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Epigraph

குடிஎன்னும் குன்றா விளக்கம் மடிஎன்னும்
மாசுஊர மாய்ந்து ெகடும்

1

Sluggishness will dim even one’s bright innate inextinguishable qualities.

A dynamic approach is better than a fixed approach.

குடிஎன்னும் குன்றா விளக்கம் மடிஎன்னும்
மாசுஊர மாய்ந்து ெகடும்

ெதாடங்கற்க எவ்விைனயும் எள்ளற்க முற்றும்
இடங்கண்ட பின்அல் லது

1

Choose an advantageous location before engaging your opponent.

Focus resources at the regions of importance.

Thirukkural, Thiruvalluvar 1

1Thirukkural: Navalar Urai, V.R. Nedunchezhiyan
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Abstract

Novel path integral–based frameworks for efficient solutions to problems in prediction, non-

linear filtering, and optimal control of stochastic dynamical systems are presented in this

dissertation. Namely, (1) the transformed path integral (TPI) approach for solution of the

Fokker-Planck equation in stochastic dynamical systems with a full rank diffusion coeffi-

cient matrix, (2) the generalized transformed path integral (GTPI) approach—a non-trivial

extension of the TPI to stochastic dynamical systems with rank deficient diffusion coeffi-

cient matrices, (3) the generalized transformed path integral filter (GTPIF) for solution of

the nonlinear filtering problem, and (4) the generalized transformed path integral control

(GTPIC) for solution of a large class of stochastic optimal control problems are presented.

The frameworks are based on dynamic transformations of the state variables that ensure the

appropriate distributions in the transformed space (state distributions in TPI and GTPI;

and corresponding conditional distributions in GTPIF and GTPIC) always have zero mean

and identity covariance. In systems where the dynamics are linear with respect to the state

variables and initial distribution is Gaussian, the appropriate distributions in the trans-

formed space remain invariant with a standard normal distribution. The frameworks thus

allow for the underlying distributions necessary for evaluating the quantities of interest to be

accurately represented and evolved in a transformed computational domain. In particular,

compared to conventional fixed grid approaches and Monte Carlo simulations, the challenges

in dynamical systems with large drift, diffusion, and concentration of PDF can be addressed

more efficiently using the proposed frameworks. In addition, straightforward error bounds

for the underlying distributions in the transformed space can be established via Chebyshev’s

inequality.

In each of these frameworks, novel short-time propagators for the evolution of distri-

xv



butions in the transformed space are developed. Additionally, necessary update equations

for the mean and covariance of the distribution in the original space needed for the evolu-

tion of the distribution in the transformed space are derived from the underlying stochastic

models. In addition to the normalization condition to preserve the zeroth moment prop-

erty, conditions to preserve the first and second moment properties of the distributions in

the transformed space are also established. The set of update equations in TPI and GTPI

approaches present an efficient solution for the Fokker-Planck equation. In the case of the

GTPIF, they are an efficient solution of the Zakai equation. And the GTPIC is an ef-

ficient solution for the corresponding stochastic Hamilton-Jacobi-Bellman equation. The

GTPI approach (which is also used in GTPIF and GTPIC) is applicable to (a) second order

stochastic dynamical systems, (b) stochastic dynamical systems with zero process noise, (c)

certain stochastic dynamical systems with non-white noise excitation, as well as (d) systems

with a full rank diffusion coefficient matrix (where the TPI method is recovered). In the case

of (b) stochastic dynamical systems with zero process noise, the GTPI approach represents

a solution to the corresponding Liouville equation.

The benefits of these frameworks over those based on conventional fixed grid approaches

and Monte-Carlo simulations are illustrated using representative examples in one-dimensional

and two-dimensional spaces for the respective problems. Influence of the system parameters

and simulation parameters on the error in the TPI and GTPI approaches are also studied.

The extensions of the proposed frameworks to more general problems as well as recommen-

dations to address their limitations are discussed.
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CHAPTER 1

Introduction

1.1 Overview

The study of stochastic systems, their characterization, and control are of great importance to

many fields in science and engineering [1–4]. This often involves obtaining accurate estimates

of quantities of interest such as the system state or the expected cost in nonlinear dynamical

systems subjected to random forces. The nonlinearity here refers to the nonlinear dependence

of the system dynamics and the random forcing parameters on the state variables. Such

systems can be encountered, for instance, in the field of structural dynamics where loads

can often be thought of as random processes and we may need accurate estimates of the

displacements due to these loads. In flutter analysis, the pressure fluctuations due to a

turbulent boundary layer can be considered as random forces [5], while the excitation from

waves can be considered as random forces in studying the effect of irregular waves on the

rolling motion of a ship [6]. A system model with nonlinear dynamics is used in tracking of

a falling body, i.e., the estimation of its altitude, velocity, and constant ballistic coefficient

using noisy radar measurements taken at discrete instants [7]. Similarly, in the distributed

control of a team of cooperative unmanned aerial vehicles, the motion of each vehicle may

be described using a nonlinear dynamical system model [8].

Under the assumption of a broadband delta correlated random excitation, the response

of these systems can very often be accurately described by applying the theory of Markov

processes, i.e., using an Itô stochastic differential equation (SDE). The equation describes

the evolution of the state of a system along a deterministic path specified by a drift vector

function with deviations from the path specified by a diffusion coefficient matrix. Alterna-
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tively, one can consider the corresponding Fokker-Planck equation (FPE) [1] which describes

the time evolution of the state distribution and allow us to compute averages of the involved

stochastic quantities in the system.

Solutions to problems in nonlinear filtering, which involve the estimation of the state of a

stochastic dynamical system from noisy observations, require us to evaluate the conditional

state distribution conditioned on the observation history. The evolution of this conditional

distribution is governed by the Kushner equation—a stochastic partial differential equation

[3]. A closed form solution to the equation exists in the case of a linear dynamical system,

namely, the Kalman-Bucy filter [9]. However, the Kushner equation for the general nonlinear

filtering problem is quite hard to solve in spite of recent advances [10–12]. Fortunately,

optimal estimates of the conditional distribution for the general continuous-discrete nonlinear

filtering problem, where the dynamical system is represented by a continuous stochastic

process and measurements are taken at discrete time instants, can be obtained by solving

the Fokker-Planck equation, coupled with a Bayesian-update rule [3].

Likewise, the optimal control of a stochastic dynamical system require us to solve the

stochastic Hamilton-Jacobi-Bellman equation—a nonlinear partial differential equation. In

a large class of stochastic optimal control problems, where the system dynamics are linear

and the cost function is quadratic with respect to the control variables, the solution maybe

obtained by solving an equation of the form of a backward Kolmogorov equation [13]. Equiv-

alently, one may solve its adjoint equation which is of the form of a Fokker-Planck equation.

Thus, the solution to many problems in the estimation, prediction, and control of stochas-

tic dynamical systems may be obtained via the solution of a corresponding Fokker-Planck

equation.

1.2 Solutions of the Fokker-Planck Equation

Exact analytical solutions of the FPE exist only for a few special cases [14–20]. In most

other cases, approximate solutions based on either analytical methods or numerical meth-
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ods need to be found. The equivalent linearization method [21, 22], stochastic averaging

method [23, 24], eigenfunction expansion [25–27], and method of matrix continued frac-

tions [28] are some of the approximate analytical methods. Among the numerical methods,

a commonly used method is the numerical integration of the mathematically equivalent

stochastic differential equation (SDE) using Monte Carlo (MC) techniques [29, 30]. MC

simulations are particularly useful when information is needed only about certain averaged

statistical properties of the system. It also finds ease of application in multidimensional prob-

lems. However, the MC approach faces challenges due to the inherent sampling errors leading

to inaccurate representation of the PDF tail information [31]. The effect of sampling errors

on the accuracy of estimates maybe reduced through variance reduction techniques [32].

Grid based methods, where sufficient representation of the PDF tail information can be

enforced, are devoid of sampling errors and hence offer benefits over MC methods. The finite

difference (FD) and finite element (FE) methods are among the commonly used grid based

methods [33–35]. Although these methods have the potential for a better representation

of the tail information than MC, they can be computationally expensive for applications

in multidimensional problems. For systems with large drift (as compared to the effects of

diffusion), traditional implementations of FD and FE methods give invalid solutions where

the probability values can become negative and may develop into oscillatory behavior. Other

challenges are also presented by the use of fixed grids in the conventional implementations

of FD and FE methods. Often these fixed grids are insufficient in accurately representing

the transient behavior of the PDF, especially in cases where the system contains large drift,

large diffusion and/or highly concentrated regions of the PDF. In other words, a conventional

fixed grid based computational domain may lead to inaccurate results in the case of large

drift when the PDF peaks approach the domain boundaries. Similarly, it is possible that in

the case of large diffusion, the growth of the PDF in the tail regions may not be accurately

captured as the boundaries of the computational domain are fixed. Additionally, when the

PDFs tend to get highly concentrated such as in cases with low diffusion and stable fixed
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points of the corresponding deterministic dynamical system, the resolution of the fixed grid

based computational domain might be insufficient to accurately represent the PDF. Adaptive

methods such as moving finite elements [36] and adaptive mesh refinement [37] can address

some of these issues.

The direct quadrature method of moments (DQMOM) is another adaptive method that

can address several of the issues presented above [38,39]. The method involves the dynamic

representation of the state conditional PDF as a finite weighted sum of Dirac delta functions.

The weights and locations, which are functions of time, are determined based on constraints

imposed by the evolution of the moments. However, for nonlinear systems, there is an issue

of closure where the constraints involve higher order moments that are not evolved through

the moment evolution equations obtained from the underlying system. Thus, these moments

are not always representative of the statistics of the underlying PDF or the propagator in the

short-time limit. The path integral (PI) approach based on the short-time propagator does

not suffer from such closure approximation requirements. This is owing to the fact that, in

the short-time limit, the PI based propagator is an exact solution to the FPE [1]. Thus PI

methods ensure that certain statistical properties of the PDF are preserved without having

to explicitly impose them. Another advantage is that the approximate solutions obtained

from the method are inherently centered around the deterministic path.

Path integrals, originally introduced by Weiner [40] in the context of Brownian motion

and reinvented later by Feynman [41] in the reformulation of quantum mechanics, have

found wide appeal as a theoretical tool in diverse areas from physics to finance [42]. In

path integrals, the contributions of each path weighted by the probability density function

of the initial state is integrated over all paths from the initial state to the final state. Several

analytical forms for the integral were proposed and investigated for different cases [43–

45]. However, it has been shown [46] that such continuous forms are meaningless without

the associated discretization prescription. In spite of several attractive properties such as

numerical stability and the possibility for the accurate capture of the tail information, the
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path integral as a numerical tool for the solution of the FPE has been, till recently, relatively

ignored.

One of the earliest numerical implementations of the PI method utilized a histogram

based approximation for the PDF on a grid [47]. Similar approaches involving the numeri-

cal integration of path integrals using cubic B-splines [48–50] and Gauss-Legendre schemes

[51, 52] were also proposed. These methods however inherit the issues associated with a

fixed grid (FG) representation, especially those pertaining to cases with large drift or large

diffusion. Another issue is the curse of dimensionality, which poses challenges to the solution

of multidimensional problems. A meshless implementation based on numerical integration

over sampled paths was investigated by Kappen [13]. Such an approach addresses some of

the issues arising from the curse of dimensionality, however it still suffers from the short-

comings due to sampling errors. More recently, a method based on variational calculus was

proposed [53–55] where the contributions from paths other than the most likely path are

neglected thereby reducing the computational complexity involved in the evaluation of the

path integral. The method is more efficient than other conventional methods but the in-

herent approximations involved in neglecting the contributions of certain paths as described

above, especially for processes with large diffusion, contribute to a loss in accuracy in the

solution and pose challenges to the applicability of the method to a diverse class of problems.

1.3 The Transformed Path Integral Approach

In this dissertation, a novel approach referred to as the transformed path integral method

(TPI), for solving the Fokker-Planck equation is proposed. In Chapter 2, we restrict our

attention to a class of stochastic dynamical systems with a full rank diffusion coefficient

matrix (referred to as non-singular systems). Extensions to systems with a rank deficient

diffusion coefficient matrix are discussed in Chapter 3. In the proposed TPI method for

non-singular systems, a new formulation for the short-time propagator is developed that

allows for the propagation of the state PDF to be performed in a transformed computational
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domain where a more accurate representation of the distribution can be achieved. The

novel form of the propagator, developed through a dynamic transformation of the state

space involving the mean and covariance of the distribution as parameters, also inherits

salient features of a conventional PI based propagator, including preservation of important

properties of the underlying stochastic process. One such property is non-negativity of the

distributions, which is ensured by the propagator form without it having to be explicitly

specified. Additionally, in the short-time limit, the propagator is an analytical solution of

the corresponding Fokker-Planck equation in the transformed computational domain. In

particular, for linear drift processes with a constant diffusion coefficient and Gaussian initial

distribution, the TPI method results in a PDF that remains an invariant standard normal

distribution under propagation in the associated transformed computational domain.

A unique feature of the generated transformed computational domain is that a fixed grid

in this space corresponds to an adaptive grid that is dynamically centered at the mean and

scaled with the covariance of the state variables in the original state space. Thus the adaptive

grid is non-stationary and is translated with the mean enabling the proposed method to

tackle challenges arising from large drift processes such as ensuring accurate and sufficient

representation without loss of efficiency (see Fig. 1.1). Similarly, the dynamic scaling of the

domain bounds of the discretized state space in the TPI method accommodates growth of

the PDF in the tail regions leading to better representation of the tail information especially

in large diffusion processes (see Fig. 1.2). In addition, the method provides for an improved

grid resolution that can address challenges in accurately representing concentrated PDFs

with large peak values, which may arise in small noise processes with stable fixed points in

the corresponding deterministic dynamical system. These features contribute to improved

accuracy in representation of the PDF and especially that of the tail information with the

TPI method. This is additionally facilitated by the possibility to estimate error bounds on

the representation of probability in the transformed space through Chebyshev’s inequality.

As a part of the proposed method, along with the transformed propagator, we derive a set
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Figure 1.1: Illustration of some features and benefits of the proposed transformed computa-
tional domain in addressing challenges arising in prediction of stochastic dynamical systems
with large drift.

of update equations for the mean, covariance, and the PDF of the state variables in the

transformed space based on the properties of the underlying stochastic difference equation.

These update equations, not too unlike those proposed in the unscented transform method

(UT) [56], go further in their ability to deal with processes involving nonlinear and non-

Gaussian behavior.

However, the TPI approach also inherits a limitation of conventional grid-based PI

approaches—the applicability of the approach is restricted to stochastic dynamical systems

with a full rank diffusion coefficient matrix. Stochastic dynamical systems with singular

diffusion coefficient matrices, such as in second order dynamical systems [57,58] and certain

systems with non-white noise excitation [59–63], present challenges to the application of con-

ventional lattice-based path integral implementations. The challenges, which are also present
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Figure 1.2: Illustration of some features and benefits of the proposed transformed computa-
tional domain in addressing challenges arising in prediction of stochastic dynamical systems
with large diffusion.

in the TPI method, arise because these diffusion coefficient matrices are non-invertible. A

few scholars [64–66] explicitly studied the challenges posed by these “singular systems”. How-

ever, their proposed solutions inherit the limitations of conventional lattice-based implemen-

tations, such as those pertaining to large drift, diffusion, and concentration of PDF. Thus,

in addition to TPI, we also propose a transformed path integral-based approach that can

address the aforementioned challenges and is applicable to both singular and non-singular

systems.

1.4 The Generalized Transformed Path Integral Approach

In order to generalize the TPI approach to applications for both singular and non-singular

systems, the generalized transformed path integral (GTPI) approach is proposed in Chap-
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ter 3. The proposed GTPI approach, which preserves the salient features of the TPI ap-

proach, utilizes the Trotter product formula to split the transformed Fokker-Planck equation,

i.e., the Fokker-Planck equation in the transformed space coordinates. The transformed FPE

describes the evolution of a complementary stochastic dynamical system obtained through

the dynamic transformation of the state variables described earlier. We refer to this system

as the standard transformed stochastic dynamical system. The state mean and covariance of

the transformed system do not change with evolution, and the choice of our transformation

parameters ensure that they are zero and identity respectively. In fact, in dynamical sys-

tems with a linear drift function (with respect to the state variables) and a constant diffusion

coefficient, the standard normal distribution is a stationary solution for the standard trans-

formed stochastic dynamical system; this feature is also the theoretical underpinning for the

capture of invariant solutions mentioned earlier in connection with the TPI approach. Thus,

the GTPI, like the TPI, allows for PDF propagation to be performed in a “well contained”

transformed computational domain where a more accurate representation of evolved distri-

butions can be achieved. The benefits of the TPI approach in addressing challenges posed

by systems with large drift, diffusion, or concentration of PDF are also preserved in the

GTPI approach. Accurate error bounds on the distributions via Chebyshev’s inequality can

also be established. In addition to the renormalization condition to preserve zeroth moment

properties, numerical implementations of our approach allows us to establish conditions to

preserve the first and second moment properties of the state distribution in the transformed

space.

Our splitting scheme in the GTPI approach, which is designed to address the challenges

of rank deficient diffusion coefficient matrices, consists of splitting the corresponding trans-

formed FPE into (1) a Liouville operator and (2) a Fokker-Planck operator with a full rank

diffusion coefficient sub-matrix. In effect, the former governs contributions from “singular

dimensions” while the latter concerns the “nonsingular dimensions”. We consider a solu-

tion based on method of characteristics for the Liouville equation; A TPI type short-time
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propagator is considered for the Fokker-Planck equation with the sub-matrix. Additionally,

update equations for mean and covariance of the state variables, which are used for PDF

propagation in the transformed space, are developed from the underlying stochastic system

models.

The new set of update equations allow us to consider solutions of (a) second order dynam-

ical systems, (b) dynamical systems with zero process noise, (c) certain dynamical systems

with non-white noise excitation, and (d) systems with a full rank diffusion coefficient ma-

trix (where we recover the TPI method). Note that for the case (b) the corresponding set

of update equations represent a solution for the Liouville equation. The GTPI approach

presents a non-trivial extension of the applicability of TPI approach to a more general class

of stochastic dynamical systems listed above. Thus, the GTPI approach allows us to consider

transformed path integral-based frameworks for the problems of nonlinear filtering (Chap-

ter 4) and stochastic optimal control (Chapter 5) in systems belonging to this general class

of stochastic dynamical systems.

1.5 The Generalized Transformed Path Integral Filter

The nonlinear filtering problem, i.e., the estimation of the state of a stochastic dynamical

system based on noisy observations, is encountered in a wide variety of applications from

different fields—for instance, the tracking of space objects [67], navigation system design

for autonomous aircraft landing [68], and data assimilation for weather forecasting appli-

cations [69]. The nonlinearity refers to the nonlinear dependence of the system dynamics

and/or the observation function on the state variables. In the probabilistic approach to

nonlinear filtering [70, 71], the solution requires accurate estimates of the conditional state

distribution conditioned on the measurement observation history. The evolution of this con-

ditional distribution is governed by the kushner equation—a nonlinear stochastic partial

differential equation. A more tractable bilinear stochastic partial differential equation, the

Zakai equation, governs the evolution of the un-normalized conditional density function [72].
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As discussed earlier, the solutions to the general linear filtering problem are laid out in the

pioneering works by Kalman and Bucy [9, 73]. The extended Kalman filter (EKF) is a sub-

optimal filter that extends the applicability to nonlinear filtering problems via a linearization

of the nonlinear dynamics and observation function around the previous state estimates [74].

Although the EKF inherits the salient features of the Kalman filter, the desirability of the

approach is adversely affected by the difficulty in deriving the required Jacobian matrices

as well as filter instability arising from inaccuracies in the linearized approximations [75].

The particle filter approach, where the distribution is expressed as a set of evolved weighted

samples is better equipped to address the challenges arising from nonlinear dynamics and

non-Gaussian distributions [76]. However, the standard particle filter approaches may need

large number of samples to counter particle degeneracy where the contributions of all but

one particle become negligible. The particle flow filter [77] attempts to address the issue of

particle degeneracy by ensuring that there are enough particles in the regions of importance.

In contrast to particle filters and other Monte-Carlo based approaches, the unscented

Kalman filter (UKF) employs deterministically chosen points that exhibit certain specific

properties (e.g., have a given mean and covariance) to represent the distribution [78]. Thus,

the UKF can be used to overcome limitations of EKF at lower computational costs compared

to particle filters. The UKF is designed to preserve the first and second moments of the

distribution with propagation; Variations of the approach to preserve higher-order moments

is an area of active research. Approaches which attempt to preserve the complete statistics

of the underlying distributions with propagation may be more accurate than UKF, especially

in cases with a high degree of nonlinearity or non-Gaussianity of distributions. One such

approach involves the use of a path integral–based short-time propagator to solve the Zakai

equation [10] on a fixed computational grid. Another approach involves the solution of

a Fokker-Planck equation using a finite difference model on an adaptive grid along with

a Bayesian rule for the measurement update [79]. The former approach faces challenges

in application to systems with large drift, diffusion, and concentration of PDF. While the
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latter is better equipped to address some of these challenges, it inherits other issues of finite

difference based approaches pertaining to preservation of non-negativity of the distributions

and oscillatory behavior in systems with large drift.

The generalized transformed path integral filter (GTPIF) is a transformed path integral-

based framework for the continuous-discrete nonlinear filtering problem (see Chapter 4). As

discussed earlier, the continuous-discrete nonlinear filtering problem may be solved through

a two step process—namely, (1) System update via the solution of a Fokker-Planck equation

and (2) Measurement update using Bayes’ theorem. The basis for the GTPIF approach

is a dynamical transformation of the state variables using the mean and covariance of the

conditional distribution as parameters. Consequently, the evolution of the conditional dis-

tribution of the transformed state variables are governed by the corresponding transformed

Fokker-Planck equation between observations. A GTPI-like short-time propagator is used

to evolve this distribution while the conditional mean and covariance are evolved using the

corresponding update equations.

At an observation, a new Bayes’ update rule for the conditional distribution of the trans-

formed state variables is presented. Additionally, the necessary new measurement update

equations for the conditional mean and covariance are also derived. The new set of system

update and measurement update equations together constitute a solution of the Kushner

equation in the transformed space variables. They are better equipped to handle the chal-

lenges from systems with large drift, diffusion, and concentration of PDF. In fact, we recover

the Kalman filter in the case of a linear dynamical system and observation function with

Gaussian initial condition. However, the GTPIF is also better equipped than the EKF to

accommodate nonlinearities and non-Gaussian distributions.

In contrast to the UKF, the GTPIF is better equipped to preserve the higher-order

moments of the distribution. The GTPIF is not affected by the issues of particle degeneracy

or sample impoverishment present in particle filters nor is it affected by the need to explicitly

enforce the non-negativity of evolved distributions. Unlike other grid-based filters, the grid
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points in the GTPIF are located in “regions of importance” (which can be estimated via

a Chebyshev inequality). This allows GTPIF to offset some of the computational costs

associated with a grid-based approach for filtering problems.

1.6 The Generalized Transformed Path Integral Control

The objective of determining the best strategy to control a dynamical system in the presence

of uncertainties is common to problems in a wide range of fields—control of batch distillation

processes in chemical engineering [80], trajectory optimization for low-thrust space missions

[81], and reinforcement learning algorithms in robotics [82], to name a few. Often, a set

of controls are sought that maximize a measure of performance or minimize an expected

cost function. The optimized cost function satisfies the stochastic Hamilton-Jacobi-Bellman

(HJB) equation—a nonlinear partial differential equation to be solved backwards in time [4].

The stochastic HJB equation can be reduced to a more tractable form for a large group

of stochastic optimal control problems, namely, those with a linear system dynamics and

quadratic cost function with respect to the control variables. It is to be noted that the

dynamics and cost may still be nonlinear with respect to the state variables.

For these cases, the solution can be obtained by solving an equation of the form of a

backward Kolmogorov equation (BKE) [1, 83] which is solved backwards in time. Equiva-

lently, one may solve its adjoint equation, namely, a Fokker-Planck–type equation forward in

time. The equation governs the evolution of the conditional state distribution conditioned on

the initial state for a diffusion process that occurs alongside a killing process. An approach

to this class of control problems involves the solution of this Fokker-Planck–type equation

using sample based approximations of path integrals [83]. The approach is shown to be

more efficient than conventional gradient based approaches. However, the approach may

inherit issues such as sampling errors. Such issues maybe addressed through a grid based

approach, but the approach would need to address issues pertaining to large drift, diffusion,

and concentration of PDF.
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The generalized transformed path integral control (GTPIC) is a transformed path integral–

based approach for the stochastic optimal control problem (see Chapter 5). The GTPIC

employs a dynamic transformation of the state space with the mean and covariance of the

conditional distribution as parameters. Under this transformation, a novel short-time propa-

gator for the evolution of the conditional distribution in the transformed space is developed.

Additionally, update equations for the conditional mean and covariance are also presented.

The GTPIC, in contrast to conventional grid based approaches, is better equipped to address

challenges from large drift, diffusion, and concentration of PDF.

1.7 Selected Examples and Outline

The benefits of the proposed frameworks over conventional approaches were showcased using

illustrative examples in one-dimensional and multi-dimensional spaces. The performance of

the TPI approach was shown in systems with full rank diffusion coefficient matrices—(1)

linear dynamical systems such as the pure diffusion process, constant drift process, and Orn-

stein Uhlenbeck process; as well as (2) nonlinear dynamical systems with cubic nonlinearities.

Likewise, the performance of the GTPI approach was showcased in systems with rank de-

ficient diffusion coefficient matrices, namely, (a) the stochastic harmonic oscillator, (b) the

stochastic van der Pol oscillator, (c) the stochastic Caughey oscillator, (d) the stochastic

Duffing oscillator with zero process noise, and (e) bistable stochastic flow driven by non-

white noise. Note that the evolution of the stochastic Duffing oscillator with zero process

noise (example (d)) is governed by a Liouville equation. A bistable stochastic flow, i.e., a

system with nonlinear dynamics, driven by white noise and a linear measurement function

was chosen to showcase benefits of the GTPIF over the conventional extended Kalman filter.

The performance of the GTPIC and its benefits over conventional approaches are illustrated

using (i) the controlled pure diffusion process and (ii) the control of a bistable stochastic

flow driven by white noise.

The outline for the rest of the dissertation is as follows. The transformed path inte-
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gral (TPI) approach and its application to non-singular systems is discussed in Chapter 2.

The generalization of the TPI approach to both singular and non-singular systems via the

generalized transformed path integral (GTPI) approach along with selected examples are

presented in Chapter 3. Extensions of the GTPI approach to problems in nonlinear filtering

(via a novel formulation, GTPIF) and stochastic optimal control (via a novel formulation,

GTPIC) are presented in Chapters 4 and 5 respectively. Concluding remarks along with

directions for future work are discussed in Chapter 6.
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CHAPTER 2

The Transformed Path Integral Approach for Stochastic Processes

2.1 Scope of the Chapter

In this chapter, a novel path integral (PI) based approach for the solution of the Fokker-

Planck equation is presented. The proposed approach, termed the transformed path integral

(TPI) approach, utilizes a new formulation for the underlying short-time propagator to per-

form the evolution of the probability density function (PDF) in a transformed computational

domain where a more accurate representation of the PDF can be ensured. The new formu-

lation, based on a dynamic transformation of the original state space with the statistics of

the PDF as parameters, preserves the non-negativity of the PDF and incorporates short-

time properties of the underlying stochastic process. New update equations for the state

PDF in a transformed space and the parameters of the transformation (including mean and

covariance) that better accommodate the nonlinearities in drift and non-Gaussian behavior

in distributions are proposed (based on properties of the SDE). Owing to the choice of the

transformation considered, the proposed approach maps a fixed grid in transformed space

to a dynamically adaptive grid in the original state space. The TPI approach, in contrast to

conventional approaches such as Monte Carlo simulations and fixed grid based approaches,

is able to better represent the distributions (especially the tail information) and better ad-

dress challenges in processes with large diffusion, large drift, and large concentration of PDF.

Additionally, in the proposed TPI approach, error bounds on the probability in the com-

putational domain can be obtained using the Chebyshev’s inequality. The benefits of the

TPI approach over conventional approaches are illustrated through simulations of linear and

nonlinear drift processes in one-dimensional and multidimensional state spaces. The effects
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of spatial and temporal grid resolutions as well as that of the diffusion coefficient on the

error in the PDF are also characterized.

2.2 Mathematical Formulations

In this section the mathematical formulation behind the proposed TPI approach and its

derivation are presented. Starting with a brief introduction to the Wiener path integral, the

form of the accompanying short-time propagator for the FPE is provided. A new form of the

short-time propagator is then developed for single degree of freedom (SDOF) systems based

on a time dependent transformation involving the statistics of the distribution and is then

later extended to systems in multiple dimensions (MDOF case) as well. A set of associated

update equations for the PDF, the mean and covariance are also derived. The invariance of

the PDF from a standard normal distribution in the transformed space for linear drift and

diffusion processes with a Gaussian initial PDF is briefly discussed along with an examination

of the estimation of the PDF error bounds based on the Chebyshev’s inequality. A discrete

representation of the proposed formalism is also provided in this section.

2.2.1 Path integral formalism

A stochastic process with the Markov assumption can be expressed as an Itô stochastic

differential equation (SDE) [3] as follows

dx(t) = f
(
x(t), t

)
dt+ A

(
x(t), t

)
dw(t) (2.1)

where x(t) ∈ RNs×1 represents the state of the system at time t. The equation describes

evolution of the state of a system along a deterministic path specified by the drift vector

function f
(
x(t), t

)
∈ RNs×1 while being subjected to random excitations modeled as Gaus-

sian white noise of strength A
(
x(t), t

)
∈ RNs×Nw . The increments dw(t) ∈ RNw×1 are

independent and identically distributed zero mean Gaussian random vectors with the auto-
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correlation
〈
dwi(t) dwj(s)

〉
= δ(t− s) δij dt for i, j = 1, . . . , Nw. The stochastic process w(t)

is the Wiener process.

The state of the system can also be charaterized by a probability density function p(x, t)

whose evolution is governed by the Fokker-Planck equation (FPE), a second order partial

differential equation of the parabolic type given by

[
∂

∂t
+ ∂

∂xi

fi(x, t) − ∂2

∂xi∂xj

Gij(x, t)
]
p(x, t) = 0 (2.2)

where we have used Einstein’s notation convention, i.e., repeated indices imply summa-

tion. Note that the spatial variables x used in Eq. (2.2) is not the same as the random

vector x(t) representing the state of the dynamical system in Eq. (2.1). Nevertheless,

the Fokker-Planck equation features the drift vector function f(x, t) while the strength of

the white noise excitation A(x, t) is related to the diffusion coefficient matrix G(x, t) as

G(x, t) = A(x, t)A(x, t)T/2. For the sake of brevity, wherever the context is clear we will

represent both the state variables and their associated spatial variables with the same sym-

bol. Although a general analytical solution for Eq. (2.2) does not currently exist, it can be

shown [1] for small time differences ∆t = t′ − t the transition PDF p(x′, t′ | x, t) is given by

p(x′, t′ | x, t) = ∥4π∆tG(x, t)∥−1/2 (2.3)

exp
{

− 1
4 ∆t

[
xT

e G(x, t)−1 xe
]}

with xe = x′ − x − f(x, t) ∆t. The relation in Eq. (2.3) is also known as the short-time

propagator. Based on the Chapman-Kolmogorov equation, the time evolution of the PDF

is performed by the equation

p(x′, t′) =
ˆ
p(x′, t′ | x, t) p(x, t) dx (2.4)

where the integral is over the entire domain of x. With the repeated application of Eq. (2.4)
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we have

p(x, t) = lim
N→∞

˙

N times

N−1∏
k=0

(
µk dxk

)
(2.5)

exp
{

−∆t
N−1∑
k=0

L(xk+1,xk, tk,∆t)
}
p(x0, t0)

where µk = ∥4π∆tG(xk, tk)∥−1/2 and

L(xk+1,xk, tk,∆t) =
[
xk+1 − xk − f(xk, tk) ∆t

]T
(2.6)

G(xk, tk)−1
[
xk+1 − xk − f(xk, tk) ∆t

]

with xN = x. Eq. (2.5) is an integral over all possible paths from x0 to x and is called

the Weiner path integral. Analytical solutions to Eq. (2.5) exist only for few special cases.

Alternatively, p(x, t) can be obtained iteratively using Eq. (2.3) and Eq. (2.4). The nu-

merical solution for the latter involves the evaluation of a convolution integral which poses

significant computational challenges especially in high dimensional state spaces. Several at-

tempts have been made to consider a discrete representation of the PDF in order to reduce

the computational complexity [47, 48]. They reduce the convolution operation to a matrix

vector multiplication. However, these approaches do not account for the challenges posed

by processes with large drift, diffusion, and concentration of PDF.

2.2.2 Transformed path integral approach for SDOF systems

We develop here the equations in one-dimensional state space for the proposed (TPI) ap-

proach. These equations, as we shall see later, can be easily extended to their corresponding

forms in the MDOF case. Let us consider a one-dimensional stochastic process given by the

Itô SDE

dx(t) = f
(
x(t), t

)
dt+ a

(
x(t), t

)
dw(t) (2.7)

19



where w(t) is a scalar Brownian motion process with
〈
dw(t) dw(s)T

〉
= δ(t− s) dt. Eq. (2.7)

can be equivalently written as a difference equation

x(t+ dt) = x(t) + f
(
x(t), t

)
dt+ a

(
x(t), t

)
dw(t). (2.8)

We propose the following time dependent transformation

z(t) = Z
(
x(t), t

)
= x(t) − µ(t)

σ(t) (2.9)

where µ(t) and σ(t) are respectively the mean and the standard deviation of x(t) at time t.

Applying this transformation to Eq. (2.8), we get

σ(t+ dt) z(t+ dt) + µ(t+ dt) (2.10)

= σ(t) z(t) + µ(t) + f
(
x(t), t

)
dt+ a

(
x(t), t

)
dw(t)

After rearranging, we obtain

z(t+ dt) = z(t) +
(

σ(t)
σ(t+ dt) − 1

)
z(t) (2.11)

+ 1
σ(t+ dt)δf̃

(
z(t), t

)
dt+ 1

σ(t+ dt) ã
(
z(t), t

)
dw(t)

where ã
(
z(t), t

)
= a

(
σ(t)x(t)+µ(t), t

)
, δf̃

(
z(t), t

)
= δf

(
σ(t)x(t)+µ(t), t

)
and δf

(
x(t), t

)
=

f
(
x(t), t

)
−
〈
f
(
x(t), t

)〉
. Thus, the form of the short-time propagator in the transformed

space is given by

p(z′, t′ | z, t) = σ√
2π ã(z, t)2 ∆t

exp

−

(
σ′z′ − σz − δf̃(z, t) ∆t

)2

2ã(z, t)2 ∆t

 (2.12)

where we have used primed variables to represent the quantities at time t′. Also, ∆t = t′ − t.

An alternate form of the transformed short-time propagator, to the one proposed here, can
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be obtained based on the Itô’s lemma as shown in A. The time evolution of the PDF in the

transformed space is performed by the equation

p(z′, t′) =
ˆ
p(z′, t′ | z, t) p(z, t) dz (2.13)

Eq. (2.12) along with Eq. (2.13) allow us to evaluate the PDF in the transformed space. The

PDFs in the original space and the transformed space are related as follows

px(t)(x, t) = 1
σ(t) pz(t) (Z(x, t), t) (2.14)

However, in order to evaluate the integral in Eq. (2.13) that denotes an update equation for

the PDF of the state variables in the transformed space, the mean µ(t) and variance σ(t)2

need to be computed at every time step. The update equations for these quantities can be

obtained by taking expectations of Eq. (2.7). We thus have respectively for the mean and

variance

µ′ = µ+ ∆t
〈
f̃(z, t)

〉
(2.15)

σ′2 = σ2 + ∆t
〈
ã(z, t)2

〉
+ ∆t

〈
σz δf̃(z, t)

〉
+ (∆t)2

〈
δf̃(z, t)2

〉
(2.16)

2.2.3 Features of the transformed path integral approach

In the framework of the TPI approach, we can capture certain invariant solutions as described

below.

Lemma 2.2.1. Given the transformed space created by the transformation Eq. (2.9), for an

initial distribution p(z, t) ∼ N (0, 1) the form of the PDF remains invariant for all times

t′ > t under the influence of a stochastic process with linear dynamics and additive white

noise excitation wth a constant diffusion coefficient.

Proof. Considering a process with a linear drift given by f(x, t) = mx + c and a constant
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diffusion coefficient g(x, t) = a(x, t)2/2 = g, the update equations (Eq. (2.15) and Eq. (2.16))

for the mean and variance, given a Gaussian initial PDF, p(x, t) ∼ N(µ, σ), can be reduced

to

µ′ = µ (1 +m∆t) + c∆t (2.17)

σ′2 = σ2 (1 +m∆t)2 + 2 g∆t (2.18)

Using these in Eq. (2.12) and Eq. (2.13) we obtain

p(z, t) ∼ N(0, 1) ⇒ p(z′, t′) ∼ N(0, 1) ∀ t′ > t (2.19)

The importance of this result is that for processes with linear drift and constant diffusion

coefficient, the loss of tail information due to the use of finite computational domains in the

transformed space can be estimated.

Given a domain with lower and upper bounds [xl, xu], an estimate of the error in the

PDF p(x, t) due to the loss of tail information outside of these bounds is given by

ε = 1 −
ˆ xu

xl

p(x, t) dx (2.20)

For a Gaussian distribution x ∼ N (µ, σ2), Eq. (2.20) can be written as

ε = 1 − 1
2

[
erf
(
xu − µ√

2σ

)
− erf

(
xl − µ√

2σ

)]
(2.21)

which for the standard normal distribution in a domain with bounds [−l, l] reduces to

erfc
(
l/

√
2
)
. For l = 3, we have this error value to be 0.0027. Thus, for a linear drift

and constant diffusion process, 99.73 % of the probability in the computational domain can

be represented by considering a transformed computational domain with bounds [−3, 3].
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This can also be extended to processes where the PDF remains approximately Gaussian, i.e.

near-Gaussian distributions, to obtain reliable estimates for the error bounds.

For the general case, estimates of the error bounds can be obtained through Chebyshev’s

inequality: for a random variable x with finite expected value µ and finite non-zero variance

σ2, for any real number k > 0,

Pr
(
|x− µ| ≥ kσ

)
≤ 1
k2 (2.22)

where the left hand side represents the probability that the random variable x takes a value

outside of the domain with bounds k standard deviations on either side of the mean. In the

transformed space, the inequality reduces to

Pr
(
|z| ≥ k

)
≤ 1
k2 (2.23)

Thus for a fixed domain with bounds [−k, k] in the transformed space, which corresponds

to an adaptive domain with bounds k standard deviations on either side of the mean in

the original space, the probability that the state variable will take a value outside of these

bounds has the upper bound 1/k2. This probability is given by

Pr
(
|z| ≥ k

)
= 1 −

ˆ k

−k

p(z, t) dz (2.24)

which from Eq. (2.20) is ε(−k, k). Thus we have from the Chebyshev’s inequality

ε ≤ 1
k2 (2.25)

The error in the PDF due to the loss in tail information for a fixed grid in the transformed

space has an upper bound. In theory, due to the fixed grid in the transformed space, this

upper bound is valid for all times under the propagation. However, in actual implementation,
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the growth of discretization error over a large period of time also needs to be accounted for.

2.2.4 Transformed path integral approach for MDOF systems

The formulation presented above can be easily generalized to the MDOF case. Starting from

the SDE Eq. (2.1) we consider the following transformation

z(t) = Z
(
z(t), t

)
= R(t)−1

(
x(t) − µ(t)

)
(2.26)

where the symbols µ(t) and Σ(t) ≡ R(t)R(t)T denote the mean and covariance matrix of

x(t) at time t respectively. Following the steps laid out earlier, we can arrive at the expression

for the transformed short-time propagator

p(z′, t′ | z, t) = ∥R∥
∥∥∥4π∆t G̃(z, t)

∥∥∥−1/2

exp
{

− 1
4 ∆t

[
zT

e G̃(z, t)−1ze

]}
(2.27)

where ze = R′z′−Rz−dt δf̃(z, t) and δf̃(z, t) = f̃(z, t)−
〈
f̃(z, t)

〉
. Here f̃ and G̃ are functions

in the transformed space given by f̃(z, t) = f(Rz + µ, t) and G̃(z, t) = G(Rz + µ, t). The

time evolution of the PDF is performed by

p(z, t) =
ˆ
p(z′, t′ | z, t) p(z, t) dz (2.28)

The update equations for the mean and covariance are as follows

µ′ = µ+ ∆t
〈
f̃(z, t)

〉
, (2.29)

Σ′ = Σ + 2 ∆t
〈
G̃(z, t)

〉
+ ∆t

〈
Rz δf̃(z, t)T

〉
(2.30)

+ ∆t
〈
δf̃(z, t) zTRT

〉
+ (∆t)2

〈
δf̃(z, t) δf̃(z, t)T

〉
.
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The Chebyshev’s inequality expressed in Eq. (2.22) for a random variable can also be easily

extended for the MDOF case where for a random vector x ∈ RNs×1 with mean µ and

covariance matrix Σ, for any real number k > 0, we have

Pr
(
(x − µ)TΣ−1(x − µ) ≥ k2

)
≤ Ns

k2 (2.31)

which in the transformed space reduces to

Pr
(
zTz ≥ k2

)
≤ Ns

k2 (2.32)

2.2.5 Numerical implementation of the transformed path integral approach

The set of Eqs. (2.12), (2.13), (2.15) and (2.16) form the basis of the proposed approach for

solving SDOF systems. Similarly, we have Eqs. (2.27) to (2.30) for MDOF systems. The

long-time evolution of the PDF, based on the update equations presented above, accounts

for the contributions of all possible paths in the transformed space via the transformed short-

time propagator. This is analogous to traditional path integral based formulations of Weiner,

Feynman and Kac. We thus refer to the novel approach presented here as the transformed

path integral (TPI) approach.

Lattice-based implementations of path integrals often involve discrete representations

of distributions on a grid—for instance, pi = p(zi, t) for i = 1. . . . , N . The index i here

represents the discretization of the computational domain into, N grid points and should

not be confused with the vector indices. Hence, pi here is the value of p(z, t) evaluated at

the i-th grid point zi. Under this representation, the update equations for PDF propagation,

namely Eq. (2.13) and Eq. (2.28) can be expressed in the form

p′
i =

N∑
j=1

pij pj ∆zj (2.33)

where ∆zj is the grid spacing in the transformed domain while pij represents the short-time
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propagator in the transformed space whose individual terms are obtained from Eq. (2.12)

and Eq. (2.27) for SDOF and MDOF systems respectively. Thus, the convolution operation

of the path integral is reduced to a matrix vector multiplication. Similarly, the expectations

in the update equations for the mean and covariance (Eqs. (2.15), (2.16), (2.29) and (2.30))

become weighted averages over the grid points of the respective quantities.

The form of the short-time propagator ensures that the terms of the matrix pij are

non-negative. Hence, starting with a non-negative set of values for pj, we will obtain a

non-negative set of values for p′
i under the propagation. This feature ensures that the non-

negativity property of the PDF can also be preserved in the discrete implementation of

the TPI approach for all times without it having to be explicitly specified. Additionally,

the propagator matrix must obey the properties of a Markov transition matrix, namely the

following zeroth moment condition.

ˆ
p(z′, t′ | z, t) dz′ = 1 (2.34)

This maybe achieved by making the transformation

p
(new)
ij =

p
i(old)
ij∑

i pij ∆zi

(2.35)

Similarly, the zeroth moment condition for pi is enforced by

p
(new)
i = p

(old)
i∑

i pi ∆zi

(2.36)

The enforcement of these zeroth moment properties further increases and maintains the high

levels of accuracy in the numerical implementations.
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2.3 Performance of the Transformed Path Integral Approach

In this section we consider several numerical examples wherein the key aspects that con-

tribute to the superior performance of the TPI approach are highlighted to illustrate the

application and benefit of the approach over the conventional fixed grid approaches and MC

simulations. In particular, the ability of the TPI approach to overcome the limitations of

conventional fixed grid representations such as those due to fixed grid bounds, stationary

domains, and a finite fixed grid resolution are showcased through the simulations of specific

linear drift processes (in 1D) with known analytical solutions. A zero drift and constant

diffusion process is considered in Example 1 to showcase the ability of the TPI approach

to overcome the limitations of finite fixed grid bounds. The challenges posed by a static

computational domain and the capacity of the TPI approach to tackle them are investigated

in Example 2 through simulations of a constant drift and diffusion process. The better per-

formance of the TPI approach for the accurate representation of the PDF in cases where

there is large concentration of the PDF in a small region of state space is illustrated by the

simulation of the Ornstein-Uhlenbeck (OU) process in Example 3.

The TPI approach, with a set of update equations for the mean and covariance as well as

the PDF of the state variable in the transformed space, can better accommodate nonlineari-

ties in the drift without any linearization approximations and more accurately represent the

non-Gaussian behavior of PDFs. A typical nonlinear process (in 1D) is provided in Example

4 and the performance of the TPI approach is examined. The benefits of the TPI approach

over MC simulations, especially in the case of low dimensional problems, are revealed in

by comparing the error growth over time for the various approaches. The influence of the

diffusion coefficient as well as that of the spatial and temporal grid resolutions on the error

in the solutions obtained using the TPI approach are further examined through simulations

of the pure diffusion process. The existence of a potential similarity parameter, that can

account for the influences of the above simulation parameters, is also studied. Application
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of the TPI approach to MDOF systems is presented in Examples 5 to 8. These examples

cover linear and nonlinear stochastic dynamical systems (including those with anisotropic

diffusion tensors). Through these examples, the advantage of the TPI approach over con-

ventional approaches (based on fixed grid and MC) in terms of performance (relevant to

accuracy and computational time) is demonstrated.

2.3.1 SDOF stochastic dynamical systems

We begin by studying processes in one dimensional state spaces. As we will see later in the

examples in multidimensional state spaces, the benefits highlighted here in SDOF systems

are also observed in MDOF systems.

Example 1: A pure diffusion process in 1D

A salient feature of path integral based approaches, especially compared to MC simulations,

is their ability to accurately represent the PDF tail information. However, numerical imple-

mentations based on a fixed grid (FG) approach due to fixed and finite grid domain bounds,

may not be able to fully utilize this ability. Hence, they face challenges in obtaining accurate

estimates of the long time evolution of the distribution for processes where the PDF is un-

bound and diffuses over time. One such process is the pure diffusion process where the PDF

information beyond the bounds of the domain, in a conventional fixed grid implementation,

grows in time with the evolution of the PDF. This constitutes a loss in tail information that

significantly contributes to the error in the PDF representation.

The pure diffusion process is considered here to showcase the benefits afforded by the

TPI approach in addressing challenges for the accurate representation of the tail information.

The process is governed by the following equation

dx = a dw (2.37)
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Figure 2.1: Comparison of PDFs in the original space at t = 2 s (left) and t = 4 s (center) as
well as in the transformed space (right) for the pure diffusion process Eq. (2.37).

where the strength of the white noise process is chosen to be a =
√

2. The simulation is run

from 0 s to 4 s with a time step of ∆t = 0.01 s. The initial distribution is assumed to be a unit

mean and unit variance Gaussian distribution i.e p(x, t0) = N(µ0, σ
2
0) where µ0 = σ0 = 1.

The simulation is performed on a uniform grid with 201 grid points between the upper

and lower bounds [xl, xu] = [−4, 6] in the original space and on a uniform grid with 201

grid points between the bounds [zl, zu] = [−5, 5] in the transformed space. In order to

facilitate comparisons, the number of grid points as well as the density of these points in

their respective domains have been chosen to be the same. However, it is to be noted

that the chosen fixed grid in the transformed space is equivalent to an adaptive grid in the

original space with bounds that are five standard deviations on either side of the mean i.e.

[µ− 5σ, µ+ 5σ], where µ and σ represent the mean and variance respectively at time t.

Better performance of the TPI approach over the conventional fixed grid approach can be

seen from Fig. 2.1. The plots in the left and center of Fig. 2.1 show the time evolution of the

state PDF where the solutions obtained from the TPI, FG and MC approaches are shown

along with the exact analytical solution. It can be seen that the distribution for this problem

remains Gaussian centered about µ0 = 1 with a variance σ(t)2 that grows linearly with time.

Besides, the state variables in the transformed computational domain is found to have a

standard normal distribution that remains invariant in time as suggested by Lemma. (2.2.1)

and demonstrated by the plots in the right of Fig. 2.1. Thus from Eq. (2.21), the error in

the PDF due to the loss of tail information in the conventional fixed grid formulation for
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this problem can be evaluated to be erfc
(
5/

√
2σt

)
. As the standard deviation grows in time

for this process, the PDF area outside of the bounds in FG increases leading to the growth

in error. The value of this error at time t = 4 s is approximately 0.096 i.e. close to 10 % of

the probability in the transformed space is lost contributing to the poor performance seen

in (center) in Fig. 2.1.

In contrast, the error from loss of tail information in the TPI approach for this process is

found to be erfc
(
5/

√
2
)
. This error is a constant under the propagation and approximately

equal to 5.73×10−7 i.e. less than 0.0001% of the probability in the transformed space is lost.

The constant value of the error is due to the invariance of the PDF (from a standard normal

distribution) in the transformed space for this process which can be seen (right) in Fig. 2.1.

The results from the simulation of the pure diffusion process show that the transformed path

integral approach, for the same number of grid points, performs significantly better than the

conventional fixed grid approach.

Example 2: A constant drift and diffusion process

The constant drift and diffusion process is another simple stochastic process with a well

known analytical solution. Processes with large drift pose significant challenges to the tra-

ditional grid based approaches, which are limited by a stationary grid. Over time, the PDF

may drift out of the bounds of the original computational grid space. The benefits offered

by the TPI approach to address these challenges are illustrated in this example. The process

considered is given by the following equation

dx = κ dt+ a dw (2.38)

where the constant drift is given by κ = 3 and the strength of the white noise process is

chosen to be a = 1/3. The simulation is run from 0 s to 4 s with a time step of ∆t = 0.01 s.

The initial distribution is assumed to be a Gaussian distribution given by p(x, t0) = N (1, 2).
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Figure 2.2: Comparison of PDFs in the original space at t = 2 s (left) and t = 4 s (center) as
well as in the transformed space (right) for the constant drift process Eq. (2.38).

The bounds on the grid and the number of grid points used for this problem are the same

as those used in the previous example for the simulation of the pure diffusion process.

In Fig. 2.2, the PDF plots in the original state space at times t = 2 s (left) and t = 4 s

(center) show the failure of the FG approach, as the PDF drifts out of the bounds [−4, 6] in

the original computational domain. In spite of the mean and variance growing linearly with

time, it can be seen that the form of the distribution remains Gaussian. Thus, following

the steps laid out in the pure diffusion case, the failure of the FG approach can be similarly

quantified. The error resulting from the inaccurate representation of the PDF in the tail

regions at t = 4s for FG is 0.7388 i.e. a loss of almost 74 % of the probability in the

transformed space. This high loss is reflected in the poor performance of FG seen (center)

in Fig. 2.2. The corresponding error obtained from the TPI approach remains less than

0.0001 %. This example illustrates the unique property of the TPI approach where the

PDF exhibiting large translation in the original space is still well contained within the fixed

bounds of the computational domain in the transformed space. Additionally, as an evidence

to Lemma. (2.2.1), the invariance of the PDF in the transformed space for the linear drift

and constant diffusion process considered here can be seen (right) in Fig. 2.2.

Example 3: OU process

Processes with stable fixed points in the associated deterministic dynamical system, i.e.

in the absence of noise, may exhibit concentration of the probability density functions near
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Figure 2.3: Comparison of PDFs in the original space at t = 2 s (left) and t = 4 s (center) as
well as in the transformed space (right) for the OU process Eq. (2.39).

these points, especially in the case of processes with small diffusion coefficients corresponding

to low noise processes. These distributions are often characterized by large peak values at

the fixed points and with very thin tails. Conventional fixed grid based approaches face

challenges, due to a fixed and finite grid resolution, in efficiently and accurately representing

the transient behavior of distributions near these stationary points. In contrast, the TPI

approach offers the possibility to ensure a better and sufficient resolution. This better

performance is showcased here with the help of a linear drift process with a constant diffusion

coefficient. The process, known as the Ornstein-Uhlenbeck process, is a process with a

stationary point and a known analytical solution [1]. It is given by the following equation

dx = −β(x− θ) dt+ a dw. (2.39)

where β = 1/2, θ = 1 and the strength of the white noise process is a = 0.1. The initial

distribution, given by p(x, t0) = N(µ0, σ
2
0) where µ0 = 1 and σ0 = 0.5, is evolved from 0 s

to 4 s in time steps of ∆t = 0.01 s. The dimensions of the grid are the same as those in the

pure diffusion example.

The process described here has a stationary point at x = θ = 1. As we evolve in time,

the PDF will have a peak value at this point. This can be seen from the PDF plots in the

original space at t = 2 s (left) and t = 4 s (center) in Fig. 2.3. The failure of the FG approach

near the stationary point can also be seen. As the variance σ2 for this process shrinks and
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approaches the steady state value of a2/2 = 0.01, the PDF peak value at the stationary point

increases and the PDF near this point becomes more narrow. The FG approach may not

be able to ensure sufficient resolution near the stationary point to accurately represent this

behavior over time as shown (left and center) in Fig. 2.3. In contrast, sufficient resolution

around the stationary point can be achieved with the TPI approach leading to the more

accurate representation. This is due to the fact that a uniform grid spacing of ∆z in the

transformed space is equivalent to an adaptive grid with a spacing of ∆x = σ∆z in the

original state space. Thus a fine resolution when the variance is small, in order to ensure a

better representation of the PDF near the stationary point, is automatically accounted for

by the TPI approach.

Example 4: A stochastic process with nonlinear drift

The TPI approach is able to sufficiently accommodate the nonlinearities in the drift that

may be present in a typical real world system. Additionally, the approach can also accom-

modate the non-Gaussian behavior of PDFs which arise in these nonlinear drift processes.

We consider the following process to illustrate the same.

dx = −γx(x2 − δ2) dt+ a dw (2.40)

where γ = 1/16, δ = 4 and the strength of the white noise process is chosen to be a = 3.

The simulation is run from 0 to 16s with a time step of ∆t = 0.01s. The initial distribution

is assumed to be a Gaussian distribution given by p(x, t0) ∼ N (1, 2).

The problem considered is of a nonlinear drift process for which the steady state solution

is known. The transient solutions and the steady state solution for the problem are inherently

non-Gaussian. The steady state solution is given by

p(x) = 1
η

exp
{

−γ x
2

a2

(
x2

2 − δ

)}
(2.41)
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Figure 2.4: Comparison of PDFs in the original space at t = 1 s (left) and t = 16 s (center)
as well as in the transformed space (right) for the 1D non-linear process Eq. (2.40).

where η is a normalization constant. Clearly, the steady state solution is a bimodal PDF

with the peaks located at x = ±δ = ±4. It can be seen from Fig. 2.4 that the particular

transformation considered is able to sufficiently capture the non-Gaussian PDF behavior as

well. The limitations of a fixed grid can be seen here for this particular problem as well. It is

to be noted that in the transformed space we do not observe the invariant solution behavior

exhibited by the linear drift processes.

Error analysis

In the preceding examples, we have seen clear benefits for the proposed transformed path

integral (TPI) approach over the conventional fixed grid (FG) approach. The results also

indicate good agreement between the TPI approach and Monte Carlo (MC) simulations,

especially for the low dimensional problems considered. Further, the performance of these

approaches can be better quantified via an RMS error measure in the PDF. A discrete

representation of this error measure on an uniform grid is given by

εRMS =

√√√√ 1
Npts

Npts∑
i=1

[p(xi) − p̂(xi)]2 (2.42)

where p̂(xi) is the numerical solution obtained using MC, FG or the TPI approach for the

pure diffusion process (Eq. (2.37)) and the OU process (Eq. (2.39)) at the i-th grid point.

The summation in the definition is taken over the entire set of grid points (or samples). The
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Linear Stochastic Dynamical Systems in 2D
Pure Diffusion OU Process Nonlinear Dynamics

Npts Tcomp(s) εRMS Tcomp(s) εRMS Tcomp(s) εRMS

FG 201 2.4 1.33 × 10−1 2.9 8.85 × 10−2 9.3 5.45 × 10−2

MC 106 34 4.94 × 10−4 33.9 1.23 × 10−2 132 7.93 × 10−4

TPI 201 2.9 5.95 × 10−8 3.7 8.11 × 10−4 10.8 6.46 × 10−4

Table 2.1: Comparison of RMS error in the PDF obtained by fixed grid (FG), Monte Carlo (MC)
and transformed path integral (TPI) approaches at t = 4s for the pure diffusion process Eq. (2.37)
and the OU process Eq. (2.39).

analytical solution p(x) is known at all times for the problems considered here. Based on

this error measure, we can clearly see that the TPI approach performs significantly better

than the conventional fixed grid approach and MC simulations. For instance, at t = 4s the

error for the TPI approach is approximately four orders of magnitude lower than that for

MC and six orders of magnitude lower than that for FG as also shown in Table. 2.1. It can

be seen that the error plots for the OU process show similar benefits for the TPI approach

over the conventional fixed grid approach and Monte Carlo simulations. Additionally, from

the comparison of the RMS error in the PDF at t = 4s (for the case of pure diffusion and

OU process) and the corresponding computational costs involved, as shown in Table. 2.1, we

see that the reduction in the error for the TPI approach is obtained at a significantly lower

computational cost (as compared to MC) or comparable computational cost (as compared
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to FG) in terms of the computation time (Tcomp). In particular, this benefit is also seen for

the nonlinear drift process Eq. (2.40). Note that in this case, the RMS error (at a large time,

t = 16s) is evaluated by considering the stationary PDF as a reference to the exact solution.

Such a restriction (on comparison with stationary PDF) may often be necessary when exact

solutions corresponding to transient behavior of stochastic systems are not readily available.

Further reduction in the PDF error in the TPI approach can be achieved by varying the

parameters of the numerical simulation. Intuitively, the expectation is that with increase in

the number of grid points Npts there is a decrease in the error εRMS. While this is true for

large number of grid points, as shown in Fig. 2.6, the opposite behavior is observed when a

small number of grid points are used. In addition, we see that beyond a point there is no

further reduction in the error with increase in the number of grid points. This is because

of the error arising from the loss of tail information. Increase in the domain size of the grid

points ensure better representation of the tail information, but for the same number of grid

points this would increase the discretization error. Thus, it can be seen that having a larger

domain along with an increase in the number of grid points produces a greater reduction in

error.

The influence of the size of the time step ∆t on the error εRMS is shown in Fig. 2.6, where

the existence of regions corresponding to a loss of accuracy in εRMS can be seen. It can also

be seen that this loss of accuracy can be reduced and shifted to a smaller time step with

increase in the number of grid points. Thus the effects of the time step ∆t and that of the

number of grid points Npts on the error εRMS are not independent of each other. The plot

also indicates that there might exist a similarity parameter that could collapse the different

curves into one.

It can be seen from Fig. 2.7, that this similarity parameter may also depend on the

diffusion constant a of the process. We propose a possible candidate given by

α =
σ2

ref (∆z)2

2a2∆t (2.43)
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Figure 2.6: Influence of the number of grid points (left) and the size of the time step (right)
on the RMS error in the PDF obtained through transformed path integral approach (TPI)
for the pure diffusion process Eq. (2.37). The RMS error was calculated for each point at
t = 4s.

where ∆z ∝ 1/Npts is the grid spacing in the transformed space and σref is a scaling param-

eter to ensure the non-dimensionality of α. In our analysis, the scaling parameter σref was

chosen to be equal to unity. The analysis is analogous to the von Neumann stability analysis

as performed for the heat equation. Previous studies in the literature based on fixed grid

implementations of the path integral [47] have noted that in order to obtain correct results,

the grid spacing in the original space ∆x, the time step ∆t, and the diffusion coefficient a

need to satisfy the relation ∆x = [a2∆t]1/2. Our analysis extends the previous study further

by analyzing the error εRMS for different α values as shown (right) in Fig. 2.7.

The plot of the variation of the error with α shows a partial collapse of the curves. The

regions, where there is a loss of accuracy, overlap on the α axis (≈ 1.5). However, the peak

values themselves are different and also the collapse seems to be better in certain regions of

the α space (1.5 ≤ α ≤ 10). From the plot, we can infer that the best choices for ∆t to

minimize the error are values that correspond to α > 10 or α < 0.5. But further analysis

may be required in order to better understand the similarity parameters associated with the

TPI and their influence on the error.
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2.3.2 MDOF stochastic dynamical systems

The ability of the TPI approach to better address challenges arising from large diffusion,

large drift and concentration in the PDF also extends to MDOF systems. In this context,

performance of the TPI approach is evaluated by consideration of selected problems in two-

dimensional state space, as given by (i) Example 5: A pure diffusion process in 2D (including

isotropic and anisotropic diffusion tensor with non-zero cross-covariances), (ii) Example 6:

A coupled linear system in 2D (analogous to 1D OU process), (iii) Example 7: An uncoupled

nonlinear system in 2D and (iv) Example 8: A coupled nonlinear system in 2D. Note that the

latter two examples involve cubic nonlinearities (analogous to Example 4). Through analysis

of problems considered in examples 5 to 8, benefits of the TPI approach in comparison to FG

approach and MC simulations are demonstrated for two-dimensional stochastic dynamical

systems.

Example 5: A pure diffusion process in 2D

The conventional fixed grid (FG) approaches face challenges in accurately representing the

PDF in systems with large diffusion. The error, arising from a loss of tail information in

the PDF, can be reduced with the TPI approach. We consider the two dimensional pure
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Figure 2.8: The plots above show the exact analytical solution for the time evolution of the
joint PDF of the state for the 2D pure diffusion process Eq. (2.44) from t = 0 s to t = 3 s.
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Figure 2.9: Contour plots of the joint PDF at t = 3 s for the 2D pure diffusion process
Eq. (2.44) obtained by the analytical solution (left), the fixed grid approach (center) and the
TPI approach (right).

diffusion process to show this benefit. The process is given by the equation

dx = Adw (2.44)

where the diffusion coefficient matrix G ≡ D(2) = AAT/2 is chosen to be the identity

matrix of size 2. Note that the diffusion tensor considered in this case (labeled Case A)

is isotropic. The simulation is run from 0 s to 3 s in steps of 0.01 s with a Gaussian initial

distribution of mean
[
2 2

]T

and a (2 × 2) diagonal covariance matrix with the diagonal

elements
[
4 4

]
. The simulations were performed using a 51 × 51 grid resolution in both

the original and transformed space. The domain bounds were taken to be [xl, xu] = [−4, 8]
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Figure 2.10: Comparison of marginal PDFs in the original space at t = 2 s (left) and t =
3 s (center) as well as in the transformed space (right) for the 2D pure diffusion process
Eq. (2.44).

in either dimensions of the original space for FG simulations and [zl, zu] = [−5, 5] in either

dimensions of the transformed space for the TPI simulations.

The analytical solution for this problem is known and the evolution of the PDF is shown

in Fig. 2.8. The superior performance of the TPI over the conventional fixed grid approaches

can be seen from the contour plots at t = 3 s shown in Fig. 2.9. This can also be seen from

the plots of the marginal PDFs shown in Fig. 2.10. Invariance of the TPI solution in the

transformed space can also be noted in Fig. 2.10 (right), as expected via generalization of

Lemma. (2.2.1) for multidimensional (linear) problems. Performance of the TPI approach

in the context of accuracy and computational time can also be assessed using data shown in

Table. 2.2. Higher accuracy (or lower RMS error) of the TPI approach in comparison to FG

and MC approaches can be observed (in Table. 2.2) for comparable computational times.

The performance of the TPI approach is further assessed for the case of a pure diffusion

process with an ansiotropic diffusion tensor (including non-zero, off-diagonal terms). For

this case (labeled Case B), the elements of the diffusion tensor are chosen to be G11 = 3,

G22 = 1 and G12 = G21 =
√

3/2. The simulation is run from 0 s to 2 s in steps of 0.1 s with

a multivariate standard normal distribution as the initial distribution.

It can be seen from the analytical solution shown in Fig. 2.11 for the evolution of the

PDF and the contour plots at t = 2 s shown in Fig. 2.12, that the PDF undergoes stretching

and rotation. Based on Fig. 2.12, a clearly visible benefit of the TPI approach over the FG
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Figure 2.11: The plots above show the exact analytical solution for the time evolution of the
joint PDF of the state for the 2D pure diffusion process Eq. (2.44) from t = 0 s to t = 2 s.
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Figure 2.12: Contour plots of the joint PDF at t = 2 s for the 2D pure diffusion process
Eq. (2.44) obtained by the analytical solution (left), the fixed grid approach (center) and the
TPI approach (right).

approach can be noted. Clear visible benefit can be seen in Fig. 2.12 for the TPI approach

over the FG approach. Additionally, the marginal PDF plots in the original space shown

in Fig. 2.13, illustrate the large growth of error with time for results obtained using the

FG approach. The superior performance of the TPI approach is further underscored by the

predicted invariant solution behavior exhibited by PDF in the transformed space as shown

in Fig. 2.13 (right).

Better performance of the TPI approach for this case (with anisotropic diffusion tensor)

can also be observed from Table. 2.2. In comparison to the FG approach, it can be noted that

the TPI approach has significantly greater accuracy for comparable computational times.

The TPI approach is also observed to outperform the MC approach, by virtue of lower RMS
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Figure 2.13: Comparison of marginal PDFs in the original space at t = 1 s (left) and t =
2 s (center) as well as in the transformed space (right) for the 2D pure diffusion process
Eq. (2.44).

error and lower computational time.

Example 6: A coupled linear process in 2D

Concentration of the PDF, like in SDOF systems (Example 3), poses challenges to the

conventional FG approach in MDOF systems. We consider simulation of a coupled system

of Ornstein-Uhlenbeck processes in a two dimensional space, given by the equation

dx = K(c − x) ∆t+ Adw (2.45)

where K is a lower triangular matrix with elements K11 = 0.5 and K22 = K21 = 0.25, while

c is the column vector
[
1 1

]T
. This particular coupled linear stochastic system has a stable

stationary point (corresponding to the underlying deterministic system) at x = c and hence

a concentration of the PDF around this stationary point can be expected for large times

(for relatively small process noise levels). An anisotropic diffusion matrix is considered here,

with component terms given by G11 = G12 = G21 = 1/32 and G22 = 1/16, to illustrate

the limitations of the conventional fixed grid approaches in accurately representing this PDF

behavior. Starting with a multivariate standard normal distribution (as our initial condition),

the simulation is run from 0 s to 2 s in steps of 0.001 s, using a 51 × 51 grid resolution for

TPI and FG approaches. The bounds of the finite computational domain were taken to be

[ξl, ξu] = [−4, 4] in either dimensions of both, the original and the transformed spaces.
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Figure 2.15: Contour plots of the joint PDF at t = 2 s for the 2D OU process Eq. (2.45) in
2D obtained by the analytical solution (left), the fixed grid approach (center) and the TPI
approach (right).

In addition to concentration of the PDF near stationary points, the coupled linear drift

process considered here can cause the PDF to be stretched and rotated. This behavior

can be seen in the analytical solution shown in Fig. 2.14. High concentration of the PDF,

similar to the 1D OU process considered earlier in Example 3, may lead to errors with the

FG approach due to an insufficient resolution in the fixed grid, as shown in Fig. 2.15 and

Fig. 2.16. These figures also illustrate the relative benefits of the TPI approach. The ability

of the TPI approach to achieve a sufficiently fine resolution in regions of large concentration

in the PDF, as noted for the SDOF case given in Example 3, is also observed in this two-

dimensional case. The TPI solution in the transformed space, shown in Fig. 2.16 (right),

is also found to be invariant (as expected). Better performance of the TPI approach (for
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Figure 2.16: Comparison of marginal PDFs in the original space at t = 1 s (left) and t = 2 s
(center) as well as in the transformed space (right) for the 2D OU process Eq. (2.45).

Linear Stochastic Dynamical Systems in 2D
Isotropic Diffusion Anisotropic Diffusion Coupled System
(Case A) (Case B) (OU Process)

Npts Tcomp(s) εRMS Tcomp(s) εRMS Tcomp(s) εRMS

FG 51 × 51 114 6.64 × 10−4 9.5 2.05 × 10−3 601 3.94 × 10−2

MC 107 235 1.98 × 10−5 93.9 3.03 × 10−5 1660 4.36 × 10−4

TPI 51 × 51 128 1.40 × 10−5 10.0 1.04 × 10−5 790 2.29 × 10−4

Table 2.2: Comparison of computational times and RMS errors in PDFs obtained by fixed
grid (FG), Monte Carlo (MC) and transformed path integral (TPI) approaches for the fol-
lowing two-dimensional linear stochastic dynamical systems: the 2D pure diffusion process
Eq. (2.44) (with isotropic and anisotropic diffusion tensors, considered in Example 5) and
the coupled system of OU process in 2D Eq. (2.45)

this problem) in the context of accuracy and computational time can also be noted from

Table. 2.2 and the benefits over FG and MC approaches are found to be qualitatively similar

to those found in anisotropic diffusion case in Example 5.

Example 7: An uncoupled nonlinear process in 2D

Like in the scalar case, the application of the TPI approach can be easily extended to

nonlinear drift processes. The following process is considered to illustrate the same.

dx = f(x, t) dt+ A dw (2.46)
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Figure 2.17: The plots above show the initial joint PDF (left) and the stationary joint PDF
(right) of the state for the nonlinear drift process Eq. (2.46)
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Figure 2.18: Contour plots of the stationary joint PDF (far left) and the joint PDF at
t = 2 s obtained by MC simulations (center left), the FG approach (center right) and the
TPI approach (far right) for the 2D uncoupled nonlinear drift process Eq. (2.46)

where the nonlinear drift is given by f(x, t) =
[
x1 − x3

1 x2 − x3
2

]T
and the diffusion co-

efficient matrix for the process G ≡ AAT/2, is a (2 × 2) diagonal matrix with diagonal

elements [0.5, 1]. For this case (labeled Case C), the initial distribution is a multivariate

Gaussian distribution given by p(x, t0) = N(0,Σ0), where Σ0 is a (2 × 2) diagonal matrix

with diagonal elements [1, 2]. The MC solution for the evolution of the PDF is shown in

Fig. 2.17. The PDF, as expected, does not remain Gaussian. The TPI approach is able

to sufficiently capture the multidimensional non-Gaussian behavior as can be seen from the

comparison of the contour plots at t = 2 s shown in Fig. 2.18. The marginal plots shown

in Fig. 2.19 further illustrate the same. The plots of the marginal PDF in the transformed

space for this problem, as expected, do not exhibit the invariant solution behavior seen in

the pure diffusion case.

Based on the data shown in Table. 2.3, the performance of the TPI approach appears to
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Figure 2.19: Comparison of marginal PDFs at t = 0 s (left) and t = 2 s (center) in the
original space and transformed space (right), for the 2D uncoupled nonlinear drift process
Eq. (2.46).

be marginally better (in terms of accuracy) than the fixed grid approach, albeit for slightly

longer computational time. When compared with MC approach, comparable accuracy can

be achieved by the TPI approach at a slightly lower computational time. Note that the

bounds for the FG simulations and TPI simulations are chosen to be [xl, xu] = [−6, 6] and

[zl, zu] = [−7/2, 7/2] respectively in each dimension. In this case, the bounds of the fixed

grid computational domain are chosen such that inital and transient behaviors of the PDF

are well represented (for the duration of the simulation time). Although it is possible to

choose the bounds of the fixed grid such that the initial PDF is well represented, it might

not always be possible to choose the bounds such that the transient behavior of the PDF is

adequately represented for the duration of the simulation time. While the FG approach can

be significantly affected by this limitation, the TPI approach can handle this limitation better

as fixed bounds in the transformed space (of the TPI approach) correspond to dynamically

adaptive bounds in the original space.

To illustrate a situation where the fixed grid might be significantly affected by the choice

of bounds, we select a problem with the nonlinear drift considered in Eq. (2.46) with a

different set of parameters. In particular, the diffusion coefficient matrix for the process is

now chosen to be a (2×2) diagonal matrix with diagonal elements G11 = G22 = 2. Note that

an isotropic diffusion tensor is considered in this case (labeled Case D), in contrast to the

anisotropic diffusion tensor considered in the earlier case. The initial distribution for this

46



0
2

21

0.4
p
(x

1
,
x
2
)

1

x1

0

x2

0

0.8

-1 -1
-2 -2

t = 0s

0
3

3

0.05

1

p
(x

1
,
x
2
)

x1

1

x2

0.1

-1 -1
-3 -3

t → ∞

Figure 2.20: The plots above show the initial joint PDF (left) and the stationary joint PDF
(right) of the state for the uncoupled nonlinear drift process Eq. (2.46).
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Figure 2.21: Contour plots of the joint PDF at t = 2 s for the 2D uncoupled nonlinear drift
process Eq. (2.46) obtained by the analytical solution (left), the fixed grid approach (center)
and the TPI approach (right).

case is again a multivariate Gaussian distribution with the mean at the origin and a (2 × 2)

diagonal covariance matrix, but with the diagonal elements [0.25, 0.25].

The benefits of the TPI approach over the FG approach for this problem can be seen

from the comparison of the contour plots at t = 2 s shown in Fig. 2.21 as well as from the

marginal PDF plots shown in Fig. 2.22. The chosen fixed grid for the problem is sufficient

to adequately represent the initial PDF as shown in Fig. 2.22 (far left). However, unlike the

previous case, the FG approach fails in accurately representing the transient behavior of the

PDF as seen in Fig. 2.22 (center left and center right). The TPI approach, on the other

hand, is able to represent the PDF more accurately than the FG approach.

Considerably better performance (in terms of accuracy) of the TPI approach over the

FG approach (for comparable computational time) can also be seen from the data shown in
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Figure 2.22: Comparison of marginal PDFs at t = 0 s (left) and t = 2 s (center) in the
original space and the transformed space (right), for the 2D uncoupled nonlinear drift process
Eq. (2.46).

Table. 2.3. Besides, marginally better performance of the TPI approach over MC (in terms

of the accuracy and computational time) is also observed in Table. 2.3.

Example 8: A coupled nonlinear process in 2D

Additionally, we consider a coupled nonlinear process in 2D given by dx = f(x, t) dt +

A dw where f(x, t) =
[

− γx1(x2
1 + x2

2 − c2) − γx2(x2
1 + x2

2 − c2)
]T

with γ = c = 1 and

the diffusion coefficient matrix G ≡ AAT/2, is a (2 × 2) diagonal matrix with diagonal

elements G11 = G22 = g = 0.5. The initial distribution is a zero mean multivariate Gaussian

distribution with a (2×2) diagonal matrix and diagonal elements [4/49, 4/49]. A 57×57 grid

resolution is chosen for both the fixed grid and the TPI grid, with bounds [xl, xu] = [−1, 1]

and [zl, zu] = [−7/2, 7/2], respectively, for each dimension. The simulation is run from 0 s to

2 s in steps of ∆t = 0.01 s.

The underlying deterministic system in this example has a stable limit cycle on a circle

of radius c. The stationary solution for the PDF is given by

p(x1, x2) = 1
η

exp
[
− γ

4g
(
x2

1 + x2
2

) (
x2

1 + x2
2 − 2c2

)]
(2.47)

where η is a normalization constant. The stationary PDF is shown in Fig. 2.23 (right) where

the presence of a limit cycle, characterized by the concentration of the PDF around it, can

be seen.
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Figure 2.23: The plots above show the initial joint PDF (left) and the stationary joint PDF
(right) of the state for the coupled nonlinear process considered in Example 8 (section 3.2.4).

-2 -1 0 1 2

x2

-2

-1

0

1

2

x
1

-2 -1 0 1 2

x2

-2

-1

0

1

2

x
1

-2 -1 0 1 2

x2

-2

-1

0

1

2

x
1

Figure 2.24: Contour plot of the stationary joint PDF (left) and the joint PDF at t = 2 s
obtained by the fixed grid approach (center) and the TPI approach (right) for the 2D coupled
nonlinear process considered in Example 8 (section 3.2.4).

Insufficient resolution in the original space to accurately represent PDF near the limit

cycle can contribute to errors in the FG approach. This is observed from the contour plots

at t = 2 s shown in Fig. 2.24 and the marginal plots shown in Fig. 2.25. The figures also

illustrate the ability of the TPI approach to accurately represent the multidimensional non-

Gaussian behavior in a coupled nonlinear drift process. The evolution of the marginal PDF

in the transformed space is shown in Fig. 2.25 (right).

Accuracy of the TPI approach can also be assessed from the data in table 2.3, where

significant benefit over FG approach is observed. The table also shows that for this problem,

the TPI approach is faster in comparison to the MC approach for comparable accuracy.

Overall, based on Examples 1-8, the TPI approach was found to be more accurate than the
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Figure 2.25: Comparison of marginal PDFs in the original space at t = 1 s (left) and t = 2 s
(center) as well as in the transformed space (right) for the 2D coupled nonlinear process
considered in Example 8 (section 3.2.4).

Nonlinear Stochastic Dynamical Systems in 2D
Uncoupled (Case C) Uncoupled (Case D) Coupled

Npts Tcomp(s) εRMS Tcomp(s) εRMS Tcomp(s) εRMS

FG 57 × 57 114 3.36 × 10−3 132 2.51 × 10−2 133 5.06 × 10−2

MC 107 199 8.81 × 10−4 195 7.68 × 10−4 205 6.67 × 10−4

TPI 57 × 57 172 8.42 × 10−4 163 7.17 × 10−4 180 5.99 × 10−4

Table 2.3: Comparison of computational times and RMS errors in PDFs obtained by fixed
grid (FG), Monte Carlo (MC) and transformed path integral (TPI) approaches at t = 2s
for the following two-dimensional nonlinear stochastic dynamical systems: the uncoupled
nonlinear system with anisotropic diffusion tensor (Case C), the uncoupled nonlinear system
with isotropic diffusion tensor (Case D) Eq. (2.46) considered in Example 7 and the coupled
nonlinear system considered in Example 8 (section 3.2.4).

FG approach and MC simulations for prediction of linear and nonlinear stochastic dynamical

systems in one-dimensional and two-dimensional spaces. This observation is also supported

by the data in shown in Tables. 2.1 to 2.3.

2.4 Concluding Remarks

In this chapter, an accurate and efficient path integral based approach has been developed for

the solution of the Fokker-Planck equation. The proposed approach, termed the transformed

path integral (TPI) approach, has been shown to preserve the non-negativity of the involved

distributions as well as the short-time properties of the transition PDF and the underlying

50



stochastic process. As a part of the approach, a new form of the short time propagator

was developed based on a dynamic transformation of the state space with the mean and

covariance of the state variables as parameters. The new form of the propagator allows

for the propagation to be performed in a transformed computational domain where a more

accurate representation of the PDF can be ensured. The dynamic transformation in the TPI

approach is such that a fixed grid in the transformed space corresponds to an adaptive grid in

the original state space. Hence the establishment of error bounds based on the Chebyshev’s

inequality, for solutions obtained from the TPI approach, are more straightforward. A new

set of update equations was derived for the PDF in the transformed space as well as the mean

and covariance of the state variables which enables the TPI approach to better accommodate

nonlinear drift processes and non-Gaussian distributions.

The proposed TPI approach is able to better address challenges arising from finite fixed

grid bounds, a static computational domain, and a finite fixed grid resolution, which maybe

encountered in processes with large diffusion coefficients, large drift vectors, or large con-

centrations of the PDF. The benefits of the TPI approach and limitations of conventional

approaches such as Monte Carlo simulations and fixed grid based approaches, in tackling

these challenges were clearly illustrated through the pure diffusion, the constant drift and,

the Ornstein-Uhlenbeck processes (in 1D). Additionally, the TPI approach solutions show

much better agreement with the analytical solutions than those obtained from conventional

approaches. Simulations of a nonlinear drift process showed similar benefits and good agree-

ment with the stationary solution for the TPI approach over conventional approaches. Anal-

ysis of the error in the PDF as compared with the analytical solutions in the linear case and

the stationary solution in the nonlinear case show that the TPI approach is more efficient

than conventional approaches in terms of the computational costs involved to obtain a de-

sired level of accuracy, especially for problems in one dimensional space. Our analysis also

indicated the possibility of the existence of a similarity parameter. Our proposed candidate

for the parameter given by α = σ2
ref (∆z)2/(2a2∆t) yielded a partial collapse of the various
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error curves. It was shown that there is further reduction of the error for α > 10 or α < 0.5.

The extension of the TPI approach to problems in multidimensional space was illustrated

through simulations of linear and nonlinear problems in a two dimensional space.

Although, the TPI approach addresses the domain issues associated with conventional

fixed grid approaches, issues relevant to the curse of dimensionality need to be investigated

further. Another challenge for the conventional PI approaches and inherited by the TPI

approach is handling of stochastic processes with a singular diffusion matrix. These issues

will be addressed in the next chapter.
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CHAPTER 3

The Generalized Transformed Path Integral Approach for

Stochastic Processes

3.1 Scope of the Chapter

In this chapter, we present the generalized transformed path integral approach (GTPI): a

grid-based path integral approach for PDF evolution in a large class of dynamical systems.

We showcase the application of our proposed approach to nonsingular systems, second or-

der (and higher order) dynamical systems, dynamical systems with zero process noise, and

certain dynamical systems with non-white noise excitation. As a part of the approach, we

present a reformulation of the problem in terms of the solution of a complementary system—

the standard transformed stochastic dynamical system—obtained through a dynamic trans-

formation of the state variables. The state mean and covariance of the transformed system

do not change with evolution and the choice of our transformation parameters ensure that

they are zero and identity respectively. This allows us to consider PDF propagation in a

“well contained” transformed space where greater numerical accuracy for the distribution

can be ensured. A fixed grid in the transformed space corresponds to an adaptive grid in the

original space coordinates which allow our approach to better address the challenges of large

drift, diffusion, and concentration of PDF. In addition, error bounds for distributions in the

transformed space can be easily obtained using Chebyshev’s inequality. Using a splitting

solution of the Fokker-Planck equation in the transformed space, we derive a set of update

equations for the state PDF, its mean, and covariance. Illustrative examples were considered

to showcase the benefits of GTPI over conventional fixed grid (FG) approaches in the afore-
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mentioned stochastic dynamical systems. In all the cases, the GTPI results show excellent

agreement with results from MC simulation and available analytical (and stationary) solu-

tions, while FG results show large errors. The effect of simulation parameters and system

parameters on the numerical error in our approach were also studied.

3.2 The Transformed Path Integral Approach: An Overview

Dynamical systems subjected to Gaussian white noise excitation can be described by the Itô

stochastic differential equation (SDE)

dx(t) = f
(
x(t), t

)
dt+ A

(
x(t), t

)
dw(t) (3.1)

where x(t) ∈ RNs×1 represents the state of the system at time t. The equation describes

evolution of the state of a system along a deterministic path specified by the drift vector

function f
(
x(t), t

)
∈ RNs×1 while being subjected to random excitations modeled as Gaus-

sian white noise of strength A
(
x(t), t

)
∈ RNs×Nw . The increments dw(t) ∈ RNw×1 are

independent and identically distributed zero mean Gaussian random vectors with the auto-

correlation
〈
dwi(t) dwj(s)

〉
= δ(t− s) δij dt for i, j = 1, . . . , Nw. The stochastic process w(t)

is the Wiener process.

The state of the system can also be characterized by a probability density function p(x, t)

whose evolution is governed by the Fokker-Planck equation (FPE), a second order partial

differential equation of the parabolic type given by

[
∂

∂t
+ ∂

∂xi

fi(x, t) − ∂2

∂xi∂xj

Gij(x, t)
]
p(x, t) = 0 (3.2)

where we have used Einstein’s notation convention, i.e., repeated indices imply summation.

Note that the spatial variables x used in Eq. (3.2) is not the same as the random vector

x(t) representing the state of the dynamical system in Eq. (3.1). Nevertheless, the Fokker-
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Planck equation features the drift vector function f(x, t) while the strength of the white noise

excitation A(x, t) is related to the diffusion coefficient matrix G(x, t) as G(·) = A(·)A(·)T/2.

For the sake of brevity, wherever the context is clear we will represent both the state variables

and their associated spatial variables with the same symbol. Exact analytical solutions to the

Fokker-Planck equation are known only for certain cases [14,16,18–20]. In most other cases,

approximate solutions based on either analytical [22,23,28] or numerical methods [30,33,34]

are sought.

Several authors [45,84–86] pursued an alternative approach, namely to seek a solution to

the Fokker-Planck equation in the form of a path integral:

p(x, t|x0, t0) =
x(t)=xˆ

x(0)=x0

Dµ
(
x(τ)

)
exp

{
−
ˆ t

t0

dτ L(x(τ), ẋ(τ), τ)
}
. (3.3)

It represents a functional integral with integration measure Dµ
(
x(τ)

)
over paths x(τ) be-

tween states x(0) = x0 and x(t) = x. The path integral approach presents another, albeit

formal, mechanism to describe the behavior of dynamical systems; and the Onsager-Machlup

functional L, if it can be specified, is similar to the Lagrangian of a dynamical system [44].

However, a general form of the functional, especially for systems with multiple degrees of

freedom, has not been uniquely specified.

Stratonovich [84], for instance, derived an expression for the functional by evaluating

probability along the paths in a small neighborhood of a smooth path:

L
(
x(t), ẋ(t), t

)
= 1

2

[
1
2 ẋi

(
G−1

)
ij
ẋj − 2mi

(
A−1

)
ij
ẋj +mi mj + Aij

∂mi

∂xj

]
dt

mi =
(
A−1

)
ij

(
fj − 1

2
∂Akl

∂xr

Akr

)

where for the sake of brevity we have used index notations xi, ẋi, and mi for x(t), ẋ(t), and

m
(
x(t), t

)
. Also,

(
G−1

)
ij

and
(
A−1

)
ij

represent the (i, j) term of the matrix inverse of the

corresponding quantities. More expressions for the functional were derived using operator
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calculus [45], Fourier sum representations of stochastic paths [85], and from the asymptotic

behavior of transition probability density for a short time interval [86].

In contrast to the formal continuous forms, other scholars [43, 87] investigated more

mathematically rigorous definitions of the path integral such as the limit

p(x, t) = lim
N→∞

˙ N−1∏
k=0

(µk dxk) exp
{

−∆t
N−1∑
k=0

L(xk+1,xk,∆t)
}
p(x0, t0) (3.4)

along with an expression for L(xk+1,xk,∆t) and a discretization prescription to go from

Eq. (3.3) to Eq. (3.4). In this representation, the time axis is discretized on an equidistant

lattice [t0, t1, . . . , tk, tk+1, . . . , tN−1, t] with time step ∆t = tk+1 − tk = (t− t0)/N while xk+1

and xk represent the state of the system at times tk+1 and tk respectively. Wissel showed [46]

that a whole family of expressions for the path integral of the form of Eq. (3.4) can be derived

based on the different ways of representing the δ-function. Irrespective of the choice of the

Onsager-Machlup functional, the evaluation of the path integral presents a daunting task.

Numerical methods proposed for evaluating the path integral Eq. (3.4) have largely fallen

under two broad categories: Monte Carlo based simulations [88–90] and lattice based ap-

proaches employing discretizations of the Onsager-Machlup functional [47, 49, 91, 92]. The

latter involves repeated application of the Chapman-Kolmogorov equation

p(xk+1, tk + ∆t) =
ˆ

p(xk+1, tk + ∆t|xk, tk) p(xk, tk) dxk (3.5)

where the transition probability density function

p(xk+1, tk + ∆t|xk, tk) = µk exp
{

− ∆tL(xk+1,xk, tk,∆t)
}

(3.6)

is often referred to as the short-time propagator of the system. Wehner and Wolfer [47,91,92]
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developed a numerical procedure utilizing the following form of the short-time propagator

p(xk+1, tk + ∆t | xk, tk) = (4π∆t)−Ns/2
∥∥∥G(xk, tk)

∥∥∥−1/2

exp
{

− 1
4 ∆t

[
xT

e G(xk, tk)−1 xe

]}
(3.7)

with xe = xk+1−xk−f(xk, tk) ∆t. Their procedure involved a histogram-based discretization

of the state space to reduce the convolution integral in Eq. (3.5) to a matrix-vector multi-

plication; while Naess and Johnsen [49] used cubic B-splines which offer greater flexibility

and accuracy especially for dynamical systems with cubic nonlinearities. Such conventional

“fixed-grid” implementations of the path integral approach, however, are unable to efficiently

handle challenges posed by processes with large drift, large diffusion, or large concentration

in the probability density function.

In an earlier work [93], we explored the limitations of fixed-grid approaches and proposed

the transformed path integral (TPI) approach to address those limitations. The approach al-

lows for the propagation of the probability density function to be performed in a transformed

computational domain using a novel short-time propagator given by

p(z′, t+ ∆t | z, t) = (4 π∆t)−Ns/2 ∥R(t)∥
∥∥∥G̃(z, t)

∥∥∥−1/2

exp
{

− 1
4 ∆t

[
ze

T G̃(z, t)−1 ze
]}

(3.8)

where ze = ∆ (R z) − ∆t δf̃(z, t) and δf̃(z, t) = f̃(z, t) −
〈
f̃(z, t)

〉
. We have used

〈
·
〉

to

denote expectation. In addition, here, f̃(z, t) = f(Rz +µ, t) and G̃(z, t) = G(Rz +µ, t) are

functions in the transformed space generated by the dynamic transformation

z = Z
(
x, t

)
= R(t)−1

[
x − µ(t)

]
(3.9)

with µ(t) and Σ(t) ≡ R(t) R(t)T denoting, respectively, the mean and covariance of the state

x(t) at time t. Under this transformation, a fixed grid in the transformed space (z-space)
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corresponds to a dynamically adaptive grid in the original space (x-space). The dynamic

grid translates with the state mean and scales with the state covariance. Thus, our proposed

approach is better equipped to address the challenges arising from large drift, diffusion, and

concentration of PDF. We used ∆
(
Rz

)
= R′z′ − Rz where the primed variables denote

the corresponding quantities at time t + ∆t. Other equivalent versions of the transformed

path integral short-time propagator up to order O
(
(∆t)3/2

)
can be obtained for different

discretization prescriptions of ∆ (Rz). The state distribution in the transformed space is

evolved via the corresponding Chapman-Kolmogorov equation:

p(z′, t+ ∆t) =
ˆ

p(z′, t+ ∆t | z, t) p(z, t) dz. (3.10)

In addition, the necessary update equations for the state mean and covariance were obtained

by taking expectations of Eq. (3.1):

µ′ = µ+ ∆t
〈

f̃(z, t)
〉
, (3.11)

Σ′ = Σ + 2 ∆t
〈
G̃(z, t)

〉
+ ∆t

〈
Rz δf̃(z, t)T + δf̃(z, t) zT RT

〉
(3.12)

+ (∆t)2
〈
δf̃(z, t) δf̃(z, t)T

〉
.

Eqs. (3.8) to (3.12) form the basis of the transformed path integral approach. It has

several desirable qualities: potential for accurate representation of PDFs—especially the tail

information—in processes with large drift, diffusion, or concentration of PDF; accurate esti-

mates of error bounds on the numerical representations of evolved PDFs via the Chebyshev’s

inequality; and preservation of stochastic properties of the underlying dynamical system. A

limitation of the TPI approach is the restriction of its applicability to stochastic dynamical

systems with a nonsingular, i.e., full rank diffusion coefficient matrix.
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3.3 The Generalized Transformed Path Integral Approach

A large category of stochastic dynamical systems is characterized by the presence of a rank

deficient diffusion coefficient matrix. Second order dynamical systems where the random

excitation acts along only some of the dimensions fall within this category [57,58]. As would

systems excited by colored noise where the excitation can be represented as a filtered white

noise process [59–63]. These “singular systems” present challenges to the application of

conventional lattice-based path integral implementations. The limitation is also present in

the TPI approach because the singularity is preserved under the transformation Eq. (3.9).

Since singular matrices are non-invertible, the short-time propagators defined in Eqs. (3.7)

and (3.8) cannot be used to obtain solutions of these dynamical systems.

Some of the solutions proposed to address this challenge involve Taylor series expansion

to arrive at an SDE, and hence a short time propagator, with a nonsingular diffusion matrix;

power series expansion of the cumulant generating function [64]; and splitting of the Fokker-

Planck equation into individual contributions using the Trotter product formula [65, 66].

These approaches, however, do not address the issues associated with conventional lattice-

based implementations in the way the transformed path integral approach does for nonsingu-

lar systems. Motivated by this unaddressed challenge, we propose a more general transformed

path integral-based approach applicable to both singular and nonsingular systems.

3.3.1 Mathematical formulations

The starting point for our proposed approach is the dynamic transformation of the state

variables

z(t) = Z
(
x(t), t

)
= R(t)−1

[
x(t) − µ(t)

]
(3.13)
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with yet to be specified functions µ(t) ∈ RNs×1 and R(t) ∈ RNs×Ns . The distribution of the

transformed state variables is related to that of the original state variables as

px(t)(x, t) = 1
∥R(t)∥ pz(t)

(
R(t)−1

[
x − µ(t)

]
, t
)
. (3.14)

In further discussions, we will drop the subscripts in our representations of the distribution

functions and rely on the reader to distinguish between them based on the context. Note

that,

µ(t) = ⟨x⟩ − R(t) ⟨z⟩ , (3.15)

R(t)
[〈

zzT
〉

− ⟨z⟩⟨z⟩T
]
R(t)T =

〈
x − ⟨x⟩

〉〈
x − ⟨x⟩

〉T
. (3.16)

Thus, defining our transformed space, i.e., specifying µ(t) and R(t), is equivalent to speci-

fying the desired state mean and covariance of the transformed state variables at time t.

Given the transformation in Eq. (3.13), we know from Itô’s lemma that z(t) is also a

stochastic process of the form of Eq. (3.1). Specifically, we now have a complementary

stochastic dynamical system whose evolution is described by the Itô SDE

dz(t) = Φ
(
z(t), t

)
dt+ Λ

(
z(t), t

)
dw(t). (3.17)

Its drift vector function Φ and diffusion coefficient matrix Γ ≡ ΛΛT are given by

Φ(z, t) = R(t)−1
(

f̃(z, t) − Ṙ(t) z − µ̇(t)
)

(3.18)

Γ(z, t) = R(t)−1 G̃(z, t) R(t)−1T (3.19)

where f̃(z, t) = f
(
R(t) z + µ(t), t

)
and G̃(z, t) = G

(
R(t) z + µ(t), t

)
. Evolution of the

state distribution for this dynamical system is governed by the corresponding Fokker-Planck
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equation, henceforth referred to as the transformed Fokker-Planck equation:

[
∂

∂t
+ ∂

∂zi

Φi(z, t) − ∂2

∂zi∂zj

Γij(z, t)
]
p(z, t) = 0. (3.20)

Eqs. (3.17) to (3.20) allow us to describe the evolution of a stochastic dynamical system by

considering the evolution of a complementary system obtained through the transformation

in Eq. (3.13) for some specified µ(t) and R(t). We will refer to this complementary system

as the transformed stochastic dynamical system. Let us seek a transformation that will

preserve the mean and covariance of the transformed state variables with propagation. In

other words, we seek µ(t) and R(t) such that

∂

∂t
⟨z⟩ =

〈
Φ(z, t)

〉
= 0, (3.21)

∂

∂t

〈
zzT

〉
=
〈
z Φ(z, t)T

〉
+
〈
Φ(z, t) zT

〉
+ 2

〈
Γ(z, t)

〉
= 0. (3.22)

Substituting Eqs. (3.18) and (3.19) in Eqs. (3.21) and (3.22) we obtain the coupled ordinary

differential equations

µ̇(t) =
〈
f̃(z, t)

〉
− Ṙ(t) ⟨z⟩ , (3.23)

R(t)
[〈

zzT
〉

− ⟨z⟩⟨z⟩T
]
Ṙ(t)T + Ṙ(t)

[〈
zzT

〉
− ⟨z⟩⟨z⟩T

]
R(t)T

= R(t)
〈
z δf̃(z, t)T

〉
+
〈
δf̃(z, t) zT

〉
R(t)T + 2

〈
G̃(z, t)

〉
(3.24)

where δf̃(z, t) = f̃(z, t) −
〈
f̃(z, t)

〉
. Thus, given a stochastic dynamical system of the form of

Eq. (3.1), we can construct a transformed stochastic dynamical system where the state mean

and covariance do not change with the evolution of the system. In particular, we consider

the transformed system with zero mean and identity covariance; we will refer to this system

as the “standard transformed stochastic dynamical system”. Clearly, then µ(t) is the state

mean in the original space and Σ ≡ R(t)R(t)T the corresponding state covariance. Making

these substitutions in Eqs. (3.23) and (3.24) while noting that Σ̇(t) = Ṙ(t)R(t)T+R(t)Ṙ(t)T
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we obtain

µ̇(t) =
〈
f̃(z, t)

〉
, (3.25)

Σ̇(t) = R(t)
〈
z δf̃(z, t)T

〉
+
〈
δf̃(z, t) zT

〉
R(t)T + 2

〈
G̃(z, t)

〉
. (3.26)

Eqs. (3.20), (3.25) and (3.26) represent another way of describing the evolution of stochas-

tic dynamical systems; one where the evolution of the corresponding system in a “well con-

tained” transformed space can be used to describe the state of the system in the original

space. The aforementioned equations are the governing equations for such an approach.

3.3.2 Salient features

Since the state mean and covariance of the transformed state variables are constant in our

approach, we are able to consider more accurate computational domains for propagating

the state distribution of the transformed variables. In fact, we are able to capture certain

invariant solutions of the standard transformed stochastic dynamical system as shown below.

Lemma 3.3.1. For a stochastic dynamical system of the form of Eq. (3.1) with a linear drift

vector function (with respect to the state variables) and a constant diffusion coefficient ma-

trix, the standard normal distribution is a stationary solution for the corresponding standard

transformed stochastic dynamical system.

Proof. Consider a process with a linear drift vector function given by f(x, t) = Mx +c. The

drift vector function of the standard transformed stochastic dynamical system for this case

is given by Φ(z, t) = α(t) z where α(t) = R(t)−1
[
MR(t) − Ṙ(t)

]
. A stationary solution of

this system needs to satisfy

[
αii + αijzj

∂

∂zi

− Γij
∂2

∂zi∂zj

]
p(z, t) = 0 (3.27)

which is just the stationary version of the transformed Fokker-Planck equation Eq. (3.20) for
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this system. For a standard normal distribution, p(z) = N(0, I), the gradient and Hessian

matrix are given by

∂p

∂zi

= −zi p(z) (3.28)

∂2p

∂zi∂zj

= [zizj − δij] p(z). (3.29)

Consequently, the left hand side of Eq. (3.27) becomes
[
Tr (α + Γ) − zT (α + Γ) z

]
p(z) for

the standard normal distribution. From the covariance update in Eq. (3.26) for this system

(or equivalently from Eq. (3.22)) we get the relation [α + Γ]+[α + Γ]T = 0. In other words,

α + Γ is a skew-symmetric matrix. We know that the trace of a skew-symmetric matrix

is zero and so also is the matrix quadratic form zT (α + Γ) z for all z ∈ RNs×1. Therefore,

the standard normal distribution is a solution of Eq. (3.27) and consequently is a stationary

solution of the system.

In our approach, we are able to easily establish PDF error bounds based on domain

bounds. Let us consider a computational domain S on which the distribution is represented.

An estimate of the error in PDF due to loss of information outside the bounds of this

computational domain is given by

ε = 1 −
ˆ

ξ∈S

p(ξ, t) dξ (3.30)

For a multivariate standard normal distribution on a rectangular computational domain with

domain bounds
[

− k k
]

in each dimension, we have ε = 1 −
[
erf(k/

√
2)
]Ns . This means

we can represent 99.46 % of the distribution by considering a transformed computational

domain with bounds
[

− 3 3
]

in either dimensions for a two-dimensional system with a

linear drift and constant diffusion coefficient. Such an analysis involving error bounds can

also be extended to systems where the distribution remains approximately Gaussian or near

Gaussian distributions.

63



For the general case, we may obtain error bounds via the multidimensional Chebyshev’s

inequality which for a random vector x ∈ RNs×1 with mean µ, covariance Σ, and any real

number k > 0 is given by

Pr
(

(x − µ)T Σ−1(x − µ) ≥ k2
)

≤ Ns

k2 (3.31)

In the transformed space, we have a more succinct expression given by

Pr
(
zT z ≥ k2

)
≤ Ns

k2 (3.32)

In two-dimensional systems, zT z ≥ k2 represents the region outside a circle of radius k in the

transformed space. Let us consider a square region S with side length 2k circumscribing the

circular region. It represents a rectangular computational domain in the transformed space

with bounds
[

− k k
]

in either dimensions. This can be extended to multi-dimensional

systems, for instance, a cubical region of side length 2k enclosing spherical region of radius

k. Thus, for the general case we have the relation (inequality) for the error bounds given by

ε = 1 − Pr
(

z ∈ S
)

≤ Ns

k2 . (3.33)

3.3.3 Update equations

Having established some of the salient features of the standard transformed stochastic dy-

namical system, we seek a path integral based solution for the system. Path integral based

solutions have several desirable qualities, for instance, preserving the non-negativity of the

distributions. However, if G is singular, and hence Γ, the short time propagator in the

transformed space given by Eq. (3.8) cannot be used to solve Eq. (3.20). For such a sys-

tem, through appropriate transformation of the state variables where necessary, Γ can be
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expressed in the block matrix form

Γ =

0 0

0 Γ(r)

 (3.34)

where 0 represents appropriate zero-matrices. Note that in this representation Γ(r) ∈ RNr×Nr

is nonsingular and Nr = rank (Γ). Let Nε = Ns − Nr. Without loss of generality, we may

assume the dynamical system and Γ to already be of this form.

In our approach, informed by the form of Γ, we consider grouping the transformed state

variables z = [z1, z2, . . . , zNs ]
T into singular variables q and nonsingular variables v as

q =


z1

...

zNε

 v =


zNε+1

...

zNs

 (3.35)

Similarly, we define Φ(ε)(·) =
[
Φ(ε)

1 (·), . . . ,Φ(ε)
Nε

(·)
]T

and Φ(r)(·) =
[
Φ(r)

Nε+1(·), . . . ,Φ
(r)
Ns

(·)
]T

allowing us to write Eq. (3.20) in the form

[
∂

∂t
+ ∂

∂ui

Φ(ε)
i (q,v, t) + ∂

∂vi

Φ(r)
i (q,v, t) − ∂2

∂vi∂vj

Γ(r)
ij (q,v, t)

]
p(q,v, t) = 0 (3.36)

or more succinctly as ∂p/∂t =
[
LI + LII

]
p with the operators

LI = − ∂

∂ui

Φ(ε)
i (q,v, t) (3.37)

LII = − ∂

∂vi

Φ(r)
i (q,v, t) + ∂2

∂vi∂vj

Γ(r)
ij (q,v, t) (3.38)

operating on p = p(q,v, t). A solution based on operator splitting [94] is given by

p(q′ ,v′ , t+ ∆t) = e[∆tLII] e[∆tLI] p(q,v, t) + O (∆t) . (3.39)
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p(q,v, t)
e∆tLI

p̂
e∆tLII

p(q′ ,v′ , t+ ∆t)

Figure 3.1: A splitting solution for PDF propagation in the transformed space

where, for notational simplicity, we use primed variables to denote corresponding quantities

at time t+∆t. Equivalently, Eq. (3.39) may be interpreted as the two step iterative sequence

(see also Fig. 3.1): One may also employ symmetric Trotter splitting or other high-order

splitting schemes [95] in place of Eq. (3.39). The LI operator corresponds to a Liouville

equation, while LII corresponds to a Fokker-Planck equation with a nonsingular diffusion

coefficient sub-matrix. Equivalently, Eq. (3.39) may be interpreted as the two step iterative

sequence (see also Fig. 3.1):

p̂ = e[∆tLI] p (3.39a)

p′ = e[∆tLII] p̂ (3.39b)

where p′ = p(q′ ,v′ , t+ ∆t), p = p(q,v, t), and p̂ is just an intermediate variable to indicate

that the Fokker-Planck equation operates on the solution of the Liouville equation. The

numerical implementation involves (Step 1) solution of the Liouville equation

[
∂

∂t
+ ∂

∂ui

Φ(ε)
i (q,v, t)

]
p = 0 (3.39c)

for p̂ at t + ∆t with initial condition p(q,v, t), followed by (Step 2) solution of the Fokker-

Planck equation [
∂

∂t
+ ∂

∂vi

Φ(r)
i (q,v, t) − ∂2

∂vi∂vj

Γ(r)
ij (q,v, t)

]
p = 0 (3.39d)

for p(q′ ,v′ , t+ ∆t) with initial condition p̂ at t.
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Step 1: Evolve PDF via solution of a Liouville equation

The contribution of the singular dimensions to the evolution of the state distribution is

evaluated via Eq. (3.39c). A solution based on the method of characteristics for this Liouville

equation is given by

p(q′ ,v, t′) = p(q,v, t) exp

−
t′ˆ

t

dτ ∂Φ(ε)
i

∂ui

∣∣∣∣∣∣
q,v,τ

 (3.40)

where q′ and q are points along the characteristic curve generated by u̇ = Φ(ε)(q,v, τ).

Here, v is a constant. Our solution is implemented as a semi-Lagrangian scheme:

p̂ = p(q,v, t) exp

−∆t ∂Φ(ε)
i

∂ui

∣∣∣∣∣∣
q,v,t

. (3.41)

where p̂ is computed at
[
q′ v

]T
with q′ = q +∆tΦ(ε)(q,v, t), i.e., a forward Euler scheme.

In grid-based approaches, this could represent off-grid points and might require interpolation

of the distributions evaluated at those points back on to the points of our computational

grid. Other integration schemes can also be used, for instance, fourth order Runge–Kutta

method, backward Euler method, or Gauss-Legendre methods.

Step 2: Update evolved PDF from Step 1 through solution of a Fokker-Planck

equation

The solution of the Liouville equation, represented by p̂, is then updated with the contri-

bution from the nonsingular dimensions using Eq. (3.39d). We employ a transformed path

integral based solution for this Fokker-Planck equation. Namely, we evolve the distribution

via the Chapman-Kolmogorov equation

p(q′ ,v′ , t+ ∆t) =
ˆ
ρ(v′ , t+ ∆t | v, t) p̂ dv (3.42)
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using the short-time propagator

ρ(v′ , t+ ∆t | v, t) = (4 π∆t)−Nr/2
∥∥∥∥Γ(r)(q,v, t)

∥∥∥∥−1/2

exp
{

− 1
4 ∆t

[
vT

e Γ(r)(q,v, t)−1 ve
]}

(3.43)

where ve = v′ − v − ∆tΦ(r)(q,v, t). Here, complementary to Step 1, q is a constant.

Computation of Φ(z, t) via Eq. (3.18) requires us to evaluate µ̇(t) and Ṙ(t). While µ̇(t)

may be easily evaluated from Eq. (3.25), Ṙ(t) from Eq. (3.26) is not straightforward in

general. Moreover, updated values of µ(t) and R(t) are needed to compute the distribution

of the original state variables from that of the transformed state variables via Eq. (3.14). In

our implementation we address these challenges by considering the first order approximation

∆R ≡ R(t+ ∆t) − R(t) for Ṙ(t) ∆t and forward Euler schemes for Eqs. (3.25) and (3.26).

Thus, we have the update relations:

µ(t+ ∆t) = µ(t) + ∆t
〈
f̃(z, t)

〉
, (3.44)

Σ(t+ ∆t) = Σ(t) + ∆t
[
R(t)

〈
z f̃(z, t)T

〉
+
〈
f̃(z, t) zT

〉
R(t)T + 2

〈
G̃(z, t)

〉]
. (3.45)

We obtain R(t+ ∆t) by performing a Cholesky factorization of Σ(t+ ∆t). The distribution

of the transformed state variables are updated using Eqs. (3.41) to (3.43) with Φ(z, t)∆t =

R(t)−1
[
δf̃(z, t)∆t− ∆R z

]
and Γ(z, t) = R(t)−1G̃(z, t) R(t)−1T.

3.3.4 Numerical implementation

Lattice-based implementations of path integrals often involve discrete representations of

distributions on a grid—for instance, pi = p(zi, t) for i = 1. . . . , N . The index i here

represents the discretization of the computational domain into, N grid points and should

not be confused with the vector indices. Hence, pi here is the value of p(z, t) evaluated at

the i-th grid point zi. Under this representation, the update equations for PDF propagation,
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namely Eqs. (3.41) and (3.42) can be expressed in the form

p̂i = pi Ji (3.46)

p′
i =

N∑
j=1

ρij p̂j (3.47)

where J(·) = exp
{
−∆t ∂Φ(ε)

k (·)/∂uk

}
and ρij represents the short-time propagator in the

transformed space whose individual terms are obtained from Eq. (3.43). Similarly, in the

discrete versions of the update equations for the mean and covariance, the expectations are

represented as weighted summations. Eqs. (3.41) to (3.45) and their discrete versions form

the basis of our proposed approach. The long-time evolution of the PDF, based on these

update equations, accounts for the contributions of all possible paths in the transformed

space. In fact, for the case of nonsingular systems, i.e., systems where Nr = Ns, our approach

becomes equivalent to the TPI approach described in [93].

The formulations are also applicable for the case when Nr = 0, i.e., a system without

stochastic forcing. These systems may be encountered, for instance, in the area of uncertainty

quantification [96]. The evolution of the probability density function in such systems are

governed by the Liouville equation [97], which in the transformed space is given by (see

Chapter B for details of the derivation)

[
∂

∂t
+ ∂

∂zi

Φi(z, t)
]
p(z, t) = 0. (3.48)

Note that Eq. (3.48) is of the form of Eq. (3.39c) from Step 1 of our proposed approach.

Thus our approach when applied to this case presents a numerical solution for the Liouville

equation. Also of note are certain dynamical systems driven by non–white noise stochastic

processes where the excitations can be modeled as a filtered white noise process [59–63].
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These systems may be described by the set of equations

dθ(t) = h
(
θ(t), t

)
dt+ ξ(t) dt (3.49)

dξ(t) = m
(
ξ(t), t

)
dt+ B

(
ξ(t), t

)
dw(t) (3.50)

where the auxiliary variable ξ represents the filtered white noise process. We can express

the system as an Itô SDE, i.e., of the form of Eq. (3.1), by considering the augmented state

x =
[
θ ξ

]T
. In this representation, the system dynamics takes the form f =

[
h + ξ m

]T
and the strength of white noise excitation is given by

A =

0 0

0 B

 (3.51)

As a consequence, we obtain a singular diffusion coefficient matrix G = AAT/2. Similarly,

second order dynamical systems given by

θ̈ + h
(
θ, θ̇, t

)
= B(θ, θ̇, t) ẇ(t) (3.52)

where ẇ(t) represents the formal derivative of the Wiener process may be expressed as an

Itô SDE of the form of Eq. (3.1) with the augmented state x =
[
θ θ̇

]T
and the system

dynamics f =
[
θ̇ − h

]T
. The strength of white noise excitation once again takes the form

of Eq. (3.51).

Essentially, in our formulation we have expressed an n-dimensional second order system

as a first order system in 2n dimensions. In general, an m-th order system in n dimensions

can be expressed as an m×n dimensional first order system. We can also have a combination

of these systems such as a second order system with zero process noise or non-white noise

expressed as the output of a second order filter. Nevertheless, they may be expressed in

the form of Eq. (3.1) with a singular diffusion coefficient matrix and thereby within the
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framework of our proposed approach. Thus our proposed approach can be applied to a diverse

set of dynamical systems: nonsingular dynamical systems (reduces to TPI approach), second

order (and higher order) dynamical systems, those with zero process noise, and certain non-

white noise dynamical systems. We thus refer to our proposed approach as the generalized

transformed path integral approach.

In order to maintain high levels of accuracy in numerical implementations of path integral

approaches [47,49], the zeroth moment renormalization condition

p
(new)
i = p

(old)
i∑

i p
(old)
i ∆zi

(3.53)

is often imposed for both the transition probability density and state distribution at every

time step. The generalized transformed path integral approach allows us to easily enforce

conditions to also conserve the first and second moments of the state distribution. At each

time step we apply the transformation

p
(new)
i (zi) = p

(old)
i (Szzi + Mz) (3.54)

where Mz = ∑
i zi p

(old)
i ∆zi and Sz = ∑

i zizi
T p

(old)
i ∆zi. To our knowledge, this conservation

of the first and second moment properties in path integral based approaches is unique to

our work. The enforcement of Eqs. (3.53) and (3.54) contributes greatly to the numerical

stability and accuracy of the generalized transformed path integral approach.

3.4 Performance of the Generalized Transformed Path Integral

Approach

In this section, we showcase the benefits of the generalized transformed path integral (GTPI)

approach. Conventional fixed grid approaches (FG), where solutions of stochastic systems

are obtained on a grid with fixed resolution and domain bounds in the original state space,
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are unable to efficiently address the challenges arising from large drift, diffusion, and con-

centration of PDF. These were higlighted in our earlier work [93]. There, we proposed

the transformed path integral (TPI) approach for systems with nonsingular diffusion coef-

ficient matrices. We illustrated its advantages over conventional approaches in addressing

the aforementioned challenges. Here, we showcase performance of the GTPI approach and

demonstrate its applicability to a more general class of stochastic systems. Using represen-

tative examples, we demonstrate the benefits over a fixed grid approach, specifically, over

a path integral based approach using operator splitting to address singular diffusion but

performed in the original space.

We consider three broad categories: second order systems, systems with zero process

noise, and those with non-white noise excitation. In the category of second order systems

we present solutions of (a) the stochastic harmonic oscillator, (b) the stochastic van der Pol

oscillator, and (c) the stochastic Caughey oscillator. We then study the solution of (d) the

stochastic Duffing oscillator with zero process noise. And finally, we present the solution of

(e) bistable stochastic flow driven by non–white noise. These systems and cases were chosen

to highlight specific benefits and features of the GTPI approach.

3.4.1 Stochastic harmonic oscillator

The stochastic harmonic oscillator is a linear second order dynamical system with a known

analytical solution. We consider an oscillator with h = γq̇+ω2q. The linearity of the system

allows us to isolate and study, through three different cases, effects of large drift, diffusion,

and concentration of PDF. The system has only one stationary point at the origin. Therefore,

in all our cases, the state distribution will evolve to a Gaussian stationary distribution

centered at the origin as t → ∞. In addition, if the initial distribution is Gaussian, then the

state distribution will remain Gaussian. Consequently, the distribution in the transformed

space will remain standard multivariate normal in such a scenario.

In Case A, we consider a system with γ = 0.5, ω = 1, and a = 0.5. The state variable is
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initially normally distributed about
[
4 4

]T
with identity covariance. The evolution of the

state distribution from 0 s to 6 s is shown in Fig. 3.2. The simulations were performed with a

timestep of 0.02 s. The system considered is an example of a large drift system where there

is large translation of the state distribution. Conventional fixed grid approaches may face

challenges in accurately describing the transient behavior of the system.
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Figure 3.2: Plots of the state distribution at different times for a stochastic harmonic os-
cillator exhibiting large drift (Case A). Surface plot of the analytical solution is shown on
the top left. The transformed space marginal plots from the GTPI approach are on the top
right. Contour plots of the joint distribution obtained via Monte Carlo simulation, the FG
approach, and the GTPI approach are shown on the bottom. The dotted lines show the
deterministic path.

With a fixed grid in the original space, grid bounds that are sufficient to accurately

represent the initial distribution might be insufficient at later times. In the case considered,

a grid with domain bounds
[

− 1 9
]
, i.e., five standard deviations about the initial mean,
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cannot be used to represent the distribution at t = 3 s. However, larger domain bounds with

the same number of points might introduce errors due to losses in resolution. This can be

seen in the bottom center plot of Fig. 3.2 which shows a fixed grid simulation performed on

a uniform grid with bounds
[
−8 12

]
in either dimension. In contrast, the simulation using

our proposed GTPI approach shown in the bottom right plot of Fig. 3.2 is more accurate

than the fixed grid approach. This can also be seen from Table. 3.1 showing the comparison

of error estimates in the numerical solutions.

We define the RMS error measure in the PDF at time t as

εRMS(t) =

√√√√ 1
N

N∑
i=1

[
p(xi, t) − p̂(xi, t)

]2
(3.55)

where p̂(xi, t) represents the numerical solution obtained from the FG or GTPI approach

evaluated at the i-th grid point and at time t. The analytical solution p(xi, t) for the

stochastic harmonic oscillator is known at all times. In cases where the analytical solution

or the stationary solution is not known, the solution obtained from MC simulations may be

used instead for p(xi, t). The error is evaluated by averaging the square of the difference in

these PDF values over all points in the computational grid and then taking its square root.

The solution obtained from the GTPI approach has an error that is an order of magnitude

lower than that from the FG approach. Although the computation time is higher for the

same number of grid points—GTPI approach has more operations—the computation time

and error of GTPI on a (81 × 81) grid are lower than that of FG on a (121 × 121) grid. In

other words, our proposed approach is more computationally efficient than the conventional

fixed grid based approaches for comparable error.

In the generalized transformed path integral approach the propagation of the state dis-

tribution is performed in the transformed space. Note that a fixed grid in the transformed

space corresponds to an adaptive grid in the original space translated and scaled according

to the mean and covariance of the state distribution. The bounds in the transformed space,
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Stochastic Harmonic Oscillator
Case A (at t = 6 s) Case B (at t = 2 s) Case C (at t = 2 s)

Npts Tcomp(s) εRMS Tcomp(s) εRMS Tcomp(s) εRMS

FG
81 × 81 106.2 6.42 × 10−2 30.0 8.27 × 10−4 31.5 1.28 × 10−1

121 × 121 218.1 3.93 × 10−2 67.0 8.31 × 10−4 76.9 8.34 × 10−2

GTPI 81 × 81 156.2 5.39 × 10−3 48.5 1.40 × 10−5 49.6 1.25 × 10−3

Table 3.1: Comparison of RMS error in the PDF obtained by fixed grid (FG) and general-
ized transformed path integral (TPI) approaches at t = 6 s for Case A (large drift) of the
stochastic harmonic oscillator, and at t = 2 s for Case B (large diffusion) and Case C (large
concentration of PDF).

[
− 5 5

]
in either dimension for this case, corresponds to an adaptive grid with grid bounds

approximately five standard deviations from the mean of the state distribution. As a con-

sequence, our grid points are located in the regions of “importance” contributing to better

performance of our proposed approach for this large drift second order system. Further evi-

dence for the accuracy of our proposed approach can be seen in Fig. 3.2 (top right) showing

plots of the marginal distributions in the transformed space; they remain standard normal

in this case.

For Case B, we increase the strength of the white noise excitation to a = 4 while using

the same system dynamics parameters as in Case A, i.e., γ = 0.5 and ω = 1. In addition,

we consider a zero-mean Gaussian initial distribution with identity covariance. Because

the stationary distribution is also zero-mean, the challenges from large drift seen in Case

A are minimized here. However, in this large diffusion system, the initial distribution will

dissipate to one with with larger covariance, smaller peak value, and more tail information.

Conventional fixed grid approaches may face challenges in accurately describing the long

time behavior of large diffusion systems. Plots of the marginal distributions in the original

space shown in Fig. 3.3 (left and middle) demonstrate this shortcoming. They also show

the better performance of our proposed GTPI approach. Consequently, the greater accuracy

and higher computational efficiency of the GTPI approach is also seen in Table. 3.1.
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Figure 3.3: Comparison of marginal PDFs in the original space at t = 0 s (left) and t = 2 s
(center) as well as in the transformed space (right) for a stochastic harmonic oscillator with
large diffusion (Case B).

The domain bounds in the original space,
[
−5 5

]
in either dimensions, seem sufficient to

accurately represent the initial distribution. However, these fixed bounds lead to significant

loss of tail information as the distribution dissipates. This loss of information can cause

large errors as seen in Fig. 3.3 (middle). In contrast, the GTPI approach, with
[

− 5 5
]

bounds in the transformed space, does not exhibit any significant loss of tail information. It is

able to accurately describe the long time behavior in this large diffusion second order system.

Additionally, the transformed space marginal distributions in Fig. 3.3 (right) remain standard

normal showcasing the accuracy of our proposed approach. Simulations of the evolution were

carried out in increments of ∆t = 0.02 s between 0 s and 2 s; they were performed on uniform

grids with (81 × 81) grid resolution in both the original and transformed space.

In Case C, we consider a system with γ = 2.5, ω = 1, and a = 0.2. In contrast to Case B,

here an initial multivariate standard normal distribution will evolve to a Gaussian distribu-

tion with smaller covariance and larger peak value at t = 2 s. In other words, the distribution

becomes more concentrated at the origin over time. Regions of large concentration in the

PDF might pose challenges to conventional fixed grid approaches—namely, the distributions

in these regions may become under-resolved with PDF evolution. For our simulations, we

considered grid resolutions and domain bounds identical to those in Case B, i.e., uniform

grids with (81×81) grid resolution and
[
−5 5

]
domain bounds in either dimensions. Once

again, the simulations were carried out in increments of ∆t = 0.02 s between 0 s and 2 s.
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Figure 3.4: Comparison of marginal PDFs in the original state space at t = 0 s (left) and
t = 2 s (center) as well as in the transformed space (right) for a stochastic harmonic oscillator
with large concentration in PDF (Case C).

The grid resolution in the original space is sufficient to accurately represent the initial

distribution. But, at later times the distribution becomes under-resolved as seen in Fig. 3.4

(middle). The GTPI approach does not face such issues of resolution here. It is able to accu-

rately describe the long time behavior in this second order system with large concentration

of PDF. The distribution in the transformed space remains standard normal for this case as

well as seen in Fig. 3.4 (right). Table. 3.1 illustrates the greater accuracy and computational

efficiency of the GTPI approach.

In summary, the three cases considered here highlight some of the challenges faced by

fixed grid based approaches in obtaining accurate numerical solutions to stochastic dynamical

systems. Namely, we want large domain bounds to minimize errors due to large drift and

large diffusion; we want higher grid resolution to minimize errors due to large concentration

of PDF; and we would like to keep computation times small. In fixed grid based approaches,

when we have large domain bounds and high grid resolution we have larger computation

times. When we compromise on the domain bounds or the grid resolution, we have lower

accuracy. In our proposed generalized path integral approach, we can have higher accuracy

with lower computation time when compared with the fixed grid based approaches.

The accuracy of the GTPI approach can be further improved by controlling the simulation

parameters. The effects of varying the grid resolution, i.e., Nz of a (Nz ×Nz) grid, and the

time step ∆t on the accuracy of our approach can be seen in Fig. 3.5. For our analysis,
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Figure 3.5: The influence of varying simulation parameters on the numerical error in the
GTPI approach for the stochastic harmonic oscillator with a = 2, γ = 0.5, and ω2 = 1. The
RMS error in the PDF (εRMS) is evaluated using Eq. (3.55) and it is evaluated at t = 2 s.
The variation of εRMS with the time step ∆t is shown on the left and its variation with the
grid resolution, specifically, Nz of a (Nz ×Nz) uniform grid is shown on the right.

we used the stochastic harmonic oscillator with strength of white noise excitation a = 2,

damping coefficient γ = 0.5 and stiffness coefficient ω2 = 1. Three immediate insights can

be gleaned from these figures. Firstly, for time steps larger than ∆t = 1 × 10−2 s, increasing

the number of grid points does not result in a reduction of error. However, reducing the time

step does reduce the error; halving the time step cuts the error approximately by half. In

other words, the numerical error from the simulations is approximately of O (∆t) matching

the expectations from our theoretical formulations—the GTPI approach uses a first order

splitting solution Eq. (3.39) and the short-time propagator Eq. (3.43) is a first order accurate

solution of the corresponding Fokker-Planck equation.

Secondly, for a given grid resolution there is an optimal time step ∆t⋆ below which further

reduction of the time step produces larger error. And the error grows more rapidly. Halving

the time step almost quadruples the error. Lastly, for time steps equal to or smaller than

the optimal value, increasing the number of grid points reduces the error. Note that the

optimal value as well as the error at the optimal value ε⋆
RMS ≡ εRMS(∆t⋆) become smaller for

finer grid resolutions, i.e, there is more room to vary ∆t so as to reduce the error. However,

having a finer grid resolution for small time steps will increase the computational cost of

the approach. In summary, for a given grid resolution one may reduce error in the GTPI
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Figure 3.6: The influence of system parameters on the numerical error in the GTPI approach
for the stochastic harmonic oscillator. The RMS error in the PDF (εRMS) is evaluated using
Eq. (3.55) and it is evaluated at t = 2 s. The influence of white noise strength a on εRMS is
shown on the left. The influence of the stiffness coefficient ω2 is shown in the middle and
that of the damping coefficient γ is shown on the right.

approach by reducing the time step up to an optimal value ∆t⋆. Further reduction in the

error would require a finer grid resolution.

The influence of the system parameters, namely, the strength of white noise excitation a,

the stiffness coefficient ω2, and the damping coefficient γ on the optimal time step ∆t⋆ can

be seen in Fig. 3.6. A system with more process noise has a lower ∆t⋆ as well as a lower ε⋆
RMS

as seen in Fig. 3.6 (left). Likewise, so does a system with a lower stiffness coefficient seen in

Fig. 3.6 (middle). Also, the RMS error at any time step seems to be lower for a system with

a lower stiffness coefficient. In a system with more damping, both the RMS error and its

minimum value ε⋆
RMS are lower as seen in Fig. 3.6 (right). Interestingly, the optimal time step

∆t⋆ seems to remain constant. Thus, the benefits of our proposed generalized transformed

path integral approach may be more pronounced in cases where the damping in the system

is large.

3.4.2 Stochastic van der Pol oscillator

The van der Pol oscillator, a non-conservative oscillator with nonlinear damping, is a second

order dynamical system. This nonlinear dynamical system is widely used as a standard

model for studying oscillatory processes in diverse fields [98–100]. Challenges due to large
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Figure 3.7: Plots of the state distribution at different times for the van der Pol oscillator.
Surface plot of Monte Carlo (MC) solution is shown on the top left. Transformed space
marginal plots from the GTPI approach are on the top right. Contour plots of the joint
distribution obtained via MC simulation, FG approach, and GTPI approach are shown on
the bottom. The dotted lines show the deterministic path.

drift, diffusion, and concentration of PDF, that were highlighted in the linear cases, may

also be encountered in nonlinear dynamical systems with the nonlinearity adding further

complexity for prediction of state evolution. Our proposed GTPI approach can be used to

predict the evolution while addressing the challenges faced by conventional approaches.

Here, we consider a van der Pol oscillator with h = 0.1 q̇ (1 − q2) − q and system noise

a = 0.5. The initial distribution is Gaussian with mean
[
4 4

]
and a diagonal covariance

matrix. The diagonal elements are
[
0.5 0.5

]
. Simulations of the system evolution between

0 s and 6 s were carried out via MC, FG, and GTPI approaches in increments of ∆t = 0.02 s.

These are shown in Fig. 3.7. Clearly, large drift, diffusion, and concentration of PDF are all
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Nonlinear Second Order Stochastic Dynamical Systems

Stochastic van der Pol
Oscillator

Stochastic Caughey
Oscillator

Npts Tcomp(s) εRMS Tcomp(s) εRMS

FG 81 × 81 109.4 6.63 × 10−2 476.0 4.37 × 10−2

121 × 121 226.8 2.17 × 10−2 865.3 4.38 × 10−2

TPI 81 × 81 151.3 3.28 × 10−3 679.7 6.81 × 10−4

Table 3.2: Comparison of RMS error in the PDF obtained by fixed grid (FG) and generalized
transformed path integral (TPI) approaches at t = 6 s for stochastic dynamical systems with
nonlinear (with respect to the state variables) drift functions—the stochastic van der Pol
oscillator and the stochastic Caughey oscillator.

present in this system.

The contour plots in Fig. 3.7 (bottom) show good agreement between the solutions

obtained from Monte-Carlo simulations and the generalized transformed path integral ap-

proach. However, solutions from the fixed grid approach show large errors. The greater

accuracy of our approach can also be seen in Table. 3.2 showing comparisons of the RMS er-

ror in the probability density functions. Also evident is the greater computational efficiency

of our approach. Since an exact analytical solution for this case is not known, the error here

is evaluated by considering the PDF obtained from Monte-Carlo simulations as a reference

for the exact solution. The error in our approach on a (81 × 81) uniform grid is about an

order of magnitude lower than that from the fixed grid approach on a (121 × 121) uniform

grid. The computation cost of the fixed grid approach is also greater—about 1.5 times that

of the generalized transformed path integral approach.

As discussed earlier, the fixed grid approach faces challenges in addressing the effects of

large drift, diffusion, and concentration of PDF. Here, the fixed grid simulations were per-

formed on a grid in the original space with domain bounds
[

− 8 10
]

in either dimensions.

On the other hand, the generalized transformed path integral approach was performed on

a grid in the transformed space with domain bounds
[

− 5 5
]

in either dimensions. This
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corresponds to an adaptive grid in the original space that is spread about five standard

deviations from the state mean. The grid points in our approach are located in the regions

of “importance” thereby contributing to the better performance even in this nonlinear dy-

namical system. These regions lie along the deterministic path shown in dotted lines on

the contour plots of Fig. 3.7 (bottom). Note that the distribution in the transformed space

shown in Fig. 3.7 (top right) does not remain standard normal for this nonlinear dynamical

system.

3.4.3 Stochastic Caughey oscillator

The Caughey oscillator is a nonlinear dynamical system with a known analytical solution for

the stationary distribution of the state [14, 20, 49]. Challenges due to large drift, diffusion,

and concentration of PDF may also be present in the prediction of long term behavior of

dynamical systems. We study the stationary behavior in a system with h = 2 q̇ (1−q2−q̇2)−q

and system noise a = 1. In this system, a multivariate standard normal initial distribution

will evolve to a non-Gaussian distribution as shown in Fig. 3.8 (top). The origin is an

unstable stationary point and the unit circle is a stable limit cycle for this system.

Simulations of the system evolution between 0 s and 6 s were carried out via MC, FG, and

GTPI approaches in increments of ∆t = 0.005 s. The domain bounds,
[

− 1 1
]

in either

dimension, and grid resolution (81 × 81) in the original space are sufficient to accurately

represent the initial distribution N(µ,Σ) with µ =
[
0 0

]T
and Σ = diag

([
1/25 1/25

]T)
.

However, as the distribution evolves and gets more concentrated around the unit circle, the

grid is insufficient to accurately describe the distribution. The generalized transformed path

integral approach on a (81×81) grid in the transformed space with domain bounds
[
−5 5

]
in either dimension is able to more accurately describe the distribution.

Fig. 3.8 (bottom middle) shows good agreement between solutions obtained from Monte

Carlo simulations, GTPI approach, and stationary distribution while there are large errors

in the conventional fixed grid approach. Evolution of the marginal distribution in the trans-
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Figure 3.8: Plots of the state distribution at different times for the Caughey oscillator.
Surface plots of the initial and stationary distribution are shown on the top. Marginal PDFs
in the original space (left and middle) as well as in the transformed space (right) are shown
on the bottom.

formed space is shown in Fig. 3.8 (bottom right). It does not remain standard normal in

the transformed space. Similar insights may also be gleaned from Table. 3.2 showing com-

parisons of RMS error in the PDF. The error is computed using the stationary solution as a

reference for the exact solution. The error from the GTPI approach is about two orders of

magnitude lower than that from the conventional fixed grid approach.

3.4.4 Stochastic Duffing oscillator with zero process noise

The Duffing oscillator is a second order dynamical system with a cubic stiffness term. Orig-

inally used to study the behavior of a pendulum, the system has since become a standard

model to describe several phenomena in science and engineering [101]. Depending on the

choice of parameters, the system exhibits qualitatively different phenomena, including lo-

cal and global bifurcations as well as chaos. Here we consider a Duffing oscillator with
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Figure 3.9: Plots of the state distribution at different times for the Duffing oscillator with
zero process noise. Surface plots at t = 0 s and t = 2 s are shown on the top. Marginal PDFs
in the original space (left and middle) as well as in the transformed space (right) are shown
on the bottom.

h = 2 q̇ + 2 q + q3/4 but with no process noise, i.e., a = 0. However, there is uncertainty in

the initial conditions given by p(q, q̇) ∼ N (0, I).

The evolution of state distribution for such a system (with zero process noise) is described

by the Liouville equation (LE). Note that for the case considered we have a stable stationary

point at the origin. As the system evolves there will be large concentration of PDF at the

origin. This can be seen in Fig. 3.9 (top) showing the evolution from a multivariate standard

normal distribution at t = 0 s to a concentrated non-Gaussian distribution at t = 2 s. Any

method of solution for the LE will also have to address the challenge of large concentration

of PDF in this case.

Simulations of the PDF evolution were performed in increments of ∆t = 0.001 s. The

fixed grid approach (FG) and the generalized transformed path integral approach (GTPI)

were performed on uniform 81 × 81 grids with bounds
[

− 5 5
]

in either dimensions. While
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Zero Process Noise and Non-White Noise Excited Systems

Stochastic Duffing
Oscillator

Bistable Stochastic
Flow

(with zero process noise) (with non-white noise)

Npts Tcomp(s) εRMS Tcomp(s) εRMS

FG 81 × 81 279.7 1.99 × 10−1 175.6 1.78 × 10−3

121 × 121 781.0 1.13 × 10−1 325.2 1.26 × 10−3

GTPI 81 × 81 558.7 8.78 × 10−2 232.3 5.81 × 10−4

Table 3.3: Comparison of RMS error in the PDF obtained by fixed grid (FG) and generalized
transformed path integral (GTPI) approaches at t = 2 s for a stochastic Duffing oscillator
with zero process noise and a bistable stochastic flow driven by colored noise.

the former is unable to accurately represent the distribution at t = 2 s, the latter shows good

agreement with results obtained from Monte Carlo simulations Fig. 3.9 (bottom center). The

better performance of the GTPI approach in this case can also be seen from comparisons of

the RMS error in Table. 3.3. Although FG grid resolution in the original space is sufficient

to accurately describe the initial distribution, it becomes insufficient as the distribution

becomes more concentrated at later times. In contrast, because its grid points are located at

the regions of importance, GTPI is able to better manage the challenge of large concentration

in PDF. Note that as the distribution becomes more non-Gaussian in the original space, so

does the distribution in the transformed space Fig. 3.9 (bottom right).

3.4.5 Bistable stochastic flow driven by non-white noise

Brownian motion in a double well potential has been used to study different phenomena in

a wide variety of fields [102–104]. In many situations however, one may have to consider

excitations with a non-negligible correlation time. In this context, bistable systems driven by

certain non-white noise processes have also been investigated [59–61]. We consider a system

in the form of Eqs. (3.49) and (3.50) with m(θ, t) = θ− θ3, b(ξ, t) = −ξ/τ , and g(ξ, t) = 1/τ .

Here, τ = 0.1 represents the correlation time of the non-white noise.
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Figure 3.10: Plots of the state distribution at different times for a bistable stochastic flow
driven by colored noise. Surface plots at t = 0 s and t = 2 s are shown on the top. Marginal
PDFs in either dimensions of the original space (far left and middle left) as well as the
transformed space (far right and middle right) are shown on the bottom.

The evolution of an initial multivariate standard normal distribution to a non-Gaussian

distribution at t = 2 s is shown in Fig. 3.10 (top). However, the dynamical system along

the dimension corresponding to ξ is linear and does not depend on θ. Thus, the marginal

distribution in the dimension will remain Gaussian though the joint distribution may become

non-Gaussian. Consequently, the marginal distribution in the corresponding dimension of
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the transformed space will remain standard normal as seen in Fig. 3.10 (bottom far right).

This serves to reinforce the accuracy of our proposed generalized transformed path integral

approach (GTPI) in nonlinear dynamical systems.

In this nonlinear dynamical system, there is large diffusion in one of the dimensions and

large concentration of the probability density function in the other. The fixed grid approach

(FG) faces issues in accurately representing this behavior while the GTPI is able to better

address the challenge. This is evident from Fig. 3.10 (bottom far left and bottom center

left) where the marginal plots at t = 2 s in the original space show good agreement between

the results obtained from Monte-Carlo simulations (MC) and our approach. In fact, as

demonstrated earlier in other systems, Table. 3.3 shows that the GTPI approach on a (81×81)

uniform grid in the transformed space has greater accuracy and lower computation cost than

the FG approach on a (121 × 121) uniform grid in the original space. The simulations were

performed in increments of ∆t = 0.005 s on grids with domain bounds
[

− 5 5
]

in either

dimension.

3.5 Concluding Remarks

In this chapter, we propose the generalized transformed path integral approach (GTPI) for

efficient numerical predictions of a broad class of stochastic dynamical systems (including

those with singular diffusion coefficient matrices). As a part of our approach, we develop a

path integral-based solution of a transformed Fokker-Planck equation (FPE). The equation

describes the evolution of a complementary stochastic dynamical system whose state mean

and covariance do not change with time; we refer to the system as the standard transformed

stochastic dynamical system. Thus, we present an alternate approach to describe the evo-

lution of stochastic dynamical systems in terms of the evolution of its standard transformed

stochastic dynamical system. The system, which is obtained through a dynamic transforma-

tion of the original state variables with their state mean and covariance as parameters, allows

for propagation of the state distribution to be performed in a transformed computational
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domain where greater accuracy can be ensured. Note that a fixed grid in the transformed

space corresponds to an adaptive grid in the original state space. Evolution of the underly-

ing probability distribution(s) in the transformed computational domain can ensure greater

accuracy and accurate estimation of error bounds via a Chebyshev’s inequality. As a result,

our approach enables efficient predictions in a broach class of stochastic dynamical systems,

including those characterized by large drift, large diffusion, and highly localized PDFs.

We use operator splitting of the transformed FPE to develop appropriate short-time

propagators that can handle challenges arising from rank deficient, i.e., singular diffusion

coefficient matrices. The splitting scheme consists of a Liouville operator (Eq. (3.37)) and

a Fokker-Planck operator (Eq. (3.38)); The latter has a full rank diffusion coefficient sub-

matrix. We propose new update equations for mean and covariance of state variables along

with evolution of the underlying state distribution in the transformed space. A novel feature

of our approach is that under the dynamic transformation considered the proposed update

equations ensure zero mean and identity covariance for the transformed state variables.

Thus, in addition to the renormalization condition to preserve zeroth moment properties,

our approach also allows us to establish conditions to preserve the first and second mo-

ment properties of the state distribution in the transformed space. In fact, the proposed

framework allows us to capture invariant solutions for linear stochastic dynamical systems

with a Gaussian initial distribution; The state distribution remains standard normal in the

transformed space for such systems.

This work generalizes our earlier transformed path integral (TPI) formulation [93] which

was restricted to stochastic dynamical systems with full rank, i.e., nonsingular diffusion

coefficient matrices. Our non-trivial generalization extends the application of TPI to a

broader class of stochastic dynamical systems with singular diffusion coefficient matrices.

Notably, probabilistic descriptions of second and higher-order systems can be made using

this framework. It can be applied to certain systems with colored noise excitation where the

excitation may be expressed as a filtered white noise process. The framework can be used for
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probabilistic description of systems with zero process noise but with uncertainties in initial

conditions and parameters (equivalent to a solution of the Liouville equation). Likewise, the

GTPI approach is also applicable to systems with full rank diffusion coefficient matrices.

To evaluate the performance of our generalized transformed path integral approach we

considered several examples of linear and nonlinear stochastic dynamical systems with sin-

gular diffusion coefficient matrices. These examples include (a) the stochastic harmonic

oscillator, (b) the stochastic van der Pol oscillator, (c) the stochastic Caughey oscillator,

(d) the stochastic Duffing oscillator with zero process noise, and (e) bistable stochastic flow

driven by non-white noise. Note that the evolution of the stochastic Duffing oscillator with

zero process noise (example(d)) is governed by a Liouville equation. The examples and pa-

rameters were also chosen to highlight challenges faced by conventional fixed grid approaches

to accurately describe evolution of distributions in dynamical systems with large drift, dif-

fusion, and concentration of PDF. The results obtained from our proposed GTPI approach

in these examples show good agreement with those from MC simulations and analytical so-

lutions (where available). Comparisons of numerical error in the PDF show that the GTPI

approach is also more efficient than conventional fixed grid approaches in terms of the com-

putational costs at achieving a desired level of accuracy. The analysis of numerical error in

the GTPI approach for the stochastic harmonic oscillator also indicate the presence of an

optimal value (∆t⋆) for the time step below which the numerical simulations produce larger

numerical error in the PDF. Both ∆t⋆ and ε⋆
RMS, the error in the PDF at this time step,

are lower for a finer grid resolution. We also investigated the influence of the grid resolution

and system parameters on ∆t⋆ and ε⋆
RMS for the stochastic harmonic oscillator. In spite

of the documented benefits of our proposed approach over conventional approaches, issues

pertaining to the curse of dimensionality which may arise for instance in second order (and

higher order) multiple degree of freedom systems need to be investigated further.
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CHAPTER 4

Generalized Transformed Path Integral Based Approaches for

Nonlinear Filtering

4.1 Scope of the Chapter

In this chapter the generalized transformed path integral filter (GTPIF) is presented. The

framework is a path-integral–based approach for continuous-discrete nonlinear filtering prob-

lems. In the continuous-discrete filtering problem, the system dynamics is continuous in time

and the measurements are taken at discrete time instants. A brief overview of the mathe-

matical formulations for the problem are presented, namely, the probabilistic description of

the problem.

The formulations for the proposed GTPIF approach are derived. The update equation for

the evolution of the conditional distribution in the transformed space between observations

are presented. Additionally, update equations for the conditional mean and covariance are

also presented. At an observation, novel update equations for the conditional distribution,

the conditional mean, and covariance are derived based on Bayes’ theorem. The salient

features of the approach are also presented.

4.2 Nonlinear Filtering

In the continuous-discrete nonlinear filtering problem, the evolution of the dynamical system

is described by the Itô stochastic differential equation

dx(t) = f
(
x(t), t

)
dt+ A

(
x(t), t

)
dw(t) (4.1)
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where x(t) represents the state of the system at time t. The system evolves along a de-

terministic path determined by the drift vector function f
(
x(t), t

)
while being subjected to

Gaussian white noise excitations of strength A
(
x(t), t

)
. The increments dw(t) represent

independent identically distributed zero mean Gaussian random variables with the autocor-

relation
〈
dwi(t) dwj(s)T

〉
= δ(t− s) δij for i, j = 1, . . . , Nw. The system is observed through

the process

yk = h
(
x(tk), tk

)
+ νk (4.2)

where νk represents zero mean Gaussian white noise with covariance matrix Mk. The

goal of the filtering problem is to evaluate the conditional distribution p(x, t | Yk) where

Yk =
{
y0, . . . ,yk

}
represents the set of observations obtained from Eq. (4.2). The evolution

of this distribution between observations is governed by the Fokker-Planck equation

[
∂

∂t
+ ∂

∂xi

fi(x, t) − ∂2

∂xi∂xj

Gij(x, t)
]
p(x, t |Yk) = 0, tk ≤ t < tk+1 (4.3)

where G(x, t) = A(x, t) A(x, t)T/2. At an observation, i.e., at tk the conditional distribution

can be evolved using the Bayes’ update relation

p(x, tk | Yk) = p(yk | x) p(x, tk | Yk−1)
p(yk | Yk−1)

(4.4)

where the likelihood p(yk | x) is given by

p(yk | x) = ∥2πMk∥−1/2 exp
{

−1
2
[
yk − h(x, tk)

]T
M−1

k

[
yk − h(x, tk)

]}
(4.5)
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4.3 The Generalized Transformed Path Integral Filter

In our proposed solution for the continuous-discrete nonlinear filtering problem, we consider

a dynamic transformation of the state variables:

z(t) = R−1
t|k

[
x(t) − µt|k

]
(4.6)

where µt|k is the conditional state mean and Σt|k = Rt|k RT
t|k the conditional state covariance,

i.e.,

µt|k = ⟨x | Yk⟩

=
ˆ

x px(t)(x, t | Yk) dx (4.7)

Σt|k =
〈[

x − µt|k

][
x − µt|k

]T ∣∣∣∣Yk

〉
=
ˆ [

x − µt|k

][
x − µt|k

]T
px(t)(x, t | Yk) dx. (4.8)

Given this transformation, we may re-formulate our filtering problem to one of evaluating

the conditional distribution pz(t)(z, t | Yk). This conditional distribution in the transformed

state variables is related to that of the original state variables as

pz(t)(z, t | Yk) =
∥∥∥Rt|k

∥∥∥ px(t)

(
Rt|k z + µt|k, t

∣∣∣∣Yk

)
(4.9)

In further discussions, we will drop the subscripts in our representations of the distribution

functions and rely on the reader to distinguish between them based on the context.
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System Update

The evolution of p(z, t | Yk) between observations is governed by the transformed Fokker-

Planck equation

[
∂

∂t
+ ∂

∂zi

Φi(z, t) − ∂2

∂zi∂zj

Γij(z, t)
]
p(z, t | Yk) = 0, tk ≤ t < tk+1 (4.10)

where the drift vector function Φ ≡ [Φi] and diffusion coefficient matrix Γ ≡ [Γij] are given

by

Φ(z, t) = R−1
t|k

(
f̃(z, t) − Ṙt|k z − µ̇t|k

)
(4.11)

Γ(z, t) = R−1
t|k G̃(z, t) R−1

t|k
T (4.12)

with f̃(z, t) = f
(
Rt|k z + µt|k, t

)
and G̃(z, t) = G

(
Rt|k z + µt|k, t

)
. If G is singular, and

hence Γ, through appropriate transformation of the state variables where necessary Γ can

be expressed in the block matrix form

Γ =

0 0

0 Γ(r)

 (4.13)

where 0 represents appropriate zero-matrices. Note that in this representation Γ(r) ∈ RNr×Nr

is nonsingular and Nr = rank (Γ). Let Nε = Ns − Nr. Without loss of generality, we may

assume the dynamical system and Γ to already be of this form.

In our approach, informed by the form of Γ, we consider grouping the transformed state

variables z =
[
z1, z2, . . . , zNs

]T
into singular variables q =

[
z1, . . . , zNε

]T
and nonsingular

variables v =
[
zNε+1, . . . , zNs

]T
. Similarly, we define Φ(ε) =

[
Φ(ε)

1 , . . . ,Φ(ε)
Nε

]T
and Φ(r) =
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[
Φ(r)

Nε+1, . . . ,Φ
(r)
Ns

]T
allowing us to write Eq. (4.10) in the form

[
∂

∂t
+ ∂

∂qi

Φ(ε)
i (q,v, t) + ∂

∂vi

Φ(r)
i (q,v, t)

− ∂2

∂vi∂vj

Γr
ij(q,v, t)

]
p(q,v, t | Yk) = 0, (4.14)

for tk ≤ t < tk+1. The solution to Eq. (4.14) via the two-step generalized transformed path

integral (GTPI) approach is given by

p̂(q′ ,v | Yk) = p(q,v, t | Yk) exp

−∆t ∂Φ(ε)
i

∂qi

∣∣∣∣∣∣
q,v,t

, (4.15)

p(q′ ,v′ , t+ ∆t | Yk) =
ˆ
p(v′ | v) p̂(q′ ,v | Yk) dv (4.16)

Note that p̂ in Eq. (4.15) is computed at
[
q′ v

]T
with q′ = q + ∆tΦ(ε)(q,v, t). In grid-

based approaches, this could represent off-grid points and might require interpolation of the

distributions evaluated at those points back on to the points of our computational grid. The

short-time propagator p(v′ | v) in Eq. (4.16) is given by

p(v′ | v) =
∥∥∥4π∆tΓ(r)(q,v, t)

∥∥∥−1/2

exp
{

− 1
4 ∆t

[
vT

e Γ(r)(q,v, t)−1 ve
]}

(4.17)

with ve = v′ − v − Φ(r)(q,v, t) ∆t. A first order approximation ∆R ≡ Rt+∆t|k − Rt|k

is employed in evaluating Φ(q,v, t) ∆t = R−1
t|k

[
δf̃(q,v, t) ∆t − ∆R z

]
with δf̃(q,v, t) =

f̃(q,v, t) −
〈
f̃(q,v, t)

〉
. In addition, we have the update relations

µt+∆t|k = µt|k + ∆t
〈
f̃(z, t) | Yk

〉
, (4.18)

Σt+∆t|k = Σt|k + ∆t
[
Rt|k

〈
z f̃(z, t)T | Yk

〉
+
〈
f̃(z, t) zT | Yk

〉
RT

t|k (4.19)

+ 2
〈
G̃(z, t) | Yk

〉]
.
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We obtain Rt+∆t|k by performing a Cholesky factorization of Σt+∆t|k.

Measurement Update

We consider the transformations

z∗ = R−1
k|k

[
x(tk) − µk|k

]
and z′ = R−1

k|k−1

[
x(tk) − µk|k−1

]
(4.20)

where µk|k is the posterior conditional state mean and Σk|k = Rk|kRT
k|k is the posterior

conditional state covariance obtained from p(x, tk | Yk). Similarly, µk|k−1 and Rk|k−1 are

the corresponding quantities associated with the prior distribution p(x, tk | Yk−1). At an

observation, i.e., at tk the prior and posterior distributions satisfy the update relation in

Eq. (4.4). Applying the transformations from Eq. (4.20), we obtain the relation

p(z∗, t | Yk) =

∥∥∥Rt|k

∥∥∥∥∥∥Rt|k−1

∥∥∥ 1
N
p(yk | z′) p(z′, t | Yk−1) (4.21)

where N =
´
p(yk | z′) p(z′, t | Yk−1) dz′ and z′ = R−1

k|k−1

[
Rk|k z∗ + µk|k − µk|k−1

]
. The likeli-

hood p(yk | z′) is given by

p(yk | z′) = ∥2πMk∥−1/2 exp
{

−1
2
[
yk − h̃(z′, tk)

]T
M−1

k

[
yk − h̃(z′, tk)

]}
(4.22)

with h̃(z′, tk) = h
(

R−1
k|k−1

[
x − µk|k−1

]
, tk

)
. Eq. (4.21) is the measurement update relation

for the conditional distribution of the transformed state variables. However, we also need

to specify update relations for the conditional mean and covariance, i.e, relations to obtain

µk|k and Rk|k from µk|k−1 and Rk|k−1. Let us define

ψ1 = 1
N

ˆ ∞

−∞
z′ p(yk | z′) p(z′, t | Yk−1)) dz′ (4.23)

ψ2 = 1
N

ˆ [
z′ −ψ1

][
z′ −ψ1

]T
p(yk | z′) p(z′, t | Yk−1) dz′ (4.24)
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Taking appropriate expectations of Eq. (4.21), we can then show that

⟨z∗ | Yk⟩ = R−1
t|k

[
Rt|k−1ψ1 + µt|k−1 − µt|k

]
(4.25)〈

z∗z∗T | Yk

〉
= R−1

t|k Rt|k−1ψ2 RT
t|k−1 R−1

t|k
T (4.26)

We seek update relations that ensure ⟨z∗ | Yk⟩ = 0 and
〈
z∗z∗T | Yk

〉
= I. Thus, we get

µt|k = µt|k−1 + Rt|k−1ψ1 (4.27)

Σt|k = Rt|k−1ψ2 RT
t|k−1 (4.28)

We obtain Rk|k by taking the Cholesky factorization of Σk|k.

4.4 Performance of the Generalized Transformed Path Integral

Filter

In this section, the benefits of the GTPI-based filter (GTPIF) for nonlinear filtering are

illustrated. The conventional extended Kalman filter (EKF) is used extensively to obtain

solutions to several nonlinear filtering problems. However, the approach is not well-equipped

to obtain accurate estimates in dynamical systems with large nonlinearities. Such nonlin-

earities may arise from the system dynamics and/or the measurement function. In contrast,

the GTPIF is better equipped to address challenges from such large nonlinearities.

A stochastic dynamical system with a cubic nonlinearity is considered. The evolution of

the system is described the equation

dx = −kx(x2 − c) dt+ adw (4.29)

with k = 4 and c = 1. Clearly, the system has two stable stationary points at x = ±c = ±1.

Intuitively, we expect the system state to evolve towards one of these points. The strength
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Figure 4.1: Evolution of the state distribution conditioned on the observation history for the
nonlinear filtering problem (Eqs. (4.29) and (4.30)) at different times.

of the white noise excitation is a = 0.1. The system is observed through the measurement

process

yk = x+ νk, (4.30)

with νk = 0.2. The initial distribution for the state was chosen to be N(−0.02, 10−9). The

evolution of the state distribution given a set of observation values is shown in Fig. 4.1.

The simulations were performed on a grid with 151 grid points between bounds [−5, 5]

in the transformed space. The simulations were performed with a time step ∆t = 0.01

from t = 0 s to t = 2 s. The GTPI based filter is able to better represent the non-Gaussian

transient behavior of the distribution for this system. Moreover, owing to the presence of grid

points at the regions of importance in the GTPI based approach, it is able to better describe

the evolution of the distribution when there is large drift. Also, as the system evolves and
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Figure 4.2: Comparison of the error in the state estimate obtained from the Extended
Kalman Filter and the GTPI based filter for the nonlinear filtering problem Eqs. (4.29)
and (4.30).

distribution is updated with the measurement information, there is large concentration of

the PDF. The GTPI based approach is able to better represent the distribution in regions

where there is large concentration of PDF. While the EKF estimate is initially comparable

to that of the GTPI based filter, over time the error for the EKF estimate can grow rapidly

as shown in Fig. 4.2.

4.5 Concluding Remarks

The generalized transformed path integral filter (GTPIF)—a novel path integral-based filter

was presented. New approaches for updating the prior probabilities as well as posterior prob-

abilities (consistent with Bayes’ rule) in the transformed space were proposed. In particular,

a set of update equations for the evolution of the conditional distribution in the transformed

space along with update equations for the conditional mean and covariance of the original
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state variables were derived. The proposed approach is able to better accommodate nonlin-

earities in the system dynamics and measurement function than the conventional extended

Kalman filter (EKF). The approach is better equipped than the Unscented Kalman filter

(UKF) at preserving higher order moments of the conditional distribution. GTPIF does

not encounter the sampling errors present in Monte-Carlo (MC) based approaches and have

lower errors than conventional grid based approaches for comparable computational costs.

The set of update equations for GTPIF are better equipped to address the challenges arising

from fixed computational domain bounds and grid resolution in conventional fixed grid based

approaches. The approach allows for straightforward evaluation of error bounds on evolved

distributions via Chebyshev’s inequality.
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CHAPTER 5

Generalized Transformed Path Integral Based Approaches for

Stochastic Optimal Control

5.1 Scope of the Chapter

In this chapter, the generalized transformed path integral control (GTPIC) is presented.

The proposed framework is a transformed path-based approach for the control of a large

class of stochastic dynamical systems where the system dynamics is linear and the cost

function is quadratic in terms of the control variables. However, the dynamics and cost

may still contain nonlinearities with respect to the state variables. The governing equation

for problems in stochastic optimal control, the stochastic Hamilton-Jacobi-Bellman (HJB)

equation, is reduced to a more tractable form for these systems.

The mathematical formulations for the stochastic optimal control problem are presented

in this chapter. A brief derivation of the stochastic HJB is also provided. Likewise, the for-

mulations for the class of problems considered here are shown where the governing equation

can be reduced to a backward Kolmogorov type equation. Its adjoint equation, a Fokker-

Planck type equation, governs the evolution of the distribution for a diffusion process that

occurs alongside a killing process. The equation forms the basis for the use of path integrals

to solve this class of stochastic optimal control problems.

The framework for the GTPIC is presented. A set of update equations for solving the

Fokker-Planck type equation are presented. A short-time propagator based on the GTPI

approach that allows for the evolution of distributions in the transformed space is presented.

Necessary update equations for the conditional mean and variance are also presented.
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5.2 Stochastic Optimal Control

Let us consider a controlled stochastic dynamical system described by the Itô stochastic

differential equation

dx(t) = f
(
x(t),u(t), t

)
dt+ A

(
x(t),u(t), t

)
dw(t) (5.1)

where the random vector x(t) ∈ RNs×1 represents the state of the system at time t and

u(t) ∈ RNu×1 is the set of control inputs to the system at time t. The drift vector

function f
(
x(t),u(t), t

)
specifies the deterministic path of evolution for the system and

A
(
x(t),u(t), t

)
is the strength of the Gaussian white noise excitations. The increments

dw(t) represent independent identically distributed zero mean Gaussian random variables

with the autocorrelation
〈
dwi(t) dwj(s)T

〉
= δ(t − s) δij for i, j = 1, . . . , Nw. We consider a

cost functional of the Bolza type given by

C
(
x0, t0,u(·)

)
=
〈
ϕ
(
x(T )

)
+
ˆ T

t0

L
(
x(t),u(t), t

)
dt
∣∣∣∣∣x(t0)

〉
(5.2)

which represents an expected cost conditioned on the initial state of the system x(t0). It

consists of the terminal cost ϕ
(
x(T )

)
and the path cost (or running cost) L

(
x(t),u(t), t

)
.

The objective of the stochastic optimal control problem is to find the control function u⋆(t)

for t0 ≤ t < T such that the cost C
(
x0, t0,u(·)

)
is minimized. In other words,

u⋆(·) = argmin
u(·)

C
(
x0, t0,u(·)

)
(5.3)

subject to the constraint given by Eq. (5.1).

101



The Stochastic Hamilton-Jacobi-Bellman Equation

Let us define the value function (or cost-to-go) as

V (x, t) = min
u(·)

〈
ϕ
(
x(T )

)
+
ˆ T

t

L
(
x(s),u(s), s

)
ds
∣∣∣∣∣x(t) = x

〉
(5.4)

which is the optimal cost to evolve the system in Eq. (5.1) starting from state x at time t.

Applying Bellman’s principle of optimality, we can write Eq. (5.4) as the recursive relation

V (x, t) = min
u(·)

〈
V (x′, t′) +

ˆ t′

t

L
(
x(s),u(s), s

)
ds
∣∣∣∣∣x
〉
. (5.5)

where the minimization is with respect to u(s) for t ≤ s < t′. Let us consider t′ = t + ∆t.

Applying Dynkin’s formula, we obtain

min
u(·)

〈ˆ t+∆t

t

[
AV

(
x(s), s

)
+ L

(
x(s),u(s), s

)]
ds
∣∣∣∣∣x
〉

= 0 (5.6)

where A is the infinitesimal generator of the stochastic process
[
dt dx(t)

]T
. It is given by

A = ∂

∂t
+ fi(x,u, t)

∂

∂xi

+Gij(x,u, t)
∂2

∂xi∂xj

. (5.7)

Thus, in the limit ∆t → 0 we have

−∂V (x, t)
∂t

= min
u

[
L(x,u, t) + fi(x,u, t)

∂V (x, t)
∂xi

+Gij(x,u, t)
∂2V (x, t)
∂xi∂xj

]
(5.8)

which is solved backwards in time with the boundary condition V (x, T ) = ϕ(x). The equa-

tion is nonlinear because of the pointwise minimization with respect to u. It is known as

the stochastic Hamilton-Jacobi-Bellman (HJB) equation.
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Path Integral Control

Let us consider a stochastic dynamical system of the form

dx(t) =
[
f
(
x(t), t

)
+ B

(
x(t), t

)
u(t)

]
dt+ A

(
x(t), t

)
dw(t). (5.9)

and a cost functional of the form

C
(
x0, t0,u(·)

)
=
〈
ϕ
(
x(T )

)
+
ˆ T

t0

[
L
(
x(t), t

)
+ 1

2u(t)TQ
(
x(t), t

)
u(t)

]
dt
∣∣∣∣∣x0

〉
. (5.10)

In other words, we consider system dynamics linear in u and a path cost function quadratic

in u. For the case considered, the stochastic HJB becomes

−∂V (x, t)
∂t

= min
u

[
L(x, t) + 1

2uiujQij(x, t)

+
[
fi(x, t) + ujBij(x, t)

]
∂V (x, t)
∂xi

+Gij

(
x, t

)∂2V (x, t)
∂xi∂xj

]
. (5.11)

Minimization with respect to u gives us

u⋆(x, t) = −Q(x, t)−1B(x, t)T ∇xV (x, t). (5.12)

Substituting Eq. (5.12) in Eq. (5.11) we get

−∂V (x, t)
∂t

= L(x, t) − 1
2
∂V (x, t)
∂xi

∂V (x, t)
∂xj

Mij(x, t)

+ fi(x, t)
∂V (x, t)
∂xi

+Gij(x, t)
∂2V (x, t)
∂xi∂xj

(5.13)

with M(x, t) = B(x, t) Q(x, t)−1B(x, t)T. In order to make Eq. (5.13) more tractable, we

consider the Cole-Hopf transformation

V (x, t) = −λ logψ(x, t) (5.14)
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with a yet to be defined constant λ. Under this transformation, we see that

−1
2
∂V (x, t)
∂xi

∂V (x, t)
∂xj

Mij(x, t) +Gij(x, t)
∂2V (x, t)
∂xi∂xj

= − λ

ψ(x, t)Gij(x, t)
∂2ψ(x, t)
∂xi∂xj

+ λ

ψ(x, t)2

[
Gij(x, t) − λ

2Mij(x, t)
]
∂ψ(x, t)
∂xi

∂ψ(x, t)
∂xj

(5.15)

If we choose λ such that

G(x, t) = 1
2 λM(x, t) (5.16)

the nonlinear terms in Eq. (5.15) will vanish. Such a λ is always possible in the one dimen-

sional case. However, in multivariate dynamical systems the condition Eq. (5.16) restricts

the possible values for G(x, t) and Q(x, t). In cases where Eq. (5.16) holds, the relation im-

plies that the controls are less expensive along dimensions with higher process noise strength.

This insight makes sense from a control theoretic standpoint; under a large disturbance, a

significant control authority is required to bring the system back to a desirable state. Thus,

with the transformation in Eq. (5.14) and the relation in Eq. (5.16), we may reduce Eq. (5.13)

to

∂ψ(x, t)
∂t

= −
[
fi(x, t)

∂

∂xi

+Gij(x, t)
∂2

∂xi∂xj

− L(x, t)
λ

]
ψ(x, t)

= −Hψ(x, t) (5.17)

where H is a linear operator operating on ψ(x, t). Eq. (5.17) is of the form of a backward

Kolmogorov equation with the boundary condition ψ(x, T ) = exp
{
−ϕ(x)/λ

}
. We can con-

sider a stochastic process ξ(t) whose infinitesimal generator is H. It is to be noted that this

process is different from the stochastic process in Eq. (5.9). The evolution of the conditional
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probability density function for this process is governed by the equation

∂ρ(x′, t′ | x, t)
∂t′

=
[
− ∂

∂x′
i

fi(x′, t′) + ∂2

∂x′
i∂x

′
j

Gij(x′, t′) − L(x′, t′)
λ

]
ρ(x′, t′ | x, t)

= H⋆ρ(x′, t′ | x, t) (5.18)

with initial condition ρ(x′, t | x, t) = δ(x′ − x) where ξ(t′) = x′ and ξ(t) = x. Here, H⋆

is the Hermitian adjoint of H. Thus, the quantity ⟨ρ |ψ⟩ =
´∞

−∞ ρ(x′, t′ | x, t)ψ(x′, t′) dx′ is

independent of t′. This can be seen by taking the derivative of ⟨ρ |ψ⟩ with respect to t′ and

applying the property ⟨ρ | Hψ⟩ = ⟨H⋆ρ |ψ⟩. Evaluating ⟨ρ |ψ⟩ at t′ = t and at t′ = T , we

arrive at the useful relation

ψ(x, t) =
ˆ ∞

−∞
ρ(x′, T | x, t)ψ(x′, T ) dx′. (5.19)

Thus, we can compute ψ(x, t) by solving Eq. (5.18) to obtain ρ(x′, T | x, t) and then applying

Eq. (5.19). An iterative path integral–based solution of Eq. (5.18) involves the evolution of

conditional distribution by repeated application of the Chapman-Kolmogorov equation

ρ(xi+1, ti + ∆t | x, t) =
ˆ ∞

−∞
ρ(xi+1, ti + ∆t | xi, ti) ρ(xi, ti | x, t) dxi (5.20)

for i = 1, . . . , N using the short-time propagator

ρ(xi+1, ti + ∆t | xi, ti) =
∥∥∥4π∆tG

(
xi, ti

)∥∥∥−1/2

exp
{

− 1
4∆t xT

e G(xi, ti)−1xe − L(xi, ti) ∆t
λ

}
(5.21)

with xe = xi+1 − xi − f(xi, ti) ∆t.
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5.3 The Generalized Transformed Path Integral Control

In the generalized transformed path integral control we consider a dynamical system of the

form in Eq. (5.9) and cost functional of the form in Eq. (5.10). Our starting point is the

stochastic process ξ(t). Evolution of the associated conditional distribution ρ(x, t | x0, t0) is

governed by Eq. (5.18). We consider a dynamic transformation of ξ(t) given by

z(t) = Z
(
ξ(t), t

)
= R−1

t|x0

[
ξ(t) − µt|x0

]
(5.22)

where µt|x0
and Σt|x0

≡ Rt|x0
RT

t|x0
are respectively the conditional mean and conditional

covariance of ξ(t) conditioned on the initial state of the system ξ(t0) = x0. In other words,

µt|x0
=
ˆ ∞

−∞
x ρ(x, t | x0, t0) dx (5.23)

Σt|x0
=
ˆ ∞

−∞

[
x − µt|x0

][
x − µt|x0

]T
ρ(x, t | x0, t0) dx. (5.24)

The conditional distribution of the original state variables are related to that of the trans-

formed state variables as

ρξ(t)(x, t |x0, t0) =
∥∥∥R−1

t|x0

∥∥∥ ρz(t)
(
Z(x, t), t

∣∣∣ z0, t0
)
. (5.25)

In further discussions, we will drop the subscripts in our representations of the distribution

functions and rely on the reader to distinguish between them based on the context. Since

ρ(x, t | x0, t0) = ρ(x, t | z0, t0), we have
[
µt|x0

,Rt|x0
,Σt|x0

]
=
[
µt|z0

,Rt|z0
,Σt|z0

]
. The evolu-

tion equation for the conditional distribution of the transformed state variables ρ(z, t | z0, t0)

is given by

∂ρ(z, t | z0, t0)
∂t

=
[
− ∂

∂zi

Φi(z, t) + ∂2

∂zi∂zj

Γij(z, t) − L̃(z, t)
λ

]
ρ(z, t | z0, t0). (5.26)
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The drift vector function Φ and diffusion coefficient matrix Γ are given by

Φ(z, t) = R−1
t|z0

(
f̃(z, t) − Ṙt|z0

z − µ̇t|z0

)
(5.27)

Γ(z, t) = R−1
t|z0

G̃(z, t) R−1
t|z0

T
. (5.28)

with f̃(z, t) = f
(
Z−1(z, t), t

)
, G̃(z, t) = G

(
Z−1(z, t), t

)
, and L̃(z, t) = L

(
Z−1(z, t), t

)
where

Z−1 is the inverse transformation of Eq. (5.22). Along with Eq. (5.26) for the evolution of the

conditional distribution, we have update equations for the conditional mean and conditional

covariance given by

µ̇t|z0
=
〈

f̃(z, t)
∣∣∣∣ z0

〉
− 1
λ

Rt|z0

〈
zL̃(z, t)

∣∣∣∣ z0

〉
, (5.29)

Σ̇t|z0
= Rt|z0

〈
z δf̃(z, t)T

〉
+
〈
δf̃(z, t) zT

〉
RT

t|z0
+ 2

〈
G̃(z, t)

〉
− 1
λ

Rt|z0

〈
zzTL̃(z, t)

∣∣∣∣ z0

〉
RT

t|z0
. (5.30)

The transformation in Eq. (5.22) ensures that the conditional mean
〈
z
∣∣∣ z0

〉
and the condi-

tional covariance
〈
zzT

∣∣∣ z0

〉
remain constant with propagation. These constants are zero and

identity respectively. We consider the iterative path-integral based solution for Eq. (5.26)

given by

ρ(zi+1, ti + ∆t | z0, t) =
ˆ ∞

−∞
ρ(zi+1, ti + ∆t | zi, t) ρ(zi, ti | z0, t0) dz0 (5.31)

for i = 1, . . . , N with the short-time propagator

ρ(zi+1, ti + ∆t | zi, ti) = ∥4π∆tΓ(zi, ti)∥
−1/2 exp

{
− 1

4∆tz
T
e Γ(z, t)−1ze

}
(5.32)
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and ze = zi+1 − zi − Φ(zi, ti) ∆t. Thus, we obtain the conditional distribution ρ(z′, t′ | z, t).

Using Eq. (5.25) and Eq. (5.19) we get

ψ(x, t) =
ˆ ∞

−∞
ρ(z′, T | z, t)ψ(x′, t) dx′ (5.33)

5.4 Performance of the Generalized Transformed Path Integral

Control

The benefits of the generalized path integral control (GTPIC) over conventional fixed grid

(FG) based approaches are illustrated in this section. The conventional FG based approaches

to path integral control face limitations for their applicability to the control of stochastic

dynamical systems with large drift, diffusion, and concentration of PDF. On the other hand,

Monte-Carlo based implementations of path integral control encounter sampling errors which

present challenges for the accurate representations of the underlying distributions and the

set of optimal controls. The control of a pure diffusion process is first considered to showcase

the benefits in a system where the dynamics are linear with respect to the state variables.

Then the control of a nonlinear dynamical system with a cubic nonlinearity is presented.

Recall that in path integral control, the dynamical system is of the form

dx =
[
f(x, t) + bu

]
dt+ adw (5.34)

and the cost functional to be optimized is of the form

C[u] =
〈
ϕ(x) +

ˆ [
L(x) + 1

2Ru
2
]
dx
∣∣∣∣x0

〉
(5.35)

where ϕ(x) is the end cost and L(x) is the state dependent path cost. In the case of controlled

pure diffusion we consider f(x, t) = 0. Thus the system is completely driven by the random

excitation and the control inputs. The strength of the white noise excitation is a = 1.
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Figure 5.1: Plot of the optimal cost function (left), the optimal controls (center), and the
evolution of the state distributions (right) obtained via the conventional fixed grid approach
(FG), the generalized transformed path integral control (TPI), and the exact analytical
solution for the controlled 1D pure diffusion process.

Additionally, we consider b = 1, R = 1 and a constant path cost L(x) = 1.

In this system, the covariance of the distribution grows linearly with time. Conventional

fixed grid (FG) based approaches will not be able to accurately represent this behavior

over large times. Consequently, large errors are encountered in the estimates of the optimal

cost function and the optimal controls as seen in Fig. 5.1 (left and middle). The GTPIC

estimates match the exact results much better than those from FG. Thus, the estimates of

the controlled distribution obtained from the GTPIC are more accurate than those from FG

as illustrated in Fig. 5.1 (right). An initial distribution of N(4, 1) was considered for the

simulation. They were performed on a grid with 201 grid points between bounds [−6, 6] in

both the original space as well as the transformed computational domain. The simulations

were performed from t = 0 s to t = 1 s in increments of ∆t = 0.01 s.

Next, the control of a dynamical system with nonlinear dynamics f(x) = x/4 − x3 is

considered. The other system parameters are the same as those considered in the controlled

pure diffusion case. The initial distribution was chosen to be N(1, 1). The simulation was

performed on a grid with 201 grid points between bounds [−4, 4] in the original space and

bounds [−5, 5] in the transformed space. It is worth pointing out that the conventional FG

approach would be sufficient for the system parameters and simulation parameters considered

for this case. Clearly, the estimates obtained from the GTPIC match those from FG for this

case as seen in Fig. 5.2. The simulations were performed from t = 0 s to t = 1 s in increments
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Figure 5.2: Plot of the optimal cost function (left), the optimal controls (center), and the
evolution of the state distributions (right) obtained via the conventional fixed grid approach
(FG) and the generalized transformed path integral control (TPI) for the control of a 1D
nonlinear dynamical system with a cubic nonlinearity.

of ∆t = 0.01 s.

5.5 Concluding Remarks

The generalized transformed path integral control (GTPIC), a path-integral based frame-

work for the efficient control of a large class of stochastic dynamical systems is presented.

These systems have linear dynamics and quadratic cost functions with respect to the control

variables. The optimal controls for these systems maybe obtained through the solution of a

backward Kolmogorov-type equation or equivalently through the solution of a Fokker-Planck-

type equation. The Fokker-Planck type equation governs the evolution of distributions for

a stochastic diffusion process that occurs alongside a growth/decay process.

As a part of the proposed framework, a novel short-time propagator for the evolution of

the conditional distribution conditioned on the initial state of the system is presented. The

framework allows for the evolution in a transformed space where a more accurate represen-

tation of the distribution can be ensured. As a consequence, more accurate estimates of the

optimal controls than in conventional grid based approaches maybe obtained. The frame-

work also does not face issues arising from sampling errors that are present in Monte-Carlo

based approaches. In addition, necessary update equations for the conditional mean and

covariance of the distribution are also presented. Error bounds for the evolved distributions,
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and for the optimal controls, can be easily established using Chebyshev’s inequality.
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CHAPTER 6

Summary and Future Work

In this dissertation, novel path integral–based frameworks to obtain efficient solutions to

problems in prediction, nonlinear filtering, and optimal control of stochastic dynamical sys-

tems have been presented. The foundation for these frameworks is the transformed path

integral (TPI) method—a novel path integral–based solution of the Fokker-Planck equa-

tion (FPE). The equation governs the evolution of the state distribution for the underlying

stochastic dynamical system. Many quantities of interest in the aforementioned problems,

such as the a posteriori state estimate or expected cost, require accurate estimates of the

state distribution. The TPI method allows us to obtain more accurate estimates of the state

distribution compared to conventional fixed grid-based methods.

The basic TPI method is however not applicable to stochastic dynamical systems with

a rank deficient (singular) diffusion coefficient matrix. The generalized transformed path

integral (GTPI) method—a non-trivial generalization of the TPI method—extends the ap-

plicability to a larger class of systems. Specifically, it can be applied to systems with a

singular diffusion coefficient matrix. As a consequence, the GTPI method is applicable to

second order stochastic dynamical systems, systems with zero process noise, certain stochas-

tic dynamical systems with non-white noise excitation, as well as systems with a full rank

diffusion coefficient matrix (where we recover the TPI method). The framework of the GTPI

method was also applied to the problem of nonlinear filtering and stochastic optimal control.

A transformed path integral-based framework for the continuous-discrete nonlinear filter-

ing problem, termed the generalized transformed path integral filter (GTPIF) was presented.

The GTPIF consists of a GTPI-like method for the system update (or prediction) and a novel
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set of update equations for the conditional state distribution, state mean, and covariance in

order to perform the Bayesian measurement update in the transformed computational do-

main. Likewise, a transformed path integral–based framework for a broad class of stochastic

optimal control problems, termed the generalized transformed path integral control (GT-

PIC) was also presented. In the GTPIC, the corresponding stochastic Hamilton-Jacobi-

Bellman equation is solved by solving an associated Fokker-Planck type equation using a

GTPI-based method. The benefits of the proposed frameworks in their respective areas

were shown through simulations of corresponding example problems in one-dimensional and

multi-dimensional spaces. Ideas to address limitations of the proposed frameworks along

with extensions to future work are also discussed.

6.1 The Transformed Path Integral Method

The theoretical formulations for the transformed path integral (TPI) method are presented

in Chapter 2. As a part of the method, a new form of the short-time propagator was

developed based on a dynamic transformation of the state space with the state mean and state

covariance as parameters. The new propagator allows for the propagation of distributions to

be performed in a transformed computational domain where a more accurate representation

of distributions can be realized. In addition to the novel short-time propagator for PDF

propagation, update equations for the state mean and state covariance were also derived.

Under the dynamic transformation in the TPI method a fixed grid in the transformed

space corresponds to an adaptive grid in the original space that translates with the state

mean and scales with the state covariance. Hence, straightforward error bounds based on

Chebyshev’s inequality were established for solutions obtained by the TPI method. A feature

of the TPI method is that the propagated PDF in the transformed space always has a mean

of zero and identity covariance. In fact, for linear dynamical systems with a Gaussian initial

distribution, the distribution in the transformed space remains invariant with a standard

normal distribution as shown in Lemma. (2.2.1).
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Consequently, the TPI method is able to better address challenges arising from finite

fixed grids, a static computational domain, and finite fixed grid resolution which may be

encountered in processes with large diffusion coefficients, large drift vectors, or large concen-

trations of the PDF. The benefits of the TPI method and limitations of conventional methods

such as the Monte Carlo simulations and fixed grid approaches, in tackling these challenges

were clearly illustrated in the one-dimensional systems: (a) one-dimensional pure diffusion

process, (b) one-dimensional constant drift process, (c) one-dimensional Ornstein-Uhlenbeck

process, and (d) white noise driven bistable stochastic flow in one dimension. They were also

illustrated in multi-dimensional systems: (e) multi-dimensional pure diffusion process, (g)

multi-dimensional Ornstein-Uhlenbeck process, (h) multi-dimensional uncoupled nonlinear

dynamical system, and (i) multi-dimensional coupled nonlinear dynamical system. Solutions

obtained from the TPI method show much better agreement with analytical solutions where

available than those obtained from conventional methods.

Analysis of the error in the PDF as compared with the analytical solutions in the linear

case and the stationary solution in the nonlinear case show that the TPI method is more

efficient than conventional methods in terms of the computational costs involved to obtain

a desired level of accuracy, especially for problems in one dimensional space. The analysis

also indicated the possibility of the existence of a similarity parameter. A candidate for the

parameter, namely α = σ2
ref (∆z)2/(2a2∆t), yielded a partial collapse of the various error

curves. It was shown that there is further reduction of the error for α > 10 or α < 0.5.

A challenge for the conventional path integral methods and inherited by the TPI method

is handling of stochastic processes with a rank deficient diffusion coefficient matrix. An

extension to the TPI method is needed to extend the applicability to these processes.

6.2 The Generalized Transformed Path Integral Approach

The generalized transformed path integral method (GTPI), a generalization of the TPI

method that extends the applicability to a larger class of systems (including those with
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a rank deficient diffusion coefficient matrix) was presented in Chapter 3. This non-trivial

generalization is based on the insight that the dynamic transformation employed in the

transformed path integral method allows for an alternate description of the evolution of

stochastic dynamical systems in terms of the evolution of a complementary system. We

termed this system as the standard transformed stochastic dynamical system and we will

refer to it here simply as the transformed system. A feature of this system is that its state

mean and state covariance remain constant with evolution of the system. The constants are

zero and the identity matrix respectively.

The evolution of the state distribution for the transformed system is governed by the

corresponding (transformed) Fokker-Planck equation. In the GTPI method, appropriate

short-time propagators that can handle challenges arising from singular diffusion coefficient

matrices are developed using operator splitting of the transformed FPE. The splitting scheme

consists of a Liouville operator and a Fokker-Planck operator; the latter has a full rank dif-

fusion coefficient sub-matrix. Additionally, update equations for mean and covariance of the

state variables, which are used for PDF propagation in the transformed space, are developed

from the underlying stochastic system models. The new set of update equations allow for

consideration of solutions to (i) second order dynamical systems, (ii) dynamical systems with

zero process noise, (iii) certain dynamical systems with non-white noise excitation, and (iv)

systems with a full rank diffusion coefficient matrix (where we recover the TPI method).

Unsurprisingly, the generalized transformed path integral method inherits several of the

salient features of the TPI method, including the benefits in addressing challenges arising

from large drift, diffusion, and concentration of PDF. It also inherits the feature allowing for

straightforward establishment of error bounds based on Chebyshev’s inequality. Finally, like

in TPI, the transformed space distribution in the GTPI framework also remains invariant

with a standard normal distribution for linear dynamical systems with a Gaussian initial

condition Lemma. (3.3.1). In addition to the renormalization condition to preserve zeroth

moment properties, conditions to preserve the first and second moment properties of the
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transformed space state distribution were also established.

Several examples of linear and nonlinear stochastic dynamical systems with a singular

diffusion coefficient matrix were considered to evaluate the performance of the generalized

transformed path integral approach. These examples include (a) the stochastic harmonic

oscillator, (b) the stochastic van der Pol oscillator, (c) the stochastic Caughey oscillator,

(d) the stochastic Duffing oscillator with zero process noise, and (e) bistable stochastic flow

driven by non-white noise. Of note is the stochastic Duffing oscillator with zero process

noise (example (d)) which is governed by a Liouville equation. The results obtained from

the GTPI method in these examples show good agreement with those from MC simulations

and analytical solutions (where available). Comparisons of numerical error in the PDF show

that the GTPI method is also more efficient than conventional fixed grid approaches in terms

of the computational costs at achieving a desired level of accuracy.

The analysis of numerical error in the GTPI approach for the stochastic harmonic oscil-

lator also indicated the presence of an optimal value (∆t⋆) for the time step below which the

numerical simulations produce larger numerical error in the PDF. Both ∆t⋆ and ε⋆
RMS, the

error in the PDF at this time step, were lower for a finer grid resolution. The influence of the

grid resolution and system parameters on ∆t⋆ and ε⋆
RMS for the stochastic harmonic oscilla-

tor was also investigated. Thus, the GTPI method addresses the domain issues associated

with conventional fixd grid approaches and also extends the applicability to a larger class

of systems (that includes processes with singular diffusion coefficient matrices). In spite of

these benefits, issues relevant to the curse of dimensionality need to be investigated further.

Nevertheless, the GTPI method presents an efficient framework for obtaining solutions to

problems in stochastic dynamical systems. In particular, the framework can be applied to

the nonlinear filtering problem as well as the stochastic optimal control problem.
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6.3 The Generalized Transformed Path Integral Filter

The framework for the generalized transformed path integral filter (GTPIF) was presented

in Chapter 4. The GTPIF is a path integral–based solution for the continuous-discrete

nonlinear filtering problem. Recall that the objective of the nonlinear filtering problem is

to obtain accurate estimates of the state of a stochastic dynamical system based on noisy

measurements. In the continuous-discrete case, the dynamical system is represented by a

continuous stochastic process and measurements are taken at discrete time instants. Optimal

estimates for this system can be obtained via a two step process involving (A) the solution

of a Fokker-Planck equation (i.e., the system update or prediction step) coupled with (B)

the Bayesian update rule (i.e., the measurement update).

The GTPIF employs a dynamic transformation of the state space using the conditional

state mean and conditional state covariance conditioned on the set of all prior measure-

ments (i.e., filtration). Thereby, accurate estimates of the posterior conditional distribution

conditioned on the filtration for the system update can be efficiently obtained by solving

the corresponding transformed Fokker-Planck equation. Accordingly, a novel short-time

propagator for the evolution of the conditional distribution in the transformed space was

presented. Also, update equations for the conditional mean and covariance were derived for

the prediction step. Likewise, new update equations for the measurement update step for

the conditional distribution, state mean, and covariance were obtained based on the Bayes’

update rule. The performance of the generalized path integral filter (GTPIF) was evaluated

in a bistable stochastic flow excited by white noise that is observed through a linear mea-

surement function with Gaussian white noise. The results obtained from the GTPIF were

more accurate than those from the conventional extended Kalman filter.

117



6.4 The Generalized Transformed Path Integral Control

The framework for the generalized transformed path integral control (GTPIC) was presented

in Chapter 5. The GTPIC is applicable to a large class of stochastic optimal control prob-

lems where the system dynamics are linear and the cost functional is quadratic in terms of

the control variables. Recall that the objective of the stochastic optimal control problem is

to obtain a set of control inputs to a stochastic dynamical system that optimizes a perfor-

mance criterion (or minimizes a cost). The optimal controls may be obtained by solving the

stochastic Hamilton-Jacobi-Bellman equation (HJB)—a nonlinear partial differential equa-

tion that governs the evolution of the value function (i.e., the cost-to-go function). In the

class of problems considered for GTPIC, the stochastic HJB may be solved by solving an

associated Fokker-Planck–type equation for a conditional distribution conditioned on the

initial state of the system.

The GTPIC applies the GTPI framework to obtain the solution to the Fokker-Planck–

type equation. It employs a dynamic transformation of the state space with the conditional

mean and conditional covariance conditioned on the initial state of the system. A novel short-

time propagator was presented that allows for the evolution of the conditional distribution in

the transformed space generated by the transformation. Additionally, novel update equations

for the conditional mean and conditional covariance of the original state variables necessary

for the evolution were presented. The distribution in the transformed space coordinates will

always have a zero mean and identity covariance. Thus, accurate and efficient estimates of

the evolved conditional distribution and optimal controls maybe obtained with the GTPIC.

The performance of the generalized transformed path integral control was evaluated in a

controlled pure diffusion process. The results obtained from the proposed approach showed

good agreement with those from the analytical solution. Additionally, the GTPIC results

were more accurate than the results from the conventional FG approach. The performance

was also evaluated in the control of a bistable stochastic flow with white noise excitation.
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The results from the GTPIC showed excellent agreement with expected behavior.

6.5 Future Work

The efficiency of the proposed frameworks can be increased further by using matrix free

approaches for the propagation of the distributions. Since the numerical implementation of

the propagation involves a matrix-vector multiplication, parallel computation algorithms can

be employed to reduce computation times without reduction in the accuracy. Approaches

based on fast multipole methods such as the fast Gauss transform (FGT) and symmetric

fast Gauss transform (SFGT) can be incorporated to reduce computations times further for

marginal reductions in the accuracy. Another approach involves developing the propagator

for larger time steps as the product of the propagator for smaller time steps. These techniques

can increase the applicability of the proposed approaches to problems in multi-dimensional

systems with a large number of dimensions.

The framework can be applied to first passage problems where the governing equation is

the backward Kolmogorov equation. Another area for future work is in Langrangian PDF

methods for turbulent flows where stochastic models are used to describe evolution of the

flow properties. The framework can also be extended to general stochastic control problems

via new formulations in the transformed space based on the Bellman recursive relation.

Likewise, the distributed stochastic optimal control of multiple agents is an area of active

research where the benefits of the GTPI frameworks can be extended. The GTPI framework

can also be extended to problems in population growth where the governing equation is the

Fisher’s equation (also known as the Kolmogorov-Petrovsky-Piskunov equation).
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APPENDIX A

TPI formulation from Itô’s lemma

In this appendix, an alternate formulation for the TPI method based on Itô’s lemma is

presented. We will show later that the two forms are equivalent the short time limit. We

consider the 1D stochastic process given in Eq. (2.7) and the time dependent transformation

in Eq. (2.9). We know from Itô’s lemma [2] that zt is also an Itô process given by

dzt =
(
∂Z
∂t

+ f
∂Z
∂x

+ 1
2g

2 ∂
2Z
∂x2

)
dt+ g

∂Z
∂x

dβt

which, for the particular transformation considered, reduces to

dzt = 1
σt

[
−dµt

dt − zt
dσt

dt + f(xt, t)
]

dt+
[
g(xt, t)
σt

]
dβt.

Multiplying throughout by σt and with some rearranging we have

σt dzt + zt dσt = δf̃(zt, t) dt+ g̃(zt, t) dβt (A.1)

Thus we have the corresponding form of the short time propagator in the transformed space

p(z, t|z′, t′) = σ′√
2π g̃2(z′, t′)dt

× exp

−

[
σ′ (z − z′) + z′ (σ − σ′) − δf̃(z′, t′) dt

]2
2 g̃2(z′, t′) dt

. (A.2)
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The form presented above is equivalent to the form proposed in Eq. (2.12) up to an order of

O(dt2). This can be seen by rewriting Eq. (A.1) as below

zt+dt = zt

(
1 − dσt

σt

)
+ δf̃(zt, t)

σt

dt+ g̃(zt, t)
σt

dβt

= zt

2 − 1(
1 − dσt

σt+dt

)
+ δf̃(zt, t) dt

σt+dt

(
1 − dσt

σt+dt

) + g̃(zt, t) dβt

σt+dt

(
1 − dσt

σt+dt

)

Making use of the expansion 1/(1 − x) = 1 + x + x2 + x3 + . . . and after simplification we

have

zt+dt = zt +
(

σt

σt+dt

− 1
)
zt + δf̃(zt, t)

σt+dt

dt+ g̃(zt, t)
σt+dt

dβt

+ O

( σ̇t

σt+dt

)2

(dt)2

+ O
((

σ̇t

σ2
t+dt

)
(dt)2

)
+ O

((
σ̇t

σ2
t+dt

)
(dt dβt)

)

(A.3)

For small time steps the contributions from the higher order terms of dt are negligible. Thus

we see that the two forms of the transformed short time propagator Eq. (A.2) and Eq. (2.12)

are equivalent in the limit dt → 0.
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APPENDIX B

Liouville Equation in Transformed Space Coordinates

Let us consider the Liouville equation given by

[
∂

∂t
+ ∂

∂xi

fi(x, t)
]
p(x, t) = 0. (B.1)

We seek to express this equation in a new set of coordinates related to the old coordinates

via the transformation z = Z(x, t). Let this transformation be invertible and the inverse

transformation be given by x = Z−1(z, t). The probability densities with respect to the old

and new coordinates, i.e., px and pz are related by

pz(z, t) = ∥J∥ px(x, t) (B.2)

where J = ∂x/∂z ≡
[
∂xi/∂zj

]
for i, j = 1, . . . , Ns is the Jacobian matrix and ∥J∥ is its

determinant. Consequently, J−1 = ∂z/∂x ≡
[
∂zi/∂xj

]
. The spatial derivatives in the old

coordinates can be expressed in the new coordinates as [1]

∂

∂xi

= 1
∥J∥

∂

∂zk

∂zk

∂xi

∥J∥ (B.3)

Similarly, the expression for the time derivative in the new coordinates is given by

(
∂

∂t

)
x

= 1
∥J∥

(
∂

∂t

)
z

∥J∥ + 1
∥J∥

∂

∂zk

(
∂zk

∂t

)
x

∥J∥ (B.4)

where
(
∂/∂t

)
x

denotes derivative with respect to t while keeping x constant and
(
∂/∂t

)
z

denotes the derivative while keeping z constant. We may drop these subscripts for brevity
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where the context is clear. Thus, substituting Eqs. (B.3) and (B.4) in Eq. (B.1) while noting

the relationship in Eq. (B.2) we get

[
∂

∂t
+ ∂

∂zk

Φk(z, t)
]
p(z, t) = 0 (B.5)

where

Φk(z, t) = ∂zk

∂t
+ ∂zk

∂xi

f̃i(z, t) (B.6)

f̃i(z, t) = fi

(
Z−1(z, t), t

)
(B.7)

For the transformation considered in Eq. (3.13) we have

Φ(z, t) = R(t)−1
[
f̃(z, t) − Ṙ(t) z − µ̇(t)

]
(B.8)

f̃(z, t) = f
(

R(t) z + µ(t)
)
. (B.9)

Fokker-Planck Equation in Transformed Space Coordinates

Applying Eq. (B.3) twice we obtain an expression for the second derivative in terms of the

new coordinates:

∂2

∂xi∂xj

= 1
∥J∥

∂2

∂zk∂zr

∂zk

∂xi

∂zr

∂xj

∥J∥ − 1
∥J∥

∂

∂zk

∂2zk

∂xi∂xj

∥J∥. (B.10)

Substituting Eqs. (B.3) and (B.10) in the Fokker-Planck equation Eq. (3.2) we obtain

[
∂

∂t
+ ∂

∂zk

Φk(z, t) − ∂2

∂zk∂zr

Γkr(z, t)
]
p(z, t) = 0 (B.11)
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with Φk =
(
∂zk/∂t

)
+
(
∂zk/∂xi

)
f̃i(z, t)+

(
∂2zk/∂xi∂xj

)
G̃ij(z, t),Γkr =

(
∂zk/∂xi

)(
∂zr/∂xj

)
G̃ij(z, t)

Note that for the transformation considered in Eq. (3.13), we obtain

Φ(z, t) = R(t)−1
[
f̃(z, t) − Ṙ(t) z − µ̇(t)

]
(B.12)

Γ(z, t) = R(t)−1 G̃(z, t) R(t)−1T
. (B.13)
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APPENDIX C

Derivation of update equations for mean and covariance

In this appendix, we detail the steps involved in the derivation of the update equations

for mean and covariance presented in Eqs. (3.25) and (3.26). We want to obtain relations

such that the first and second moments of the state variables in the transformed space are

preserved with propagation under our proposed approach. By definition, the transformation

in Eq. (3.13) ensures that state variables in the transformed space are initially distributed

with zero mean and identity covariance before propagation. Thus, our relations should ensure

that the state variables after propagation are also distributed with zero mean and identity

covariance, i.e.,

⟨z⟩ = ⟨z′⟩ = 0 (C.1)〈
zzT

〉
=
〈
z′z′T

〉
= I (C.2)

where the primed variables denote the quantities after propagation. Note that in our ap-

proach, we consider a partition z′ ≡
[
q′ v′

]T
of the state space in the transformed do-

main into “singular” and “nonsingular” variables as detailed in Eq. (3.35). Also, since

q′ = q + ∆tΦ(ε)(q,v, t) we have for any real-valued, compactly supported, continuous

function f with support contained in q′(q)

ˆ
f(q′) dq′ =

ˆ
f
(
q′(q)

) ∥∥∥I + ∆tDΦ(ε)
∥∥∥ dq
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where DΦ(ε) ≡
[
∂Φ(ε)

i /∂qj

]
. For small time steps, i.e., ∆t → 0

ˆ
f(q′) dq′ ≈

ˆ
f
(
q′(q)

)
exp

{
∆t ∂Φ(ε)

i

∂ui

∣∣∣∣∣∣
q,v,t

}
dq

Thus, using Eqs. (3.41) and (3.42) we have

ˆ
f(q′) p(q′ ,v′ , t+ ∆t) dq′ ≈

ˆ ˆ
f
(
q′(q)

)
ρ(v′ , t+ ∆t|v, t) p(q,v, t) dq dv (C.3)

where ρ(v′ , t+ ∆t|v, t) is given by Eq. (3.43). Let us consider

⟨q′⟩ =
ˆ ˆ

q′ p(q′ ,v′ , t+ ∆t) dq′ dv′

⟨v′⟩ =
ˆ ˆ

v′ p(q′ ,v′ , t+ ∆t) dq′ dv′

Applying Eq. (C.3) and changing the order of integration we have

⟨q′⟩ = ⟨q⟩ + ∆t
〈
Φ(ε)(q,v, t)

〉
(C.4)

⟨v′⟩ = ⟨v⟩ + ∆t
〈
Φ(r)(q,v, t)

〉
(C.5)

Combining Eqs. (C.4) and (C.5) we have

⟨z′⟩ = ⟨z⟩ + ∆t
〈
Φ(z, t)

〉
(C.6)

Applying Eq. (C.1), we obtain 〈
Φ(z, t)

〉
= 0 (C.7)

Proceeding similarly and dropping terms of O ((∆t)2) we can show that

〈
z′z′T

〉
=
〈
z zT

〉
+ ∆t

〈
z Φ(z, t)T

〉
+ ∆t

〈
Φ(z, t) zT

〉
+ 2 ∆t ⟨Γ(z, t)⟩ (C.8)
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Applying Eq. (C.2), we obtain

〈
z Φ(z, t)T

〉
+
〈
Φ(z, t) zT

〉
+ 2

〈
Γ(z, t)

〉
= 0 (C.9)

The relations in Eqs. (C.7) and (C.9) represent the conditions to preserve the state mean

and covariance with propagation using our proposed approach. Substituting Eqs. (3.18)

and (3.19) in these conditions we can simplify them to Eqs. (3.25) and (3.26).
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