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Abstract

Many studies have aimed to identify novel storm characteristics that are indicative of cur-

rent or future severe weather potential using a combination of ground-based radar obser-

vations and severe reports. However, this is often done on a small scale using limited case

studies on the order of tens to hundreds of storms due to how time-intensive this process

is. Herein, we introduce the GridRad-Severe dataset, a database including ∼100 severe

weather days per year and upwards of 1.3 million objectively tracked storms from 2010-

2019. Composite radar volumes spanning objectively determined, report-centered domains

are created for each selected day using the GridRad compositing technique, with dates

objectively determined using report thresholds defined to capture the highest-end severe

weather days from each year, evenly distributed across all severe report types (tornadoes,

severe hail, and severe wind). Spatiotemporal domain bounds for each event are objectively

determined to encompass both the majority of reports as well as the time of convection ini-

tiation. Severe weather reports are matched to storms that are objectively tracked using the

radar data, so the evolution of the storm cells and their severe weather production can be

evaluated. Herein, we apply storm mode (single cell, multicell, or mesoscale convective

system) and right-moving supercell classification techniques to the dataset, and revisit vari-

ous questions about severe storms and their bulk characteristics posed and evaluated in past

work. Additional applications of this dataset are reviewed for possible future studies.

Given this large dataset of severe storms, questions about storm structure of very

specific storm types can be investigated using what is still a large subsample of the total

GridRad-Severe dataset. This study compares populations of tornadic non-supercellular

MCS storm cells to their nontornadic counterparts, focusing on nontornadic storms that

have similar radar characteristics to tornadic storms. Comparison of single-polarization

radar variables during storm lifetimes show that median values of low-level, mid-level,

and column-maximum azimuthal shear, as well as low-level radial divergence, enable the
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highest degree of separation between tornadic and nontornadic storms. Focusing on low-

level azimuthal shear values, null storms were randomly selected such that the distribution

of null low-level azimuthal shear values matches the distribution of tornadic values. Af-

ter isolating the null cases from the nontornadic population, signatures emerge in single-

polarization data that enable discrimination between nontornadic and tornadic storms. In

comparison, dual-polarization variables show little deviation between storm types. Tor-

nadic storms both at tornadogenesis and at 20-minute lead time show collocation of the

primary storm updraft with enhanced near-surface rotation and convergence, facilitating

the non-mesocyclonic tornadogenesis processes.

With this additional knowledge about the structure of tornadic vs. nontornadic

storms and which radar variables best differentiate the two, machine learning methods can

be used to learn the differences between these storm type at various lead times and im-

prove tornado predictability. A convolutional neural network was trained on tornadic and

nontornadic data where the nontornadic data were either sampled from storms that have

similar radar characteristics to tornadic storms as in the PMM analyses or sampled from

the entire population of non-supercellular MCS storms. These models were then tested on

independent data from 2020-2021, again either including all tornadic storms and sampling

nontornadic cases as in the PMM analyses or including all tornadic and nontornadic storms.

Models that were tested on all tornadic and nontornadic storms, whether they were trained

and validated on datasets including sampled strong nontornadic storms or a sample of all

nontornadic storms, both performed well below the baseline performance metrics from the

NWS. However, when the model was trained, validated, and tested using samples of all

tornadic storms and only strong nontornadic storms, model test performance far exceeded

the baseline NWS metrics. Performance metrics include a probability of detection (POD)

of 79%, a false alarm ratio (FAR) of 58%, and a CSI of 0.38. Compared to the NWS met-

rics of 49%, 75%, and 0.2, respectively, this model shows clear promise as a supplemental

forecasting tool for scenarios where a storm is identified as (at least) borderline tornadic.
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However, further analyses of the model performance scaled to account for the true propor-

tion of tornadic vs. nontornadic storms shows that it was the unnatural ratio of tornadic to

nontornadic storms, and not the focus on strong nontornadic storms, that was the cause for

the improved model performance.

Finally, a brief analysis of the underlying populations and their demographic char-

acteristics in the vicinity of tornadoes are examined. Special attention is given to non-

supercellular MCS storms, as well as discrete supercells, whose tornadoes are often a main

focus of tornado research in the U.S. Analyses show that groups making up ∼3% or less

of the CONUS mean population typically have lower relative population densities in the

vicinity of storms. The Black or African American Alone demographic has higher relative

populations in the vicinity of all tornadoes compared to their CONUS mean population

density, as do all Non-Hispanic categories (Not Hispanic, Non-Hispanic White and Non-

Hispanic Black). Comparing population densities near specific types of tornadoes (i.e.,

mode and combination of mode and human impact) to their densities near all tornadoes,

the White Alone demographic has population densities near the CONUS mean for super-

cellular tornadoes, but that density jumps 6-7 percentage points in the vicinity of deadly

supercellular tornadoes when examining underlying population density by deadly event

and by death, suggesting that the deadliest supercellular tornadoes occur in predominantly

White areas. On average, populations in the vicinity of all tornadoes have ∼75-80% higher

Black or African American Alone and Non-Hispanic Black densities when compared to the

CONUS mean, with those demographics’ relative densities only increasing when isolating

MCS tornadoes and deadly MCS tornadoes, suggesting that the deadliest MCS tornadoes

preferentially occur in areas with relatively higher Black or African American Alone and

Non-Hispanic Black populations. One particularly striking result is that the mean Social

Vulnerability Index (SVI) of populations near all tornadoes is just barely above the CONUS

mean (0.52 vs. CONUS mean of 0.51), but is slightly lower for supercellular tornadoes

(0.49) and higher for MCS tornadoes (0.57). Therefore, MCS tornadoes tend to occur in

xvi



areas that are less resilient to natural disasters than both the CONUS mean and areas in the

vicinity of supercellular tornadoes. For both MCS and supercellular tornadoes that were as-

sociated with deaths or injuries, the local SVI is higher, likely pointing to the applicability

of SVI in identifying areas less resilient to natural disasters.
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Chapter 1

Introduction

1.1 GridRad-Severe

Severe weather, including tornadoes, severe hail, and severe wind, has substantial impacts

across the U.S. each year. NCEI (2023) reported that severe weather accounted for approx-

imately 8.5 billion dollars (inflation adjusted) in annual losses and nearly 2,000 deaths from

1980-2022. Additionally, there have been 163 severe weather events each totaling 1 billion

dollars (inflation adjusted) in losses or more, including derechos, hail storms, and tornado

outbreaks, and 38 events with 10 or more casualties over that same period. It remains im-

portant to analyze these, and other such high-end severe weather events, to further improve

our resilience to them.

Examining a severe weather event is inherently multifaceted, and the data used depend

primarily on the type of analysis. These data often include synoptic-scale and mesoscale

data starting in the days to hours preceding an event (e.g., Rockwood and Maddox 1988;

Coniglio et al. 2011; Hurlbut and Cohen 2014; Vaughan et al. 2017), radar and satellite data

to examine storm-scale features and evolution during the event, and storm reports in the af-

termath to evaluate impacts. Radar data can be incredibly useful to understand the physical

and kinematic structure of severe vs. non-severe storms. In particular, such data have pro-

vided insight into the intensity of precipitation, horizontal and vertical extents, wind speeds,

flow patterns, rotational velocities, and precipitation distributions associated with a storm

(e.g., Byers and Braham 1949; Browning 1964; Brown et al. 1978; Lemon and Doswell

1979; Wurman et al. 1996; Parker and Johnson 2000). Radars have been used for several

decades to understand tornadic storms and tornadogenesis (e.g., Lemon and Doswell 1979;

Ryzhkov et al. 2002, 2005; Kumjian and Ryzhkov 2008; Kurdzo et al. 2017; Homeyer et al.

2020), estimate hail size in a storm (e.g., Witt et al. 1998; Murillo and Homeyer 2019), and
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better understand severe straight-line wind events (e.g., Fujita and Byers 1977; Theodore

Fujita 1990; Wakimoto 2001; Klimowski et al. 2003). With the advent of dual-polarization

radar and integration of such radars into the operational network of S-band radars in the

U.S. (NEXRAD network) in 2013, a wealth of additional information can be inferred from

these data including improved hydrometeor classification, detecting the presence and size

of hail, convective updraft and vertical wind shear identification, and detection of tornadic

debris (Kumjian 2013). Radar datasets therefore remain powerful tools to further under-

stand the structure of severe storms and any unique identifying characteristics that can be

used in real-time for warning decisions.

One such radar analysis technique that has been performed both manually and objec-

tively is storm mode classification. Accurate identification of storm mode allows for further

insight into the potential for various types of severe weather. Common storm classifications

include single cell storms, multicellular storms, and mesoscale convective systems (MCSs).

For smaller-scale studies, subjective (manual) identification is often performed, as it is not

prohibitively time intensive for so few samples. However, for studies using larger databases

of storms, objective methods are a practical and often necessary solution for classification.

Various studies use observed or simulated column-maximum reflectivity and a 30-40 dBZ

threshold (e.g., Trapp et al. 2005; Snively and Gallus 2014; Thielen and Gallus 2019) to

define contours encapsulating convective elements. Using radar data analyzed on the order

of minutes to hours, these techniques often incorporate constraints for aspect ratio (i.e., the

length to width ratio; e.g., Bluestein and Jain 1985; Fowle and Roebber 2003; Gallus et al.

2008; Smith et al. 2012; Snively and Gallus 2014; Thielen and Gallus 2019), maximum

contour dimension (e.g., Bluestein and Jain 1985; Parker and Johnson 2000; Trapp et al.

2005; Gallus et al. 2008; Smith et al. 2012; Snively and Gallus 2014; Thielen and Gallus

2019), enclosed area (e.g., Fowle and Roebber 2003), and storm persistence/duration (e.g.,

Geerts 1998; Pinto et al. 2015; Feng et al. 2018, 2019).

2



Beyond determining a storm’s mode, one common approach to analyzing their severe

weather potential is through case studies, especially using radar observations and severe

reports. Case studies of severe weather events and their radar presentations abound in the

literature, providing valuable fine-scale insight into the inner workings of severe thunder-

storms. For example, a case study examination of a tornadic supercell in Oklahoma on 3

May 1999 led to the discovery of the polarimetric radar tornadic debris signature (TDS)

by Ryzhkov et al. (2002), prompting analyses of other supercells for potential analogous

signatures in Ryzhkov et al. (2005) and the eventual inclusion of the polarimetric TDS in

modern guides on polarimetric radar utility (e.g., Kumjian 2013). Additionally, Fujita and

Byers (1977) examined the meteorological conditions surrounding an airplane crash and

detected thunderstorm winds that were much stronger than anything previously observed,

coining these winds a “downburst.” This observation prompted numerous field campaigns

targeting downburst-producing storms (e.g., Fujita and Wakimoto 1982; McCarthy et al.

1982; Wilson et al. 1988), leading to a more comprehensive understanding of the phe-

nomenon today and likely saving many lives (Wilson and Wakimoto 2001). Working with

case studies allows for very detailed analyses of severe storms, but the conclusions from

such studies are limited in generalizability given their relatively small sample sizes.

Large-scale studies of severe weather in the literature date as far back as the 1940s with

the Thunderstorm Project (Byers and Braham 1949), and climatological studies have driven

many of the scientific community’s advances in severe weather knowledge. Tornadoes in

the U.S. are most common in early summer (Brooks et al. 2003) and in the late afternoon

to early evening (Ashley et al. 2008), mostly in the Great Plains and into the Southeast

(Coleman and Dixon 2014; Gensini and Brooks 2018; Krocak and Brooks 2018). The

majority of reported tornadoes are weak (EF-0 to EF-1; e.g., Brooks and Doswell 2001;

Trapp et al. 2005) although the less frequent significant tornadoes (EF 2+) are responsible

for nearly 90% of fatalities (e.g., Anderson-Frey and Brooks 2019). Climatologies of severe

hail like those by Cintineo et al. (2012), Murillo et al. (2021), and Wendt and Jirak (2021)
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are also typically built using reports, despite well-known reporting limitations (see Allen

and Tippett 2015, and references therein). Allen and Tippett (2015) examined a 60-year

record of over 260,000 hail reports and found that the majority of all hail reports occurred in

the late afternoon to early evening primarily during the late spring, with a maximum in the

Great Plains that is slowly shifting northward. Studies of severe winds often focus attention

on MCSs, which can produce uniquely widespread and damaging severe winds, including

and especially from derechos (Johns and Hirt 1987; Corfidi et al. 2016). Coniglio and

Stensrud (2004) found that higher-end derecho events in their 16-year climatology favor

the southern plains and Midwest. Derechos in the eastern two-thirds of the CONUS tend

to occur more in the summer months (Coniglio and Stensrud 2004) in the late evening to

overnight (Bentley and Mote 1998). Recent work using machine learning to classify and

track MCSs and quasi-linear convective systems (QLCSs) by Ashley et al. (2019) showed,

using their developed MCS climatology, that nearly a third of all MCSs in their 22-year

dataset were also QLCSs, and QLCS storms were linked with 28% of all severe wind

reports in the central and eastern U.S. Climatological studies allow for a large-scale view

of severe weather to develop mental models for how, when, and where severe hazards are

likely to occur.

Several studies have investigated compelling scientific questions about severe storms

beyond just their climatological distributions using a large record of observations. For ex-

ample, studies such as Homeyer et al. (2020), Loeffler et al. (2020), and Van Den Broeke

(2020) use radar data from tens to hundreds of tornadic and nontornadic supercells to ex-

amine tornadogenesis predictability; Blair et al. (2011) and Gutierrez and Kumjian (2021)

examined radar signatures within tens to hundreds of giant and gargantuan hail-producing

storms; and Bluestein and Jain (1985) and Schiesser et al. (1995) looked at mesoscale

structures within radar data from dozens of severe MCSs. Past studies such as these, de-

spite using larger datasets than the more numerous case study analyses, rarely contain more

than a few hundred storms and are commonly limited in both their spatiotemporal extent
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and temporal resolution of observations. Furthermore, any larger-scale studies done before

2013 have limited to no access to polarimetric radar data, which further limits understand-

ing of storm microphysics that may be relevant to severe events. Therefore, there exists a

need to expand these studies using a longer temporal record and analyze a much larger pop-

ulation of storms that are more spatiotemporally diverse, have higher temporal resolution

data, and that occurred within the observational range of one or more polarimetric radars.

Recognizing the contributions of the aforementioned prior work to our understanding

of severe storms, and with the increasing record of observations and emergence of a na-

tional polarimetric radar network, a clear incentive exists to create a modern database of

radar data and severe weather reports to evaluate the characteristics of storms that produce

severe weather. This paper aims to fill the knowledge gaps outlined herein using the newly

developed GridRad-Severe database (hereafter abbreviated GR-S): a database including

gridded multi-radar data covering the majority of the CONUS, objective storm tracks, and

storm reports. Herein, we outline the creation and utility of GR-S as well as how well

it reflects the spatiotemporal distribution of all storm reports in the U.S. Additionally, we

introduce objective storm mode and supercell classification techniques to aid in data anal-

ysis, and examine initial findings of the GR-S dataset that complement and expand upon

past studies. Finally, we directly compare GR-S findings with results from select seminal

papers to demonstrate its ability to replicate and extend prior key findings.

1.2 Statistical characteristics of tornadic and nontornadic mesoscale

convective system storms

Developing a large record of storms not only allows for bulk examination of severe storms,

but also creates the opportunity to segment the data to examine very specific types of storms

while retaining a large sample size. Although case study analyses of specific types of

storms, such as discrete supercells or non-supercellular MCS storms that are associated
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with severe reports, can elucidate radar signatures conducive to the strengthening, main-

tenance, and decay of that specific storm, examining the radar characteristics of a large

number of such storms can confirm whether or not the patterns observed in case studies are

indicative of the behavior of most if not all storms of that type. The GR-S dataset there-

fore can facilitate a deeper understanding of specific types of storms using fine-scale data

typical of case study analyses and sample sizes typical of statistical analyses.

Improving the predictability of tornadoes and tornadic storms is crucial to the National

Weather Service (NWS) mission statement of protecting life and property (Uccellini and

Hoeve 2019). From 1986 to 2011, tornadoes warned in advance had an average lead time

of 18.8 minutes, and the total frequency of such advanced warnings increased from ∼25%

in 1986 to more than 50% in recent years (Brooks and Correia 2018). Tornado probability

of detection (POD; i.e., percent of tornadic storms warned in advance of tornadogenesis)

is > 80% for tornadoes from supercells but less than 50% for tornadoes from nonsupercel-

lular storms, which are warned on average ∼2 minutes later than supercellular tornadoes

and are three times more likely to be warned at negative lead times (i.e., after the time of

tornadogenesis; Brotzge et al. 2013). Nonsupercellular tornadoes are produced not by a

persistently rotating mesocyclonic storm, but rather by the tilting of vorticity into the verti-

cal by updrafts or downdrafts to create counterrotating mesovortices at the leading edge of

a storm (e.g., Weisman and Davis 1998; Trapp and Weisman 2003; Flournoy and Coniglio

2019). In particular, Flournoy and Coniglio (2019) and Gibbs (2021) note in their reviews

of quasi-linear convective system (QLCS) tornadogenesis that line-normal low-level shear

plays an important role in mesovortex genesis for QLCSs when cold pool and updraft

strength are sufficiently balanced by RKW theory (see also Weisman and Trapp 2003; Ro-

tunno et al. 1988). Knowing that QLCS storms are a type of mesoscale convective system

(MCS; e.g., Agee and Jones 2009), there is clear incentive to examine methods to improve

non-supercellular MCS tornado warnings.

6



Climatological studies have found that anywhere from 18-27% of tornadoes are asso-

ciated with MCSs or QLCSs (Trapp et al. 2005; Ashley et al. 2019; Murphy et al. 2023).

Murphy et al. (2023) also found that approximately half of sub-significant severe tornadoes

were associated with MCSs, and MCSs accounted for the majority of tornado-producing

storms during the overnight hours. Nighttime tornadoes can pose a greater threat to life and

property since people are asleep and are least confident in their ability to receive warnings

even when a tornado is detected at positive lead times (Krocak et al. 2021). The negative

impacts of a low POD for non-supercell QLCS storms are likely to only amplify with time,

since the proportion of QLCS-attributed tornadoes is increasing (Ashley et al. 2019). Ac-

knowledging that improved warnings do not operate in a vacuum and that any behavioral

response to warnings is impacted by both meteorological and social factors (e.g., Agee and

Jones 2009; Hoekstra et al. 2011; Mason et al. 2018; Ripberger et al. 2019; Ernst et al.

2021; Trujillo-Falcón et al. 2021), greater understanding of how MCS non-supercellular

tornadoes form and what storm and environmental factors delineate a tornadic from a non-

tornadic MCS cell can aid in improving warning metrics and saving life and property.

Often, attempts to nowcast a storm’s tornadic potential rely on local environmental

analyses and comparisons to historical environmental analogs. Coffer et al. (2019) note

that such analyses go back as far as the 1940’s and 1950’s, with modern techniques at an-

alyzing storm environments mainly relying on model-derived proximity soundings given

the relative dearth of proximity soundings near severe and/or tornadic storms. Thompson

et al. (2012) examined differences between QLCS and right-moving supercellular tornado

environments using hourly Rapid Update Cycle (RUC) analysis data, finding that “en-

vironmental differences between the supercells and linear modes were relatively small.”

Anderson-Frey et al. (2016) also examined QLCS and right-moving supercellular tornadic

environments using RUC data, again finding a great deal of overlap between supercellular

and QLCS tornadic environments’ derived parameters. In addition to overlap in environ-

ments for various storm modes, hits and misses for tornado warnings within environmental
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parameter spaces of each storm mode also have considerable overlap, “perhaps highlighting

the difficulty in distinguishing between storms that will be tornadic and those that will not

be tornadic in similar environments” (Anderson-Frey et al. 2016). Lyza et al. (2022) note in

their analyses of supercells during the April 2011 tornado outbreak that tornado-producing

supercells were occasionally located near “dormant” cells, motivating the need to look

beyond storm background environments and towards storm-scale environmental hetero-

geneities and “internal stochastic processes of supercells” to determine whether or not a

storm will produce a tornado. Additionally, environmental reanalysis data have shown lim-

itations in representing the low-level environment of storms (Taszarek et al. 2021; Coniglio

and Jewell 2022), reducing their utility for tornadogenesis prediction.

Another way to anticipate potential tornadogenesis is by analyzing a storm’s presenta-

tion on radar and comparing it to historical radar data. While not inherently a predictive

tool, weather radar can give insight into storm dynamics and physics, thereby helping to

determine if a storm is developing in a manner consistent with past tornadic storms. The

Warn-On Forecast program (Stensrud et al. 2009, 2013; Heinselman et al. 2023) has used

simulated radar reflectivity along with other model parameters to attempt to forecast which

storms may become tornadic in the next few hours. When examining its ability to forecast

all thunderstorms, Skinner et al. (2018) showed that such studies’ average forecast criti-

cal success index (CSI or “skill”; Schaefer 1990) ranged from 0.7 at 20-minute forecast

time to 0.4 at near 3-hour forecast times. Focusing on observed radar signatures, Home-

yer et al. (2020) analyzed hundreds of tornadic and nontornadic supercell storms in the

United States to elucidate common radar signatures of both types of storms, both at peak

intensity and at 20 minute lead times. Using a probability-matched mean approach, which

produces maps of average storm radar moments and/or variables at selected altitudes with-

out artificially dampening the full range of values typical of each individual storm (PMM;

Ebert 2001), they found tornadic supercell storms to have increased vertical alignment of
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the mesocyclone and differing orientation of low-level polarimetric radar signatures rela-

tive to the direction of storm motion. The aforementioned study by Lyza et al. (2022) also

looked at radar characteristics of supercells and found that mean azimuthal shear (rotation)

discriminated well between nontornadic, pretornadic, and tornadic supercells. These stud-

ies on how radar observations of supercells relate to tornado potential motivate applying

a similar technique to non-supercell storms. For example, Loeffler and Kumjian (2018)

examined low-level differential reflectivity (ZDR) and specific differential phase (KDP) sig-

natures in tornadic and nontornadic non-supercell storms with varying storm mode, finding

statistically significant differences in the way the maxima of the two were oriented relative

to storm motion in tornadic vs. nontornadic storms. By examining the radar presentation

of non-supercell MCS storm cells specifically, potential differences between tornadic and

nontornadic cells can be elucidated for improved short-term forecasting and nowcasting of

tornadoes.

Herein, we present a PMM analysis of thousands of tornadic and nontornadic non-

supercellular MCS storm cells identified in the 10-year GridRad-Severe dataset to deter-

mine if there are radar signatures that enable discrimination between storm types at both

peak intensity and at a given lead time to first tornadogenesis. We first summarize the tech-

nique used to identify an appropriate null population of nontornadic storms. Differences in

PMM fields of radar variables and moments are then evaluated at multiple altitudes above

ground level (AGL) for each storm type. Finally, these signatures are summarized and

directions for future research are discussed.
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1.3 Machine learning and severe weather prediction

Creation of GR-S offers an opportunity to leverage this large severe weather dataset and

machine learning techniques to possibly further improve severe storm prediction and now-

casting. After determining the typical radar-derived characteristics of tornadic and nontor-

nadic non-supercellular MCS storms and what radar moments or variables best discrim-

inate between the two, that relevant information can be ingested into a machine learning

model for training and validation. The skill of the model during testing can be evaluated to

determine how well it is able to predict whether or not a storm will produce a tornado.

The use of machine learning in meteorology has been steadily increasing over the past

30 years, increasing exponentially in total number of atmospheric science/meteorology

publications and linearly in percent contribution to all atmospheric science/meteorology

publications (Chase et al. 2022). Recent creation of a dedicated artificial intelligence jour-

nal under the American Meteorological Society journal umbrella (McGovern and Broccoli

2022) and the NSF AI2ES institute (McGovern et al. 2022) further highlight the growing

interest in machine learning and utilization of machine learning techniques in meteorolog-

ical research. Publicly available information on the implementation of machine learning

in meteorological research (McGovern et al. 2019; Chase et al. 2022, 2023) makes under-

standing and applying machine learning in atmospheric science research more accessible

than ever before.

Artificial intelligence and machine learning are often conflated when discussing their

use in meteorology, but artificial intelligence is a larger umbrella containing machine learn-

ing (Boukabara et al. 2021). Chase et al. (2022) define machine learning as “any empirical

method where parameters are fit (i.e., learned) on a training dataset in order to optimize

(e.g., minimize or maximize) a predefined loss (i.e., cost) function.” These include tech-

niques ranging from simple linear regression to deep neural networks. Typical applications

of machine learning in meteorology use supervised learning, where the model is trained on

a set of inputs that have a corresponding set of outputs. The outputs can either be a range of
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values or some binary indicator of whether or not an outcome will occur; these are called

regression and classification tasks, respectively. More information about machine learning

in meteorology is available in guides written by Chase et al. (2022) and Chase et al. (2023).

A number of problems have been investigated using machine learning, including the

nowcasting of radar echo intensity (Cuomo and Chandrasekar 2021), precipitation (Ravuri

et al. 2021), lightning (Cintineo et al. 2022), convective mode (Jergensen et al. 2020), and

severe weather (Cintineo et al. 2020; Lagerquist et al. 2020; Flora et al. 2021; Mecikalski

et al. 2021). McGovern et al. (2023) present a comprehensive review of machine learning

applications for convection, highlighting “the challenges in developing ML approaches to

forecast these phenomena across a variety of spatial and temporal scales.” To combat the

fact that machine learning models are sometimes considered “black boxes” where infor-

mation goes in, predictions come out, and little is known about how the model came to

that conclusion (particularly when using deep neural networks), McGovern et al. (2019)

discuss a number of “model interpretation and visualization (MIV)” techniques, such as

saliency maps, gradient-weighted class-activation maps, backward optimization, and nov-

elty detection for deep learning methods. Another term for such techniques to understand

the decision-making process of artificial intelligence systems is explainable AI (XAI).

As previously discussed, forecasting and/or nowcasting tornadogenesis remains a diffi-

cult problem in meteorology. To examine new ways to improve tornadogenesis nowcasting,

some recent efforts have turned to machine learning, particularly deep learning, to improve

predictions. Lagerquist et al. (2020) use a convolutional neural network (CNN) to examine

both radar images and local environmental soundings to determine whether or not a given

storm would become tornadic within the next hour. Developed based on studies examin-

ing the human brain’s visual cortex, CNNs are built specifically for image recognition and

have achieved “superhuman performance on some complex visual tasks” (Géron 2019).

Lagerquist et al. (2020) found that a model trained on GridRad data acheived a CSI of 0.31
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and area under the receiver operating characteristic (ROC) curve (AUC) of over 0.9. How-

ever, skill was not equally impressive across all storm types; the worst predictions included

false positives for strongly rotating nontornadic supercells and false negatives for tornadic

storms embedded within a larger line. Sandmæl et al. (2023) propose using machine learn-

ing operationally to identify tornadic storms, going beyond identification of tornado vortex

signatures (TVSs) using the Tornado Detection Algorithm (TDA; Mitchell et al. 1998) and

instead using a random forest technique on single-radar data to identify tornadic storms.

Gensini et al. (2021) instead focused solely on environmental variables, using random for-

est classification to achieve an AUC of 0.78 and CSI of 0.23 when trying to differentiate

between tornadoes and significant tornadoes. Steinkruger et al. (2020) took machine learn-

ing for tornado prediction one step further, developing a machine learning model that both

determines tornado potential and makes tornado warning decisions–meaning, not only de-

termining if there is tornadic potential but whether or not to warn a storm. Overall, machine

learning models show promise for not only improving tornado detection, but also being able

to do so in a real-time operational setting.

Given the documented difficulty of predicting QLCS tornadogenesis using a CNN in

Lagerquist et al. (2020), herein, we use a CNN trained, validated, and tested on GR-S data

to determine the model’s utility in predicting non-supercellular MCS storms’ tornadogen-

esis potential within the next 20 minutes. First, the model architecture and input data are

described, as well as the method for selecting optimal hyperparameters. The model is then

trained, validated, and tested on GR-S data, and results are discussed. Model performance

is directly compared to performance metrics from the NWS to evaluate not only the skill

that the models have in correctly identifying tornadic storms, but also any skill above what

is already regularly acheived in NWS operations. This may highlight scenarios in which

ML could be useful in operational settings during severe weather.
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1.4 Societal impacts of severe weather

Discussions so far have focused on improvements in weather forecasting–data availabil-

ity, analysis techniques, and machine learning applications–that can then improve non-

supercellular MCS tornado warnings and the outcomes of those impacted by these torna-

does. However, increased warning performance is only part of the solution. No matter the

quality of a warning, the human response to a warning is a large component in the impact

that the local population experiences. Uccellini and Hoeve (2019) note this in a recent

discussion on the Weather-Ready Nation (WRN) initiative, stating that “to meet the NWS

mission of saving lives and property and enhancing the national economy, the NWS must

improve the accuracy and timeliness of forecasts and warnings, and must directly connect

these forecasts and warnings to critical life- and property-saving decisions through the pro-

vision of impact-based decision support services (IDSS).” They note the need for the NWS

to move beyond just product generation and actively improve information dissemination to

“ensure the ‘message delivered equals the message received’”.

Bridging the gap from “message delivered” to “message received” requires an under-

standing of the social characteristics of the populations you are trying to communicate with.

To date, there have been a plethora of case studies examining warning comprehension and

response, as well as severe weather preparedness, risk perception, vulnerability, and impact

based on the underlying population (e.g., Chaney and Weaver 2010; Ahlborn et al. 2012;

Burke et al. 2012; Chaney et al. 2013; Chiu et al. 2013; Kousky 2013; Silver and Andrey

2014; Paul and Stimers 2014; Jauernic and Broeke 2017; Sherman-Morris et al. 2022). Ex-

amining 200 years of tornado-related deaths, Agee and Taylor (2019) found that Arkansas,

Mississippi, Alabama, and Oklahoma had an above-average susceptibility to tornado deaths

when normalized by population from 1916-2017. Ashley (2007) comes to a similar con-

clusions, noting that “most tornado fatalities occur in the lower–Arkansas, Tennessee, and

lower–Mississippi River valleys of the southeastern United States” from 1880-2005. They

postulated that “the relative maximum of fatalities in the Deep South and minimum in
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the Great Plains may be due to the unique juxtaposition of both physical and social vul-

nerabilities,” including higher mobile home density, poverty, population, and population

growth in the Southeast compared to the Great Plains. Given that the GR-S dataset in-

cludes tracked storms, storm classifications, and matched tornado reports, tornadoes from

non-supercellular MCS storms can be spatially matched to recorded demographic char-

acteristics and social vulnerability metrics to quantify the impact of MCS tornadoes on

underlying populations with varying socioeconomic characteristics.

Beyond gaining a deeper understanding of how non-supercellular MCS storms appear

on radar and how nowcasting of these storms can be improved, it is also incredibly impor-

tant to understand the underlying demographics of the populations that these storms impact,

and how the demographic makeups of these areas and the local social vulnerabilities com-

pare to CONUS-mean characteristics. Herein, we use the large sample of GR-S tracked

storms along with publicly-available U.S. Census data to objectively match locations of

non-supercellular MCS tornadoes to the local population and its demographic character-

istics. By investigating the local demographics and social vulnerabilities, and comparing

those data to CONUS-mean data, we can further understand any potential disproportion-

ate impacts of non-supercellular MCS tornadoes on different underlying demographics and

understand how our current deficiencies in MCS tornado prediction capabilities may be

disproportionately impacting different demographic groups.
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Chapter 2

Creation of GridRad-Severe1

2.1 Radar data

Radar data sourced from the nationwide NEXRAD network (NOAA/NWS/ROC 1991;

Crum and Alberty 1993) were used to create GridRad data using version 4.2 of the public

algorithm (Homeyer and Bowman 2022). GridRad data are merged volumes of individual

radar observations across the CONUS, binned on a regular longitude-latitude grid. This

includes single-polarization radar moments such as radar reflectivity at horizontal polar-

ization (ZH) and radial velocity spectrum width (σV ) before 2013, and additional dual-

polarization variables such as differential radar reflectivity (ZDR), co-polar correlation co-

efficient (ρhv), and specific differential phase (KDP) following the polarimetric upgrade of

the radar network. Derived kinematic variables were also calculated on the native grid of

each radar and binned into GridRad volumes and include radial divergence and azimuthal

shear of the radial velocity. The spatial resolution of GridRad data is ∼0.02 × ∼0.02 de-

grees longitude-latitude (48 grid points per degree), and 0.5-km vertical resolution up to

7 km above mean sea level (AMSL), after which the vertical resolution coarsens to 1-km

up to 22 km AMSL. Temporal resolution of the data is 5 minutes. More technical de-

tails about the creation of GridRad data can be found in Homeyer and Bowman (2022).

GridRad is one of a few commonly used merged CONUS radar products (notable alterna-

tives include NOAA’s Multi-Radar Multi-Sensor [MRMS] and Multi-Year Reanalysis of

Remotely Sensed Storms [MYRORSS]) and is unique in its breadth of merged radar vari-

ables and merging methods that aim to provide high-fidelity echo top heights and internal

storm structure. Herein, we only create GridRad data for severe events within the CONUS

(specifically, domains spanning 24 to 50◦ N and 125 to 66◦ W).

1The work within this chapter has been published in the peer-reviewed literature as Murphy et al. (2023).
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The GR-S database includes radar data from 2010-2019 inclusive, with future years

expected to be added over time. This dataset starts in 2010 due to both good NEXRAD

coverage and being after the NEXRAD transition to super resolution (Torres and Curtis

2007). Since the tornado rating scale changed from F to EF in 2007 (Doswell et al. 2009;

Edwards et al. 2013) and the severe hail size threshold changed from 0.75” to 1.0” in early

2010 (before the first date in this dataset; Allen and Tippett 2015), all reports classified

as severe herein are based on a uniform threshold for hail (≥ 1.0”) and wind (gusts ≥ 50

kts) and a uniform damage rating scale for tornadoes (the Enhanced Fujita or EF scale).

Significant severe reports are those meeting or exceeding EF-2 for tornadoes, 2.0” for hail,

and 65 kt gusts for wind (Hales Jr. 1988).

2.2 Storm report data

Storm report data are sourced from NOAA’s Storm Events Database (SED) hosted at the

National Centers for Environmental Information (NCEI/NOAA 2022) from 2010 through

2019 inclusive, including tornado, hail, and wind report data. Each SED report includes a

unique event ID, start and end date and time, initial and final event coordinates (longitudes

and latitudes), and magnitude (EF rating for tornadoes, maximum diameter for hail, and

maximum wind speed for severe wind). Tornado reports also include tornado path length

and width.

2.3 Event definition

Defining a GR-S event occurs in a few distinct steps. First, high-end severe days are iden-

tified using the tornado, hail, and wind reports from the SED. To be consistent with SPC

severe days and most prior work, GR-S events begin at 12 UTC on the event day and end

at 12 UTC on the following day. We identify days as high-end severe days if the num-

ber of tornado, hail, or wind reports exceeds 8, 45, or 120, respectively. These primary
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thresholds were chosen because they result in a nearly balanced dataset of high-end tor-

nado, hail, and wind days each year, with approximately 100 days per year being labeled

as high-end severe days (i.e., GR-S events). The thresholds also approximately correspond

to the 85th percentile of daily report counts for each hazard. Once a day is included in

the GR-S database (via the aforementioned primary threshold), secondary thresholds are

used to determine what severe types will be used for domain definition on that day, roughly

corresponding to the upper quartile of daily report counts. This is done to maximize the

diversity and breadth of severe weather that is analyzed on the selected GR-S event days;

if a day is already included in the dataset, it makes sense to analyze not only the severe

hazard that happened enough times to warrant the day’s inclusion in the dataset, but also

any other severe hazards that, while not prolific enough to pass that high primary thresh-

old, still frequently occurred on that day. The secondary thresholds are roughly one-half of

the primary thresholds: greater than 4 tornado reports, 22 hail reports, or 60 wind reports.

Isolating data in these ways results in a large dataset focused solely on high-end severe

weather events with a high level of spatiotemporal detail.
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After high-end severe days are identified, the locations and times of the SED reports are

used to constrain the spatiotemporal domains of each day’s GridRad data. Domain bounds

are objectively determined using the latitudes, longitudes, and times of reports for each

day’s selected report types (i.e., tornado, hail, and/or wind). These space and time bounds

are independently created for each report type and the final domain results from retaining

the extrema of each objective report domain. First, the mean latitude and longitude to the

nearest half degree of a given report type is found. An initial box encompassing this point

is created with bounds ± 5 degrees longitude and latitude from the mean report location.

This 10◦ × 10◦ box then recursively expands by 0.5 degrees in all directions until ≥ 90%

of reports for that report type are encompassed. Using only those reports enclosed in the

objectively identified box, time boundaries are created in a similar manner, starting with

± 2 hours centered on the mean report time rounded to the nearest half-hour. The time

boundaries expand recursively by half-hour increments in each direction until ≥ 90% of

the reports within the spatial boundaries are captured (i.e., ≥ 81% of the total number

of reports). Note that the time bounds of a GR-S event (1200-1200 UTC) differ slightly

from the SPC definition of a single day (1200-1159 UTC). Once these time boundaries are

determined, they are trimmed such that the start time is no more than 30 minutes before the

first report and the end time is no more than 30 minutes after the last report. This ensures

that the GridRad data created are focused on the times when severe weather was occurring.

Figure 2.1 shows how often a location was encompassed within a GR-S domain. Overall,

the GR-S domains were generally focused on the region from 100◦-80◦ W and 30◦-45◦

N, offset slightly southeast of the center of the CONUS. As the year cycles from spring

through winter, the GR-S domains on average shift in a clockwise manner, consistent with

seasonality in the SED report data (not shown).

As stated previously, this creation of space and time bounds is done independently and

objectively for each report type that exceeds its secondary threshold. For days where more

than one report type exceeds its secondary threshold, both a composite spatial domain and
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a composite temporal domain are created using the individual spatial and temporal domains

for each report type, retaining the overall maximum and minimum latitudes, longitudes, and

times to create a composite domain that encompasses all individual domains. Once these

spatiotemporal bounds are determined, the time bounds are limited to begin no earlier than

15 UTC on the event day and end no later than 12 UTC the following day, to limit analyses

to the 12 UTC-12 UTC period used for SED reports. We use 15 UTC instead of 12 UTC

as the start time limit because all GR-S day temporal domains are then extended backward

by 3 hours to attempt to capture convection initiation (CI). This is motivated by prior work

such as Bluestein and Parker (1993), which found in their dryline study in Oklahoma that

the time between CI and the first tornado report for a storm was approximately 2-3 hours

(see their Table 2). A flowchart describing these methods is shown in Fig. 2.2, and an ad-

ditional schematic showing an example GR-S case and spatiotemporal domain selection is

shown in Fig. 2.3. Panel (a) shows the process of spatial domain creation, including recur-

sive 0.5° spatial domain expansion in all directions until 90% of reports are encompassed

for all report types, and creation of a composite domain using the extrema of individual

domains. Panel (b) shows the process of temporal domain creation. Subpanels (i)-(iii)

show hail temporal domain creation, (iv)-(vi) show tornado temporal domain creation, and

(vii) shows composite domain creation. Individual steps in the temporal domain creation

process are shown separately, including (i, iv) identification of mean time of reports within

individual spatial boundaries rounded to the nearest half-hour, (ii, v) recursive 30 minute

expansion of the temporal domain in both directions until 90% of spatially-encompassed

reports are encompassed within temporal domains, and (iii, vi) identification of report-

based domains after trimming domains to no earlier (later) than 30 minutes before (after)

the first (last) temporally-encompassed report of that type. Subpanel (vii) shows (gray) the

compositing of the two domains, and trimming such that the temporal domain starts no

earlier than 15 UTC (unnecessary in this example) before (black) subsequent expansion
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back by 3 hours. This is a hypothetical case and is not meant to represent any specific day

within the GR-S dataset.
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Figure 2.1: Contour plots of the number of times a point was encompassed within a GR-S

domain, gridded to an approximate 80 × 80 km grid. Plots include (a) all GR-S days;

(b) days in March, April, and May (spring); (c) days in June, July, and August (summer);

(d) days in September, October, and November (fall); and (e) days in December, January,

and February (winter). Colorbar limits are individual to each panel, and listed below the

colorbar at the bottom. State borders are highlighted in orange.
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Figure 2.2: Flowchart explaining the creation of GR-S data for a given year.
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2.4 GR-S storm tracks

Each GR-S event includes the 5-min GridRad volumes outlined in section 2.1 and a comma-

delimited storm track file that includes official storm reports matched with each storm.

The storm tracks for each event are identified using an echo-top altitude-based tracking

method from Homeyer et al. (2017), with modification to resolve premature termination of

tracks during storm splits and mergers as outlined in Lagerquist et al. (2020). In summary,

the GridRad storm tracking algorithm identifies point locations of ZH = 30-dBZ echo-

top altitude maxima and links them in time (5-min intervals for GR-S). Echo-top maxima

are required to reach at least 4 km AMSL and be embedded within echoes classified as

convection by the Storm Labeling in 3 Dimensions algorithm (SL3D; Starzec et al. 2017)

to be tracked. Cells in subsequent time steps are linked in time if they are located within

15 km of each other (for neighboring 5-min volumes only). In cases where more than one

echo-top maximum is located within 15 km of a previously defined storm, the closest one is

matched during tracking. Finally, the tracking algorithm only retains tracks that are at least

15 minutes in duration–or, equivalently, are identified in at least three consecutive 5-minute

GridRad volumes. To resolve storm splits and storm mergers, colinear storm tracks with

closely located or overlapping initial and final locations and times are combined into one

track. This combination ensures that cyclic updraft cycles, as seen commonly in supercells,

are not split into multiple short-duration storm tracks. Two passes are made in this attempt

to combine broken storm tracks: i) joining tracks with end and start times separated by one

5-min GridRad analysis (gap storms) so long as their end and start locations differ by ≤

15 km, and ii) joining storms with start and end times that fall within one 5-min GridRad

analysis of each other, so long as the minimum distance between track locations during the

overlapping period is ≤ 15 km. In the former, the location during the gap is determined

using linear interpolation between the end and start locations of the combined tracks. In the

latter, tracks are combined at the closest point of coincidence during overlap such that the
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point of the second (later) track through its remaining path is appended to the first (earlier)

track.

After the initial storm tracking and track combination algorithms are applied to each

GR-S event, the resulting 5-minute storm tracks are linearly interpolated to 1-minute res-

olution for spatiotemporal collocation with SED reports. To match the SED reports to

the storm tracks, the closest tracked storm to a report at the report time is matched, so

long as it lies within 30 km of the report location. While a maximal 30-km radius for re-

port matching may be considered generous, it is noted that nearly all matched reports fall

within 10-15 km of the objectively tracked storm centers and manual validation efforts in

the past have demonstrated broad reliability of this approach (e.g., Homeyer et al. 2020).

Figure 2.4 shows how storm reports are matched to storm tracks for the 14 April 2011

GR-S event. Matching reports with storm tracks in this way allows for individual storms

to be classified as sub-severe or severe, and their individual characteristics examined in a

bulk sense. An important limitation to accurate report matching is the spatiotemporal ac-

curacy of the reports themselves; many studies (e.g., Trapp et al. 2006; Allen and Tippett

2015, for severe wind and hail reports, respectively) have reported on the imperfect nature

of human-reported severe weather. These limitations are an important consideration in any

work using storm reports as a method of validation.
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Figure 2.3: Schematic showing GR-S spatiotemporal domain selection. On all panels, red

(green) features correspond to tornado (hail) report-based domain selection. Dots repre-

sent severe reports, stars represent the spatial or temporal mean location, red and green

dashed boxes represent report-based domains, and black dashed boxes represent composite

domains.
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 (c) Wind Reports & Matched Storms

Storm Tracks for 14 April 2011 GridRad-Severe Event

Figure 2.4: GR-S storm tracks for the 14 April 2011 event, with severe reports superim-

posed as dark circles and storm tracks matched with reports in a lighter shade of the same

color for (a) tornadoes, (b) hail, and (c) wind. Storm tracks not matched with a report are

shown in gray.

The final archived 1-minute, comma-delimited storm track files contain information on

storm location, motion, radar characteristics, and storm-matched severe reports (summa-

rized in Table 2.1). In the case of severe hail or wind reports, the event information is

linked to the midpoint time of the report so that no report gets counted more than once.

For tornado reports, most of the report information is linked to the initial report time (i.e.,

tornadogenesis).
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While enabling unique analyses of the GR-S data, limitations to the objective storm

tracking methods do exist. Common drawbacks include unresolved storm splits and merg-

ers and poorly tracked initiation phases of some storms (before ZH = 30 dBZ exists and/or

before the 30-dBZ echo top exceeds 4 km AMSL, which is typically <15 minutes in se-

vere storms). In particular, not resolving the initiation of storms until they reach a threshold

strength prevents full analysis of storm development, potentially missing important signa-

tures present in early storm development that may indicate the future severity of the storm.

2.5 Storm mode classification

Given that many past studies have classified storm mode subjectively, such efforts have

often focused on small spatiotemporal domains. An objective method for storm mode clas-

sification is presented herein for use with the GR-S dataset. This storm mode classification

relies on closed radar echo contours above a given ZH threshold encompassing objectively

tracked storms to be able to classify each track within a contour as a part of a single cell

storm, multicell storm, or an MCS. By classifying the mode of each objectively tracked

storm, characteristics of each storm can be analyzed in concert with storm-matched SED

reports to potentially link storm mode and storm-scale characteristics with the presence of

(or lack thereof) severe weather.

To classify storm mode, 30-dBZ contours are identified using column-maximum re-

flectivity (ZHmax) from each 5-min GridRad data file. For each closed contour, the area and

maximum dimension are calculated, and the number of tracked storms within each contour

is counted. Tracked storms are then identified as single (i.e., discrete) cell if either 1) only a

single tracked storm exists within a contour, or 2) a relatively small contour (< 3000 km2)

encompasses no more than two tracked storms. Two tracked storms within a small contour

are both classified as single cell to account for storms with cyclic updraft generation (e.g.,

supercells) that can have more than one updraft at a single time, but do not persist as such.
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Homeyer et al. (2020) found in their composite analyses of supercells that the average su-

percell size for ZHmax = 30 dBZ is approximately 3000 km2 (their Fig. 3). The 3000 km2

contour area threshold is therefore chosen to encompass the size of some of the largest

single cell storms expected. For larger contours (≥ 3000 km2) containing 2 tracked storms

or any contour containing 3 or more tracked storms, those storms are classified as either

multicell or MCS. The delineation between the two is made using the contour maximum

dimension; if the maximum dimension is ≥ 100 km, it is classified as an MCS (Houze Jr.

2004).

Since the storm mode classification algorithm is independently run on each time step,

a tracked storm may have a complex, time-varying storm mode classification. We do not

employ a minimum time that a tracked storm has to be identified as a consistent storm mode

to retain such a classification. This is done because, instead of classifying a storm based

on its mean storm mode, we want to enable investigation into how each storm evolves

in time and, if possible, how changes in its severity accompany changes in storm mode.

Figure 2.5 shows select times during the evolution of the 14 April 2011 GR-S event in the

southern plains. Over time, many single cell storms that initiated early in the event merge

into what eventually becomes a large MCS. In concert with matched storm reports (e.g.,

Fig. 2.4), storm mode can be linked with a storm’s severity for bulk analyses of the two

characteristics.
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Information in GR-S Event Storm Track Files

Storm Information Report Information*

Storm Number Binary Report Flag

Storm Date & Time Report Number

Storm Longitude Report Longitude

Storm Latitude Report Latitude

Eastward Storm Motion Report Magnitude

Northward Storm Motion Instantaneous Tornado Count

Echo Top Altitudes Max Instantaneous Tornado Rating

Column-Maximum ZH Tornado End Date & Time

Tornado Width

Tornado Length

Table 2.1: Storm attributes included in GR-S event track files, separated for radar-based

storm information (left column) and matched SED report information (right column). *Re-

port flag (0 or 1), number, longitude, latitude, and magnitude are given for all report types

(tornado, hail, and wind), where for tornadoes the report information is listed only at the

time of tornadogenesis. The additional SED report information for tornado end time, width,

and length are also only given at the time of tornadogenesis, while the instantaneous tor-

nado count and maximum rating are based on all reports valid at each 1-min storm track

time.
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Figure 2.5: Select images of (left) column-max reflectivity and (right) storm mode classi-

fication from a limited spatial domain within the 14-15 April 2011 GR-S case. For storm

mode classification images, the interior of identified 30-dBZ contours are shaded in green,

pink, or purple to denote single cell, multicell, or MCS classification, respectively. Tracked

storms within such contours are indicated by black asterisks. Identified 30-dBZ contours

that do not encompass any storm tracks are shaded in light gray.
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2.6 Mesocyclonic updraft classification

Another important severe storm characteristic is whether or not a storm’s updraft was ro-

tating when the storm produced a severe report. Updrafts that have sufficient persistent

rotation are defined herein as mesocyclonic, and otherwise as non-mesocyclonic. Meso-

cyclonic updrafts are classified using the methods for right-moving supercell identification

outlined in Homeyer et al. (2020), originally based on work by Sandmæl (2017). Namely,

five criteria are used to objectively identify updrafts as mesocyclonic: 1) maximum mi-

dlevel (4-7 km AMSL) azimuthal shear exceeds 4 ∗ 10−3 s−1 for at least 40 minutes; 2)

maximum midlevel azimuthal shear meets or exceeds 5∗10−3 s−1; 3) maximum column-

max azimuthal shear meets or exceeds 7 ∗ 10−3 s−1; 4) maximum column-max radial di-

vergence meets or exceeds 1∗10−2 s−1; and 5) maximum column-max velocity spectrum

width meets or exceeds 13 m s−1. The sixth criterion used in Homeyer et al. (2020)–max

40-dBZ echo top altitude meets or exceeds 11 km–was not applied in this study. This was

done to enable reliable classification of wintertime convection, which often has lower echo

tops.

It is important to note that the mesocyclonic updraft classification criteria were based

on right-moving supercell identification criteria, so left-moving (mesoanticyclonic) storms

are not independently examined herein. Both anecdotal evidence and prior research show a

dearth of left-moving supercells compared to right-movers. Bunkers et al. (2006) examined

long-lived supercells and found that, of 184 long-lived supercells in their dataset, only 4

were left-movers. An approximate ratio of left- to right-moving supercells is, to our knowl-

edge, unknown. Future work may focus on classification of left-moving supercells using

GR-S or an alternative dataset and further investigation of their characteristics compared to

right-movers.

The result of these classification techniques is that each individual tracked storm has

a time-varying storm mode classification and a binary mesocyclonic updraft classification.

This does mean that, for example, cells that otherwise have a single predominant storm
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mode may have varying classifications throughout their lifetimes. For those interested in

examining the predominant storm mode of a given cell, statistical examinations of the pre-

vailing storm mode (such as examining the median or mode) of the high-frequency and

time-varying storm mode classifications can be performed. Investigation of overarching

storm mode classifications will be useful (and will be further discussed) in Chapters 4-

6. Additionally, this mesocyclonic updraft classification scheme can, and does, result in

classifications such as multicell or MCS storms with mesocyclonic updrafts. Examples

of these types of storms may include supercells that share the same 30-dBZ precipitation

shield, mergers of a discrete supercell with a QLCS, supercells present in the early orga-

nizing stages of a QLCS (e.g., Weisman and Trapp 2003) or generation of vortices that

meet mesocylonic rotation criteria (e.g., DeWald and Funk 2002). The identification of

multicells and storms within MCSs that meet mesocyclonic updraft criteria in GR-S data

allow for filtering of these storms if desired. Herein, these storms and their attendant severe

weather are retained and examined in Section 3.1, but are removed in Section 3.2 where

GR-S MCS storms that produced severe weather are compared to objectively identified

severe MCSs and QLCSs. While the presence of supercell-like updrafts within MCSs has

been noted in the literature (e.g., Ashley et al. 2023), care should be taken when using these

data to compare to past studies that may or may not have included embedded supercells in

their analyses.
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Chapter 3

Statistical overview of GridRad-Severe data1

3.1 Results

In order for conclusions in this study to be representative of the total climatology of severe

weather and therefore broadly applicable, the distribution of GR-S storm matched reports

must be representative of the complete SED database. Representativeness herein includes

capturing not only the majority of SED reports, but also the correct spatiotemporal distri-

bution. Looking at only the number of total SED reports vs. GR-S storm-matched reports,

Table 3.1 summarizes the percent of severe and significant severe reports captured by GR-S

for 2010-2019. Of all SED reports during those ten years, the GR-S data retains ∼63–77%

of total reports and ∼68–91% of significant severe reports, with percent matched highest

for tornado reports and lowest for wind reports. Focusing only on SED reports that existed

within the spatiotemporal bounds of the GR-S domains, the range of retained reports in-

creases to ∼88–94% for all reports and ∼91–98% for significant severe reports, again with

percent matched highest for tornado reports and lowest for wind reports. This means that

for all SED reports within the spatiotemporal bounds of the GR-S domains, the GR-S storm

tracking and report matching procedure matches approximately 9 out of every 10 reports to

a storm. Examining the total number of reports captured, the GR-S database retains 164748

out of the total 249600 SED reports during the 10-year period (∼66%). This is expected

since the GR-S database only includes ∼100 days per year, with data only within limited

spatiotemporal domains. However, it is encouraging that, if a report exists within a GR-S

domain, it is highly likely that it will be matched with a GR-S tracked storm. Therefore,

1The work within this chapter has been published in the peer-reviewed literature as Murphy et al. (2023).
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the domain selection criteria coupled with the matching algorithm are both capturing a ma-

jority of SED reports and effectively matching reports within GR-S bounds to objectively

tracked storms.

Comparison of SED and GR-S Storm-Matched Reports

Report Type (1) % of SED

Total

(2) % of SED

within GR-S

Bounds

(3) Total GR-S

Reports

Tornado Initiations 76.83% 94.16% 10542

Hail Reports 70.60% 94.33% 56025

Wind Reports 62.72% 87.81% 98181

Sig. Tornado Initiations 90.85% 97.69% 1608

Sig. Hail Reports 79.85% 94.68% 5842

Sig. Wind Reports 67.80% 90.56% 7179

Table 3.1: Comparison of SED and GR-S matched reports from 2010-2019. For each

tornado/hail/wind, data include (1) percent of GR-S matched reports compared to all SED

reports of that type and over that period; (2) percent of GR-S matched reports compared

to SED reports of that type and over that period, confined within the corresponding day’s

GR-S spatiotemporal bounds; and (3) the total GR-S matched reports in the dataset. Data

are also shown isolating significant severe reports.

Capturing the majority of severe reports is only one facet of examining the representa-

tiveness of the GR-S data. Equally important is the distribution of the reports–spatial and

temporal, for both severe and significantly severe events–and whether those distributions

match the full SED report climatology. Figure 3.1 shows the breakdown of total reports

by month for both GR-S matched reports and SED reports, with lines showing the per-

cent contribution of tornado/hail/wind reports to the total reports in each month. Tornado
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data in this figure and for all future analyses are focused on the time of tornado initia-

tion. The difference in total data points represented on each plot is captured by the y-axes,

which show the mean 34% decrease in reports when comparing SED to GR-S data. The

monthly distribution of reports is similar between the GR-S and SED data, although month-

to-month variations in percent of SED reports captured within GR-S are visible. Percent

differences between GR-S and SED reports per month range from 11-56%, with some of

the lowest percent differences in the late spring and early summer (below 19% from April

to June, inclusive). This is potentially due to a preference for higher-end severe days to

occur in the spring to early summer, so a higher percentage of all severe weather days

in that period would be captured by the GR-S domain selection criteria. Notably, April

through June alone make up 51.8% of all GR-S days in this dataset. If only SED reports

within the GR-S bounds are considered (not shown), those percent differences range from

8-28%, and are lowest in the spring and summer (8-11%) and highest in fall and winter

(11-28%). Therefore, the storm tracking technique is most effective at tracking severe con-

vection and matching reports to those storms during the maximum of the annual cycle in

severe weather (the early-mid warm season) and least effective during the the cool season.

Despite these differences, the GR-S bar graph still closely resembles the SED bar graph,

showing that GR-S is capturing the overall distribution of severe reports quite well. The

percent contribution of tornadoes, hail, and wind to each month’s overall report count also

show very similar values between the GR-S and SED data, demonstrating a monthly GR-S

report type balance that is representative of the underlying SED report data. Overall, this

analysis shows that the GR-S database captures the annual cycle of all SED reports well.
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Figure 3.1: Comparison of (a) GR-S and (b) SED average annual storm reports, broken

down by month for 2010-2019. Lines indicate the percent contribution of various severe

report types (tornado, hail, and wind) to the total number of reports in a given month.

Pearson correlation coefficients comparing GR-S and SED lines for each severe hazard

exceed 0.95.
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In addition to the annual cycle of reports, capturing the spatial distribution of reports is

also very important. Figure 3.2 shows the gridded number of all SED reports from 2010-

2019 for each severe report type juxtaposed with the gridded number of reports retained

in the GR-S storm tracks. More reports are expected on the SED maps, again since GR-S

events only include ∼100 days per year of severe weather. Qualitatively, maps of GR-S

matched reports and SED reports have similar spatial distributions, confirming that the dis-

tribution of reported severe weather is well captured in the GR-S database. In combination

with Table 3.1, Fig. 3.2 gives confidence that GR-S is capturing the majority of reports

in a consistent way across most of the CONUS. This can be more directly examined in

Fig. 3.3, which shows both the total report difference between the GR-S database and the

SED record and the percent difference between the two. These plots further demonstrate

that reports are well matched across the eastern two-thirds of the country where reports are

more frequent (Fig. 3.2). The areas with high percent differences are commonly found in

locations with low report counts for both GR-S and SED (e.g., compare total number of re-

ports in Fig. 3.2f to percent difference in Fig. 3.3f for severe wind in the western CONUS),

meaning that while the percent of reports missed in these regions may be quite high, the

total number of reports missed is quite low. Therefore, based on the results shown in Figs.

3.1–3.3, we can confidently say that the storm-matched reports within the GR-S database

are a representative sample of the total climatology within the SED dataset.
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Figure 3.2: Contour plots of average annual number of (a-c) GR-S and (d-f) SED reports

for (a,d) tornado, (b,e) severe hail, and (c,f) severe wind reports from 2010-2019, inclusive.

Data are gridded on an approximately 80 × 80 km grid. Areas not shaded indicate no (a-c)

GR-S or (d-f) SED reports.

38



50 °N

45 °N

40 °N

35 °N

30 °N

25 °N

120 °W
110 °W 100 °W 90 °W 80 °W 70 °W

50 °N

45 °N

40 °N

35 °N

30 °N

25 °N

120 °W
110 °W 100 °W 90 °W 80 °W 70 °W

50 °N

45 °N

40 °N

35 °N

30 °N

25 °N

120 °W
110 °W 100 °W 90 °W 80 °W 70 °W

50 °N

45 °N

40 °N

35 °N

30 °N

25 °N

120 °W
110 °W 100 °W 90 °W 80 °W 70 °W

50 °N

45 °N

40 °N

35 °N

30 °N

25 °N

120 °W
110 °W 100 °W 90 °W 80 °W 70 °W

50 °N

45 °N

40 °N

35 °N

30 °N

25 °N

120 °W
110 °W 100 °W 90 °W 80 °W 70 °W

50 °N

45 °N

40 °N

35 °N

30 °N

25 °N

120 °W
110 °W 100 °W 90 °W 80 °W 70 °W

50 °N

45 °N

40 °N

35 °N

30 °N

25 °N

120 °W
110 °W 100 °W 90 °W 80 °W 70 °W

50 °N

45 °N

40 °N

35 °N

30 °N

25 °N

120 °W
110 °W 100 °W 90 °W 80 °W 70 °W

50 °N

45 °N

40 °N

35 °N

30 °N

25 °N

120 °W
110 °W 100 °W 90 °W 80 °W 70 °W

50 °N

45 °N

40 °N

35 °N

30 °N

25 °N

120 °W
110 °W 100 °W 90 °W 80 °W 70 °W

50 °N

45 °N

40 °N

35 °N

30 °N

25 °N

120 °W
110 °W 100 °W 90 °W 80 °W 70 °W

(a)

(b)

(c)

(d)

(e)

(f)

To
rn

ad
o

H
ai

l
W

in
d

Av
er

ag
e 

D
iff

er
en

ce
Av

er
ag

e 
D

iff
er

en
ce

Av
er

ag
e 

D
iff

er
en

ce

Average P
ercent D

ifference
Average P

ercent D
ifference

Average P
ercent D

ifference

Absolute Difference Percent Difference

0.5

1

1.5

0

4

8

12

0

10

20

30

0

25

50

75

0

25

50

75

0

25

50

75

0

Figure 3.3: Contour plots of average annual (a-c) absolute difference and (d-f) percent

difference between GR-S and SED reports, for (a,d) tornado, (b,e) severe hail, and (c,f)

severe wind reports from 2010-2019, inclusive. Data are gridded on an approximately 80

× 80 km grid. Areas not shaded indicate either no reports (both SED and GR-S) or an

equal number of SED and GR-S reports.
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Confident that the GR-S database is representative of the seasonality and geographic

distribution of SED reports, we can use GR-S data to examine other bulk aspects of storm

severity. Identifying both the storm mode and updraft type (whether mesocyclonic or non-

mesocyclonic) associated with each tracked storm and its matched reports can provide valu-

able insight into the types of storms that produce various severe phenomena. Figure 3.4

shows the average annual number of tornado, hail, and wind reports per month for 2010-

2019, broken into sub-significant and significant severe reports. Overlaid are lines showing

the percent of reports per month that were matched with storms classified as single cell,

multicell, or MCS storms, and whether or not the storm had a mesocyclonic updraft. Per-

haps the most surprising result from this analysis is how often tornadoes are associated with

MCS-classified cells throughout the year (Fig. 3.4a). However, the mesocyclonic classfica-

tion reveals that many of the cells classified as MCS-type are dynamically consistent with

supercell storms rather than the typical non-mesocyclonic cells often found in an MCS. We

speculate that this may be driven by the reliance on a relatively low ZH threshold to define

storm contours during storm mode classification (ZH = 30 dBZ), which may encompass

the precipitation shield of neighboring–and otherwise mostly discrete–storms (supercell or

otherwise) and classify those storms as part of an MCS. The lower ZH threshold to de-

fine storm contours is important to appropriately resolve strong storms that occur outside

of the traditional severe weather season; the potential misclassification of discrete storms

sharing a precipitation shield as an MCS or multicell cluster is a known limitation of the

dataset and should be taken into account when examining MCSs or multicell clusters within

GR-S to avoid contamination of the data by misclassified storms. The contribution of non-

mesocyclonic (i.e., more traditional) MCS cells to tornado reports reaches a minimum in

the spring and summer, when both the number of tornadoes peaks and the classical U.S.

tornado season occurs. In contrast, the contribution of mesocyclonic storms to tornado

reports, regardless of storm mode classification, peaks during this time.
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Examining hail events (Fig. 3.4b), for much of the spring through fall, single cell storms

account for the largest fraction of reports by storm mode. However, while tornado and wind

reports are fairly dominated by one storm mode (MCSs are associated with a majority of

reports in 11 of 12 months for each tornadoes and wind), no one storm mode stands out as

a consistent majority contributor to all hail reports. Single cell storms account for slightly

more than 50% of reports in July and August; multicellular storms are never associated

with the majority (or even a relative majority) of reports per month; and MCS storms make

up a majority (50-64%) of reports only in the winter months, where total matched reports

are lowest. However, examining mesocyclonic vs. non-mesocyclonic storms, mesocyclonic

storms account for a majority of hail reports year-round. MCS storms contribute the most

to wind reports year-round when compared to other storm modes (Fig. 3.4c), with a peak

in single cell and multicell contribution in the late summer. This is when “severe weakly

forced thunderstorms” (Miller and Mote 2017) are most common in the CONUS, which

can cause downdraft-driven severe wind gusts (e.g., microbursts).
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Figure 3.4: Average annual number of GR-S matched (a) tornado, (b) severe hail, and

(c) severe wind reports by month for 2010-2019. Lines show the percent of total reports

that were matched to a storm of a given storm mode (single cell, multicell, or MCS; in

green, pink, and purple, respectively) and with a given updraft type (non-mesocyclonic or

mesocyclonic; in solid and dashed lines, respectively). Bar charts are split into lighter and

darker gray, which show sub-significant severe and significant severe reports, respectively.

The vertical extent of these two bars combined is the total number of all reports, and the

sum of all lines in a given month is 100%.
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Similar to the annual cycle analysis, Fig. 3.5 reveals the average diurnal cycle of each

hazard, relative to the reports’ local solar noon. Solar noon is the time the sun aligns with a

location’s meridian, and using time relative to solar noon (as opposed to UTC time) elim-

inates the effect of time zones, providing a uniform representation of local time. Each

severe report type has a pronounced diurnal cycle, with a peak in report frequency between

approximately 2 and 8 hours after solar noon. During local nighttime, severe weather is

associated most with MCS storm cells. As tornado reports increase in frequency after solar

noon, the overall fraction of reports associated with MCSs drops (Fig. 3.5a). From 2 to 12

hours after solar noon, the majority of tornado reports for each of the three storm modes are

produced from mesocyclonic storms. The hail data (Fig. 3.5b) show a more pronounced

diurnal cycle when compared to tornadic and wind reports, with hail reports highly con-

centrated around their daily peak at 4-5 hours after solar noon. Single cell storms are the

main contributor to hail reports in the first 7 hours after solar noon, with the contributions

of multicellular and MCS storms nearly equal during those hours (∼25%). Overall, meso-

cyclonic storms account for the majority of hail reports during 23 of the 24 total hours. As

was true for the annual cycle, diurnal data show wind reports overwhelmingly associated

with MCS storms throughout the majority of the day (Fig. 3.5c). MCSs are known to be

prolific producers of damaging straight-line winds, so it is no surprise that these storms

produce the most wind reports (a minimum of 48% of all wind reports each hour). Non-

mesocyclonic single cell and multicell severe wind-producing storms have a pronounced

peak in the hours after solar noon, which, as previously mentioned, is likely attributable to

downdraft-driven wind gusts from severe weakly forced thunderstorms that are common

in the late summer and early afternoon. Notably, mesocyclonic storms never account for a

majority of severe wind reports throughout the day (< 39% of reports per hour), in contrast

to how often they contribute to severe hail and tornado reports during the peak tornado-

and hail-producing hours. For all analyses of the diurnal cycle of reports, note that the
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total number of reports may be lower during the overnight hours given that most people are

asleep (e.g., Wendt and Jirak 2021).
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Figure 3.5: Average annual number of GR-S matched (a) tornado, (b) severe hail, and (c)

severe wind reports by hour relative to local solar noon for 2010-2019. Lines show the

percent of total reports matched to a storm of a given storm mode (single cell, multicell,

or MCS; in green, pink, and purple, respectively) and with a given updraft type (non-

mesocyclonic or mesocyclonic; in solid and dashed lines, respectively). Bar charts are

split into lighter and darker gray, which show sub-significant severe and significant severe

reports, respectively. The vertical extent of these two bars combined is the total number of

all reports, and the sum of all lines in a given hour is 100%.
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Finally, we can examine how storms of various mesocyclonic or non-mesocyclonic

classifications and modes contribute to reports of varying magnitude. Figure 3.6 shows

histograms of the magnitude of each report type and the fractional contribution of storms

of a given storm mode and mesocyclonic/non-mesocyclonic classification. The data show

that the vast majority of reports (> 90%) are sub-significant severe (i.e., below EF-2, 2”,

or 65 kts for tornado, hail, and wind reports, respectively). As EF rating increases, the

relative contribution of mesocyclonic storms also increases, to the point where they are

responsible for 90.5% and 100% of all EF-4 (84 total) and EF-5 (12 total) tornado reports

in the database, respectively. In fact, for any EF rating, mesocyclonic storms account for

the majority of tornadoes. GR-S data also show that EF-0, EF-1, and EF-2 tornadoes all

predominantly come from cells embedded within MCSs (53.7, 73.4, and 65.6% of torna-

does, respectively). Focusing on significant tornadoes, the percent of tornadoes linked to

MCS-classified storms decreases from 65.6% to 33.3% as the percent linked to single cell

storms increases to a maximum of 58.3% for EF-5 tornadoes. Mesocyclonic storms are

also the main contributor to hail reports, and hailstones are more likely to be associated

with mesocyclonic storms as hail size increases. As was evident in Figs. 3.4 and 3.5, no

one storm mode clearly dominates hail production. Interestingly, single cell storms account

for a majority of hailstones in the lowest 3 bins, but contributions to 4”+ hailstones are rel-

atively equal across storm modes. This comes with the caveat that the largest hailstone

bin contains 0.7% of the total reports in the smallest hailstone bin. Wind reports become

increasingly associated with mesocyclonic storms as wind speed increases, with the excep-

tion of the strongest winds in the dataset. These winds (95+ kts) are predominately from

non-mesocyclonic storms (52.7%), in stark contrast with the strongest tornadoes and largest

hail, which are overwhelmingly associated with mesocyclonic storms. Wind reports are

largely dominated by storms embedded within MCSs, with 62.9-81.3% of reports in each

bin attributed to MCSs. As touched on in the discussion of hail-producing storms, it is im-

portant to recognize that as EF rating, hail size, and wind speed increase, the sample size of
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reports decreases. Therefore, interpretation of mode and mesocyclonic/non-mesocyclonic

breakdown must be done carefully, especially where sample sizes drop below a few hun-

dred reports.
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Figure 3.6: Breakdown of (left; a-c) total frequency of reports by (a) EF rating, (b) hail

size, and (c) wind speed, as well as (right; d-f) the percent of reports associated with a

given combination of storm mode and supercell classification by (d) EF rating, (e) hail

size, and (f) wind speed. On (a-c), the total number of reports in each bin are listed on top

of the individual bars.
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3.2 Comparison to past studies

Given that GR-S storm-matched reports were demonstrated to be a representative sample of

SED reports from 2010-2019, we can also use GR-S data to revisit analyses and conclusions

from prior papers to assess reproducibility. Herein, we focus on two studies, Trapp et al.

(2005) and Ashley et al. (2019), which examined the prevalence of various storm modes

and their propensity to produce severe weather. Table 3.2 lists basic information about data

sources and methods employed in the papers, as well as a summary of those used in the

present study.

For comparisons between GR-S data and prior results focusing on MCS or QLCS

storms, we will compare the papers’ findings to only our non-mesocyclonic MCS cells.

Comparing strictly our non-mesocyclonic MCS data to other studies’ full MCS datasets

resulted in greater consistency, potentially pointing to mesocyclonic MCS cells being more

dynamically consistent with single cell mesocyclonic storms than with non-mesocyclonic

MCS storms. This result is relevant to any future work using GR-S MCS data with the

storm mode classification employed here. Also important to note is the delineation be-

tween an MCS and a QLCS. As discussed in Schumacher and Rasmussen (2020), a QLCS

is a subset of the MCS archetype. While MCSs are typically defined as convective com-

plexes with a maximum dimension ≥100 km, a QLCS is an MCS further characterized by

an aspect ratio around 3:1, meaning that the system has one long and one short dimension.

Given that the terms MCS and QLCS are often conflated, it is important to keep in mind

the true nature of MCS-classified cells herein and how they may or may not be a part of a

QLCS-type convective complex.

GR-S data are first compared to select conclusions from Trapp et al. (2005). The study’s

main goal was to “estimate the percentage of U.S. tornadoes that are spawned annually by

squall lines and bow echoes, or quasi-linear convective systems (QLCSs)” using subjec-

tively classified radar echoes over a three-year period (1998-2000, inclusive). Classifica-

tion was done for QLCS and individual cells near the time of tornadogenesis per Table

49



3.2. They delineated between QLCS and cell type echoes based on “dynamics unique to

these phenomena” and mentioned that, while tornadoes can form by mesocyclonic and

non-mesocyclonic means, any distinction between cells producing tornadoes via these two

different mechanisms was not investigated therein. Their final dataset included 3828 torna-

does.

Figure 3.7 shows reproductions of Trapp et al. (2005) Figs. 3b (Fig. 3.7a), 6 (Fig.

3.7b), and 8a (Fig. 3.7c) using GR-S data. Figure 3.7a shows the breakdown of the num-

ber of tornado reports by EF rating on a logarithmic scale for both single cell and MCS

storms. Crucially, both MCS mesocyclonic and non-mesocyclonic lines are shifted such

that they have an equal number of EF-2 reports per storm type; Fig. 3.7a therefore em-

phasizes the relative distributions of tornado intensity by storm type rather than absolute

values. Trapp et al. (2005) found that there “appear to be disproportionately more F1 torna-

does from QLCSs, and more F3–F4 tornadoes from cells.” Figure 3.7a shows this as well,

where the non-mesocyclonic MCS cell line is above the single cell line for EF-1 tornadoes

and below the cell line for EF 3-4 tornadoes. Here the mesocyclonic MCS curve more

closely matches the single cell curve, pointing again to their dynamical similarities. On the

other end of the spectrum, data from Trapp et al. (2005) (GR-S) show no F5 QLCS (EF-5

non-mesocyclonic MCS) tornadoes given they are quite rare, and also note that F5 (EF-5)

tornadoes only comprise 0.2% (0.11%) of the total dataset. Trapp et al. (2005) also noted

that their QLCS curve was fairly log-linear except for F0 tornadoes, potentially attributable

to underreporting of the weakest tornadoes. This same linear shape, along with relatively

low EF-0 tornado counts, is visible in the GR-S non-mesocyclonic MCS curve.

Figure 3.7b shows the cumulative distribution of all tornado reports broken down by

month and storm type. Trapp et al. (2005) found that 32% of all QLCS tornado reports

occurred within the first three months of the year, compared to just 14% of single cell

reports. The lower relative fraction of cell reports compared to QLCS reports is mirrored

with the GR-S data, with tornadoes in January-March making up 20% of non-mesocyclonic
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MCS tornadoes and just 8% of single cell tornadoes. Therefore, with both datasets, a higher

proportion of annual MCS tornadoes occurred in the first three months of the year compared

to the proportion of annual single cell tornadoes. Finally, Fig. 3.7c shows the diurnal cycle

of tornado reports, using time relative to local solar noon. Trapp et al. (2005) found that cell

reports peaked close to 18 local standard time (LST), with a similar albeit smaller peak in

QLCS data near 18 LST. GR-S data show similar trends, with peaks in single cell and non-

mesocyclonic MCS data between 3-5 hours after solar noon, and a higher peak for single

cell than non-mesocyclonic MCS data (i.e., a more amplified diurnal cycle). Mesocyclonic

MCS cells are again more consistent with single cell storms, with a ∼2 hour offset in their

diurnal cycle compared to the single cell data.

51



Storm Mode Classification Techniques

Field Trapp et al. (2005) Ashley et al. (2019) This Study

Years: 1998–2000 1996–2017 2010–2019

Technique: Hand Analysis Machine Learning Objective Analysis

ZH Data: Composite

column-maximum

images from

NCDC (NCEI),

other sources

NOWrad composite

reflectivity data

(Grassotti et al.

2003)

GR-S column-

maximum data

Cell Classifi-

cation:

Relatively isolated,

circular or ellipti-

cal in shape, with

ZHmax ≥ ∼50 dBZ

—- 1 track in 30-dBZ

ZHmax contour, or 2

tracks within 30-dBZ

ZHmax contour <

3000 km2

MCS Classi-

fication:

—- Region of ZHmax ≥

40 dBZ persisting for

at least 3 hours, with

contiguous to semi-

contiguous 40-dBZ

contour maximum

dimension ≥ 100 km

2 tracks within 30-

dBZ ZHmax contour

≥ 3000 km2 or 3+

tracks within 30-dBZ

ZHmax contour. Max-

imum dimension ≥

100 km

QLCS Clas-

sification:

Quasi-linear, ZHmax

≥ 40 dBZ region

with maximum di-

mension > 100 km

MCS with convective

region aspect ratio ≥

3

—-

Table 3.2: Comparison of techniques used to classify storm mode in past literature.
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and mesocyclonic MCS storms. On panel (c), data within each one-hour bin are plotted at

the 30 minute mark of that hour.
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GR-S data are additionally compared to the findings of Ashley et al. (2019), who used

machine learning methods to classify storm mode using a 22-year radar dataset. For train-

ing the model, QLCS storms were labeled by hand, and the model was trained on labeled

QLCS and non-QLCS events. They defined an MCS per Table 3.2, with that definition

motivated primarily by the work of Parker and Johnson (2000). A QLCS is defined as “an

MCS that has instantaneous convective (≥40 dBZ) regions that are longer than 100 km and

must be at least 3 times as long as they are wide.” The major differences between their defi-

nition of an MCS and the definition used herein is the 30- vs. 40-dBZ threshold for defining

radar echoes for classification, and no temporal threshold vs. a 3 hour temporal threshold

for GR-S and Ashley et al. (2019), respectively. Their paper focuses on the spatiotemporal

distribution of both QLCSs and QLCS-matched tornado reports, and only the latter will be

analyzed herein.

Table 3.3 shows the percent contribution of severe reports attributable to QLCSs in

Ashley et al. (2019) juxtaposed with storm-matched GR-S reports attributable to non-

mesocyclonic MCS cells. In each category, the percent of reports attributed to MCSs is

fairly similar when comparing GR-S data to the results in Ashley et al. (2019). The great-

est difference is with attribution of significant severe wind reports (28% of storms in Ashley

et al. (2019) vs. ∼42% in GR-S). Although trends in these data are similar, differences are

no doubt the result of a myriad of differences in methods throughout the data analysis pro-

cess. Both datasets show a high percentage of wind reports and a low percentage of hail

reports attributed to QLCS/non-mesocyclonic MCS storms. Beyond examining total re-

ports attributed to QLCSs, their Fig. 11 shows a breakdown of all severe reports by month

and hour, with percent attributed to QLCSs overlaid. Similar to Fig. 3.4 herein, they found

tornado and hail reports peak in the late spring and wind reports peak in the early summer.

They also found that QLCS contribution to total reports was maximized during the winter

months and minimized in late summer/early fall, which was similar to the summer/early
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Percent of Severe and Sig. Severe Reports Attributed to MCSs/QLCSs

Report Type and Severity GridRad-Severe

MCS

Ashley et al. (2019)

QLCS

Tornado, Severe: 27.54% 21%

Tornado, Sig. Severe: 18.72% 26%

Hail, Severe: 11.43% 10%

Hail, Sig. Severe: 4.74% 7%

Wind, Severe: 42.31% 28%

Wind, Sig. Severe: 36.61% 34%

Table 3.3: Comparison of percent of reports attributable to MCSs for different report types

and severity. Data shown are from Ashley et al. (2019) and GR-S data.

fall minima and wintertime maxima seen in the non-mesocyclonic MCS GR-S data. Ex-

amining their hourly data, they found a minimum in QLCS contribution during times of

peak reporting (∼18-03 UTC), which, when examining GR-S data binned by local time (in

UTC, not shown), non-mesocyclonic MCS contributions are minimized from 20-04 UTC

for tornadoes and from 17-03 UTC for hail and wind reports. The average percent con-

tribution of QLCSs to hail reports in their study was lower than that for wind and tornado

reports, which is also reflected in the GR-S data. Overall, the similarities between GR-S

conclusions and those of Trapp et al. (2005) and Ashley et al. (2019) point to the efficacy of

the GR-S techniques as a whole and the storm mode classification algorithms used herein.
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Chapter 4

PMM analysis of tornadic vs. nontornadic non-supercellular MCS

storms1

The creation of this large GR-S dataset allows for the opportunity to investigate very spe-

cific types of storms that ordinarily would have a small sample size, but given the 1.3

million storms in GR-S, even the most specific type of storm still has a fairly large sample

size. Given the relative difficulty of nowcasting the tornadic potential of a non-supercellular

MCS storm, GR-S radar data for tornadic and nontornadic non-supercellular MCS storms

is interrogated to determine any potential differences between the two groups’ appearances

on radar. This can potentially aid forecasters when trying to make a warning decision and

isolate the variables that show the greatest differences between the two groups for use in

additional research applications.

4.1 Selecting tornadic and null populations

Tracked storms identified as non-supercellular MCS cells for ≥ 75% of their lifetime are

isolated for analysis. This 75% threshold aims to focus attention on cells that are predomi-

nantly classified as MCS cells while also allowing for some variation in mode classification

during their lifecycles. These non-supercell MCS storm cells are further split into tornadic

and nontornadic populations based on whether they were linked with a tornado report at any

point in their lifetime. Sensitivity tests to the MCS lifetime threshold spanning 50-100%

were carried out and resulted in fairly similar bulk population characteristics. Specifically,

regardless of the threshold chosen, the degree of separation between tornadic and nontor-

nadic distributions of bulk characteristics such as azimuthal shear, radial divergence, and

1The work within this chapter has been published in the peer-reviewed literature as Murphy and Homeyer

(2023).
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spectrum width were fairly similar. In particular, Kolmogorov-Smirnov (K-S) significance

test results–a metric of the difference between two distributions–differ by a median of ∼8%

when examining distributions of lifetime maximum, median, and minimum values of radar

metrics for different MCS lifetime thresholds. This means that the separation between

these distributions were fairly similar regardless of whether the minima, medians, or max-

ima were evaluated, and regardless of how long a cell needed to be classified as an MCS to

be included. Ultimately, a less restrictive threshold was ultimately preferred to maximize

sample size.

Identifying differences between tornadic and nontornadic storms, especially in the time

before first tornadogenesis, is incredibly important for warning applications. Comparing

these two populations without any further processing would be informative; however, the

main challenge for improving warning metrics for non-supercellular MCS storms comes

from identifying nontornadic storms that otherwise look promising for tornadogenesis, and

comparing their characteristics to those of tornadic storms. Using radar data, we can fur-

ther identify unique storm characteristics that may separate these populations. Radar char-

acteristics used to isolate nontornadic storms that have similar characteristics to tornadic

storms–i.e., the null population–include azimuthal shear, radial divergence, and spectrum

width over various layers, as well as vertically integrated liquid density (VIL density, a

metric for severe hail potential; Greene and Clark 1972; Amburn and Wolf 1997) and low-

level hail differential reflectivity (HDR, a polarimetric metric for severe hail potential; Aydin

et al. 1986). Layers include low-level (LL; 0 ≤ z < 4 km AGL), midlevel (ML; 4 ≤ z ≤ 7

km AGL), and column maximum values. For each storm, the median value of each variable

across the entire storm’s lifetime is retained for comparison. Figure 4.1 shows the distribu-

tions of these variables for tornadic and nontornadic storms. Median data are used instead

of storm lifetime maximum or minimum values because results of K-S significance tests

to assess differences in the distributions were typically higher for storm lifetime median
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values. It is possible that this result arises due to mitigation of the influence of spurious

features and tornadic circulations by using a median filter.
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Figure 4.1: Distributions of kinematic variables for non-supercellular tornadic and nontor-

nadic MCS storms within the GR-S dataset from 2010-2019, inclusive. Data are the median

values of the listed radar variable across each storm’s lifetime.

The degree of separation between the nontornadic and tornadic non-supercellular MCS

cell populations for each variable is quantified to determine which best delineate between

storm type. Null storms can then be selected from the smaller population of nontornadic

storms that overlap the distribution of tornadic cell values for variables with a high degree

of separation, since such storms would be most likely to be (incorrectly) warned as a po-

tential tornadic storm. To quantify the significance of separation between the tornadic and

nontornadic distributions, K-S and two-sample T-tests were performed. T-tests show that
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all variables showed a significant difference (p < 0.05) between the tornadic and nontor-

nadic distributions. K-S tests, with values calculated from normalized CDFs, showed that

maximum ML azimuthal shear (0.07), maximum LL azimuthal shear (0.07), maximum

column-max azimuthal shear (0.06), and maximum LL divergence (0.04) had the largest

K-S values of all variables and therefore showed the largest separation between tornadic

and nontornadic storms. Maximum LL HDR (0.07) also had one of the largest K-S test

values, but given that it could not be calculated for storms from 2010-2012, it was not

considered as a criterion for null case selection.

Out of the identified radar-derived variables with high K-S test values, null storms are

selected using LL azimuthal shear values, since high LL azimuthal shear values are often

interpreted as anecdotal radar evidence of a mesovortex capable of producing a tornado.

Using the histogram of tornadic LL azimuthal shear values in Fig. 4.1, null storms are

randomly sampled from the nontornadic distribution at the observed frequency of tornadic

storms. The resulting null sample exhibits an equivalent LL azimuthal shear distribution

to the tornadic sample and enables confident comparison of storms that differ nearly solely

by their tornadic production. Figure 4.2 shows the distribution of tornadic and null storms

for the nine variables shown in Fig. 4.1. Two of the 1627 tornadic storms did not have LL

azimuthal shear data, so the null sample is 1625 storms. Sensitivity testing demonstrates

that null distributions in Fig. 4.2 do not change meaningfully with varying random samples

(not shown).
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Figure 4.2: As in Fig. 4.1, but comparing tornadic storms to the sampled null storms.

4.2 Probability-matched mean technique

After identifying tornadic and null storms, PMMs of radar data for each population are

created. Similar to the work in Homeyer et al. (2020), PMMs show the average spatial dis-

tribution of a given radar variable with values scaled to avoid non-physical smoothing due

to the averaging process. These data differ in that the focus herein is on non-supercellular

MCS storms, compared to Homeyer et al. (2020)’s analyses of supercell storms. Examin-

ing storm-average appearances in this way highlights the signatures within tornadic or non-

tornadic storms that show up most consistently (“repeatable and substantial differences”;
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Homeyer et al. 2020), emphasizing the most robust distinctive features within tornadic and

nontornadic storms and screening out less consistent storm-to-storm variabilities. PMMs

are created at 0.5, 1.5, 3, 5, and 10 km AGL for ZH, azimuthal shear, radial divergence,

and σV for all cases, and ZDR, KDP, and ρHV for storms with polarimetric data (2013 and

later). Tornadic storms are analyzed at 0 and 20 minutes prior to first tornadogenesis, and

null storms are analyzed at times of peak 30-dBZ echo top height and peak LL rotation.

These two times within the null storms’ lifetimes are selected to focus on the time of peak

storm intensity (and presumed strongest updraft) and strongest low-level circulations, re-

spectively. Both times aim to isolate the most likely time for tornadogenesis via stretching

of low-level vorticity (Markowski and Richardson 2009). Similar to Homeyer et al. (2020),

extreme values from the individual storm observations are trimmed before computing the

PMMs. Extrema in this study are considered to be values less than the 0.1st and greater

than the 99.9th percentile of all observations contributing to a PMM (as in Homeyer et al.

2023). For single-polarization analyses, 1625 null and 1627 tornadic storms are analyzed,

respectively; for dual polarization analyses, these numbers are reduced to 1231 and 1166

storms (an approximate reduction of ∼25%). A total of 840 and 621 of the 1627 tornadic

storms could be tracked at 20 minute lead times for single- and dual-polarization analy-

ses, respectively. By creating and comparing PMMs of tornadic and null storms, further

differences may be revealed and highlighted between these two populations.

4.3 Results

4.3.1 Single-polarization

Single-polarization radar variables lend insight into the difference between null and tor-

nadic storms at and before their peak intensity. Fig 4.3 shows storm-centered, constant-

altitude PMMs of ZH for null and tornadic storms. Individual storm observations are cen-

tered on each storm’s maximum 30-dBZ echo top location and rotated such that storm

motion points to the right before PMMs are calculated. When discussing features of any
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individual PMM plot, signatures and their locations are all described relative to storm center

and storm motion, to ensure clarity. The primary differences between the null and tornadic

data in ZH are with the mean storm shape–null storms have more of a diffuse, circular shape

when compared to tornadic storms (in both times analyzed), which have higher reflectivity

more tightly aligned on a lower-left to upper-right axis (relative to storm motion). This

may indicate a more consistent MCS line orientation relative to storm motion for tornadic

storms compared to null storms. Panels of tornadic storm data at tornadogenesis also show

contoured frequency of tornado reports, which are offset slightly right of storm motion and

up-motion relative to storm center (i.e., the echo top maximum).
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Figure 4.3: PMM constant altitude plots of ZH for null and tornadic storms. Null data are

shown for times of peak 30-dBZ echo top height and peak low-level rotation, and tornadic

data are shown at tornadogenesis and 20-minute lead time. Data are shown at 0.5, 1.5,

3, 5, and 10 km AGL. Thin labeled contours represent the number of storms included in

each mean, with dashes pointing towards lower values. Thicker contours represent total

tornado reports (only in PMMs at time of tornadogenesis), with increasing contour thick-

ness corresponding to higher frequency of reports. Contours enclose locations whose total

report count is at least 30, 60, or 90% of the maximum density of reports (after Gaussian

smoothing). Storm motion points to the right of each plot.

Investigations of azimuthal shear, radial divergence, and σV PMMs show how the loca-

tion of common storm-relative features may differentiate between null and tornadic storms.

Figure 4.4 shows storm-centered, constant-altitude PMMs for azimuthal shear. A key fea-

ture present in all PMMs is a mesovortex (quasi-elliptical, highly positive values) right of

storm motion and displaced up to 10 km from storm center. For tornadic storms, the lo-

cation of the low-level mesovortex is in close proximity with the most frequent location

of tornadogenesis and overall collocated with the outermost tornadogenesis location con-

tour. Distinct differences between azimuthal shear maxima and storm center are visible

between the null and tornadic data. Throughout the majority of the storms’ depths for tor-

nadic storms at first tornadogenesis and 20-minutes prior, azimuthal shear maxima occur in

a broadly consistent storm-relative location. Differences between tornadic and nontornadic

cells are most evident at low-levels, where low-level azimuthal shear maxima are less con-

centrated/coherent and displaced further right of storm center and down-motion in nontor-

nadic cells (i.e., less vertically aligned with upper-level mesovortex locations at 5-10 km).

From 3-10 km, both types of storms show a dipole of positive/negative azimuthal shear,

rotating roughly 90 degrees clockwise in orientation through the column. Correspond-

ing radial divergence PMMs in Fig. 4.5 show convergence (negative divergence) roughly
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collocated with tornadogenesis locations at 0.5 and 1.5 km, and convergence at the same

altitudes within the null storm PMMs is displaced right and up-motion relative to storm

center. In both cases, low-level convergence signatures are roughly collocated with pos-

itive low-level azimuthal shear (Fig. 4.4). Looking at maximum convergence at 3 and 5

km and maximum divergence at 10 km, these signatures–indicative of the storm updraft’s

location–are close to storm center for both tornadic and null storms, as expected. This

means that low-level vertical motion is better coupled with the mid- to upper-level storm

updraft in tornadic cells than it is for the null cells. Finally, Fig. 4.6 shows a near collo-

cation of enhanced σV values with storm center throughout the depth of tornadic storms,

whereas such maxima are displaced from storm center (and mid- to upper-level maxima)

and less coherent at 0.5 km AGL for null storms. Magnitudes of low-level σV, however,

are notably higher in nontornadic storms. Enhanced σV can be driven by several factors,

including wind shear, rotation, and measurement error (e.g., Doviak and Zrnić 1993). As-

sessing the PMM fields in tandem, tornadic storms are marked by a collocation of low-level

vertical vorticity, convergence, and enhanced σV with the mid- to upper-level updraft loca-

tion. Conversely, these low-level features in null storms are more diffuse, less coupled with

each other, and displaced from the mid- to upper-level updraft, impeding any stretching

of the low-level rotation in the vertical and potential resultant tornadogenesis. It is impor-

tant to note that the enhanced low-level azimuthal shear signature in tornadic storms stands

out despite controlling for low-level azimuthal shear differences between tornadic and null

storms via the null storm selection criteria, highlighting the importance of taking into ac-

count both shear magnitude and location in assessing potentially tornadic non-supercellular

MCS storms.
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Figure 4.4: As in Fig. 4.3, but for azimuthal shear.
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Figure 4.5: As in Fig. 4.3, but for radial divergence.
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Vertical PMM cross sections through tornadic and null storms offer additional insight

into the storms’ mean vertical structure beyond what can be inferred from constant-altitude

PMMs. Figures 4.7 and 4.8 show cross sections through null and tornadic storms at the

same times as Figs. 4.3-4.6, cutting through the storms both parallel to (Fig. 4.7) and per-

pendicular to (Fig. 4.8) storm motion. These cross sections are through the approximate

frequency maximum in tornado reports (see Figs. 4.3-4.6) at (-3, -3) km relative to storm

center. It is important to note that neither of these cross sections bisect storm center (and the

approximate location of the mid- to upper-level updraft), so examinations here are focused

on tornadogenesis-centered storm structure (or the equivalent storm-relative location, in the

case of null storms) rather than storm-centered structure as was the case in Figs. 4.3-4.6.

A few storm characteristics are more evident from these vertical sections. Focusing

on the parallel cross-section in Fig. 4.7, a vertically aligned column of positive azimuthal

shear indicating the mesovortex location is nearly coincident with the most frequent tor-

nadogenesis location in tornadic storms, whereas in null storms, the low-level mesovortex

is displaced down-motion of the preferred tornadogenesis location and is no longer verti-

cally aligned with the upper-level mesovortex location (which presents similar to that in

tornadic cells). Divergence plots also show higher convergence at the lowest observed lev-

els for tornadic cells, with low-level convergence in null cells approaching zero. From

the cross sections perpendicular to storm motion (Fig. 4.8), both tornadic and null cases

show enhanced azimuthal shear at low levels over the preferred tornadogenesis location,

although the maxima for tornadic storms are more broadly distributed about the tornado-

genesis location. Similar to Fig. 4.7, divergence plots show stronger convergence at lowest

levels for tornadic data than for null data, and σV behavior mirrors that of Fig. 4.7. Overall,

it appears that the most critical characteristics of a tornadic cell is the vertical alignment

of the mesovortex coupled with coincident enhanced low-level convergence (i.e., a strong

low-level updraft coupled with the mid- and upper-level storm updraft). This association of
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enhanced rotation on radar with potential QLCS tornadogenesis has been noted before, in-

cluding as a “confidence builder” in the Three Ingredients Method for identifying potential

QLCS mesovortexgenesis and tornadogenesis (e.g., Gibbs 2021).
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Figure 4.6: As in Fig. 4.3, but for σV.
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Figure 4.7: Cross sections parallel to storm motion of PMM (rows) ZH, azimuthal shear,

radial divergence, and σV for (columns) null and tornadic storms. Null data are shown for

times of peak 30-dBZ echo top height and peak low-level rotation, and tornadic data are

shown at tornadogenesis and 20-minute lead time. Cross sections bisect the approximate

maximum of tornado reports (see Fig. 4.4) with a center at (0, -3) km relative to storm

updraft. Bold tick marks show the approximate location of the maximum in tornado report

frequency.
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Figure 4.8: As in Fig. 4.7, but taken perpendicular to storm motion. Cross sections bisect

the approximate maximum of tornado reports (see Fig. 4.4) with a center at (-3, 0) km

relative to storm updraft.

4.3.2 Dual-polarization

After the nationwide upgrade of all WSR-88D radars to polarimetric capabilities by 2013,

PMMs of polarimetric radar data can also be examined to identify potential distinguishing

microphysical characteristics. Figures 4.9, 4.10, and 4.11 show constant-altitude PMMs
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for ZDR, KDP, and ρHV, respectively. Examining these figures together, there are two main

differences that are evident between null and tornadic storms. The first difference is the

orientation of storm motion relative to the broader MCS convective line orientation (as

seen in PMMs of ZH in Fig. 4.3). Namely, Figs. 4.9 and 4.10 show a preferential line

orientation at ∼45◦ left of storm motion at low levels for tornadic storms, and a more diffuse

orientation for null storms. Second, all figures show slight differences between magnitudes

of low-level ZDR and KDP maxima. For ZDR, the maxima for tornadic and null storms (as

shown by plotted contours) are the same, although contours of null storm maxima cover

a broader area. For KDP, maxima are also the same from 0.5-3 km across all storm types

and times, but this time the maximum contours at first tornadogenesis cover a larger area

(although less pronounced than the relative sizes of the ZDR maximum contours). This

may suggest a slight tendency towards a lower concentration of larger drops in null storms

and a higher concentration of more moderately-sized drops near time of tornadogenesis;

however, ZDR and KDP values for null and tornadic storms are overall quite comparable. For

ρHV, minimum values are comparable between PMMs and show no consistent differences

between storm type.
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Figure 4.9: As in Fig. 4.3, but for ZDR.
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Figure 4.10: As in Fig. 4.3, but for KDP.
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Figures 4.12 and 4.13 show vertical cross sections of the polarimetric variables’ PMMs

through tornadic and null storms parallel and perpendicular to storm motion, respectively.

Similar to Figs. 4.7 and 4.8, cross sections are through the preferred tornadogenesis loca-

tion. Consistent with the constant-altitude plots, there are slight differences, but tornadic

and null values are again mostly indistinguishable. Microphysically, higher ZDR in null

storms suggests larger drops near the surface compared to smaller drops in tornadic storms.

The melting layer (as deduced from local minima in ρHV away from the composite storms’

convective cores) is comparable at 3-4 km AGL in both storm populations, so any differ-

ences owing to environmental variability are likely to have limited impact on interpretation

herein. Qualitatively, it appears that the more striking differences between the null and

tornadic storms are seen in the single-polarization analyses, and polarimetric data provide

limited additional discriminating information between non-supercellular tornadic and non-

tornadic storms within MCSs.
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Figure 4.11: As in Fig. 4.3, but for ρHV.
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Figure 4.12: As in Fig. 4.7 but examining (rows) ZDR, KDP, and ρHV.
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Figure 4.13: As in Fig. 4.8 but examining (rows) ZDR, KDP, and ρHV.
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Chapter 5

Machine learning methods for improved non-supercellular MCS

tornado prediction

5.1 Data and Methodology

5.1.1 Model architecture

Now that signatures differentiating tornadic and nontornadic MCS non-supercellular storms

have been identified, these data can be used as inputs to a machine learning model to de-

termine whether or not machine learning techniques can determine if a storm will become

tornadic, and with what accuracy. To do tornado prediction using radar data, a convolu-

tional neural network (CNN) is used. It is important to note that, with machine learning,

it is best to use the simplest possible model in order to increase interpretability of results

(Chase et al. 2023). In the case of radar data, not only are the values of the data points

important, but the spatial distribution of those values are often also very informative (e.g.,

the preferential axis of ZH for tornadic storms in Section 4.3.1). For that reason, Chase

et al. (2023) suggest in their guide on machine learning in meteorology to default to a

CNN architecture for spatial datasets when “you are unsure of what features to extract.”

Given the lack of an archetypical structure/typical tornadogenesis location for MCS non-

supercellular storms (compared to a discrete supercell, where the main feature of interest

would be the hook echo), a CNN is an appropriate choice for using ML to identify MCS

non-supercellular tornadoes. The CNN used herein is based on open-source code provided

by Chase et al. (2023) to facilitate use of machine learning techniques in meteorological

applications.
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Training and validation data are from 2010-2019 data in the GR-S dataset, and are

split into 4035 storms for training and 999 storms for validation. These storms were ran-

domly selected, meaning that storms in close spatiotemporal proximity during the same

event may have been split between the training and validation datasets. This means that

storms that may have dynamically influenced each other could be present in both training

and validation datasets, and the datasets themselves may be somewhat dependent on each

other. However, the focus herein remains on the radar presentation of these storms and

does not include environmental data. At the very least, this is a potential limitation of the

work that must be considered. Data augmentation techniques as in Lagerquist et al. (2020)

were applied to the training dataset, given that they attributed a great deal of their own

study’s success to data augmentation. Data augmentation (including rotations, shifts, and

additions of noise) increased the training dataset by a factor of 18 and resulted in 72630

total training examples. Testing data were sourced from 2020-2021 GR-S data, to remain

independent of the training and validation datasets. Given the results of Section 4.3, only

single-polarization variables (ZH, azimuthal shear, radial divergence, and σV ) were fed into

the model. For each of these variables, the specific ingest data are the storm-centered vol-

umes of individual tornadic and non-tornadic storms averaged over low- and mid-levels

(0.5-2.5 km and 4.0-6.0 km AGL, respectively) such that 8 different fields (4 variables at 2

layer-average levels) are ingested. Knowing that the major differentiating factors between

tornadic and nontornadic storms in Chapter 4 were close to the tracked storm center, the

inner 15 x 15 km grid for each storm is ingested rather than the full 30 x 30 km grid.

Within that inner grid, those data currently at 0.5 km horizontal resolution are interpolated

to a 32 x 32 grid to facilitate pooling layers after convolution (which reduce the horizon-

tal dimensionality for 2D convolutions and horizontal and vertical dimensionality for 3D

convolutions by a factor of 2). Training data are then normalized as in Lagerquist et al.
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(2020) and data augmentation applied. The final training and validation datasets contain-

ing tornadic and nontornadic examples are then randomly shuffled before training begins,

to avoid any exclusively tornadic or nontornadic batches during training and/or validation.

CNNs contain a number of human-tuned hyperparameter choices, such as number of

convolutional layers, activation function, and dropout rate. As the number of hyperparam-

eters grows, with multiple options for each hyperparameter category, finding the optimal

combination of hyperparameters to improve model performance becomes incredibly time-

intensive. A hyperparameter selection code developed by Chase et al. (2023) is used herein

to select ideal hyperparameters, with hyperparameter options outlined in their Fig. A2. The

hyperparameters tested, as well as those chosen, are shown in Table 5.1.

5.1.2 Quantifying model success

When evaluating model performance, a number of metrics are commonly used in mete-

orology. Roebber (2009) describe these in terms of a 2x2 square, where each of the 4

squares are defined by whether or not a storm was tornadic and whether or not a storm

was warned (or, in this case, identified as tornadic by the ML model). A measure of the

model’s ability to identify tornadic storms, POD is the ratio of tornadic storms identified

as tornadic to the total number of tornadic storms. Conversely, false alarm ratio (FAR)

is the ratio of nontornadic storms that were warned as tornadic to all storms warned as

tornadic, and is a metric of how often a model falsely predicts that a storm is tornadic.

In practice, a forecaster strives for a high POD and low FAR to ensure that the public is

warned for as many tornadic storms as possible while also minimizing the number of un-

necessary warnings. Balancing the two is often difficult, given that if a forecaster warns a

higher proportion of strong storms to avoid missing a potentially tornadic storm, that may

increase the total POD but also increase the FAR. On the other hand, if a forecaster only

warns the strongest storms to avoid issuing false alarms, they may have a low FAR but also

a low POD. Brooks and Correia (2018) show that, from 1986-2016, POD at positive lead
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times increased from ∼0.25 to a maximum of ∼0.7 in 2003 and 2011, before falling to

near 0.5 in 2012 and beyond “when the default warning duration decreased, and there is

an apparent increased emphasis on reducing false alarms” (Brooks and Correia 2018). In

their study “Compared to What? Establishing Environmental Baselines for Tornado Warn-

ing Skill”, Anderson-Frey and Brooks (2021) note that the actual POD for QLCS storms is

approximately 48%. This is close to the POD of 49% for QLCS storms found in Brotzge

et al. (2013). Anderson-Frey and Brooks (2021) also note that, in general, the FAR for

all warnings is approximately 75%. These metrics establish a baseline against which the

results of the CNNs trained, validated, and tested using GR-S data can be contextualized.

Namely, a POD over 49%, FAR under 75%, and CSI over 0.2 (based on those POD and

FAR values; see Roebber 2009, Equation (5) for detailed calculation) are each metrics of

superior performance compared to the expected baseline for QLCS tornado warnings.

5.2 Results

5.2.1 CNN performance

5.2.1.1 Model 1

First, a machine learning model was built using the same tornadic vs. null storms from

Section 4.1: 839 tornadic storms at both 10- and 20-minute lead times, and 3356 non-

tornadic storms selected such that their bulk low-level azimuthal shear properties match

those of the tornadic storms. As shown in Section 4.3, these tornadic and strong nontor-

nadic storms differ mainly in the collocation of low-level vorticity and convergence with

the mid- to upper-level updraft (or lack thereof). By training a model specifically on the

tornadic and nontornadic cases that both look promising for tornadogenesis from a bulk

low-level azimuthal shear perspective, the hope is that the model would learn the nuances

between these more challenging cases and, despite the lack of weaker nontornadic storms

in the training and validation datasets, any weak storms included in final testing data would
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still be overwhelmingly categorized as nontornadic based on the nuances learned compar-

ing the tornadic and strong nontornadic storms. As mentioned in Section 5.1.1, these 5034

total storms are then divided randomly into a 4035 storm training and 999 storm valida-

tion dataset. This model trained and validated on tornadic and strong nontornadic cases is

referred to as Model 1.
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Information in GR-S Event Storm Track Files

Hyperparameter Available Options Model 1 Model 2

2D Convolutional

Layers

1, 2 2 1

Convolutional Ker-

nel Size

3, 5, 7 3 5

Convolutional Layer

Activation Function

Relu, Sigmoid, Tanh Relu Relu

Number of Kernels 4, 8, 16, 32 4 16

Dense Layers 1, 4 1 1

Dropout 0.05-0.5 0.49 0.07

Optimizer Adagrad, Adam, RM-

Sprop, SGD

Adagrad Adagrad

Number of Neurons 4, 8, 16, 32 8 8

Dense Activation Relu, Sigmoid, Tanh Relu Relu

Batch Normaliza-

tion

Yes, No No No

Batch Size 64, 128, 256, 512, 1024 256 512

Table 5.1: Hyperparameter options for model tuning as well as final hyperparameter choice

for models 1 and 2.
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Figure 5.1: Performance diagrams for validation (left) and testing (right) data for Model

1. Testing data include all tornadic and nontornadic non-supercellular MCS storms from

2020-2021.

First, Model 1 was tested on all tornadic and nontornadic non-supercellular MCS storms

from 2020-2021, which include a total of 262 tornadic and 70941 nontornadic storms,

where tornadic storms are sampled at 20-minute lead times. Unlike how tornadic storms

are sampled at multiple times during training and validation, for testing, we sample them

only once at a 20-minute lead time, such that any performance metrics are representative

of the true ratio of tornadic and nontornadic non-supercellular storms in nature. Figure 5.1

shows the performance diagram for the model trained and validated on the PDF-matched

data and tested on all tornadic vs. nontornadic storms. Performance diagrams compare

POD on the y-axis to success ratio (SR), equal to 1-FAR, on the x-axis. Shaded is the

critical success index (CSI) which represents how successful the model is at accurately
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characterising storms as tornadic and non-tornadic. The model predicts the percent proba-

bility that the storm is tornadic and then translates that probability into a boolean prediction

of tornadic or nontornadic; points at 5% intervals from 5% to 95% are plotted.

Examining both plots in Figure 5.1, the SR for all percent thresholds is fairly constant at

∼50%, indicating that approximately half of all storms identified as tornadic by the model

are actually nontornadic. Despite the relative insensitivity of SR to percent threshold, POD

generally increases with decreasing threshold, to a maximum of ∼90% at a 5% tornadic

probability threshold. These metrics–an FAR of 57%, POD of 84%, and a maximum CSI

of nearly 0.4 at a 15% threshold for classification of a storm as tornadic–exceed all baseline

metrics for QLCS tornado warnings.

However, the greatest measure of performance lies with testing of the model on an

independent dataset, and those metrics are markedly less impressive. In fact, FAR is nearly

100% for all probability thresholds, indicating that the model is significantly overpredicting

tornadoes. Although picking a low probability threshold results in an increasingly high

POD nearing 90%, the maximum CSI value is 0.007, meaning that skill is comparably

low and this model does not have skill beyond the baseline at improving tornado warning

metrics for all QLCS storms.
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Figure 5.2: As in Fig. 5.1, but tested on all tornadic and only strong nontornadic non-

supercelluar MCS storms from 2020-2021.

Recall that the testing dataset in Figure 5.1 included all non-supercellular MCS non-

tornadic storms, whereas the training and validation sets included just the strongest non-

tornadic cases. The assumption that the model would learn a substantial amount from the

more difficult cases and be able to apply that knowledge to the weaker nontornadic cases

produced little in meaningful results. Curious how the model would perform if tested on

PDF-matched data similar to the training and validation datasets, testing was run again us-

ing a testing set including only tornadic and strong nontornadic cases. Similar to the PDF-

matched training and validation datasets, these data also exist at a 2:1 nontornadic:tornadic

ratio, with 262 tornadic storms from 2020-2021 at 20-minute lead times (as in the prior

testing set) and an analogous nontornadic set of 524 storms selected to match the tornadic

distribution of low-level azimuthal shear (e.g., see Section 4.1). Figure 5.2 shows the per-

formance diagram for the model trained, validated, and tested on PDF-matched data. Val-

idation results are identical given the identical training and validation datasets, but testing

89



results show marked improvements over those in Fig. 5.1. CSI values peak at 0.38 at

the 20% probability threshold, where POD is 79% and FAR is 58%. These results show

that, while the model trained and validated on tornadic and strong nontornadic cases does

not have skill above the baseline at warning for non-supercellular MCS tornadoes in gen-

eral, when isolating strong nontornadic storms in a 2:1 ratio to tornadic storms, the model

has skill beyond the baseline at correctly discriminating between tornadic and nontornadic

storms.

However, the results of this model and its true applicability are more complex than they

first appear. The testing results when the model is trained, validated, and tested on PDF-

matched data assumes a 2:1 ratio of nontornadic to tornadic storms, as was used in training

and validation. However, the true ratio is closer to 270:1. That ratio is less extreme for

nontornadic storms whose low-level azimtuhal shear lies within the tornadic distribution,

but not much–this ratio is 96:1 and 176:1 when selecting only nontornadic storms with

low-level azimuthal shear values within 1 and 2 standard deviations of the tornadic mean,

respectively. Therefore, these attractive performance metrics may be misleading given how

the ratio is skewed in the testing set compared to the true ratio of these storms in nature.

Table 5.2 shows how these metrics would change given the same proportion of tornadic and

nontornadic storms warned by the model if the full testing dataset was used. For example,

the FAR, which is the ratio of false positives to all positives, is 0.58. Knowing the POD is

0.79, meaning that 207 of the 262 tornadic storms were warned (i.e., 207 true positives),

that means that 286 of the 524 nontornadic storms were warned to acheive a FAR of 0.58.

If we pretend that all nontornadic storms in the dataset are strong, to test the theory that

the model struggles preferentially with weaker storms, then we can extrapolate the results

we see here to the full 70941 storm dataset to determine model performance on the full

set of (theoretically “optimally” strong) nontornadic storms. Taking that ratio of warned

nontornadic to all nontornadic storms and scaling it up to the full testing dataset size, that

means 38720 of the 70941 nontornadic storms were warned. In that scenario, the analogous
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FAR for the whole dataset is 99.5%, also near the 100% FAR that Model 1 achieved with a

full testing dataset. POD remains unchanged since the number of tornadic storms does not

increase, but CSI changes drastically; again using Equation (5) from Roebber (2009), CSI

with a full testing set would be 0.005, almost the exact same value from Model 1’s results

when evaluated on the full testing dataset.

Another way to examine these results where the model is tested only on strong storms,

besides assuming that all nontornadic storms have high enough low-level rotation to be

classified as strong (which, they do not) is to assume that the forecaster is able to screen

out the weaker storms themselves before referring to the model to help with these more

difficult cases. In this case, we assume that forecasters use this model only for storms with

low-level azimuthal shear greater than 1-2 standard deviations below the mean tornadic

value. These performance metrics improve, but not past the baseline already met by con-

ventional forecasting techniques. Using the same methods to extrapolate the 2:1 testing

results to nontornadic datasets only including storms that exceed 2 and 1 standard devia-

tions below the mean of the tornadic storms’ values, FAR decreases to 99.2% and 98.5%,

and CSI increases to 0.008 and 0.01, respectively (Table 5.2). These metrics still pale in

comparison to the baseline metrics of a POD > 49%, FAR < 75%, and CSI > 0.2 There-

fore, despite Model 1’s encouraging performance when using a PDF-matched dataset, it

is the sample size of the dataset that appears to be the main driver of the favorable–but

ultimately misleading–results.

5.2.1.2 Model 2

Given that Model 1 did not get near baseline metrics except for when the testing dataset

size was skewed heavily towards tornadic storms, a new method of selecting the training

and validation data was created. Specifically, instead of selecting nontornadic storms to

emulate the general low-level azimuthal shear behavior of tornadic storms, the null dataset
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Model 2, PDF-Matched Metrics Scaled to True Dataset

Metric PDF-Matched Full Dataset 2-σ 1-σ Baseline

FAR 58% 99.3% 99.1% 98.5% < 75%

POD 79% 79% 79% 79% > 49%

CSI 0.38 0.007 0.008 0.01 > 0.2

Table 5.2: Extension of Model 1 PDF-matched results to the full testing dataset, only

nontornadic storms with low-level azimuthal shear above 2-σ below the tornadic mean,

and only nontornadic storms with low-level azimuthal shear above 1-σ above the tornadic

mean. Comparisons assume an equal proportion of tornadic and nontornadic storms are

warned in both scenarios. Baseline metrics are also listed for comparison.

was randomly selected from all storms from 2010-2019 such that the null storms outnum-

ber the tornadic storms 4:1. That way, when training and validating a model on nontornadic

storms as well as tornadic storms at 10- and 20-minute lead time, the ratio of null to tor-

nadic storms is still 2:1 (as in Section 4.1). While the former efforts focused on learning

the differences between tornadic and strong nontornadic storms and assuming that those

lessons would translate to effective identification of weaker nontornadic storms, this model

explicitly includes nontornadic storms at a full range of observed intensities to remove

that assumption. Testing data include the full suite of non-supercellular MCS tornadic and

nontornadic data from 2020-2021, as in Model 1.
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Figure 5.3: As in Fig. 5.1, but with the model trained and validated on a sample of all

tornadic and all nontornadic non-supercelluar MCS storms from 2010-2019.

Figure 5.3 shows the performance diagram of the model trained, validated, and tested

on samples representative of all tornadic and nontornadic non-supercellular MCS storms.

It is evident from the extremely low POD, high FAR, and near-zero CSI on the test data

performance diagram that this model (as it is currently constructed) has virtually no pre-

dictive skill and, at the very least, skill far lower than the baseline. This means that no

model evaluated herein showed skill beyond the baseline at predicting tornadic potential of

non-supercellular MCS storms. Further discussion of these models, and potential forward

steps towards using ML to improve non-supercellular MCS tornado warnings, is presented

in Chapter 7.
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Chapter 6

Societal impact of non-supercellular MCS tornadic storms

Underlying any scientific discussion of non-supercellular MCS tornadic storms and the tor-

nadoes they produce are the communities they impact. Given their lower POD and much

higher propensity to be warned at negative lead times when compared to supercellular tor-

nadoes (Brotzge et al. 2013), tornadoes from MCS/QLCS storms often impact communities

with much less advance notice (on an individual storm scale) if any notice at all. That no-

tice can have considerable impact on outcomes; Simmons and Sutter (2008) show a 41%

decrease in fatalities and 47% decrease in injuries for tornadoes that are warned in advance

(between 6-10 minutes and 11-15 minutes, respectively) compared to those that are not

warned in advance. They specifically note that “warnings significantly reduce fatalities

for short-track and weaker tornadoes,” and since tornadoes produced by non-supercellular

storms are typically sub-significant (e.g., Section 3.1) and short-lived, a direct link between

low lead times for MCS tornadoes and increased societal impact (via deaths and injuries),

although complicated by confounding factors including warning communication and soci-

etal response, can be reasonably inferred. Herein, we aim to examine the underlying de-

mographic makeup and social vulnerability of communities impacted by non-supercellular

MCS tornadoes, how those demographic characteristics compare to CONUS-mean charac-

teristics, and what this could tell us about any potential disproportionate impacts of MCS

tornadoes and the current brevity (or absence) of warnings for these storms on various

demographic groups or communities with varying social vulnerabilities.

6.1 Data and methodology

This investigation also relies heavily on the GR-S dataset (see Chapter 2), where indi-

vidual tornadic storms can be isolated for analyses. In addition, information about deaths
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and injuries associated with these tornadoes is sourced from the SED dataset (NCEI/NOAA

2022). To get information about the demographic breakdown and social vulnerability of the

broader population in the vicinity of reports, census data were sourced from the Columbia

University Socioeconomic Data and Applications Center (SEDAC; Center For International

Earth Science Information Network-CIESIN-Columbia University 2017a,b). These data

include demographic information such as age, race, and ethnicity for locations within the

CONUS at a ∼1 km spatial resolution. The Social Vulnerability Index (SVI; Center For

International Earth Science Information Network-CIESIN-Columbia University 2021a,b)

is also used to determine the vulnerability of a location. Cutter and Finch (2008) note

that social vulnerability “identifies sensitive populations that may be less likely to respond

to, cope with, and recover from a natural disaster.” SVI values are calculated using four

main demographic characteristics: socioeconomic status, household composition and dis-

ability, minority status and language, and housing type and transportation (Center For In-

ternational Earth Science Information Network-CIESIN-Columbia University 2021a). SVI

values range from 0 to 1, with 0 being the least vulnerable and 1 being the most vulnerable.

Both demographic and SVI data from 2010 were used as estimates of CONUS-wide

population characteristics. Table 6.1 outlines what demographic groups will be considered

herein. These include elderly populations and all “Race and Ethnicity” categories available

from SEDAC. Table 6.1 also introduces all category abbreviations as in the SEDAC dataset.

Investigations herein will focus on population densities in the vicinity of tornadoes versus

a given demographic group’s CONUS-mean population density, which is the average of all

local population densities at each gridpoint for that group.

6.2 Results

Of primary interest is the mean demographic breakdown of locations impacted by non-

supercellular MCS cells compared to both the CONUS-average population breakdown and

95



Demographic Categories

Category Description

A6 Ages 65 to 79

A7 Age 80 and Older

WH White Alone

BL Black or African American Alone

AM American Indian and Alaska Native alone

AS Asian Alone

PI Native Hawaiian and Other Pacific Islander Alone

ORA Some Other Race Alone

TWO Two or More Races

NHI Not Hispanic

HI Hispanic

NHW Non-Hispanic White

NHB Non-Hispanic Black

SVI Social Vulnerability Index

Table 6.1: Description of different population subsets analyzed herein and their abbrevia-

tions as given within the original SEDAC dataset.

the mean demographic breakdown of regions impacted by discrete supercells. The com-

parison is made to discrete supercells since these are often of primary interest in studies of

severe weather and tornadoes and, perhaps as a result of this enhanced focus, Brotzge et al.

(2013) found that “tornado warnings for supercells had a statistically higher probability of

detection (POD) and lead time than tornado warnings for nonsupercells” and that discrete

supercells or those in clusters were slightly less “difficult” to warn for compared to those

in lines. Comparing the demographic breakdown for tornadic storms that have higher POD
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and anecdotally more research focus to those that do not may add a quantitative equity

viewpoint to future selection of research foci in meteorology.

Similar to Section 4.1, discrete supercells and non-supercellular MCS storms are iso-

lated for analyses if that combination of storm mode and supercell classification both ex-

isted at the time of the report and existed for ≥ 75% of their lifetimes. In that way, storms

are isolated that exhibited specific mode and dynamic characteristics both for the majority

of their lifetimes and at the time of the severe weather. Samples include 2471 tornadic non-

supercellular MCS storms and 693 discrete supercellular storms, not all of which produced

impacts as recorded within the SED dataset. Future mention of these storms is simplified

to MCS and supercellular storms, respectively.
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Figure 6.1: Percent contribution of (rows) various demographic groups to (columns) the

local population. Data are sorted by CONUS-mean density and average density at locations

of all tornadoes, all tornadoes by mode, all deadly tornadoes by mode, and all tornadoes

associated with injuries by mode. For both deaths and injuries, the mean demographic

contribution is calculated both on a per-event and per-impact (i.e., per-death or per-injury)

basis. Color shading represents percent change between the data in that column and the

column the data are being compared to, described in each column’s title at the top of the

plot.
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Figure 6.2: As in Fig. 6.1, but shading indicates percentage point change.

Layers of insight can come from examining the mean demographic characteristics at

the locations of tornadoes. By incrementally examining areas hit by tornadoes that match

more and more criteria (e.g., CONUS mean densities vs. all tornadoes vs. MCS tornadoes

vs. deadly MCS tornadoes), observations can be made about how demographics change

incrementally as the type of tornado and its impact gets more specific. Figures 6.1 and 6.2

show the underlying percent contribution of demographic groups in Table 6.1, including

CONUS-mean densities, and average density at locations of all tornadoes, all tornadoes by
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mode, all deadly tornadoes by mode, and all tornadoes associated with injuries by mode.

Colors are representative of either 1) percent differences in mean percent contribution (i.e.,

percent change of the percents; Fig. 6.1) or 2) overall change in mean percent contribution

(i.e., absolute difference of the percents; Fig. 6.2) when comparing data in one column to

data in another. While the values are the same in both figures, the different approaches to

analyzing change between two given categories allows for understanding of how much a

population’s contribution changes relative to their original contribution and relative to the

total population in that area. For demographic groups with low relative population densi-

ties, a smaller absolute change would still lead to a larger percent change; for demographic

groups with high relative population densities, a relatively small percent change could be a

large absolute change.

In Fig. 6.1, percent differences are shaded, which preferentially highlight changes in

demographic groups with low relative population densities. Focusing on rows from Amer-

ican Indian and Alaska Native alone (AM) to Two or More Races (TWO), all which have a

CONUS mean density of 3% or less, these demographic groups have higher relative densi-

ties on average across the CONUS than they do in the vicinity of tornadoes. When focusing

on supercellular or MCS tornadoes, relative densities for a few categories are slightly el-

evated from the baseline of all tornadoes, specifically Native Hawaiian and Other Pacific

Islander Alone (PI) and Some Other Race Alone (ORA) which have 25-50% higher rela-

tive densities in the vicinity of supercells compared to all tornadoes. Segmenting the data

further by deaths or injuries associated with supercellular or MCS tornadoes, there are a

mixture of increases and decreases in relative population density compared to all supercell

or all MCS tornadoes, with no (albiet rounded) percents shown greater than the CONUS

mean.

Particularly interesting are any compounding disproportionalities, specifically com-

pounding positive percent changes. If for any group, relative population densities continue
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to increase/decrease with increasing granularity, this is an indication that their local pop-

ulation contribution continues to increase/decrease when moving from CONUS average

relative densities all the way to particularly impactful tornadoes of a given mode. For these

lower relative population density rows in Fig. 6.1, the only positive compounding dispro-

portionality is the increase in local Asian Alone (AS) relative population density from all

tornadoes to MCS tornadoes and further to MCS deadly events and total deaths. This in-

dicates that, while the AS demographic is typically lower relative to other groups in the

vicinity of tornadoes, it is higher for MCS tornadoes and higher yet for deadly MCS tor-

nadoes. Note that this change is still small enough to disappear when analyzing rounded

mean relative population densities.

Moving to Fig. 6.2, absolute changes in percent contributions are shaded, which pref-

erentially highlight changes in demographic groups with high relative population densities.

Focusing on rows besides AM to TWO, the Black or African American Alone (BL) de-

mographic has higher relative population densities in the vicinity of tornadoes than their

CONUS mean values. Also higher in the vicinity of tornadoes are the Not Hispanic (NHI),

Non-Hispanic White (NHW), and Non-Hispanic Black (NHB) populations. Looking at

specifically supercellular and MCS tornadoes, the elderly population (Ages 65 to 79 and

Age 80 and Older; A6 and A7, respectively) has fairly similar population densities in the

vicinity of supercellular and MCS tornadoes compared to all tornadoes, and typically lower

density when focus shifts to just tornadoes associated with deaths or injuries. For super-

cellular tornadoes, White Alone (WH), ORA, Hispanic (HI), and NHW populations have

higher densities compared to all tornadoes, and for MCS tornadoes, BL, NHI, and NHB

populations have higher densities. Particularly interesting for the WH population are the

dark pink gridboxes for supercellular deaths and injuries, representing a 3-7 percentage

point increase in relative population density compared to all supercellular tornadoes and

indicating deadly supercells occur in areas with disproportionately high WH populations.
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Comparing both Figs. 6.1 and 6.2, any gridboxes that are shaded the same color rep-

resents a difference that is sufficiently large to be noticed both in a percent and absolute

sense. Examples include gridboxes in the A7 and ORA demographic groups, although

these are not compounding differences. The demographic groups that stick out the most,

both comparing Figs. 6.1 and 6.2 and examining Fig. 6.2 alone are the BL and NHB de-

mographic groups. Both of these groups have positive compounding disproportionalities

whether examining demographic density increases by percent or percentage point increase.

Specifically, BL and NHB relative densities are higher in the vicinity of tornadoes com-

pared to the CONUS mean; higher in the vicinity of MCS tornadoes compared to all torna-

does; and higher in the vicinity of deadly MCS tornadoes (total deaths for BL; total deaths

and by deadly event for NHB) compared to all MCS tornadoes. This means that there is a

sizable step-by-step increase from their CONUS mean values to their relative densities in

the vicinity of deadly MCS tornadoes, highlighting the disproportionate impact of deadly

MCS tornadoes on the BL and NHB communities.

Lastly, SVI is also particularly interesting as data granularity increases. Comparing SVI

near all tornadoes to the CONUS mean, they are nearly equal. However, breaking tornadoes

down by supercell vs. MCS, the mean supercellular tornado SVI is 0.49 while that for MCS

tornadoes is 0.57, a 16% increase. Therefore, MCS tornadoes tend to occur in areas that are

more socially vulnerable than supercellular tornadoes. Moving from SVI by mode to SVI

by mode and impact, Figs. 6.1 and 6.2 show increases in SVI for most categories compared

to all supercellular or all MCS tornadoes. This is perhaps a reflection of the accuracy of

the SVI index in identifying areas that are less resilient to natural disasters. An in-depth

discussion of the nuances of this work is presented in Chapter 7.
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Chapter 7

Discussion

The GR-S database was created to facilitate robust studies of severe weather using radar

data from a large sample of storms. Namely, the objective methods used to build the now-

public dataset (School of Meteorology, University of Oklahoma 2021) provide an opportu-

nity to easily investigate thousands of severe storms and over 1.3 million total storms with

great detail. We believe these data can be used to examine several challenging and impor-

tant science questions regarding severe weather and we encourage others to use GR-S to

explore their own scientific questions as the dataset continues to grow.

Given the strong, positive azimuthal shear collocated with the parent storm updraft at

mid- to upper-levels, concerns about contamination of the non-supercellular MCS storm

database with spurious (or many) supercell storms are warranted. Magnitudes between

azimuthal shear values herein and those in PMM studies of supercells done by Homeyer

et al. (2020) are comparable, but that is not particularly surprising; Weisman and Trapp

(2003) note that QLCS mesovortices can be “similar in size and strength to mesocyclones

associated with supercell storms.” They also note that, despite this similarity, supercells

are marked by long-lived and persistent midlevel rotation, whereas QLCS mesovortices are

not. This is consistent with the supercell classification herein, where any storm that did

not have maximum midlevel (4-7 km AMSL) azimuthal shear exceeding 4 ∗ 10−3 s−1 for

at least 40 minutes was not classified as a supercell. Murphy et al. (2023) used the GR-S

dataset to compare MCS non-supercellular storms to the results of past studies that used

manually selected MCS storms. Those comparisons found that the GR-S non-supercellular

MCS storms compared closely with the manually identified MCS storms, and GR-S su-

percellular MCS storms had characteristics more consistent with traditional supercells. For
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these reasons, we are confident that the non-supercellular MCS population examined herein

is not adversely impacted by contamination from supercellular storms.

Analyses herein show that probability-matched mean radar data, particularly single-

polarization data, reveal key low- to mid-level features that can be used to discriminate be-

tween tornadic and nontornadic storms. These statistical results may be useful to improving

warning decision-making practices for forecasters, since we find unique kinematic signa-

tures that persist at long lead times to tornadogenesis in tornadic storms and differ consider-

ably in comparable nontornadic storms. Given that a vertically-aligned rotating updraft is a

major indicator of tornadic potential in storms analyzed herein, three-dimensional mesovor-

tex evaluation in future high-resolution case studies of these events will be important to val-

idate the perceived importance of low- to mid-level updraft alignment in non-mesocyclonic

tornadogenesis. This result is particularly notable in that it agrees with comparable prior

work focused solely on supercell storms (Homeyer et al. 2020), which suggests that ver-

tical alignment of rotation and the low- to mid-level updraft are common requirements of

tornadic storms regardless of storm mode. Relatedly, novel predictive methods such as ar-

tificial intelligence may benefit from focusing on the vertical alignment of mesovortices in

future studies to improve warning performance for non-supercellular MCS tornadoes (or

tornadoes in general), especially their POD.

After determining that single-polarization data are most important in isolating tornadic

from nontornadic non-supercellular MCS storms, those single polarization data were used

to train, validate, and test a convolutional neural network to ideally identify tornadic storms

at skills exceeding what is already common within the NWS. This was not the case; the

model only had skill exceeding that of the NWS when the testing set was artificially heavily

weighted towards tornadic storms, inflating the perceived performance of the model that,

in reality, would have a CSI below 0.01 if tested on the full testing dataset. Potential

avenues for future studies to improve model performance may include feeding the model

images that cover a larger area of the storm and potentially around it (i.e., the entire MCS);
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restricting data to storms within a set distance from the radar; removing storms that have

non-negligible missing data at low- and mid-levels; including environmental information

(as in Lagerquist et al. 2020); making models specifically trained for different regions of

the U.S., times of day, and/or times of the year; or removing weaker storms from models

trained and validated on all storms, therefore requiring the model to learn less features that

a forecaster already knows and can screen out themselves.

Speaking of forecaster knowledge, the most promising immediate pathway to improv-

ing this work may be replacing the null storms with nontornadic storms that were warned

but were not matched within the GR-S dataset to a tornado (i.e., a false alarm storm). Re-

gardless of the increase in computational tools to aid in tornado prediction, forecasters will

remain an integral part of detecting and warning for tornadoes. Therefore, while a model

built purely on objective identification of tornadic storms from all storms of a given sub-

type is perhaps the most straightforward way to approach this problem, since it pales in

comparison to the baseline performance already acheivable by NWS forecasters, it may be

advantageous to build a model on the foundation of the knowledge that they already have.

By using the library of nontornadic storms that forecasters warned on as the null popula-

tion, one can compare tornadic storms to those that “appear” tornadic as in Chapters 4-5;

however, the appearance of tornadic potential isn’t quantitative similarity, but the subjec-

tive viewpoint of the people who will actually issue those warnings. This means that some

subjectivity, human error, and potential human biases may be a part of the foundation of

the model. However, using what forecasters are already doing and building upon that to try

and produce a model useful to forecasters may yield more promising results.

Analyses of population densities and SVI scores for communities in the vicinity of

tornadoes show an increasing BL and NHB relative population density with data granularity

in the vicinity of all tornadoes, MCS tornadoes, and deadly MCS tornadoes. This suggests

that MCS tornadoes, including deadly ones, are typically located in areas with higher BL

and NHB populations compared to both the CONUS mean and the mean population density
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near all tornadoes. Examining WH populations, relative population densities are near the

CONUS mean for all, supercellular, and MCS tornadoes, but these relative densities jump

in the vicinity of deadly (and injury-causing, although less so) supercellular tornadoes,

suggesting deadly supercellular tornadoes preferentially track through areas with higher

WH populations. Finally, SVI is near the CONUS mean for all tornadoes but is lower for

supercellular tornadoes and higher for MCS tornadoes, highlighting a discrepancy in the

underlying vulnerability of communities hit by supercellular vs. MCS tornadoes.

It is reasonable to infer that a community with higher SVI (and therefore one identi-

fied as “less likely to respond to, cope with, and recover from a natural disaster”; Cutter

and Finch 2008) may suffer higher impacts from severe weather than a community that is

quantitatively more resilient. Cutter et al. (2003) outline many of the factors that go into

the calculation of a community’s SVI in their Table 1, some of which are quite familiar to

the meteorological community. For example, they highlight the “Residential Property” as

a risk factor, stating that “mobile homes are easily destroyed and less resilient to hazards.”

Previous meteorological work has shown that mobile homes are the location of the majority

of tornado-related deaths in the Southeast and “[t]he likelihood of a tornado fatality in [a

mobile home] is 15–20 times greater than in permanent homes” (Strader and Ashley 2018,

and references therein). Additionally, Cutter et al. (2003) note that people of color have

increased vulnerability, in part due to potential language barriers that may inhibit access to

disaster recovery funding. Recent work by Trujillo-Falcón et al. (2021) further discusses

the impact of language barriers on severe weather preparedness, focusing on a community’s

potential inability to access life-saving weather information due to language barriers and/or

misunderstandings depending on how a word is translated. Improving MCS tornado warn-

ings (alongside improvements in warning communication and appropriate social response

to warnings; see Chapter 1) therefore has the potential to preferentially improve outcomes

for the BL and NHB communities and quantitatively more vulnerable communities, high-

lighting potential improvements in equitable outcomes from severe weather by focusing on
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further understanding of MCS tornadogenesis and improvements in MCS tornado warn-

ings.

One limitation of the societal impact portion of the dissertation is the author herself.

Switching to a first-person discussion for just a moment, I am fully aware that I am a me-

teorologist and not a social scientist. The purpose of this section was to discuss the human

element of non-supercellular MCS tornadoes–who they disproportionately impact and how

their impacts differ from supercellular tornadoes. I see this work as a starting point for a

more nuanced study of the human impacts of different types of tornado-producing storms.

At the time of writing this document, great care was taken to discuss age, race, and ethnicity

in a careful and respectful manner. I recognize that discussing human impacts and compar-

ing totals of deaths and injuries can come across as cold and distant–I emphasize that the

goal here was to introduce the relevant data that can be extracted from a combination of the

GR-S and SEDAC datasets, given my expertise in data analytics but limited experience in

social science, and refrain from diving into further discussions of social sciences outside of

my area of expertise. Work is ongoing outside of the scope of this dissertation to continue

analyzing GR-S and SEDAC data in tandem with a team of researchers with diverse skill

sets such that a final product can represent the full nuances of this type of discussion and

not be limited to just number crunching. Please contact me with any questions, comments,

or concerns about this work.
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Chapter 8

Conclusions

In this study, the GR-S dataset was introduced, a dataset centered on CONUS-wide radar

data for ∼100 of the most severe days per year from 2010-2019, inclusive. After deter-

mining which days to include in the database, spatiotemporal domains for radar data are

selected objectively, and all storms within the domain are tracked throughout their life-

times. Storms are matched with severe reports and both storm mode classification (single

cell, multicell, or MCS) and supercell classification (mesocyclonic or non-mesocyclonic,

for all three storm modes) are performed. Based on the analysis presented, the following

conclusions can be drawn:

3.1) The GR-S dataset captures a majority of SED reports from 2010-2019 inclusive,

and captures ∼90% of reports that exist within the spatiotemporal bounds of GR-S (Table

3.1). The reports captured are analogous in spatial and temporal distribution to the SED

reports, and the relative contribution of tornado, hail, and wind reports to all reports per

month also mirror that of the SED database quite well (Figs. 3.1–3.3). Therefore, the storm-

matched reports within the GR-S database are a representative sample of the complete SED

dataset.

3.2) Pronounced annual and diurnal variability was evident for tornado, hail, and wind

reports: (i) MCS-classified cells produced the most tornadoes throughout the entire year

when compared to other storm modes, and mesocyclonic storms were found to be the pri-

mary tornado contributors during peak tornado frequency in spring and summer (Fig. 3.4a).

During the overnight and early morning when total number of reports is low, MCS contri-

bution is maximized, and during the time of peak reports, mesocyclonic storms produce

the majority of tornado reports (Fig. 3.5a). (ii) Single cell storms account for the largest
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fraction of hail reports by storm mode for spring through fall, and mesocyclonic storms ac-

count for a majority of all hail reports both year-round (Fig. 3.4b) and throughout the day

(Fig. 3.5b). Hail reports have the most pronounced diurnal cycle of the three report types,

meaning that reports are highly concentrated around their time of peak occurrence (∼4-5

hours after local solar noon). Unlike tornadoes and wind reports, there is no one storm

mode that stands out as the primary producer of severe hail reports over the whole year or

whole day. (iii) MCS-classified cells produce the most severe wind reports throughout the

entire year (Fig. 3.4c) and day (Fig. 3.5c) when compared to other storm modes. There is a

peak in non-mesocyclonic single cell and multicell contribution to wind reports in the late

summer and early afternoon, likely due to decay of severe weakly forced thunderstorms.

3.3) For both tornado and hail reports, as EF-rating and hail size increase, so does the

relative contribution of mesocyclonic storms to total reports (Fig. 3.6). Wind reports show a

similar trend, but the contribution of mesocyclonic storms does not monotonically increase

with increasing wind speed. However, due to small sample sizes at the highest intensities,

such breakdowns should be interpreted carefully.

3.4) GR-S was found to broadly reproduce the findings of Trapp et al. (2005) (Fig. 3.7)

and Ashley et al. (2019) (Table 3.3), lending credence to the usefulness of the GR-S dataset

and quality of storm mode classification applied herein.

Additionally, this study examined the radar appearance of tornadic and nontornadic

non-supercell MCS storm cells, focusing on nontornadic storms that otherwise look favor-

able for tornadogenesis (i.e., the null population). The major conclusions of this work are

the following:

4.1) Comparisons of tornadic and nontornadic kinematic characteristics show that low-

level, mid-level, and column-maximum azimuthal shear, as well as low-level divergence,

have the greatest quantitative difference (as measured by K-S tests) between the tornadic

and nontornadic storm populations. Focusing on low-level azimuthal shear values, null

storms were randomly selected such that the distribution of null low-level azimuthal shear
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values matches the distribution of tornadic values. Sensitivity tests showed no meaningful

differences in the distribution of tornadic and null values of other kinematic quantities based

on the random sample. This resulted in 1627 tornadic and 1625 nontornadic (null) storms

retained for analysis.

4.2) Analyzing PMM data at constant altitudes above ground level, ZH, ZDR, and KDP

data show a more concentrated lower-left to upper-right (relative to storm motion) axis for

tornadic storms compared to null storms, potentially indicating a preferred storm motion-

relative orientation for MCS line structures containing tornadic cells.

4.3) Comparing the kinematic characteristics of tornadic and null storms, much of the

differences arise in the vertical alignment of low-level features conducive to stretching of

vertical vorticity by the parent storm’s mid- to upper-level updraft. In tornadic storms,

maxima of azimuthal shear (rotation) and convergence are collocated, such that low-level

rotation can be advected/stretched into the vertical by the low-level updraft. Low-level

signatures of vertical motion are collocated with the mid- to upper-level updraft, allowing

for further intensification of vorticity stretching and creating a conducive environment for

tornadogenesis. Null storms differ in that they are characterised by a more diffuse field of

low-level positive azimuthal shear horizontally displaced from a similarly diffuse field of

low-level convergence. These signatures are also displaced from the mid- to upper-level

updraft, so even weak vertical tilting of vorticity at low levels is likely decoupled from the

parent storm updraft, limiting tornadogenesis potential via stretching. Therefore, enhanced

low-level convergence and azimuthal shear coincident with one another and with the par-

ent storm updraft are likely strong single-polarization indicators of tornadic potential for

MCS non-supercellular storms. Low-level azimuthal shear appearing as a discriminating

characteristic between tornadic and null storms–despite using the distribution of low-level

azimuthal shear values in tornadic storms to select the null population–emphasizes that

not only the magnitude, but also the location of low-level azimuthal shear is important for

identifying potentially tornadic storms.
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4.4) In contrast to single-polarization data, dual-polarization fields show little discrim-

inating abilities between tornadic and null MCS storms. The main differences between

fields are with the storm’s orientation relative to storm motion, which is also observable in

ZH data. For this reason, dual-polarization data offer little information beyond that avail-

able in single-polarization data to aid in identifying tornadic storms.

Once relevant radar fields for MCS non-supercellular tornado detection were identified,

these fields were fed into a machine learning model–specifically, a CNN–to measure the

ability of a ML model to predict whether or not a storm will produce a tornado in the next

20 minutes. Hyperparameters were chosen through an extensive test to identify those that

maximize model performance. This resulted in the following key conclusions:

5.1) Models that were tested on datasets that included all tornadic and nontornadic

non-supercellular MCS storms had performance metrics (i.e., POD, FAR, and CSI) that

paled in comparison to the NWS baseline, regardless of whether the model’s training and

validation datasets included all nontorandic storms or just strong nontornadic storms. These

metrics looked far better when testing on a dataset with exclusively tornadic and strong non-

tornadic storms; however, the skewed tornadic:nontornadic ratio appeared to be the main

driver of this artificially inflated performance, not the preferentially selected nontornadic

storms. Therefore, the models as presented herein have little to no standalone skill at

differentiating tornadic and nontornadic non-supercellular MCS storms, and any skill they

do have is far lower than the skill already demonstrated by NWS forecasters.

Finally, understanding that warnings and warning performance do not operate in a vac-

uum and are a combination of meteorological and social factors, the demographics un-

derlying the locations of severe reports were examined. Using census data, both the local

densities of certain demographic groups and the local social vulnerability were examined in

the vicinity of both MCS non-supercellular tornadoes and discrete supercellular tornadoes
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that were linked with injuries and/or deaths. In this way, the typical demographic charac-

teristics of locations hit by particularly impactful tornadoes can be examined. Conclusions

from these analyses are as follows:

6.1) Examining the underlying demographics in areas collocated with tornado reports,

the BL and NHB populations are disproportionately likely to have higher densities in the

vicinity of all tornadoes compared to their CONUS mean population densities. Further-

more, this density increases when isolating non-supercellular MCS tornadoes, and remains

constant or increases when isolating deadly non-supercellular MCS storms. For WH pop-

ulations, population density in the vicinity of tornadoes is fairly near to the CONUS mean

regardless of which type(s) of tornadoes are examined, but density jumps when considering

deadly discrete supercellular tornadoes. This points to deadly and injurous supercells pref-

erentially occuring in areas with disproportionately high WH populations, which makes

anecdotal sense given the preference for supercells to occur in the Great Plains and the rel-

atively higher WH population in that region (e.g., Center For International Earth Science

Information Network-CIESIN-Columbia University 2017b).

6.2) In addition to higher BL and NHB populations, the data show that, while SVI is

comparable between CONUS mean values and values in the vicinity of all tornadoes, SVI

increases sharply for locations of non-supercellular MCS tornadoes. This is in contrast

to SVI near supercellular tornadoes, which decreases slightly from the CONUS mean and

from SVI values near all tornadoes. SVI for all deadly and injurous tornadoes is equal to

or elevated above SVI for all tornadoes of that particular mode and supercell classification,

likely highlighting the ability of SVI to identify populations that are particularly vulnerable

to natural hazards.
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Doviak, R. J. and D. S. Zrnić, 1993: Doppler Radar and Weather Observations. 2d ed.,
Academic Press.

116



Ebert, E. E., 2001: Ability of a Poor Man’s Ensemble to Predict the Probability and Distri-
bution of Precipitation. Monthly Weather Review, 129, 2461 – 2480.

Edwards, R., J. G. LaDue, J. T. Ferree, K. Scharfenberg, C. Maier, and W. L. Coulbourne,
2013: Tornado Intensity Estimation: Past, Present, and Future. Bulletin of the American
Meteorological Society, 94, 641 – 653.

Ernst, S., J. Ripberger, M. J. Krocak, H. Jenkins-Smith, and C. Silva, 2021: Colorful Lan-
guage: Investigating Public Interpretation of the Storm Prediction Center Convective
Outlook. Weather and Forecasting, 36, 1785 – 1797, doi:10.1175/WAF-D-21-0001.1.

Feng, Z., R. A. Houze, L. R. Leung, F. Song, J. C. Hardin, J. Wang, W. I. Gustafson,
and C. R. Homeyer, 2019: Spatiotemporal characteristics and large-scale environments
of mesoscale convective systems east of the rocky mountains. Journal of Climate,
32, 7303 – 7328, doi:10.1175/JCLI-D-19-0137.1, URL https://journals.ametsoc.

org/view/journals/clim/32/21/jcli-d-19-0137.1.xml.

Feng, Z., L. R. Leung, R. A. Houze Jr., S. Hagos, J. Hardin, Q. Yang, B. Han, and
J. Fan, 2018: Structure and Evolution of Mesoscale Convective Systems: Sensitiv-
ity to Cloud Microphysics in Convection-Permitting Simulations Over the United
States. Journal of Advances in Modeling Earth Systems, 10 (7), 1470–1494, doi:
10.1029/2018MS001305, URL https://agupubs.onlinelibrary.wiley.com/

doi/abs/10.1029/2018MS001305, https://agupubs.onlinelibrary.wiley.

com/doi/pdf/10.1029/2018MS001305.

Flora, M. L., C. K. Potvin, P. S. Skinner, S. Handler, and A. McGovern, 2021: Using
Machine Learning to Generate Storm-Scale Probabilistic Guidance of Severe Weather
Hazards in the Warn-on-Forecast System. Monthly Weather Review, 149, 1535 – 1557,
doi:10.1175/MWR-D-20-0194.1.

Flournoy, M. D. and M. C. Coniglio, 2019: Origins of Vorticity in a Simulated Tornadic
Mesovortex Observed during PECAN on 6 July 2015. Monthly Weather Review, 147,
107 – 134, doi:10.1175/MWR-D-18-0221.1.

Fowle, M. A. and P. J. Roebber, 2003: Short-Range (0–48 h) Numerical Prediction of
Convective Occurrence, Mode, and Location. Weather and Forecasting, 18, 782 – 794.

Fujita, T. T. and H. R. Byers, 1977: Spearhead Echo and Downburst in the Crash of an
Airliner. Monthly Weather Review, 105, 129 – 146.

Fujita, T. T. and R. M. Wakimoto, 1982: Effects of Miso- and Mesoscale Obstructions on
PAM Winds Obtained during Project NIMROD. Journal of Applied Meteorology and
Climatology, 21, 840 – 858.

Gallus, W. A., N. A. Snook, and E. V. Johnson, 2008: Spring and Summer Severe Weather
Reports over the Midwest as a Function of Convective Mode: A Preliminary Study.
Weather and Forecasting, 23, 101 – 113.

117



Geerts, B., 1998: Mesoscale convective systems in the southeast united states dur-
ing 1994–95: A survey. Weather and Forecasting, 13, 860 – 869, doi:10.1175/
1520-0434(1998)013⟨0860:MCSITS⟩2.0.CO;2.

Gensini, V. A. and H. E. Brooks, 2018: Spatial trends in United States tornado frequency.
npj Climate and Atmospheric Science, 1 (38), 1 – 5.

Gensini, V. A., C. Converse, W. S. Ashley, and M. Taszarek, 2021: Machine Learning Clas-
sification of Significant Tornadoes and Hail in the United States Using ERA5 Proximity
Soundings. Weather and Forecasting, 36, 2143 – 2160.
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