 uses this clock reference in the advertised way cannot

blindly be made. As the reference clock was the same 10MHz signal connected to

the 5950’s channel 1, if the 5950 did in fact use the clock reference to discipline its

own board clock (from which the ADC and DAC clocks are derived) one could

expect the δf results of that channel to appear locked at 0Hz, before accounting for

random error. This is, in fact, exactly shown in Figure 8. There was nothing

different or special about the Ninja connected to Channel 1. Because this run of the

experiment shows that undisciplined Ninjas are prone to visible frequency drift, if

the 5950 used its own internally generated board clock that was in no way

influenced by either one of the Ninjas, it would be expected that the δf values for

neither of the Ninjas would be locked at 0, which is not the case. Verifying that the

5950’s board clock can be disciplined out of the box solves one of the two issues

with bistatic radar that this research effort seeks to solve.

 Once the Ninjas were connected to their antennas and locked on to a GPS

signal, the frequency drift experiment was repeated. Figure 9 shows the difference

that GPS disciplining can make on frequency drift. The 5950 was locked on to the

Ninja connected to channel 1, just as in the previous run of the experiment without

GPS discipline.

32

Although the duration of the experiment was approximately one seventh of

the previous undisciplined experiment, the differences are immediately visible.,

with both Ninjas’ δf results appearing to be locked at approximately 0 Hz with no

clearly visible change in drift over time, as was seen in Figure 8. The average offset

between the two was approximately 29.8 microhertz, and the standard deviation of

the relative drift between the two was approximately 0.792 millihertz. As seen in

the undisciplined run of the experiment, the spikes occurring in the results for both

channels is also seen here and is again believed to be caused by timing issues within

the 5950. Because the signal connected to channel 1 is also the 5950’s board clock

Figure 9: Frequency drift results for two GPS-disciplined Ninja units.

33

reference, its δf results should ideally be 0 Hz. Results showing otherwise would

mean some mismatch internal to the RFSoC between the 10 MHz input reference

and the ADC clock. Finding the standard deviation of channel 1’s δf results,

therefore, should provide insight as to how much phase jitter can be expected on a

5950. When using a single 5950 as a monostatic radar, this phase jitter should not

present much issue – as shown in Figures 8 and 9, both channels’ results experience

the same jitter, so subtracting the two results should remove it. When using two

separate 5950 units in a bistatic radar configuration, however, this jitter cannot be

assumed to be the same between the transmitter and receiver. The standard

deviation of channel 1’s results is 9.51 millihertz, which is significantly larger than

the standard deviation of the relative frequency drift between the two Ninja units.

Since 10 MHz signals in a radar system can be scaled up, discussing these

frequency drift results scaled up is relevant. For the undisciplined results, scaling

the ~10 MHz signal with ~3.8 mHz of error to a 3 GHz signal would result in

approximately 1.14 Hz of drift on average. Scaling the disciplined results from 10

MHz to 3 GHz would result in approximately 9 mHz of drift on average. Taking

the jitter within the RFSoC, the standard deviation of frequency drift in the

disciplined case would be approximately 2.9 Hz of drift. On the order of 3 GHz,

these frequencies would barely be noticeable whether discipline by GPS or not, but

the GPS-disciplined results on average show much lower drift.

34

3.2 Timing Drift Characterization

3.2.1 Experiment Objectives

 Although the 10MPPS signal is not used directly in the solution developed

to synchronize transmitting and receiving nodes of a bistatic radar system,

understanding the limits of this signal provide more understanding of signals that

were in fact used. As the 10MPPS signal created by the EndRun is tied to the

10MHz signal characterized in Section 3.1 through the Ninja’s internal main

oscillator [6], characterizing timing errors of this signal in the time domain will aid

in understanding the 10MHz signal’s timing stability.

3.2.2 Setup

Because the 10MPPS signal created by the Ninja units is accessed through

the unit’s PPO port, the 1PPS signal (port E) on Ninja 1 was used as the RFSoC’s

ADC trigger. Ninja 1’s PPO port was connected to the 5950’s first ADC channel,

and Ninja 2’s PPO port was similarly connected to the 5950’s second ADC channel.

Both Ninjas’ PPO ports were set to the 10MPPS option, as this was the signal being

analyzed.

35

 The initialization file for this experiment was similar to the initialization

files used to characterize other signals from the Ninja units. The relevant values set

in the initialization file for this experiment are:

- loop is set to 1.

- xfersize is set to 65536 bytes.

- numbuf is set to 1000.

- brdfreq is set to 4GHz.

- adcfreq is set to 4GHz.

- wsize is set to 65536 bytes.

These settings allowed the 5950 to capture large amounts data at its highest

sampling rate, without sacrificing the rate at which captures occurred for

unnecessarily long captures. As the signal analysis methods compared the two

Ninjas’ signals within one capture rather than over the course of multiple captures,

as was the case in the previous experiment, the number of loops of data capture per

“acquire” call did not need to be higher than 1. Before the number of buffers was

set to 1000, the experiment often crashed due to the 5950’s DMA running out of

space.

36

3.2.3 Signal Analysis

 As the goal of this experiment is to determine the stability of the Ninja in

the time domain and the signals being analyzed are of the same shape (a square

wave at 10MPPS), cross-correlation was used to analyze the signal.

Just as with the frequency drift characterizations, data was processed loop

by loop to ultimately create a set of datapoints (in this case shown in Figure 13),

each of which represents the results of the analysis for that loop. To generate the

cross correlations for analysis, both data captures for each loop were loaded into

MATLAB. In MATLAB, each set of signals from each loop were cross-correlated

to quantify the relative delay between signals. One example cross-correlation

output is shown in Figure 10, followed by all cross correlations across all loops in

Figure 11. Although not visible in Figure 11, the maximum value for each loop’s

cross correlation was recorded in an array, shown in Figure 13.

37

Figure 10: The results of cross-correlation between a single set of 10MPPS
signals captured from two GPS-disciplined EndRun units

38

Figure 11: All 1000 cross correlations generated from data acquired by the 5950.

3.2.4 Results

Similar to the frequency stability experiment, first iterations of this

experiment occurred without GPS disciplining on the Ninja units to allow for the

timing stability of undisciplined Ninja units to be analyzed. Figure 12 shows the

results of one such experiment.

:

39

Figure 12: The highly aliased results of a timing drift experiment done between
the two Ninja units without GPS discipline.

The relative stability of the second Ninja’s 10MPPS signal with respect to

the first’s is visibly low, as indicated by the severe slope and the aliasing, caused

by the periodic shape of the waveforms. The period of the PPS signal is 0.1

microseconds, and as the drift cycle repeats approximately every 0.08 hours, the

rate of drift is calculated as approximately 0.35 nanoseconds/second, resulting in

approximately 5 millimeters of perceived target movement over a 50ms CPI.

40

Figure 13 shows the results of an iteration experiment done with GPS

disciplining, with Figure 14 highlighting the first hour of the same results for the

purposes of examining the Ninjas’ speed in locking on to a GPS signal.

Figure 13: The lag within each individual cross-correlation at which the cross-
correlation value was highest.

41

Figure 14: The first hour of the above results shown in more detail.

The severe drift during the first 4 minutes of the experiment, seen in Figure

14 is due to the Ninja units not being connected or locked on to a GPS signal. The

choice to wait to connect the Ninja units to GPS until after the experiment started

was made to characterize the length of time required to lock on to a GPS signal.

Although the Ninja units connected to a GPS signal within approximately 4

minutes, it took the units approximately 15 minutes in ideal weather with ideal GPS

constellation visibility to lock on well enough to stabilize drift, with even better

results after 45 minutes, despite the Ninja user manual stating that users can expect

42

lock times of around 10 minutes [7]. Although the time the Ninjas took to fully lock

on to a GPS signal does not directly affect the results of the experiment, it is an

important note for future systems using a Ninja unit. After determining the time at

which the Ninja units were reliably locked on to a GPS signal, it is then possible to

isolate the stabilized data for analysis.

Figure 15: Maximum Lag in the 10MPPS signal after reliable GPS lock was
achieved.

 Figure 15 shows the stabilized timing drift data. Compared to Figure 13, the

data are much more stable. Because the sampling frequency of the data is 4GHz, a

43

lag of 1 correlates to a time offset between the pulses of 0.25 nanoseconds. Given

an average and standard deviation of lag shown in Figure 15, the two signals were

offset on average by 19.208 picoseconds, with a standard deviation of 3.7209

nanoseconds over a timescale on the order of hours. Compared to the above-

mentioned CPI timescale of 50ms, timing drift of two Ninja units reliably locked

on to GPS signals is not something likely to make any difference during a CPI.

3.3 Absolute GPS Time Single Pulse Characterization

 As described in Section 1.1, the ability to synchronize the start times for the

transmitter and receiver of a bistatic radar system both in real time and in post-

processing is required in order to correctly estimate a target’s distance.

3.3.1 Experiment Objectives

 This signal characterization experiment aims to determine the drift of

relative jitter between two Ninja units scheduled to produce absolute GPS time

single pulses, characterized by the standard deviation of all jitter observed in data

captures. Standard deviation of jitter is relevant to this research effort, because it

shows how stable the trigger for the CPI (this signal’s intended use in this research

effort) can be expected to be.

44

3.3.2 Setup

 The single pulses are a feature of the Ninja’s PPO port (port G), a versatile

port also used as the trigger for the first experiment and the 10MPPS signal

analyzed in the second experiment. Ninja 1’s PPO port is connected to the first

ADC channel of the 5950, and Ninja 2’s PPO port is likewise connected to channel

2 of the 5950’s ADC.

 This experiment was the only to utilize the Ninjas’ support for bash

scripting. The script run on the Ninjas automated setting their PPO triggers, and

was carefully timed so that the total number of triggers scheduled on a Ninja at any

one time would stay relatively constant. If the frequency at which the triggers were

set was much larger than the frequency the triggers themselves occurred, the Ninjas

would run out of memory and crash, ending the experiment prematurely. If the rate

of setting triggers was lower than the frequency at which the triggers occurred, the

Ninjas would run out of triggers, and the experiment would similarly be ended

prematurely. The script relied on the Ninja’s triggerppo command, as well as hard-

coded time values updated in the script before running the experiment.

 Because the PPO output on the Ninja is the only port able to create a single

pulse, the PPO port on Ninja 1 was also used as the ADC trigger for the 5950.

Originally, the 1PPS signal was used as the trigger signal, but this resulted in

several issues. The primary issue resulted from timing delays on the single pulse,

45

as reported in the Ninja terminal. Although the single pulses are scheduled to occur

on the GPS second, the pulses were consistently delayed by approximately a third

of a second, while the 1PPS signal’s rising edges occurred faithfully on the GPS

second. This third of a second delay resulted in the ADC capture missing the single

pulses entirely unless settings in “acquire”’s initialization file were used that made

the data captures far too large to transmit over TFTP in a reasonable amount of

time. Secondly, single pulses can only be scheduled a minimum of two seconds

separated from each other, according to the Ninja user manual. Because the trigger

rate was twice this minimum spacing, half of the captures occurred at seconds the

Ninjas were not scheduled to produce single pulses. To alleviate these two issues,

the decision was made to use a splitter on the first Ninja’s PPO output and for each

of cables carrying the single pulses to the ADC be approximately 50 feet. This

length of cable creates a delay long enough to allow the ADC to process the trigger

and start the capture before the pulses arrive. Because this added delay was slightly

different for each Ninja due to a lack of uniformity between cables available, the

true mean of jitter between the Ninja units is not measurable with this setup.

However, finding the mean jitter was not the goal of the experiment, finding the

drift in jitter was. Because the length of cables and therefore delay due to the cables

did not change between captures, the differences in jitter would therefore have to

come from the Ninja units themselves.

46

 The initialization file for this experiment was largely similar to the other

two initialization files, and the relevant variables are:

- loop is set to 1.

- xfersize is set to 268,435,456 bytes.

- numbuf is set to 4.

- brdfreq is set to 1GHz.

- adcfreq is set to 62.5MHz.

- wsize is set to 268,435,456 bytes.

These changes reflect the signal acquisition needs of the experiment: Capturing one

loop per trigger, long enough to capture both pulses should they drift significantly,

and at a low enough resolution to practically be able to transfer and process the

resulting files. Although the 268 Megabyte value for both the transfer size and write

size could have realistically been decreased, the choice was made through the trial-

and-error process, as initial attempts at this experiment did not result in both pulses

being captured.

3.3.3 Signal Analysis

 Figures 16 and 17 show the signals captured by the 5950 in a setup

configured as described above, with the only difference between the two figures

being scale on the x-axis. The general shape and amplitude of the waveforms shown

47

in the two figures is a typical representation of all waveforms captured in this

experiment.

Figure 16: A sample of "simultaneously" triggered single pulses from each
EndRun.

48

Figure 17: Highlighting the precise time between each of the pulses displayed
above.

 Analyzing the waveforms to determine standard deviation of jitter between

the two signals was straightforward. The initial plan to measure jitter was to identify

the points shown in Figure 17 algorithmically in MATLAB and determine how far

apart they are on the x axis. Given the slight variation in maximum and slight noise,

the algorithm developed to find this first maximum point for each signal proved

unreliable. Instead, the difference in time between pulses was measured using

slope. The slopes of the rising edges of both channels are at their maximum in

49

approximately the center of their rising edges, and this was found to be true for all

pulses observed in the experiment. Therefore, using the gradient command in

MATLAB on the entire waveform and locating the maximum of this new array

would reliably and accurately locate not necessarily the “first maximum” point

shown in Figure 17, but instead the same point of the rising edge in each waveform.

Once the index of this maximum point was determined, the index was divided by

the sampling frequency of the ADC to determine the time at which the maximum

occurred. Subtracting the two times from each signal then provides the jitter relative

to each other. The relevant MATLAB scripts for this experiment can be found in

the appendix.

3.3.4 Results

 Figure 18 shows the results of this experiment. As noted in Section 3.3.2,

the mean jitter is not a relevant or valid measurement, because the slightly different

lengths of cables connecting the Ninjas’ PPO ports to the 5950’s ADC create

slightly different constant delays for the signals being measured, and because the

scope of this experiment was limited to drift in jitter. However, as this difference

in delay due to differing cable lengths is constant, the difference in jitter observed

can be attributed to trigger instability within the Ninja. Using this signal as a trigger

for a bistatic radar system, one could expect a standard deviation of approximately

50

1.8 nanoseconds of jitter between two Ninja units when both Ninja units are GPS

disciplined. Translating this value to target range using the speed of light, error in

target range due to using this signal as a CPI trigger alone could be expected to

have a standard deviation of approximately 0.54 meters.

Figure 18: The results of the characterization of the single pulses.

51

Chapter 4: Synchronization Architecture

4.1 Motivation and Objectives

After characterizing the signals from the EndRun Ninja, a solution was

needed to incorporate those signals into a system that could synchronize a

transmitter and receiver. This chapter discusses that solution. For the purposes of

this research effort, “solution” refers to the combination of new code developed and

modifications made to existing code and other structures created by Pentek in order

to create a system capable of achieving the goals of this research effort, discussed

in Chapter 1 and below. “System” refers to the combination of physical components

and their respective code required to implement the solution in the field, such as

the Ninja, its antenna, the 5950, all required cables, and the code running on the

Ninja and 5950.

At a high level, this solution would function in two parts: one system would

act as a transmitter, and another would act as a receiver. To reduce code replication

and to add flexibility to the solution, the solution was designed to include both

transmitter and receiver functionality on both systems, where the end user can

decide which system acts as a transmitter and which acts as a receiver simply by

making a modification to the initialization file (or selecting a different initialization

file that includes the modification) and connecting or disconnecting cables from the

52

front panel. The solution would need to include a way for each system to be able to

accept a signal that would start the synchronized pulse train on both systems at the

same time and a signal to keep the clocks of both systems synchronized.

The first requirement for an acceptable solution is the ability to use the 5950

to generate pulses in a precise way with respect to timing and frequency.

Specifically, the 5950 needs to be able to transmit, receive, and save signals in a

pattern matching the specifications of the intended CPI, such as pulse width, pulse

repetition interval (PRI), and number of pulses. The 5950 must accomplish this

while adhering to the frequency and timing specifications, outlined in Chapter 2,

that the Ninja is capable of. The frequency drift of the 10MHz signal, used to

discipline the 5950’s internal clock, is characterized in Section 2.4, so the solution’s

frequency drift should approximately match this characterization. Similarly, the

jitter of the single pulse signal, used as a start time trigger for the CPI, is

characterized in Section 2.6, and the jitter observed in relative CPI start time

between systems should approximately match this characterization.

53

4.2 Equipment

4.2.1 Pentek Model 5950

Because transmit signals were not required for characterizing the Ninja

reference signals, only the example program “acquire” was used. Because

transmitting signals is a requirement for a pulsed radar system, the example

program dacquire (DACquire is a version of “acquire” that allows access to the

DAC) was used. Dacquire functions very similarly to “acquire”, and the user

interfaces with it in the same way. Initialization files between the two programs are

nearly identical, with the dacquire initialization files including DAC-specific and

Digital Upconverter (DUC)-specific arguments that are not defined in “acquire”’s

source code. The DUC was not used in this research effort, and the DAC-specific

arguments will be discussed later in this section.

Looking at dacquire’s source code, the first difference that is immediately

clear is the definition of four DAC modes: SIGGEN, CHIRP, ARB, and

LOOPBACK. CHIRP and LOOPBACK were not used in this research effort, but

SIGGEN and ARB were. Each of these DAC modes is accompanied by a relevant

section of code, but just as much of “acquire”’s source code consists of memory

calls to undocumented and hard-coded memory locations, so do much of these

sections of code, making it difficult to obtain full operational understanding.

54

A feature mentioned in documentation for the Pentek 5950 is the ability to

transmit arbitrary waveforms through the 5950’s DAC from on-board memory. [9]

Although this is technically true, some trial and error was required to harness this

ability. The process to upload an arbitrary waveform to RAM, where it is clearly

accessed in the block diagram (uppermost highlighted IP block in Figure 19), was

not found in the documentation available.

Figure 19: The beginning of the path an arbitrary waveform takes within the
5950's original block diagram.

Upon inspection of dacquire’s source code, it was found that dacquire stores

the arbitrary waveform in an array, which is not declared in the C code file,

indicating that it might be declared in one of the header files included in the source

code, and would likely be hard-coded and unable to be edited after compiling

dacquire. The header file in question, table.h, was found to be relevant to dacquire’s

55

arbitrary waveform functionality. The number of samples to be stored in RAM from

this header file was determined in dacquire’s source code by a variable, ‘length’,

which was originally set to a value far lower than the 32769 (not 32768) samples

originally present in table.h. Because samples are loaded into RAM in a for loop

which repeats a total of ‘length’ number of times, any samples present in table.h

past the number specified would be ignored and not loaded into RAM. Compiling

dacquire with a table header file containing fewer than ‘length’ samples, however,

would cause the remaining available memory locations to retain their initial

unusable random value, causing considerable noise at the end of the transmission.

No documentation was provided to define a maximum number of samples, but

through inspection of the 5950’s memory map in Vivado and the memory addresses

used in dacquire’s source code, it was found that 32768 16-bit samples can be stored

in RAM. Although this theory was not tested, based on the memory map found in

Vivado, potentially more than 32768 samples could be used if the number of

channels available is decreased, as the spaces in memory for each channel’s

arbitrary waveform are consecutive.

As mentioned earlier, the BSP User’s Manual defines initialization file

arguments that are DAC-specific. Unfortunately, it was discovered that these

initialization file arguments do not actually modify the DAC’s operation. The

following arguments are analogous to arguments relevant to the ADC (listed in

56

Section 2.3.2) that were defined in the BSP User’s Manual, but were found to have

no effect on dacquire’s operation:

• dacfreq (analogue of adcfreq) – Should specify DAC clock frequency, but

the DAC operates instead at the board clock frequency, regardless of what

this value is set to.

• dactrigmode (analogue of adctrigmode) – Should specify the source of the

trigger signal used to start DAC transmissions, but the signals available to

the ADC in the 5950’s original block diagram were found to not be available

to the DAC. In testing, the DAC transmitted the uploaded arbitrary

waveform in a continuous loop without respect for the trigger signal

specified under this argument. (discussed more in Section 3.6.1)

• dacdatasrc – Seems to be similar to the four DAC modes specified near the

top of dacquire’s source code, but lists ‘dma’, ‘ram’, ‘sine’, and ‘ramp’

instead. The four DAC modes in dacquire’s source code are not editable by

this setting, as each mode is enabled or disabled by defining each mode as

either 1 or 0 in the source code.

These discrepancies from what was published in the BSP User’s Manual and how

dacquire and the 5950’s DAC actually operate added months to this research effort,

and necessitated a second IP block to be developed for this research effort,

discussed in Section 4.6.2.

57

Initial tests of the 5950’s arbitrary waveform transmission abilities also

uncovered an important detail in creating a waveform suitable for the 5950: the 3dB

passband for the DAC, listed as 10MHz – 3700MHz in the 5950’s datasheet. This

detail was initially ignored when creating waveforms to test dacquire with, which

led to distortions observed in the DAC’s output. This issue was easily resolved by

creating an LFM waveform that meets the frequency specifications. Figure 20 not

only shows the 5950 RFSoC failing to correctly synthesize the waveform, but it

also shows garbage values at the end of the synthesized waveform due to unused

spaces in memory. Figure 21, however, shows a correctly synthesized waveform.

The distortions in the waveform’s envelope are thought to be caused at least in part

by the duty cycle the DAC is running at. Under this assumption, transmitting this

waveform at a PRI more realistic for a pulsed radar system could help improve the

envelope’s distortions.

Figure 20: An arbitrary waveform unable to be correctly synthesized by the
5950’s DAC due to frequency issues.

58

Figure 21: An arbitrary waveform (LFM) that can be more correctly synthesized
by the 5950’s DAC..

Previous attempts to find a solution to the problems addressed by this

research effort included modifying dacquire to control precisely when the 5950

transmitted the arbitrary waveform to create a pulsed radar pattern, rather than

modifying the block diagram. Between the ill-documented memory calls and the

complexity of the block diagram alone, this effort was cut short to focus on

modifying the block diagram (defined in Section 4.3.2). The only modifications to

dacquire’s original source code that remain in the solution are:

• Redefining SIGGEN as 0 and ARB as 1 to enable dacquire’s arbitrary

waveform mode and disable the internal signal generator.

• Changing the value of ‘length’ to allow dacquire to use all memory

originally allocated to it.

59

• Changing the array in table.h to include the LFM waveform generated for

this research effort.

4.2.2 Ninja

 The Ninja is used as an external trigger signal and frequency reference, but

the primary timing and synchronization features are implemented on the Pentek

5950.

4.3 Field Programmable Gate Array Code

4.3.1 Overview

Hardware Description Languages (HDLs) are distinctly different than other,

more traditional programming languages such as C, Java, or MATLAB. HDLs

model physical digital circuits containing components such as flip-flops, look up

tables (LUTs), and more, rather than provide sequential instructions for a processor

to interpret. FPGAs use HDL code to model desired functionality, and this code is

then synthesized and mapped into the various elements that make up an FPGA [10].

Because HDL code models physical circuits, multiple tasks can execute

simultaneously in parallel, helping to tightly control timing. The core functionality

60

of the 5950 RFSoC is contained within the onboard Xilinx Zynq Ultrascale+ FPGA,

and the solutions described in this chapter rely on HDL code.

An important concept in HDL programming is the wrapper. As in other

aspects of computer science and programming, wrappers are pieces of code that

encapsulate other pieces of code for the purpose of abstraction, adding

functionality, or bridging the gap between incompatible communication protocols.

A direct analogy would be an integrated circuit chip: The chip on its own is not

very useful, but a properly designed circuit board that connects to all inputs and

outputs of the chip and ensures all requirements for those inputs and outputs are

met allows the chip to be used to its fullest potential. In this scenario, the circuit

board would be the wrapper for the integrated circuit, the HDL code. It is important

to note that just as a circuit board is as much a piece of hardware as the integrated

circuit, the wrapper is also written in HDL code.

4.3.2 Block Diagrams and Intellectual Property Blocks

In the context of FPGA Programming, Intellectual Property (IP) blocks are

pre-built blocks that represent different kinds of functionality and are used in a

block diagram, the visual representation of how an FPGA is being programmed.

An example of a block diagram is shown in Figure 22. There are two types of IP,

hard and soft. Hard IP is generally published by the manufacturer of the FPGA chip

61

and is optimized for the specific model of FPGA being used, often predetermining

the physical gate connections within the FPGA chip itself [11]. Hard IP can be

placed in a block diagram and can be connected to other IP blocks, but oftentimes

hard IP cannot be modified by the user. Soft IP, on the other hand, is more broadly

compatible, is written in HDL, and can be more easily customized [11]. Without

very specific and in-depth gate-level knowledge of the specific FPGA chip present

on the 5950 (Zynq Ultrascale+), soft IP is the most practical kind of IP to develop,

despite its slightly less efficient allocation of an FPGA’s resources due to lack of

gate-level optimization [11].

Figure 22: An overview of the complete modified block diagram used in the 5950.

62

4.3.3 AXI Communication Protocol and AXI4-Stream

 The AXI Communication Protocol was developed by ARM in 2003 for the

purpose of standardizing fast and efficient communication between separate

components. [12] Xilinx and Pentek rely heavily on the AXI Communication

Protocol for clocked parallel communication between IP blocks, and this protocol

is extremely common in the block diagram provided by Pentek for use with the

5950.

 The AXI4-Stream protocol relies on simple handshaking between upstream

and downstream components to allow for efficient parallel data transfer. The

essential components of an AXI4-Stream link are the clock, the data bus, tvalid

signal, and tready signal. Because AXI is a clocked protocol, both upstream and

downstream blocks use the same clock. The data bus can theoretically be any

number of bits. The tready signal (downstream to upstream) and tvalid signal

(upstream to downstream) signals are how both blocks communicate to each other

that they are ready to send and receive data. If either of these signals is deasserted,

data flow stops until both upstream and downstream are ready to continue. Another

signal, tlast, is commonly included, but is not necessary, and is not used in this

work. The tlast signal is sent from upstream to downstream and indicates to the

downstream block that the data currently on the data bus is the last it has to offer.

Because the AXI4-Stream applications in this paper are constantly streaming, tlast

63

is not applicable. Figure 23 shows how two IP blocks interact over AXI4-Stream.

[13]

4.4 Coherent Processing Interval Control Block

As discussed in Chapter 1, one of the primary timing requirements for a

bistatic pulsed radar system is synchronizing the absolute start time of a CPI. An

Figure 23: A timing diagram showing how two IP blocks interact using the AXI4-
Stream protocol.

64

IP-based solution to this problem would require a start trigger, internal timing, a

clock, and the ability to generate triggers that work with the DAC and ADC systems

in the 5950. A soft IP block, “radar_control”, was developed to generate trigger

signals for both the DAC and the ADC. The code for the block is written in Verilog,

which is an HDL. For initial use, the block's PRI and duty cycle parameters were

hard coded, and the block does not incorporate any AXI communication, but future

development could create an AXI wrapper that could provide PRI and duty cycle

parameters from information provided by the user during runtime. Figure 24 shows

this IP block and its connections.

65

Figure 24: The “radar_control” block and each of its inputs and outputs.

The choice to avoid using the AXI protocol to communicate with the rest of

the block diagram about the status of the DAC and ADC triggers is motivated by

timing constraints. Due to external and internal signals being inherently unaligned

in frequency or phase, any amount of delay could cause timing error if it causes the

FPGA to wait a clock cycle to enable or disable the DAC or ADC. In order to

minimize any delay in the logic, an asynchronous approach was chosen. Because

the ADC is accustomed to using an asynchronous external trigger signal, it will not

be affected by this choice. The DAC system, as described in Section 3.6.1, uses

66

AXI4 Stream to retrieve and stream the arbitrary waveform hardcoded into BRAM,

and the custom IP developed to finely control the DAC (discussed in Section 3.6.2)

uses AXI4 Stream to operate as well. Because AXI4 Stream is a clocked interface,

the trigger signal is not registered by the IP block until the following clock rising

edge. The delays introduced by this asynchronous to synchronous approach are

discussed in section 3.7.

The Ninja offers an absolute GPS time-based single pulse option,

characterized in Section 2.6, which offers a convenient way to provide a start trigger

and interface with this solution. Assuming that each set of Ninja and 5950 units are

already running, with the 5950 units running dacquire, operators of the separate

transmitter and receiver would only have to agree on a start time for a CPI and write

one command in the Ninja terminal (triggerppo – discussed in Section 2.2.2),

setting this predetermined start time, to have both transmitter and receiver receive

a CPI start trigger at the same time. As discussed in Section 2.6, the Ninja self-

reports delay on its absolute GPS time-based single pulse, so even if the delays for

each Ninja are different, the information is readily available in the Ninja terminal

for alignment in post-processing.

Other inputs to the “radar_control” block include external reset and ready

inputs, inspired by the AXI protocol. The three ready inputs could allow the user,

the DAC, and the ADC to stop or prevent operation of the “radar_control” block if

67

necessary. Because the 5950 does not offer a simple way of interfacing externally

with such a flag, and neither the DAC nor ADC offer such signals, these inputs are

tied high in the current form of the design using a Xilinx-designed IP block [14]

that provides a constant value. Even though these ready functions are currently not

in use, their existence allows for a more robust implementation in the future without

having to redesign and retest the functionality of the Verilog code powering the IP

block. The external reset input is included for similar reasons, but is operational in

the modified block diagram, because the IP block will not properly start without an

external reset signal. This external reset is a synchronous reset that, when a rising

edge occurs, will initialize the IP block to its default state, including all registers.

This initialization is required at startup, or none of the registers will have been set

to their correct values. This reset is separate from the self-resetting capability of the

IP block after a CPI is completed, as indicated by the pulses_complete flag, where

the IP block automatically readies itself for another external trigger when this flag

goes high. In order to generate the initial “external” reset signal, another IP block

was created, “radar_control”_reset, whose sole purpose is to create a single pulse

to feed into the “radar_control” block’s reset input. After initial testing of this

separate IP block, the Processor System Reset block, developed by Xilinx, was

found to be necessary. This block ensures that an external reset signal is properly

synchronized to a clock and is placed between the “radar_control_reset” and

“radar_control” blocks. [15] In future development, this external reset signal could

68

be made more robust and user-accessible, allowing for an operator to manually reset

this IP block in case of malfunction. The entire reset functionality of the

“radar_control” system, including “radar_control_reset”, were developed after

consultation with an engineer at the University of Oklahoma’s Advanced Radar

Research Center after issues with compiling the overall Vivado project were

narrowed down to the “radar_control” block (see Section 3.8). Figure 25 shows the

“radar_control” block alongside its supplementary IP blocks, including

“radar_control_reset”.

Figure 25: The “radar_control” block, along with the constants and reset logic,
including “radar_control_reset”.

The most important outputs of the “radar_control” block are the two trigger

signals for the DAC and the ADC. Because the ADC and DAC require trigger

signals rather than enable signals (where the DAC or ADC is not only enabled when

69

the signal goes high, but also disabled when the signal goes low), the duty cycles

for each signal are set to 50%. The final output of the “radar_control” block is the

pulses_complete flag, which goes high after the final pulse in a CPI is complete.

This flag being raised also signifies that the block is ready to start a new CPI when

a new trigger rising edge is detected. Any trigger rising edge detected during a CPI

will be ignored. Figure 26 shows the basic functionality of “radar_control” through

a timing diagram simulated in Vivado. Note that this timing diagram does not factor

in the reset signal.

Figure 26: Vivado timing diagram showing operation of “radar_control” block
given certain inputs.

The “radar_control” block primarily operates using a number of constant

values and counters that trigger different actions when particular values are

reached. The two counters, “fast_counter” and “slow_counter”, keep track of fast

and slow time, respectively, during a CPI. The fast counter counts clock cycles of

the “radar_control” block’s 200MHz clock and counts up to multiple values. The

70

fast counter begins counting when the IP block first recognizes that it is within the

bounds of a pulse repetition interval (PRI). This recognition can occur either when

the IP block registers a GPS trigger rising edge or when a new pulse is started

directly following a previous one. The fast counter, along with many of the

constants defined in the reset condition, allows the IP block to check for several

conditions each clock cycle. The first level of conditions checked are whether the

DAC trigger or ADC trigger should be asserted, whether the DAC trigger or ADC

trigger are already asserted, and whether the PRI is complete. The next level of

conditions checked for the DAC or ADC take action if the fast counter’s value

indicates it’s time to deassert their respective triggers. Within the PRI complete

condition, the slow counter is referenced to know whether to start another pulse or

assert the pulses_complete flag. The slow counter counts the number of pulses

completed, and counts up to the pulse limit, at which the IP block asserts the

“pulses_complete” flag and prepares for the next GPS trigger. Between both a reset

signal and a GPS trigger rising edge and a “pulses_complete” flag rising edge and

a GPS trigger rising edge, the IP block is in an idle state, with no counters in

operation, simply waiting for a GPS trigger.

Because only one 5950 was available for development and testing, this

process was originally designed with monostatic pulsed radar design in mind. Most

monostatic pulsed radars do not enable their receivers until their transmitters are

disabled to prevent direct path interference, so “radar_control” was originally

71

designed with a timing condition that asserts the ADC trigger tied to the DAC’s

trigger being deasserted. Because a bistatic radar’s transmitter and receiver are

separated by definition [1], this limitation serves no purpose. A specific constant

value, “dac_adc_offset”, was introduced in a later version of the code for

“radar_control” to allow for an arbitrary (nonzero and non-negative) offset between

the DAC trigger rising edge and the ADC trigger rising edge, measured in clock

cycles. In testing, this value was set to 1 clock cycle. At the 200MHz clock used by

“radar_control”, this equates to a 5ns delay between these rising edges, which

would only cause the receiver to miss the start of the transmission if the combined

distance the transmission traveled from transmitter to target and from target to

receiver was approximately 1.5m.

4.5 Modifying Analog-to-Digital Converter Functionality

 The ADC’s modes of operation rely on how the initialization file or the

example programs “acquire” or dacquire are configured. The trigger option used

and tested throughout the signal characterization process accepts an external trigger

signal and uses it to start a data capture with the indicated channel for the specified

number of bytes at the specified bytes per sample and ADC clock rate. Rather than

directly modifying the ADC, the “radar_control” block’s ADC trigger supplants the

previous external signal, which is instead used as the external signal that provides

72

“radar_control” with the Ninja’s GPS-based CPI start trigger. Figure 27 shows the

original path the trigger signal takes within the 5950’s block diagram, and Figure

28 shows the modified path the trigger signal now takes, where the front panel input

is repurposed as the GPS trigger and the ADC trigger output of “radar_control”

connects to where the original trigger signal used to connect.

Figure 27: The path the signal associated with the TRIG front-panel input on the
5950 takes originally.

73

Figure 28: The same TRIG signal is rerouted to the “radar_control” block, and
the ADC trigger output from the “radar_control” block is routed to where the

TRIG signal used to go.

 This signal modification, combined with initialization file settings

(specifically the transfer size and write size) that allow for sufficiently long captures

per PRI, satisfy the solution’s requirement that the ADC be able to successfully

capture the CPI.

74

4.6 Modifying Digital-to-Analog Converter Functionality

4.6.1 Original DAC Configuration

In testing done on the 5950 after modifications were made to dacquire.c,

including a waveform matching the physical frequency requirements of the onboard

synthesizer (discussed in Section 3.2.1), it was found that the waveform would be

immediately transmitted through the DAC continuously. Specifically, the DAC

transmitted the correct signal at the correct sampling frequency, but the 5950

restarted the waveform, transmitting the first sample of the waveform immediately

following the last sample and continued transmitting the waveform again, repeating

this cycle a random number of times. Unlike the ADC operation, the number of

waveform transmissions observed when the loop value (defined in Section 2.3.3)

was set to a nonzero value did not conform to a pattern recognizable to be deriving

from the initialization file. The only indication that the loop value affected the

operation of the DAC in any way was the observation that the DAC would only not

stop transmitting continuously when loop was set to 0, similar to how the ADC’s

operation is defined in Section 2.3.2.

A closer look into the block diagram in the Vivado project provided by

Pentek, however, shed light on why the DAC did not respect a trigger signal,

regardless of how the initialization file configured dacquire. No trigger signal nets

75

were found in the areas of the block diagram associated with generating and

transmitting DAC signals, and within a multipurpose subsection of the block

diagram that handles both ADC and DAC operation, multiple IP blocks that

appeared to process trigger signals from the front panel were present for ADC

operation but not for DAC operation. Figure 29 shows exactly this: The trigger net

(first highlighted net on the left) only leads to an ADC-specific IP block, of which

there is no DAC counterpart. The two IP cores highlighted on the right are also

ADC-specific with no DAC counterpart.

Figure 29: A section of the block diagram whose purpose is controlling the DAC
and ADC, showing no trigger signal for the DAC.

4.6.2 Custom AXI4-Stream IP

 Because the DAC was not observed respecting any frequency of trigger

signal supplied to the TRIG port on the front panel of the 5950 unit, a custom

76

solution was required to finely control when and for how long the DAC would

transmit the arbitrary waveform compiled into the dacquire program. This proposed

solution would need the ability to accept a trigger signal (provided by the

“radar_control” IP block), intercept the AXI4-Stream link at its source, and only

allow waveform samples to stream through at the appropriate times. At all other

times, a zero value would need to be transmitted, effectively shutting off DAC

transmission.

 The solution designed takes advantage of an integral feature in the AXI

standard, defined in Section 4.3.3: the ready signal. In a pair of upstream and

downstream IP blocks, each block can halt the flow of data using the valid and

ready signals. If the upstream block deasserts its valid signal, the flow of data stops.

Similarly, if the downstream block is not ready to accept data from upstream, it can

deassert its ready signal, and the upstream IP block will pause until ready is

reasserted. In this case, the ready signal is the perfect method to control when the

waveform is transmitted through the DAC, as custom IP that accepts a trigger can

be placed within the data stream, as far upstream as possible, and manage the data

flow.

 The design of the solution implemented into the block diagram follows this

approach, but in two stages. On the block diagram, the AXI4-Stream link is

disconnected between the “bram2wave” and the “axis_clock_conv” blocks, shown

77

in Figure 30 and rerouted to a First-In-First-Out (FIFO). The FIFO’s purpose is

similar to the custom AXI4-Stream block built to switch its ready signal based on

a trigger and preset timing parameters. When the modified version of dacquire

(discussed in Section 4.2.1) starts, the DAC immediately starts transmitting the

waveform baked into the program at compile time. The FIFO is configured to match

the number of samples of the waveform (32768), so when dacquire starts on the

5950 running the modified block diagram, the FIFO fills up with the 32768 samples

of the waveform. This is the first, or holding, stage of the DAC modification.

 The second, or streaming, stage is more complicated. It involves the custom

IP block created for DAC operation modification, axis_dac_switch. Because the

DAC transmits the waveform immediately, the holding stage is not connected to a

trigger signal, but because the goal of this modification is to gain control over when

the waveform is transmitted, this IP block does require a trigger signal at its input.

Because the operation of blocks downstream when denied data over AXI4-Stream

is undocumented, to avoid any issues the custom IP block streams a zero value

downstream until it receives a rising edge on its trigger port. At that point, the IP

block “empties out” the FIFO and streams its contents downstream. As the FIFO

empties out into axis_dac_switch, its own ready signal is asserted, allowing it to

replenish itself from the BRAM IP block upstream. The axis_dac_switch block

keeps track of its own timing once it receives a rising edge, so once it has streamed

all 32768 samples, the block “switches” back to streaming a zero value

78

downstream, deasserts its ready signal, which causes the FIFO upstream to also

deassert its ready signal. This design will cause the FIFO to be full at all times after

its initial intake at the start of runtime, but the timing built into axis_dac_switch

will cause the FIFO to start and stop streaming data when the first and last samples

of the waveform take up the first and last positions, respectively, in the FIFO. This

ensures that the axis_dac_switch IP block will always have a complete waveform

at its disposal to stream whenever it receives a trigger rising edge.

79

Figure 30: The new path an arbitrary waveform takes through the block diagram.

 Vivado treats AXI connections differently than standard wire connections

in a block diagram. As shown in Figure 30, AXI connections are thicker than

normal and blue, distinguishing them from wires. To package an IP block to use

these special AXI connections, the “Create a new AXI4 Peripheral” option in the

Create and Package New IP tool must be invoked, allowing the Verilog code to be

instantiated within an AXI4-Stream wrapper. This tool creates a new Vivado

80

project with several autogenerated Verilog files: one representing the functionality

of the overall IP core, and one per upstream or downstream connection present in

the IP core. In the case of axis_dac_switch, only one upstream and one downstream

connection are present, so only three autogenerated files were present. The file

representing the overall functionality instantiates (or “calls”) each of the files,

making internal connections between values of the top-level Verilog file and

instantiated values in each of the upstream and downstream files. The functionality

of the streaming stage described in the previous paragraph is encapsulated in a

single Verilog file (axis_dac_switch.v), which includes all required inputs and

outputs required to work with AXI4-Stream connections and achieve the desired

functionality. Not much documentation is present in Vivado regarding

implementing a previously designed Verilog file (axis_dac_switch.v) into an

official AXI IP block design, but the simplest solution was to disregard the two

autogenerated files representing each of the upstream and downstream connections,

and instantiating axis_dac_switch.v into the top-level Verilog file, taking the places

of both upstream and downstream files.

This multi-stage modification of the 5950’s DAC allows for a trigger,

generated by the “radar_control” block, to precisely control when the hard-coded

waveform is transmitted, as no suitable trigger option was operational in the block

diagram provided by Pentek. Combined with the “radar_control” IP block, the

axis_dac_switch block allows the 5950 to adequately transmit pulses for a pulsed

81

radar system, whether bistatic or monostatic. The timing diagram showing the DAC

and ADC triggers, as well as the output of the axis_dac_switch block, are shown

below in Figure 31. Please note that all timing diagrams generated in this research

effort come from simulations of the Verilog HDL code in Vivado, rather than from

real-world tests. Figure 32 zooms into the same timing diagram, but gives

confirmation that the axis_dac_switch block works precisely as intended,

transmitting a pulse of exactly 32768 samples at a sampling rate of 1GS/s.

Figure 31: A timing diagram showing the outputs of the “radar_control” and
axis_dac_switch blocks in a simulated environment in Vivado.

82

Figure 32: A closer look at the above timing diagram, confirming that the signal
streamed by axis_dac_switch is indeed 32768 samples long at the 1GS/s DAC

sampling rate used in initialization files throughout this research effort.

4.7 Timing Tolerances of Solution

The specific timing tolerances of the two IP blocks in tandem are relevant

as well. Figures 33, 34, and 35 show the same timing diagram as above, but zoomed

in even further, with timing markers defining relevant types of delays inevitable in

a clocked, synchronized design such as the one developed for this research effort.

 One of the two problems this research effort sought to solve was

synchronizing jitter in separated transmitter and receiver systems. The solution

developed to process external triggers, “radar_control”, is a clocked IP block – it

uses its clock to keep track of the times at which it must assert or deassert different

83

signals. The clock that disciplines “radar_control” is a 200MHz clock, with a period

of 5.000ns as shown below in Figure 33:

Figure 33: Clock cycle period

This 5ns window represents the first relevant delay in this solution, as any

trigger occurring between clock rising edges will not be registered by

“radar_control” until the next rising edge. As shown in Figure 17, the signal used

as a trigger is maintained at its peak for at least 50ns, often longer, so there is no

risk of the trigger being lost between clock rising edges. This delay will never be

longer than 5ns, as the following rising edge will always pick up the trigger.

84

Another relevant delay present in the solution is the ideal delay between

“radar_control” asserting the DAC trigger and axis_dac_switch streaming the first

sample of the arbitrary waveform, as shown in Figure 34. The 2ns, or two 1GHz

clock cycle, delay is ideal in that the propagation delay of the DAC trigger from

“radar_control” to axis_dac_switch might cause an extra one 1GHz clock cycle

delay, bringing the total delay to 3ns. This delay is not as useful on its own as it is

in conjunction with the trigger delay discussed above, so the total delay added to

the DAC system solely due to this solution is at most 8ns.

Figure 34: Delay between dac_trigger rising edge and axis_dac_switch
streaming first sample of arbitrary waveform.

85

 The final relevant delay is that between the DAC and ADC triggers. This

delay was first discussed at the end of Section 4.4 and is shown in Figure 35. This

delay is customizable, and in the code as it is currently, this delay is set to one

200MHz clock cycle, or 5ns. This is the minimum possible value of this delay, and

as the timing for both the DAC and ADC triggers resides in the same IP block, there

is no risk of an extra clock cycle delay being added.

Figure 35: Ideal delay between dac_trigger rising edge and adc_trigger rising
edge.

86

4.8 Implementation Issues

 After designing and testing the Verilog code powering the IP blocks

developed for this solution, the next step was to compile the Vivado project, replace

the original FPGA code with the newly compiled code, run dacquire, and run testing

on the overall system to gauge how effective the solution is at achieving the goals

defined in this research effort. The steps of compiling a Vivado project are:

1. Validate Design – This step analyzes the block diagram for potential issues.

2. Synthesis – This step creates a netlist from the block diagram [10].

3. Implementation – This step maps the netlist created in the Synthesis stage

to the physical architecture and resources of the FPGA [10].

4. Generate Bitstream – This step creates a file that the FPGA uses to program

itself to match the map created in the Implementation stage [16].

Initial attempts to compile the project resulted in two previously

undiscovered issues coming to light, both of which seem to be issues with Vivado

2018.3, the version of Vivado used throughout this research effort, as well as the

only version compatible with the hard IP provided by Pentek in the FDK.

 The first issue encountered dealt with a parameter of one of the busses on

the axis_dac_switch block, specifically the FREQ_HZ parameter, which defines

the frequency expected on that bus. This issue was resolved by finding the

87

FREQ_HZ parameter values of the IP blocks surrounding axis_dac_switch and

repackaging the IP block with the correct value. Vivado’s lack of ability to adjust

this parameter when an IP block is placed in a block diagram has been documented

online as a potential bug in multiple Vivado versions, including 2018.3 [17].

 The second issue occurred during implementation and is confirmed to be a

bug that has been resolved in later versions of Vivado [18]. Implementation would

freeze and crash due to an inability to create a design checkpoint. The only

resolution for users using Vivado 2018.3 seems to be restarting Vivado and trying

implementation again, which worked in testing.

As these problems were identified and resolved, one error, shown in Figure 36,

continued to occur during implementation:

Figure 36: The error constant throughout all attempts to compile.

This error was not recognized by any graduate students or engineers at the

University of Oklahoma’s Advanced Radar Research Center consulted throughout

the research effort. Discussion of this error is only found online in three places, all

on Xilinx’s online forum, a website for FPGA developers to ask and answer

questions regarding developing on Xilinx FPGAs [19] [20] [21]. None of the three

88

discussions provided a viable solution or explanation. Without any outside

information to expedite the process of resolving this error, multiple copies of the

original Vivado project were made to check each modification, step by step.

 The first copy of the original Vivado project was left unmodified in order

to verify that the four steps of compiling worked on the original project in Vivado

2018.3. As expected, this project was able to be compiled completely, albeit after

three tries, due to the design checkpoint bug. Similarly, the copy of the original

project modified to only include the modifications made to the DAC, namely the

FIFO and axis_dac_switch, was also able to be compiled completely. Logically, the

only possibility was that the “radar_control” system was at fault for the Internal

Data Exception error during implementation. Upon attempting to compile the

version of the project only containing the “radar_control” system, without the reset

logic, which had yet to be developed, this conclusion was confirmed, as the same

error consistently caused implementation to fail.

 The next step in debugging was to return to “radar_control”’s Verilog

source code and verify that nothing in the source code was preventing

implementation. Such issues could easily be overlooked in the coding and

simulation stages of developing “radar_control”, as Vivado’s simulator does not

account for the physical architecture of the 5950’s FPGA, and code that

successfully runs in simulation is by no means guaranteed to be able to be

89

successfully implemented. One issue found was an inconsistent usage of blocking

and non-blocking assignments. Of these two ways of assigning values to variables

in Verilog, non-blocking is always the appropriate method in the “always” block,

the structure within the code that is run at each rising edge of the clock [22]. This

issue was easily fixed. The other issue found was the lack of reset logic, leading to

the creation of the reset logic discussed near the end of Section 3.4. After these

revisions, implementation still failed with the same error message.

 At this point, no modified version of the code containing all functionality

developed in this solution has been able to be implemented, so no real-world testing

of the solution has been able to occur to verify that the pulsed radar pattern

produced by “radar_control” and axis_dac_switch conforms to the timing and

frequency characteristics found in Chapter 2.

90

Chapter 5: Conclusion

5.1 Conclusions

Synchronizing two nodes of a bistatic radar system using GPS-disciplined

signal generators and an FPGA-based RFSoC has been explored in detail. The three

relevant types of signals generated by the EndRun Ninja GPS units, the 10MHz

sinusoidal signal, the 10MPPS square wave signal, and the absolute GPS time

single pulse have been characterized in terms of frequency drift, timing stability,

and jitter, respectively. The Pentek Model 5950 RFSoC unit’s example programs,

“acquire” and “dacquire”, have been studied and tested to verify functionality and

better understand their operation. FPGA block diagram changes and custom IP have

been considered to account for lapses in functionality when attempting to generate

LFM signals for a pulsed bistatic radar system. The work explored in this research

effort outlines a very modular and customizable synchronized bistatic radar

implementation. This modularity is achieved through the customization of the

Pentek 5950’s original block diagram combined with custom-designed soft IP that

can be repackaged with different pulsed radar parameters and Pentek’s example

programs, which can be recompiled with different arbitrary waveforms.

Synchronization is achieved by using the 10MHz and single pulse signals from the

EndRun units to discipline the modified 5950. However, many areas of

91

improvement are plainly visible. The IP block designed to generate the internal

trigger signals is unable to be modified on-the-fly, meaning that changing pulsed

radar parameters such as PRT and duty cycle could require long waits as Vivado

processes the synthesis and implementation of the design with new parameters.

Additionally, not all goals set forth during this research effort were able to be

achieved. Implementation errors prevented a working prototype from being tested.

Overall, this research effort provides a platform on which future work on this

subject could continue, possibly solving the issues with implementation and being

able to verify that a working prototype or prototypes indeed remain disciplined by

a GPS source.

5.2 Future Work

 The clearest next step in this research must be solving the errors in

implementation detailed in this research effort and developing a working prototype.

A working prototype or pair of prototypes could then be characterized with and

without GPS discipline to verify that the GPS discipline successfully reduces jitter

and frequency drift in the LFM signals generated by “dacquire”, just as this research

effort has shown that the GPS discipline successfully reduces frequency and timing

drift without any modifications to the 5950 unit’s block diagram. Had a working

prototype been able to be developed, the lack of a second 5950 unit for testing

92

would have limited this research’s ability to verify the synchronization capabilities

being aimed for. If possible, future research should test on two separate 5950

RFSoC units to truly simulate a bistatic radar system. Additionally, improvements

to the block diagram modifications would be welcome and add value and

practicality. Specifically, the inability to change pulsed radar parameters from

“radar_control” would add significant time in the field if a change in PRT, duty

cycle, or the number of pulses per trigger were necessary. Being able to change

these parameters using the 5950’s command line interface would greatly reduce the

amount of time needed to operate this bistatic radar system using different

parameters, making the overall radar implementation much more customizable.

93

Appendix A: Code

Signal Characterization Setup:

Frequency Drift Bash Script

--

#!/bin/bash

clear

echo "Please enter number of times to run acquire.out
in MHz mode:"

read loopCount

echo "Please enter number of loops to run per
acquire.out call:"

read buffers

echo "Please enter channel mask:"

echo "0x01 for channel 1 only"

echo "0x02 for channel 2 only"

echo "0x03 for channels 1 and 2"

read chanmask

filePrefix="acquire_adc_"

filePostPrefix="_"

fileName="$filePrefix$buffers$filePostPrefix"

94

fileSuffix1="_ch1.dat"

fileSuffix2="_ch2.dat"

startDate=`date`

for ((i=1; i<=loopCount; i++))

do

clear

echo "STARTING LOOP $i "

echo ""

iniFileName="$fileName$i"

./acquire.out -ini acquire_endrun.ini -wfile
$iniFileName \

-loop $buffers -chanmask $chanmask -vchanmask
$chanmask

fullFileName1="$iniFileName$fileSuffix1"

fullFileName2="$iniFileName$fileSuffix2"

if [[$chanmask == 0x01]] || [[$chanmask == 0x03]];
then

echo "Starting TFTP transfer for channel 1 data"

tftp -pl $fullFileName1 192.168.0.210

echo "Deleting channel 1 data"

rm $fullFileName1

fi

95

if [[$chanmask == 0x02]] || [[$chanmask == 0x03]];
then

echo "Starting TFTP transfer for channel 2 data"

tftp -pl $fullFileName2 192.168.0.210

echo "Deleting channel 2 data"

rm $fullFileName2

fi

done

endDate=`date`

echo "Starting TFTP transfer of metadata"

tftp -pl acquire_mdata.txt 192.168.0.210

echo "Deleting metadata"

rm acquire_mdata.txt

./rfsoc2tftp.sh

echo ""

echo $startDate

echo $endDate

echo ""

#---

96

Timing Drift Bash Script

--

#!/bin/bash

clear

echo "Please enter number of times to run acquire.out
in PPO mode:"

read loopCount

echo "Please enter number of loops to run per
acquire.out call:"

read buffers

echo "Please enter channel mask:"

echo "0x04 for channel 3 only"

echo "0x08 for channel 4 only"

echo "0x0C for channels 3 and 4"

read chanmask

filePrefix="acquire_adc_"

filePostPrefix="_"

fileName="$filePrefix$buffers$filePostPrefix"

fileSuffix1="_ch3.dat"

fileSuffix2="_ch4.dat"

startDate=`date`

for ((i=1; i<=loopCount; i++))

97

do

clear

echo "STARTING LOOP $i "

echo ""

iniFileName="$fileName$i"

./acquire.out -ini acquire_endrunPPO.ini -wfile
$iniFileName \

-loop $buffers -chanmask $chanmask -vchanmask
$chanmask

fullFileName1="$iniFileName$fileSuffix1"

fullFileName2="$iniFileName$fileSuffix2"

if [[$chanmask == 0x04]] || [[$chanmask == 0x0C]];
then

echo "Starting TFTP transfer for channel 3 data"

tftp -pl $fullFileName1 192.168.0.210

echo "Deleting channel 3 data"

rm $fullFileName1

fi

if [[$chanmask == 0x08]] || [[$chanmask == 0x0C]];
then

echo "Starting TFTP transfer for channel 4 data"

tftp -pl $fullFileName2 192.168.0.210

echo "Deleting channel 4 data"

98

rm $fullFileName2

fi

done

endDate=`date`

echo "Starting TFTP transfer of metadata"

tftp -pl acquire_mdata.txt 192.168.0.210

echo "Deleting metadata"

rm acquire_mdata.txt

./rfsoc2tftp.sh

echo ""

echo $startDate

echo $endDate

echo ""

#---

99

GPS Single Pulse Bash Script

--

#!/bin/bash

clear

echo "Please enter number of times to run acquire.out
in PPO mode:"

read loopCount

echo "Please enter number of loops to run per
acquire.out call:"

read buffers

echo "Please enter channel mask:"

echo "0x01 for channel 1 only"

echo "0x02 for channel 2 only"

echo "0x03 for channels 1 and 2"

echo "0x04 for channel 3 only"

echo "0x08 for channel 4 only"

echo "0x0C for channels 3 and 4"

echo "0x80 for channel 8 (signal generator)"

read chanmask

filePrefix="acquire_adc_"

filePostPrefix="_"

fileName="$filePrefix$buffers$filePostPrefix"

fileSuffix1="_ch1.dat"

fileSuffix2="_ch2.dat"

100

fileSuffix3="_ch3.dat"

fileSuffix4="_ch4.dat"

fileSuffix5="_ch5.dat"

fileSuffix6="_ch6.dat"

fileSuffix7="_ch7.dat"

fileSuffix8="_ch8.dat"

startDate=`date`

for ((i=1; i<=loopCount; i++))

do

clear

echo "STARTING LOOP $i "

echo ""

iniFileName="$fileName$i"

./acquire.out -ini acquire_endrunGPS.ini -wfile
$iniFileName \

-loop $buffers -chanmask $chanmask -vchanmask
$chanmask

fullFileName1="$iniFileName$fileSuffix1"

fullFileName2="$iniFileName$fileSuffix2"

fullFileName3="$iniFileName$fileSuffix3"

fullFileName4="$iniFileName$fileSuffix4"

fullFileName5="$iniFileName$fileSuffix5"

101

fullFileName6="$iniFileName$fileSuffix6"

fullFileName7="$iniFileName$fileSuffix7"

fullFileName8="$iniFileName$fileSuffix8"

if [[$chanmask == 0x01]] || [[$chanmask == 0x03]];
then

echo "Starting TFTP transfer for channel 1 data"

tftp -pl $fullFileName1 192.168.0.210

echo "Deleting channel 1 data"

rm $fullFileName1

fi

if [[$chanmask == 0x02]] || [[$chanmask == 0x03]];
then

echo "Starting TFTP transfer for channel 2 data"

tftp -pl $fullFileName2 192.168.0.210

echo "Deleting channel 2 data"

rm $fullFileName2

fi

if [[$chanmask == 0x04]] || [[$chanmask == 0x0C]];
then

echo "Starting TFTP transfer for channel 3 data"

tftp -pl $fullFileName3 192.168.0.210

echo "Deleting channel 3 data"

rm $fullFileName3

fi

102

if [[$chanmask == 0x08]] || [[$chanmask == 0x0C]];
then

echo "Starting TFTP transfer for channel 4 data"

tftp -pl $fullFileName4 192.168.0.210

echo "Deleting channel 4 data"

rm $fullFileName4

fi

if [[$chanmask == 0x80]]; then

echo "Starting TFTP transfer for channel 8 data"

tftp -pl $fullFileName8 192.168.0.210

echo "Deleting channel 8 data"

rm $fullFileName8

fi

done

endDate=`date`

echo "Starting TFTP transfer of metadata"

tftp -pl acquire_mdata.txt 192.168.0.210

echo "Deleting metadata"

rm acquire_mdata.txt

./rfsoc2tftp.sh

echo ""

103

echo $startDate

echo $endDate

echo ""

#---

104

Signal Characterization Analysis:

Main (Shared by all three experiments)

%% Main

% Written by Michael Cheek (cheek@ou.edu)

% Advised by Dr. Nathan Goodman (goodman@ou.edu)

% Centralized MATLAB code to analyze data acquired
from Pentek 5950 RFSoC

Setup;

if mode == 0 % MHz mode is selected

 AnalysisMHz;

 Plot;

elseif mode == 1 % PPO mode is selected

 AnalysisPPO;

 PlotPPO;

elseif mode == 2 % GPS Calibration mode is selected

 AnalysisGPS;

else

 error("Please select an appropriate analysis
mode");

end

105

Setup (Shared by all three experiments)

%% Setup

% Written by Michael Cheek (cheek@ou.edu) and

% Dr. Nathan Goodman (goodman@ou.edu)

% MATLAB code to initialize variables and parameters
to analyze data

% acquired from Pentek 5950 RFSoC

% Clear MATLAB workspace

clear;

clc;

% Default Values

% --

% UNLESS SOMETHING VERY DRASTIC HAS CHANGED, THESE
SHOULD BE THE ONLY

% VALUES YOU SHOULD NEED TO CHANGE. FOR ONE OFF
CHANGES, THEY CAN BE

% CHANGED AT THE BEGINNING OF THIS SCRIPT'S RUNTIME.

% --

defaultMode = 0;

defaultLoops = 1;

defaultNCaptureMHz = 1000;

defaultNCapturePPO = 1;

defaultNCaptureGPS = 1;

106

defaultFsMHz = 1e9;

defaultFsPPO = 4e9;

defaultFsGPS = 1e9;

defaultXfersize = 65536;

% defaultXfersizeGPS = 1073741824;

% defaultXfersizeGPS = 536870912;

defaultXfersizeGPS = 268435456;

% defaultXfersizeGPS = 134217728;

defaultWsize = defaultXfersize;

defaultNumBits = 16;

defaultPath = 'D:/TFTP/';

% --

% User Inputs

disp('Press enter to continue with default values.');

% Mode (MHz or PPO)

mode = input("MHz [0], PPO [1], or GPS [2] (default "
+ string(defaultMode) + "): ");

if isempty(mode)

 mode = defaultMode; end

% Update mode-specific default values;

if mode == 1

 defaultNCapture = defaultNCapturePPO;

 defaultFs = defaultFsPPO;

107

elseif mode == 2

 defaultNCapture = defaultNCaptureGPS;

 defaultFs = defaultFsGPS;

 defaultXfersize = defaultXfersizeGPS;

 defaultWsize = defaultXfersizeGPS;

else

 defaultNCapture = defaultNCaptureMHz;

 defaultFs = defaultFsMHz;

end

% Loops

loops = input("Number of loops (default "
+ string(defaultLoops) + "): ");

if isempty(loops)

 loops = defaultLoops; end

% Number of slow time captures per loop

nCapture = input("Number of snapshots
(default " + string(defaultNCapture) + "): ");

if isempty(nCapture)

 nCapture = defaultNCapture; end

% ADC Sampling Rate

Fs = input("ADC Sampling Rate (default " +
string(defaultFs) + "): ");

if isempty(Fs)

 Fs = defaultFs; end

108

% Transfer size used in acquire.out

xfersize = input("xfersize
(default " + string(defaultXfersize) + "): ");

% Number of bytes per buffer

if isempty(xfersize)

 xfersize = defaultXfersize; end

% Write size used in acquire.out

wsize = input("wsize (default "
+ string(defaultWsize) + "): ");

% Number of bytes written per buffer (aka 1 buffer = 1
snapshot)

if isempty(wsize)

 wsize = defaultWsize; end

% Number of bits per datapoint

numBits = input("Number of bits per sample (default
" + string(defaultNumBits) + "): ");

if isempty(numBits)

 numBits = defaultNumBits; end

% Folder to take data from

disp("Folder name within " + string(defaultPath) + "
(default " + string(defaultPath) + "): ");

dirs = dir(defaultPath);

dirs(1:2) = [];

dirs = dirs([dirs.isdir]);

dirs = {dirs.name};

109

disp(dirs); % Displays available folders

folder = string(defaultPath) + input("","s");

% Total script run time on RFSoC

% totalRunTimeSeconds = input("Total script run time
in seconds: ");

startTime = input("Time script started on RFSoC ([Y M
D H MI S]): ");

if isempty(startTime)

 startTime = [2023 1 1 0 0 0]; end

startTime = datetime(startTime);

endTime = input("Time script ended on RFSoC ([Y M D
H MI S]): ");

if isempty(endTime)

 endTime = [2023 1 1 1 0 0]; end

endTime = datetime(endTime);

% Initializations

bytes_per_sample = numBits/8; % Number of bytes per
int16 sample

samples_per_snapshot = wsize/bytes_per_sample; %
Number of ADC samples written from each snapshot

f_ref = 10e6; % Ideal frequency of the reference
signal

T_buffer = 0.01; % The time duration of the full
buffer in a single snapshot

% T_buffer = samples_per_snapshot/Fs;

fftLength = 2^24;

t_axis_snapshot = (0:(samples_per_snapshot - 1)).'/Fs;
%Time axis for 1 snapshot at the ADC sample rate

110

t_cap = (0:(nCapture-1))'/Fs;

frequencyDomain = -0.5*(1/T_buffer) + (0:(fftLength-
1))'*(1/T_buffer)/fftLength;

xcorrSize = 10000; % Number of lags to calculate in
PPO mode

minPulseHeight = 1e4; % Minimum pulse height - used
for excluding

 % datasets that don't include
GPS time-triggered

 % pulses on both channels in GPS
mode

% Loop Parameters

allDeltaFCh1 = zeros(loops, 1);

allDeltaFCh2 = zeros(loops, 1);

allDeltaF = zeros(loops, 1);

allCrossCorr = zeros(2*xcorrSize+1,loops);

allMaxLags = zeros(loops,1);

secondsPerLoop = 1.3015;

secondsPerLoopPPO = 0.0025;

averageTemp = 0;

totalRunTimeHours = hours(endTime - startTime);

allLagTimeCh1 = NaN(loops, 1);

allLagTimeCh2 = NaN(loops, 1);

allDeltaLag = NaN(loops, 1);

% Quality Control Parameters

111

% DO NOT ERASE ---------------------------------------

randomSampleIteration = ceil(loops*rand(1));

% DO NOT ERASE ---------------------------------------

% randomSampleIteration = loops;

sampleIterationString = string(randomSampleIteration)
+ ' of ' + string(loops);

% Structure Setup

setup = struct();

setup.Fs = Fs;

setup.t_axis_snapshot = t_axis_snapshot;

setup.f_ref = f_ref;

setup.nCapture = nCapture;

setup.T_buffer = T_buffer;

setup.fftLength = fftLength;

setup.randomSampleIteration = randomSampleIteration;

setup.sampleIterationString = sampleIterationString;

112

Analysis (Frequency Drift)

%% Data Analysis Loop

% Written by Michael Cheek (cheek@ou.edu) and

% Dr. Nathan Goodman (goodman@ou.edu)

% MATLAB code to analyze MHz data acquired from
Pentek 5950 RFSoC

for index = 1:loops

 % --

 % Data Acquisition

 % --

 clc;

 disp("Loop " + string(index) + "/" +
string(loops));

 disp(string(floor(100*index/loops)) + "%
complete");

 minutesRemaining = (loops-
index)*secondsPerLoop/60;

 disp("Approximately " +
string(ceil(minutesRemaining)) + " minutes
remaining");

 oldAvg = averageTemp;

 averageTemp = mean(allDeltaF(1:index));

 disp("Average Delta F so far: " +
string(averageTemp) + " Hz");

113

 disp("Change in average from last loop: " +
string(averageTemp-oldAvg) + " Hz");

 setup.loopNumber = index;

 %Channel 1 Data

 fileName1 = folder + "/acquire_adc_" ...

 + num2str(nCapture) + "_" + num2str(index) +
"_ch1.dat";

 dataCh1 = readdata(fileName1, numBits);

 dataCh1 =
reshape(dataCh1,samples_per_snapshot,[]); %Reshape
the data

 %Channel 2 Data

 fileName2 = folder + "/acquire_adc_" ...

 + num2str(nCapture) + "_" + num2str(index) +
"_ch2.dat";

 dataCh2 = readdata(fileName2, numBits);

 dataCh2 =
reshape(dataCh2,samples_per_snapshot,[]); %Reshape
the data

 % --

 % Data Analysis

 % --

 setup.channel = 1;

 snapCh1 = rfsoc_analyze(dataCh1, setup);

114

 fftData1 =
db(abs(fftshift(fft(snapCh1,fftLength))));

 setup.channel = 2;

 snapCh2 = rfsoc_analyze(dataCh2, setup);

 fftData2 =
db(abs(fftshift(fft(snapCh2,fftLength))));

 [~, maxFrequency1] = max(fftData1);

 [~, maxFrequency2] = max(fftData2);

 deltaFCh1 = frequencyDomain(maxFrequency1);

 deltaFCh2 = frequencyDomain(maxFrequency2);

 deltaF = deltaFCh2 - deltaFCh1;

 allDeltaFCh1(index,:) = deltaFCh1; %#ok<SAGROW>

 allDeltaFCh2(index,:) = deltaFCh2; %#ok<SAGROW>

 allDeltaF(index,:) = deltaF; %#ok<SAGROW>

 % --

 % Quality Control

 % --

 if index == randomSampleIteration

 sampleSnap1 = snapCh1;

 sampleSnap2 = snapCh2;

 sampleFFT1 = fftData1;

 sampleFFT2 = fftData2;

 sampleMaxFreq1 = maxFrequency1;

115

 sampleMaxFreq2 = maxFrequency2;

 end

end

116

rfsoc_analyze (Frequency Drift)

%% RFSoC_Analyze

% Written by Dr. Nathan Goodman (goodman@ou.edu)

% Adapted into a function by Michael Cheek
(cheek@ou.edu)

% Analyze phase of each snapshot to determine
frequency drift over time

function snap_out_corrected = rfsoc_analyze(a, setup)

h_mf = cos(2*pi*setup.f_ref*setup.t_axis_snapshot) -
1j*sin(2*pi*setup.f_ref*setup.t_axis_snapshot); %
Create a 10 MHz sinusoid for correlating with the
snapshots

snap_out = h_mf.'*a; % Correlate the data with 10 MHz
signal - this is essentially a downconversion and LPF

t_buffer = (0:(setup.nCapture-1))*0; % The time
between snapshots converted to a time array

h_st = exp(-1j*2*pi*setup.f_ref*t_buffer); % Create a
10 MHz sinusoid at the snapshot rate for compensating
phase

snap_out_corrected = snap_out.*h_st; % Apply the
phase correction to the outputs from each snapshot

117

Plot (Frequency Drift)

%% Plot Results (MHz Mode)

% Written by Michael Cheek (cheek@ou.edu) and

% Dr. Nathan Goodman (goodman@ou.edu)

% MATLAB code to plot analyses of data acquired from
Pentek 5950 RFSoC

%% Delta F

timeAxis = (1:loops)*(totalRunTimeHours/loops);

figure('Name','Delta F','NumberTitle','off');

plot(timeAxis,allDeltaF);

hold on

plot(timeAxis,allDeltaFCh1);

plot(timeAxis,allDeltaFCh2);

hold off

xlabel('Hours');

ylabel('delta F, Hz');

xlim([0 totalRunTimeHours+(totalRunTimeHours/loops)]);

maxDFCh1 = max(abs(allDeltaFCh1));

maxDFCh2 = max(abs(allDeltaFCh2));

maxDF = max(abs(allDeltaF));

maxOverall = max([maxDFCh1 maxDFCh2 maxDF]);

ylim([-(1.5*maxOverall) (1.5*maxOverall)]);

title('\deltaF values over ' + string(loops) + '
loops')

subtitle_text = {'Average \deltaF (differential) was '
+ string(mean(allDeltaF)) ...

118

 + ' Hz over ' + string(totalRunTimeHours) + '
hours',

 'Standard Deviation (differential) was ' +
string(std(allDeltaF)) + ' Hz'};

subtitle(subtitle_text);

legend('Differential', 'Channel 1', 'Channel 2')

grid on;

%% Phase Samples

% Plot the result from downconverting each snapshot
and applying phase correction

% This should show a constant phase for a true 10 Mhz
signal, or slowly rotating phase

% for a reference signal that is slightly different
than 10 MHz

figure('Name','Sample Phase
Data','NumberTitle','off');

subplot(2,1,1)

plot(real(sampleSnap1));

hold on

plot(imag(sampleSnap1));

plot(real(sampleSnap2));

plot(imag(sampleSnap2));

hold off

title('Sample Phase Data from Iteration ' +
sampleIterationString)

xlabel('Snippet Number')

ylabel('10 MHz Matched Sinusoid Output')

legend('Ch1 Real', 'Ch1 Imaginary', 'Ch2 Real', 'Ch2
Imaginary')

119

grid on;

subplot(2,1,2)

plot(frequencyDomain,sampleFFT1);

hold on

plot(frequencyDomain,sampleFFT2);

hold off

maxMaxFreq = max([sampleMaxFreq1 sampleMaxFreq2]);

minMaxFreq = min([sampleMaxFreq1 sampleMaxFreq2]);

diffMaxFreq = maxMaxFreq - minMaxFreq;

% DO NOT ERASE ---------------------------------------

% minX = frequencyDomain(minMaxFreq -
abs(floor(diffMaxFreq*3)));

% maxX = frequencyDomain(maxMaxFreq +
abs(ceil(diffMaxFreq*3)));

% xlim([minX maxX])

% DO NOT ERASE ---------------------------------------

title('Sample Phase FFT Data from Iteration ' +
sampleIterationString)

xlabel('Frequency (Hz)')

ylabel('Magnitude')

legend('Channel 1', 'Channel 2')

grid on;

120

Analysis (Timing Drift)

%% Data Analysis Loop (PPO Mode)

% Written by Michael Cheek (cheek@ou.edu) and

% Dr. Nathan Goodman (goodman@ou.edu)

% MATLAB code to analyze PPO data acquired from
Pentek 5950 RFSoC

for index = 1:loops

 % --

 % Data Acquisition

 % --

 clc;

 disp("Loop " + string(index) + "/" +
string(loops));

 disp(string(floor(100*index/loops)) + "%
complete");

 minutesRemaining = (loops-
index)*secondsPerLoopPPO/60;

 disp("Approximately " +
string(ceil(minutesRemaining)) + " minutes
remaining");

 oldAvg = averageTemp;

 averageTemp = mean(allMaxLags(1:index));

 disp("Average Max Lag so far: " +
string(averageTemp));

121

 disp("Change in average from last loop: " +
string(averageTemp-oldAvg));

 %Channel 1 Data

 fileName1 = folder + "/acquire_adc_" ...

 + num2str(nCapture) + "_" + num2str(index) +
"_ch3.dat";

 dataCh1 = readdata(fileName1, numBits);

 dataCh1 =
reshape(dataCh1,samples_per_snapshot,[]); %Reshape
the data

 %Channel 2 Data

 fileName2 = folder + "/acquire_adc_" ...

 + num2str(nCapture) + "_" + num2str(index) +
"_ch4.dat";

 dataCh2 = readdata(fileName2, numBits);

 dataCh2 =
reshape(dataCh2,samples_per_snapshot,[]); %Reshape
the data

 % --

 % Data Analysis

 % --

 [crosscorr, lags] = xcorr(dataCh1, dataCh2,
xcorrSize);

 allCrossCorr(:,index) = crosscorr; %#ok<SAGROW>

122

 [~, maxLagIdx] = max(crosscorr);

 maxLag = lags(maxLagIdx);

 allMaxLags(index,:) = maxLag; %#ok<SAGROW>

 % --

 % Quality Control

 % --

 if index == randomSampleIteration

 sampleCrossCorr = crosscorr;

 sampleLags = lags;

 sampleMaxLag = maxLag;

 sampleMaxLagIdx = maxLagIdx;

 end

end

123

Plot (Timing Drift)

%% Plot Results (PPO Mode)

% Written by Michael Cheek (cheek@ou.edu)

% MATLAB code to plot analyses of data acquired from
Pentek 5950 RFSoC

%% Max Lag

timeAxis = (1:loops)*(totalRunTimeHours/loops);

figure('Name','Max Lag','NumberTitle','off');

plot(timeAxis,allMaxLags);

% hold on

% plot(timeAxis,smoothdata(allMaxLags,'loess',200));

% hold off

xlabel('Hours');

ylabel('Lag at which autocorrelation peaked');

xlim([0 totalRunTimeHours+(totalRunTimeHours/loops)]);

maxOverall = max(abs(allMaxLags));

ylim([-(1.5*maxOverall) (1.5*maxOverall)]);

% title('Maximum Cross-correlation Lag values over ' +
string(loops) + ' loops')

title('Maximum Cross-correlation Lag values over ' +
string(totalRunTimeHours) + ' hours')

subtitle('Average Lag was ' + string(mean(allMaxLags))
+ ...

 ', Standard Deviation of Lag was ' +
string(std(allMaxLags)));

% legend('Original', 'Smoothed')

124

grid on;

%% Max Lag after 1 hour

figure('Name','Max Lag','NumberTitle','off');

plot(timeAxis,allMaxLags);

xlabel('Hours');

ylabel('Lag at which autocorrelation peaked');

xlim([0 1]);

maxOverall = max(abs(allMaxLags));

ylim([-(1.5*maxOverall) (1.5*maxOverall)]);

title('Maximum Cross-correlation Lag values over the
first hour')

subtitle('Average Lag was ' +
string(mean(allMaxLags(1:247))) + ...

 ', Standard Deviation of Lag was ' +
string(std(allMaxLags(1:247))));

grid on;

%% Max Lag once GPS Lock Achieved

figure('Name','Max Lag post GPS
Lock','NumberTitle','off');

plot(timeAxis,allMaxLags);

% plot(allMaxLags);

xlabel('Hours');

ylabel('Lag at which autocorrelation peaked');

xlim([0.65
totalRunTimeHours+(totalRunTimeHours/loops)]);

maxOverall = max(abs(allMaxLags));

125

ylim([-(1.5*maxOverall) (1.5*maxOverall)]);

title('Maximum Cross-correlation Lag values once GPS
Lock was Achieved')

txt = {'Average Lag was ' +
string(mean(allMaxLags(155:end))) + ...

 ', Standard Deviation of Lag was ' +
string(std(allMaxLags(155:end)))};

subtitle(txt);

grid on;

%% Sample Cross-Correlation

figure('Name','Sample Xcorr
Data','NumberTitle','off');

plot(sampleLags,abs(sampleCrossCorr));

title('Sample Cross-Correlation Data from Iteration '
+ sampleIterationString)

xlabel('Lags')

ylabel('Cross-Correlation')

grid on;

%% All Cross-Correlations

figure('Name','All Cross-
Correlations','NumberTitle','off')

imagesc(allCrossCorr);

colorbar;

title('All Cross-Correlations over ' + string(loops) +
' loops')

xlabel('Loops')

ylabel('Cross-Correlation between EndRun 10MPPS
signals')	

126

Analysis (GPS Single Pulse)

%% Data Analysis Loop

% Written by Michael Cheek (cheek@ou.edu) and

% Dr. Nathan Goodman (goodman@ou.edu)

% MATLAB code to analyze MHz data acquired from
Pentek 5950 RFSoC

for index = 1:loops

 % --

 % Data Acquisition

 % --

 clc;

 disp("Loop " + string(index) + "/" +
string(loops));

 disp(string(floor(100*index/loops)) + "%
complete");

 %Channel 1 Data

 fileName1 = folder + "/acquire_adc_" ...

 + num2str(nCapture) + "_" + num2str(index) +
"_ch3.dat";

 dataCh1 = readdata(fileName1, numBits);

 dataCh1 =
reshape(dataCh1,samples_per_snapshot,[]); %Reshape
the data

127

 %Channel 2 Data

 fileName2 = folder + "/acquire_adc_" ...

 + num2str(nCapture) + "_" + num2str(index) +
"_ch4.dat";

 dataCh2 = readdata(fileName2, numBits);

 dataCh2 =
reshape(dataCh2,samples_per_snapshot,[]); %Reshape
the data

 % --

 % Data Analysis

 % --

 [lagHeightCh1, ~] = max(dataCh1(20:end));

 [lagHeightCh2, ~] = max(dataCh2(20:end));

 if lagHeightCh1 >= minPulseHeight

 if lagHeightCh2 >= minPulseHeight

 [~, lagIdxCh1] =
max(gradient(dataCh1(20:end)));

 [~, lagIdxCh2] =
max(gradient(dataCh2(20:end)));

 allLagTimeCh1(index) = lagIdxCh1/Fs;
%#ok<SAGROW>

 allLagTimeCh2(index) = lagIdxCh2/Fs;
%#ok<SAGROW>

 allDeltaLag(index) = allLagTimeCh1(index)
- allLagTimeCh2(index); %#ok<SAGROW>

 end

128

 end

end

allDeltaLag = rmmissing(allDeltaLag);

allDeltaLag(allDeltaLag==0) = [];

figure;

histogram(allDeltaLag)

title('Lag values between Channels 1 and 2')

subtitle('Standard Deviation: ' +
string(std(allDeltaLag)) ...

 + ' over ' + string(totalRunTimeHours) + '
hours');

129

Plot (GPS Single Pulse)

timeAxis = (1:1e4)/1e9;

figure('Name','Dataset ' +
string(index),'NumberTitle','off');

plot(timeAxis,dataCh1(1:1e4));

hold on

plot(timeAxis,dataCh2(1:1e4));

% plot(gradient(dataCh1(20:2e6)));

hold off

legend('Channel 1', 'Channel 2')

title("Absolute GPS Time-Triggered Pulses")

xlabel("seconds")

grid on;

130

Solution Code

radar_control.v

`timescale 1ns / 1ps

//
////////////////////////////

// Company: The University of Oklahoma - Advanced
Radar Research Center

// Engineer: Michael Ortiz-Cheek (cheek@ou.edu,
mcheek0@icloud.com)

// Advisor: Dr. Nathan Goodman (goodman@ou.edu)

//

// Create Date: 03/28/2023 10:55:01 AM

// Design Name:

// Module Name: radar_control

// Project Name:

// Target Devices:

// Tool Versions:

// Description:

//

// Dependencies:

//

// Revision:

// Revision 4.0 - Fixed blocking assignments in always
block

// Additional Comments:

131

//

//
////////////////////////////

module radar_control(

 input clk,

 input reset,

 input user_ready,

 input gps_trigger,

 input dac_ready,

 input adc_ready,

 output dac_trigger,

 output adc_trigger,

 output pulses_complete

);

 reg dac_enable_internal;

 reg adc_enable_internal;

 reg pulses_complete_internal;

 reg in_pri;

 reg [7:0] slow_counter;

 reg [7:0] pulse_limit; // Number of scans in the
CPI

132

 // Fast Counter information: FPGA clock runs at
x_MHz, so in order to enable DAC for y_ms and then ADC
for z_ms

 // with an A_ms offset,
dac_limit must be x*y*10^3 and adc_limit must be

 // dac_adc_offset +
x*z*10^3. Total PRI must >= dac_limit + adc_limit -
dac_adc_offset.

 // If ADC should be
disabled until DAC is complete, set dac_adc_offset to
dac_limit.

 // *** Please note that
when used in conjunction with axis_dac_switch.v, these
values ***

 // *** do not control
duty cycle, they are only for controlling rising edge
timing. ***

 // *** The RFSoC might
have duty cycle requirements for trigger signals.

 // x = 200

 // y = 0.10

 // z = 0.50

 // A = 0.00

 reg [31:0] fast_counter;

 reg [31:0] dac_limit;

 reg [31:0] adc_limit;

 reg [31:0] dac_adc_offset; // must be greater than
0.

 reg [31:0] pri_limit;

133

 // This always block handles counting clock cycles
for timing.

 always @(posedge clk) begin

 if (reset) begin

 fast_counter <= 32'd0;

 slow_counter <= 8'd0;

 pulse_limit <= 8'd10; // Number of scans in
the CPI

 dac_limit <= 32'd100000;

 adc_limit <= 32'd100000;

 dac_adc_offset <= 32'd1; // must be greater
than 0.

 pri_limit <= 32'd200000;

 dac_enable_internal <= 1'b0;

 adc_enable_internal <= 1'b0;

 pulses_complete_internal <= 1'b0;

 in_pri <= 1'b0;

 end // reset

 else begin // not in reset condition

 // Increments fast_counter

 if (in_pri) begin

 fast_counter <= fast_counter + 32'd1;

 end // increments fast counter

 // This if block handles the trigger from
the GPS unit.

 if (gps_trigger) begin

134

 // if all ready signals are asserted
high, enable the DAC.

 if (user_ready && dac_ready && adc_ready
&& (slow_counter == 8'd0) && (fast_counter == 32'd0))
begin

 dac_enable_internal <= 1'b1;

 in_pri <= 1'b1;

 pulses_complete_internal <= 1'b0;

 end // if all ready signals are asserted
high

 end // if (gps_trigger)

 // if the DAC is enabled

 if (dac_enable_internal) begin

 // if DAC timer is complete

 if (fast_counter >= dac_limit) begin

 dac_enable_internal <= 1'b0; //
disable DAC

 end // if DAC timer is complete

 end // if the DAC is enabled

 // if it's time to enable the ADC

 if ((fast_counter >= dac_adc_offset) &&
(fast_counter < adc_limit + dac_adc_offset) &&
adc_ready) begin

135

 adc_enable_internal <= 1'b1; // enable
ADC

 end // enable ADC

 // if the ADC is enabled

 if (adc_enable_internal) begin

 // if ADC timer is complete

 if (fast_counter >= (adc_limit +
dac_adc_offset)) begin

 adc_enable_internal <= 1'b0; //
disable ADC

 end // if ADC timer is complete

 end // if the ADC is enabled

 // if the PRI is complete

 if ((fast_counter >= pri_limit) && in_pri)
begin

 fast_counter <= 32'd0; // reset the fast
counter

 in_pri <= 1'b0;

 slow_counter <= slow_counter + 8'd1; //
increment slow counter

 // if the pulse train is complete

 if (slow_counter >= (pulse_limit -
8'd1)) begin

 pulses_complete_internal <= 1'b1; //
set Pulses Complete flag

136

 slow_counter <= 8'b0; // reset slow
counter

 dac_enable_internal <= 1'b0; // just
to be safe, disable DAC

 adc_enable_internal <= 1'b0; // just
to be safe, disable ADC

 end // if pulse train is complete

 else begin // if pulse train is not
complete

// if ((pulses_complete_internal ==
1'b0) && (slow_counter >= 8'b0)) begin

 if (pulses_complete_internal ==
1'b0) begin

 in_pri <= 1'b1; // restart PRI

 dac_enable_internal <= 1'b1; //
restart DAC for next repitition

 end

 end // if pulse train is not complete

 end // if the PRI is complete

 end // if not in reset condition

 end // always @(posedge clk)

 assign dac_trigger = dac_enable_internal;

137

 assign adc_trigger = adc_enable_internal;

 assign pulses_complete = pulses_complete_internal;

endmodule

138

radar_control_reset.v

`timescale 1ns / 1ps

//
////////////////////////////

// Company: The University of Oklahoma - Advanced
Radar Research Center

// Engineer: Michael Ortiz-Cheek (cheek@ou.edu,
mcheek0@icloud.com)

// Advisor: Dr. Nathan Goodman (goodman@ou.edu)

//

// Create Date: 08/24/2023 02:43:35 AM

// Design Name:

// Module Name: radar_control_reset

// Project Name:

// Target Devices:

// Tool Versions:

// Description:

//

// Dependencies:

//

// Revision:

// Revision 0.01 - File Created

// Additional Comments:

//

//
////////////////////////////

139

module radar_control_reset(

 input clk,

 output reset_out

);

 reg reset_internal = 1'b0;

 reg [7:0] disposable_counter = 8'd0;

 reg [7:0] start_count = 8'd8;

 reg [7:0] end_count = 8'd10;

 always @(posedge clk) begin

 if (disposable_counter < start_count) begin

 reset_internal <= 1'b0;

 disposable_counter <= disposable_counter +
8'd1;

 end else if (disposable_counter < end_count)
begin

 reset_internal <= 1'b1;

 disposable_counter <= disposable_counter +
8'd1;

 end else begin

 reset_internal <= 1'b0;

 end

 end

140

 assign reset_out = reset_internal;

endmodule

141

axis_dac_switch.v

`timescale 1ns / 1ps

//
////////////////////////////

// Company: The University of Oklahoma - Advanced
Radar Research Center

// Engineer: Michael Ortiz-Cheek (cheek@ou.edu,
mcheek0@icloud.com)

// Advisor: Dr. Nathan Goodman (goodman@ou.edu)

//

// Create Date: 03/27/2023 04:09:38 PM

// Design Name:

// Module Name: axis_dac_switch

// Project Name:

// Target Devices:

// Tool Versions:

// Description:

//

// Dependencies:

//

// Revision:

// Revision 0.01 - File Created

// Additional Comments:

//

//
////////////////////////////

142

module axis_dac_switch(

 input [255:0] tdata_in,

 output[255:0] tdata_out,

 input tvalid_in,

 input fifo_full,

 output tvalid_out,

 output tready_in,

 input tready_out,

 input clk,

 input enable

);

 reg [255:0] tdata_out_internal = 256'b0;

 reg [0:0] tvalid_out_internal = 1'b1;

 reg [0:0] tready_in_internal = 1'b0;

 reg [0:0] enable_old = 1'b0;

 reg [31:0] sample_counter = 32'd0;

 reg [31:0] sample_limit = 32'd32768;

// always @(posedge enable) begin

// if (tvalid_in == 1 && fifo_full == 1) begin

// tready_in_internal <= 1'b1;

// end

143

// end

 always @(posedge clk) begin

 enable_old <= enable;

 if (enable) begin

 if (tvalid_in == 1'b1 && fifo_full == 1'b1
&& enable_old == 1'b0) begin

 tready_in_internal <= 1'b1;

 end

 end

 if (tvalid_in == 1 && tready_out == 1) begin

 tvalid_out_internal <= 1'b1;

 if (tready_in_internal == 1) begin

 tdata_out_internal <= tdata_in;

 sample_counter <= sample_counter + 1;

 if (sample_counter >= sample_limit)
begin

 tready_in_internal <= 1'b0;

 sample_counter <= 32'd0;

 end

144

 end

 else begin

 tdata_out_internal <= 256'b0;

 end

 end

 else begin

 tvalid_out_internal <= 1'b0;

 end

 end

 assign tdata_out = tdata_out_internal;

 assign tvalid_out = tvalid_out_internal;

 assign tready_in = tready_in_internal;

endmodule

145

References

[1] N. J. Willis, Bistatic Radar, Raleigh, NC: SciTech Publishing, Inc., 2005.

[2] G. W. Stimson, Introduction to Airborne Radar, 2nd Edition, Raleigh, NC:

SciTech Publishing, Inc., 1998.

[3] H. Yulin, Y. Jianyu, W. Junjie and X. Jintao, "Precise time frequency

synchronization technology," Journal of Systems Engineering and

Electronics, vol. 19, no. 5, p. pp.929–933, 2008.

[4] J. Kim, J. Chun and I. Choi, "Time and Frequency Synchronization of

Bistatic FMCW Radar," Agency for Defense Development, Daejeon, South

Korea.

[5] A. D. Byrd, R. D. Palmer and C. J. Fulton, "Development of a Low-Cost

Multistatic Passive Weather Radar Network," IEEE Transactions on

Geoscience and Remote Sensing, vol. 58, no. 4, pp. 2796-2808, 2020.

[6] Glen, Interviewee, Support call with EndRun Technologies. [Interview].

[7] EndRun Technologies, "Ninja Precision Timing Module User Manual".

146

[8] B. Marcotte, Interviewee, Pentek 5950 RFSoC Timing Support. [Interview].

17 November 2022.

[9] R. Sgandurra, "Strategies for Deploying Xilinx's Zynq Ultrascale+ RFSoC,"

Pentek, Upper Saddle River, NJ.

[10] "The difference between Implementation and Synthesize," Xilinx, 7 January

2019. [Online]. Available:

https://support.xilinx.com/s/question/0D52E00006hpkc2SAA/

the-difference-between-implementation-and-synthesize?language=en_US.

[11] E. Worthman, "It's all IP in an SoC," Semiconductor Engineering, 5 June

2014. [Online]. Available: https://semiengineering.com/its-all-ip-in-an-soc/.

[12] ARM, "AMBA AXI and ACE Protocol Specifications," ARM.

[13] FPGA Site, "Xilinx AXI Stream Tutorial - Part 1," 15 July 2017. [Online].

Available: http://fpgasite.blogspot.com/2017/07/

xilinx-axi-stream-tutorial-part-1.html.

[14] Xilinx, "pb040-xilinx-com-ip-xlconstant.pdf - Viewer - AMD Adaptive

Computing Documentation Portal," 9 April 2018. [Online]. Available:

https://docs.xilinx.com/v/u/en-US/pb040-xilinx-com-ip-xlconstant.

147

[15] Xilinx, "pg164-proc-sys-reset - Viewer - AMD Adaptive Computing

Documentation Portal," 18 November 2015. [Online]. Available:

https://docs.xilinx.com/v/u/en-US/pg164-proc-sys-reset.

[16] Xilinx, "FPGA Bitstream," Xilinx, 4 April 2018. [Online]. Available:

https://www.xilinx.com/htmldocs/xilinx2018_1/SDK_Doc/

SDK_concepts/concept_fpgabitstream.html.

[17] "[BD 41-238] FREQ_HZ do not match," Xilinx, 18 March 2021. [Online].

Available: https://support.xilinx.com/s/question/0D52E00006hpQaGSAU/

bd-41238-freqhz-do-not-match?language=en_US.

[18] "Vivado 2018.3 crash: ERROR: [Common 17-69] Command failed: Failed

to create design checkpoint," Xilinx, 15 July 2019. [Online]. Available:

https://support.xilinx.com/s/question/0D52E00006lLwqCSAS/

vivado-20183-crash-error-common-1769-command-failed-failed-

to-create-design-checkpoint?language=en_US.

[19] "[Common 17-49] Internal Data Exception," Xilinx, 20 December 2017.

[Online]. Available:

https://support.xilinx.com/s/question/0D52E00006lLh7qSAC/

common-1749-internal-data-exception?language=en_US.

148

[20] "Implementation error [Common 17-49]," Xilinx, 16 March 2018. [Online].

Available: https://support.xilinx.com/s/question/0D52E00006iI5eLSAS/

implementation-error-common-1749?language=en_US.

[21] "[Common 17-49] Internal Data Exception," Xilinx, 4 November 2019.

[Online]. Available:

https://support.xilinx.com/s/question/0D52E00006iHpgkSAC/

common-1749-internal-data-exception?language=en_US.

[22] C. E. Cummings, "Nonblocking Assignments in Verilog Synthesis, Coding

Styles that Kill!," 2000. [Online]. Available: http://www.sunburst-

design.com/papers/CummingsSNUG2000SJ_NBA_rev1_2.pdf.

