
False Discovery Rate Control for Lesion
Symptom Mapping with Heterogeneous data

via Weighted P-values

Siyu Zhenga, Alexander C. McLaina∗, Joshua Habigerb,
Christopher Rordenc and Julius Fridrikssond

aDepartment of Epidemiology and Biostatistics,
University of South Carolina.

bDepartment of Statistics, Oklahoma State University
cDepartment of Psychology, University of South Carolina
dDepartment of Communication Sciences and Disorders,

University of South Carolina

August 17, 2023

Abstract

Lesion-symptom mapping studies provide insight into what areas of the brain
are involved in different aspects of cognition. This is commonly done via behavioral
testing in patients with a naturally occurring brain injury or lesions (e.g., strokes
or brain tumors). This results in high-dimensional observational data where lesion
status (present/absent) is non-uniformly distributed with some voxels having lesions
in very few (or no) subjects. In this situation, mass univariate hypothesis tests have
severe power heterogeneity where many tests are known a priori to have little to
no power. Recent advancements in multiple testing methodologies allow researchers
to weigh hypotheses according to side-information (e.g., information on power het-
erogeneity). In this paper, we propose the use of p-value weighting for voxel-based
lesion-symptom mapping (VLSM) studies. The weights are created using the distri-
bution of lesion status and spatial information to estimate different non-null prior
probabilities for each hypothesis test through some common approaches. We pro-
vide a monotone minimum weight criterion which requires minimum a priori power
information. Our methods are demonstrated on dependent simulated data and an
aphasia study investigating which regions of the brain are associated with the severity

∗email: mclaina@mailbox.sc.edu

1

ar
X

iv
:2

30
8.

08
36

4v
1 

 [
st

at
.A

P]
  1

6 
A

ug
 2

02
3



of language impairment among stroke survivors. The results demonstrate that the
proposed methods have robust error control and can increase power. Further, we
showcase how weights can be used to identify regions that are inconclusive due to
lack of power.

Keywords: Heterogeneous data; False discovery rate; Neuroimaging data; Voxel-based le-
sion symptom mapping; Weighted p-values.

1 Introduction

Data arising from neuroscience studies have considerable statistical issues including a large

number of parameters, an unknown spatial dependence structure, and (commonly) low sta-

tistical power. Neuroimaging consists of using magnetic resonance imaging (MRI), positron

emission tomography (PET), electroencephalography (EEG), or other imaging modalities,

to measure various aspects of brain structure and activity. Data modalities from MRI in-

clude functional MRI (fMRI), structural T1 weighted images (T1), and diffusion-weighted

imaging (DWI) among others. These data are typically measured on a voxel level in three-

dimensional space. As imaging technologies improve the number of data voxels per scan

has increased, possibly reaching into the millions depending on the spatial resolution of

the image. Independent statistical tests are often computed for each location. Therefore,

as spatial resolution increases, the opportunity for making erroneous discoveries increases.

This requires some principled thresholding to control for global type I error rate at a level α.

Common criteria on the global type I error rate include the familywise error rate (FWER)

(Tukey, 1994; Nichols and Holmes, 2002) and the false discovery rate (FDR) (Benjamini

and Hochberg, 1995).

Recent statistical methodology has considered using prior information about the hy-

potheses to improve results through p-value weighting (Genovese et al., 2006; Roeder and

Wasserman, 2009; Peña et al., 2011; Habiger, 2017; Ignatiadis and Huber, 2021; Lei and

Fithian, 2018; Zhang and Chen, 2020), grouping similar hypotheses (Cai and Sun, 2009; Hu

et al., 2010; Ignatiadis et al., 2016), or weighting global type I error rate criteria (Benjamini

and Hochberg, 1997; Benjamini and Cohen, 2017; Basu et al., 2018). P-value weighting is
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a procedure that uses prior information on hypotheses heterogeneity to improve the overall

power. This prior information – commonly referred to as side-information – can consist

of results from previous studies on the most ‘promising’ hypotheses (Li and Barber, 2017,

2019; Lei and Fithian, 2018), covariate data indirectly related to the hypotheses (Ignatiadis

and Huber, 2021), or information related to the heterogeneity in the power functions of the

hypotheses (Peña et al., 2011; Habiger, 2017). The goal of a p-value weighting procedure

is to design the weights to maximize the expected number of discoveries while controlling

the FWER or FDR.

Modern weighting methods commonly use regression-type approaches to incorporate

the side-information into the multiple testing procedure. Commonly these methods use the

conditional two-group model where the side-information impacts the probability a test is

null and the non-null p-value distribution. For example, Lei and Fithian (2018) proposed

adaptive p-value thresholding (AdaPT) which adaptively estimates a Bayes optimal p-

value rejection threshold. This is done through the use of the Expectation Maximization

(EM) algorithm using a set of partially masked p-values. A similar approach referred to

as covariate adaptive multiple testing (CAMT) by Zhang and Chen (2020), also uses the

EM algorithm with their M step being expressed in terms of the ratio of alternative and

null distributions which is modeled using the beta density. Ignatiadis and Huber (2021)

proposed Independent Hypothesis Weighting (IHW) which divides all tests into several

independent folds. For each fold, the estimated weight function can be learned from the p-

values and covariates in the remaining folds. Similar to the AdaPT, IHW estimates the null

probability and non-null distribution based on a conditional two-group model via an EM

algorithm. AdaPT and IHW have been shown to provide finite sample FDR control, while

CAMT can provide asymptotic FDR control. Cai et al. (2021) proposed a locally adaptive

weighting and screening (LAWS) method to deal with spatial multiple testing problems.

The LAWS procedure estimates the weights by using the spatial structure through a kernel

screening method and can control the FDR asymptotically. Boca and Leek (2018) proposed

an FDR control multiple testing method (R package swfdr Leek et al., 2021) where – in
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the spirit of the Storey (2002) procedure – the unknown null indicator is replaced with an

indicator the p-value is lower than some threshold. The indicators are used to estimate

their associations with the side-information.

In this paper, we expand the Weighted Adaptive Benjamini Hochberg (WABH) proce-

dure proposed by Habiger (2017) to incorporate heterogeneous non-null probabilities and

effect sizes. Further, we demonstrate how our methods are flexible to specific statistical

models and are tailored to perform well in low-power settings, which are common in our

application to voxel-based lesion-symptom mapping (VLSM) analyses (Bates et al., 2003;

Rorden et al., 2007). Further, WABH is known to be robust to poor estimation of the pa-

rameters governing the impact of the side-information on the weights. No previous methods

are available that are designed for low-power settings and are robust to misspecification of

the weights. In general, this procedure can be applied to any situation where the p-values

arise from mass univariate logistic regression. Below, we detail the statistical issues that

arise within VLSM and the solutions provided by our testing procedure.

1.1 Voxel-based lesion symptom mapping

A main goal of research in neuroscience is to identify and examine areas of the brain related

to behavioral or cognitive functions. A common method is to use subjects with a recent

brain injury (e.g., from a traumatic brain injury, epilepsy, or stroke) to map some domain

of cognition to specific regions of the brain. This can provide theoretical insights regarding

brain function and can also inform clinical treatment. The most popular lesion-symptom

mapping approach – voxel-based lesion-symptom mapping (VLSM) (Bates et al., 2003;

Rorden et al., 2007)– typically relies on structural MRI images (e.g., fMRI, T1, or DWI)

where lesion status is measured on parcellated three-dimensional voxels (e.g. 1 mm3) and

relates lesion status to an outcome of interest in each voxel (see Karnath et al., 2018, for a

recent review of the field). The number of tests in a VLSM can reach millions depending

on the resolution of the brain scan.

VLSM analyses are typically mass-univariate tests consisting of computing a simple test
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statistic (e.g., t-tests, General Linear Models, etc.) independently for each voxel and then

using some multiple testing correction to identify significant associations with regions of

the brain. There are a number of statistical issues that complicate such analyses. First,

since studies in humans cannot be designed to injure certain areas of the brain we must

rely on naturally occurring injuries (Rorden and Karnath, 2004). This commonly results

in lesions being unequally distributed, with some areas/voxels having lesions in a few

subjects. For example, stroke-related brain injury is determined by vasculature leading

to some regions being far more vulnerable than others. Therefore, the spatial sampling

of lesions is not random, and statistical power varies across space. Consider a study of

language impairment following left hemisphere injury: we will have low power in regions

typically spared in stroke and no power in the right hemisphere (as we have no variability).

In response, some have advocated only using voxels that are impacted in, for example, 10%

of subjects to account for this issue (Holmes et al., 1996). Second, it is likely that the areas

of the brain that will impact the cognitive outcome will have some spatial clustering. That

is, the 3-dimensional coordinates of the voxels will be related to the non-null probability.

Ignoring this relationship misses out on an important source of variation in the signal,

thereby decreasing the overall power of the procedure.

The above issues naturally fit into the purview of weighted multiple testing. The nat-

urally occurring injuries in VLSM create heterogeneous power among the voxels. Voxel

power is a function of effect size, which is commonly unknown in practice. In this pa-

per, we propose and provide a straightforward solution consisting of a monotone minimum

weight criterion, which automatically estimates voxel power and has desirable properties

for studies with low to moderate power. Further, we test using plug-in estimates of the

non-null probability using state-of-the-art methods (AdaPT and CAMT) which utilize any

spatial clustering of signals to gain power. In our data analysis, we demonstrate how

the presentation of the impact of weighting is key for transparent reporting of weighted

analyses.

The outline of the paper is as follows. In Section 2, we review multiple testing pro-
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cedures for data with heterogeneity among the hypotheses. In Section 3, we discuss how

weighted multiple testing procedures can be applied to VLSM in a number of common

scenarios. In Section 4, we present results from numerous simulation studies that compare

the performance of the proposed method to some common approaches. In Section 5, we

present an analysis of 220 individuals with chronic left hemisphere stroke and identify areas

of the brain associated with the severity of aphasia, a language disorder that impacts the

expression and comprehension of speech.

2 Multiple Testing with Heterogeneous Data

2.1 Setup and Notation

Consider testing null hypothesis Hm based on the random vector Dm for m = 1, 2, . . . ,M .

The decision to reject or retain Hm with D = (Dm;m = 1, 2, ...,M) is denoted by

δm(D) ∈ {0, 1} or δm for short, where δm is 1 if Hm is rejected and is 0 otherwise. For

ease of exposition, we denote the event that a null hypothesis is true (false) by Hm = 0

(Hm = 1). Table 1 contains our notation for the total number of rejected and retained

null hypotheses, incorrectly rejected and retained null hypotheses, correctly rejected and

retained null hypotheses, and number of true and false null hypotheses.

The objective of most multiple testing procedures is to define the decision functions δ =

(δm;m = 1, 2, ...,M) so as to maximize the expected number of true discoveries/positives

ETP = E[S], or minimize some type II error rate, such as the false non-discovery rate

FNR = E[U ]/E[M −R] (Sun and Cai, 2007), subject to the constraint that the family-

wise error rate FWER = Pr(V > 0) or false discovery rate FDR = E [V/R|R > 0] Pr(R >

0) is not more than a pre-specified level α. The FDR, or a variation of it such as the

mFDR = E[V ]/E[R], is commonly utilized in large-scale multiple-hypothesis testing.
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2.2 Weighted BH Methods

Many multiple testing procedures have been developed for p-value statistics P = (Pm;m =

1, 2, . . . ,M). The basic idea is to find a p-value threshold t for rejections and define

δm(P ) = I(Pm ≤ t) where I(·) is the indicator function. The well-known Benjamini and

Hochberg (1995), or BH, procedure is implemented by finding the threshold tBH = αk/M

where k = max
{
m : P(m) ≤ αm/M

}
and P(m) is the mth order p-value. The BH procedure

is then given by δm(P ) = I(Pm ≤ tBH). Benjamini and Hochberg (1995) showed that if

p-values from true null hypotheses are mutually independent and independent of p-values

from false null hypotheses then this procedure has FDR = π0α ≤ α, where π0 = M0/M is

the proportion of true null hypotheses. Adaptive FDR procedures (called ABH henceforth),

leverage the fact that the BH procedure has FDR = π0α by estimating π0 via π̂0 and apply

the BH procedure at level α/π̂0 (Storey et al., 2004). For example, Storey et al. (2004)

proposed estimating π0 and showed that if p-values are independent the ABH controls the

FDR and is less conservative than the BH procedure.

Recent work has further improved upon the BH and ABH procedures by incorporating

heterogeneity through p-value weighting. For example, letting w1, w2, ..., wM be weights

satisfying M−1
∑

m wm = 1, the weighted BH procedure (WBH) in Roeder and Wasser-

man (2009) operates by applying the BH procedure to the weighted p-values denoted by

Qm = Pm/wm. Roeder and Wasserman (2009) showed that the WBH procedure provides

FDR control under a finite mixture model for the p-values considered in Genovese and

Table 1: Notation for various hypothesis testings subgroups based on if the null hypothesis

is true (Hm = 0) or false (Hm = 1), and if the tests were rejected (δm = 1) or not rejected

(δm = 0).

δm = 0 δm = 1 Total

Hm = 0 T V M0

Hm = 1 U S M1

M −R R M
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Wasserman (2002), among others. Optimal weights for the WBH procedure can depend on

heterogeneous prior probabilities for the states of the null hypotheses (Roeder and Wasser-

man, 2009; Hu et al., 2010; Li and Barber, 2017; Lei and Fithian, 2018; Zhang and Chen,

2020; Li and Barber, 2019), heterogeneous power functions (Peña et al., 2011) or both (Cai

and Sun, 2009; Ignatiadis et al., 2016; Habiger, 2017; Ignatiadis and Huber, 2017).

Habiger (2017) proposed applying the adaptive BH procedure to weighted p-values.

The procedure, henceforth called weighted adaptive BH (WABH), operates as follows:

(i) compute weighted p-values via Qm = Pm/wm with Q = (Qm;m = 1, 2, . . . ,M), (ii)

estimate π̂0 = {
∑

m I(Qm ≥ κ) + 1}/{M(1 − κ)}, (iii) compute threshold tWABH =

min {α, kα/(π̂0M)} where k = max
{
m : Q(m) ≤ mα/(π̂0M)

}
, and (iv) compute δm(Q) =

I(Qm ≤ tWABH). Habiger (2017) showed that for reasonably specified weights the WABH

procedure controls the FDR asymptotically and has higher ETP than the WBH and ABH

procedures. In particular, as long as the utilized weights are positively correlated with op-

timal weights the procedure still controls the FDR and is more powerful than unweighted

procedures. This allows for a procedure that incorporates heterogeneity across tests in

applications where the precise nature and degree of heterogeneity isn’t well known, but

may be estimated or reasonably specified. The first step in utilizing such a procedure is to

specify optimal Oracle weights.

2.3 Optimal Oracle Weights

Optimal Oracle weights are allowed to depend on heterogeneous prior probabilities and/or

power functions. Suppose, for example, Pm has null CDF F0(t) = Pr(Pm ≤ t|Hm = 0) = t

and alternative CDF Fm(t) = Pr(Pm ≤ t|Hm = 1). Further let pm = Pr(Hm = 1) be the

prior probability that Hm is non-null for m = 1, 2, ...,M . Suppose, for the moment, the

Oracle situation where the weighted p-value threshold t along with pm and Fm for each m

are known. The weighted p-value decision rule can be written δm(Qm) = I(Qm ≤ t) =

I(Pm ≤ wmt) ≡ I(Pm ≤ tm).

The calculation of the optimal weights reduces to maximizing the expected number of
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true positives, ETP =
∑

m pmFm(tm) subject to the constraint that M−1
∑

m tm = t. That

is, the objective is to find

max
{tm:m=1,...,M}

{∑
m

pmFm(tm)

}
such that G(t;p, α) = 0,

where G(t;p, α) = (1 − α)
∑

m(1 − pm)tm − α
∑

m pmFm(tm) which can be solved via

Lagrange multipliers (Habiger, 2017).

Assuming Pm arises from a normally distributed test statistic, the power of a test of size

t is Fm(t) = Φ̄
{
Φ̄−1(t)− gm

}
where Φ̄(·) = 1−Φ(·), Φ(·) is a standard normal distribution

function, and gm the effect size over the standard error of test m (defined in Section 3.2).

The expression for fm(t) =
d
dt
Fm(t) is

fm(tm) =
ϕ{Φ̄−1(tm)− gm)}

ϕ{Φ̄−1(tm)}
, (1)

where ϕ(t) is the standard normal density function and

d

dtm
G(t;p, α) = G′(tm, pm, α) = (1− pm)(1− α)− αpmfm(tm).

Setting pmfm(tm)− λG′(tm, pm, α) = 0 yields the following expression

fm(tm) =
λ(1− pm)(1− α)

pm(1 + λα)
= cm(λ),

where the solution in terms of tm is

tm(λ) = Φ̄
[
0.5gm + log{cm(λ)}g−1

m

]
. (2)

The Lagrange multiplier is found by solving

∑
m

(1− pm)tm(λ)− α

[∑
m

(1− pm)tm(λ) +
∑
m

pmFm{tm(λ)}

]
= 0 (3)

for λ. The weights are then given by wm = tm(λ̂){M−1
∑

m tm(λ̂)}−1 where λ̂ is the solution

to (3). Once the weights are calculated the WABH procedure can be implemented.
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2.4 Dependence between tests

Storey (2003) showed that the ABH procedure provides asymptotic FDR control under

a weak dependence structure for the p-values and Habiger (2017) extended this result to

weighted p-values. Weak dependence occurs, for example, when (weighted) p-values are

correlated within groups but independent across groups. This structure may be reasonable

to our application of interest because p-values are likely to be correlated within regions or

clusters of voxels, but are nearly independent across distant regions. As a result, we ignore

the dependence between p-values in our proposed testing procedure. Our simulation studies

in Section 4 explore the impact of dependence on our proposed method and other procedures

by generating spatially dependent locations for non-null tests (to varying degrees) with

spatially dependent data. Those results suggest that the degree of dependence does not

have an impact on the FDR of the proposed method.

3 Estimation of weights in VLSM

VLSM is a procedure that measures the strength of the association between lesion status

and a cognitive outcome, independently for each voxel (Bates et al., 2003). Let Xim denote

a measure of whether brain voxel m has a lesion for person i, m = 1, 2, . . . ,M and i =

1, 2, . . . , n. Let Yi denote the outcome of interest for person i, which we assume to be

continuous. Further, let X+
im = h(

∑
j ̸=m Xij) be a measure of the total lesion size excluding

voxel m for person i for some function h. Below we consider X+
im ∈ R, but incorporating

multidimensional X+
im is straightforward. Since voxel damage can only be a detriment

to the cognitive outcome we consider Hm to be one-sided hypothesis tests, however, the

methods are easily generalized to two-sided tests. We focus on logistic regression since it

can model total lesion size (X+
im) as a nuisance confounder (Karnath et al., 2004; Arnoux

et al., 2018).

The optimal oracle weights in Section 2.3 require the specification of gm and pm in

equations (1) and (3). To estimate the pm’s we use existing general methods (discussed in
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Section 3.1). In Section 3.2, the heterogeneous gm’s are calculated by utilizing heteroge-

neous standard error calculations and prior knowledge that the power of the tests are low.

Our resulting WABH algorithm is outlined in Section 2.

3.1 Estimation of prior null probabilities using known methods

Ideally, values for the prior null probabilities (pm) can be based on previous studies and

expert knowledge. When this is not possible, pm can be estimated based on the unweighted

p-values. While there are many approaches to estimating pm in such cases, we focus on

the AdaPT and CAMT procedures (Lei and Fithian, 2018; Zhang and Chen, 2020), due to

the ease of implementing them in statistical software. Let zm denote the so-called ‘side-

information’ hypothesized to have an impact on pm and/or fm, the density of Pm under

the alternative. Both AdaPT and CAMT use the two-groups model where Pm|zm, Hm ∼

(1−Hm)f0+Hmfm where f0 is the density of Pm under the null and pm = Pr(Hm = 1|zm).

To implement AdaPT or CAMT, we need to specify a parametric form for the relationship

between (a) zm and pm, and (b) zm and fm. For both models, log{pm/(1−pm)} is modeled

via components of zm. For (b), in AdaPT we assume fm is a beta density, and for CAMT

we assume the ratio fm/f0 is a beta density. Specifically, a beta(km, 1) where log(km) is

modeled via components of zm. See Lei and Fithian (2018), and Zhang and Chen (2020)

for details on their estimation procedures. After AdaPT or CAMT are implemented, the

estimates of pm are extracted and used in our testing procedure.

The WABH procedure can be implemented in various specifications of (a) and (b) above.

For our simulation study, zm consists of the 2 × 2 grid coordinates of test m, denoted by

zp
m, and the predicted standard error (Sm) denoted by zf

m. In the simulation study for both

AdaPT and CAMT, zp
m and log{pm/(1− pm)} are related using a linear combination of 5

degree natural cubic splines for each coordinate and their interaction. Further, log(km) was

modeled using a 5 degree natural cubic spline on zf
m. See Section 5 for the specification of

these relationships in our real data analysis.
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3.2 Estimation of effect sizes and MMW criterion

In this section, we develop expressions for estimating gm, which will be used to estimate

optimal weights in subsequent sections. We consider a strictly continuous outcome Yi ∈ R

and a binary Xim ∈ (0, 1) lesion indicator, which is modeled as a function of Yi and X+
im

with a logistic regression model.

Let Y = {Y1, Y2, . . . , Yn},X+
m = {X+

1m, X
+
2m, . . . , X

+
nm} andXm = {X1m, X2m, . . . , Xnm}

for m = 1, . . . ,M . We consider null hypotheses Hm : β1m = 0 and alternative Hm : β1m > 0

where

logit{Pr(Xim = 1|Yi, X
+
im)} = β0m + β1mYi + β2mX

+
im,

where logit(p) = log{p/(1 − p)}. The Wald test p-values are Pm = Φ̄(β̂1m/ŜEm), where

ŜEm is the estimated standard error of β̂1m. Clearly, the power of a test will depend upon

β1m and SEm. Using previous results Væth and Skovlund (2004), the standard error of

β̂1m can be approximated via

SEm =

[
(1−R2

m)

ns2Y X̄m(1− X̄m)

]1/2
+ op(n

−1/2) (4)

where R2
m is the coefficient of determination for regressing Y on X+

m, X̄m =
∑

i(Xim)/n,

s2Y =
∑

i(Yi − Ȳ )2/(n− 1). Then,

β1m

SEm

=
ηm
Sm

+ op(n
−1/2) (5)

where ηm = β1msY and Sm = [(1−R2
m)/{nX̄m(1−X̄m)}]1/2. Assuming normality of the test

statistics, given gm = ηm/Sm the power of a test of size t is Fm(t) = Φ̄
{
Φ̄−1(t)− gm

}
. Since

Sm can be estimated a priori, the heterogeneity in the power can be calculated given the

effect size ηm. To specify ηm, we consider the case where prior information differentiating

ηm is unavailable and set ηm = η for all m.

Figure 1 displays the relationship between the weights (wm) and Sm for different η. This

figure also shows the 10% rule (which is common in practice), where the weights are given

by wm = MI(X̄m ∈ [0.1, 0.9])/(
∑M

k=1 I(X̄k ∈ [0.1, 0.9])). Note that the 10% rule up weights

tests (i.e., wm ≥ 1) with high power (lower Sm) and down weight tests with low power.
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Figure 1: Estimated p-value weights (wm) by their predicted standard error (Sm) for the

aphasia data where η = 0.1 (black dotted), 0.178 (black solid), and 0.25 (black dashed),

along with the 10% rule (gray solid).

That is, the weights are monotonically non-decreasing in power (or non-increasing in Sm).

Habiger (2017) showed that in low-power settings, optimal weighting schemes do involve

increasing weight for tests with higher power and decreasing weights for those with lower

power. Thus, the intuition behind the 10% rule is correct, however, a more sophisticated

weighting scheme from the optimal weights in Section 2.3 is available. We refer to our

weights as the monotone minimum weights (MMW). In summary, the MMW weights are

the specific optimal weights that satisfy the desired monotonicity property while ensuring

that weights are not too aggressive, i.e. no weight is too large (aggressive weighting schemes

may result in very large weights for only a few tests and amount to not testing the vast

majority of tests, which is intractable).

Let us provide details. First, while Sm in equation (5) is a known source of heterogeneity

affecting power, ηm is not. The MMW, for pm’s computed as in the previous section, arises

by choosing η as large as possible so that weights are still monotone. The resulting weights

13



are depicted in Figure 1 by the thick black line. Note that in Figure 1 the MMW weights

amount to choosing η = .178. Other values do not satisfy the MMW criteria. For example,

choosing η = 0.25 results in weights that are not monotone. Choosing η = 0.1 results in

monotone weights but use a smaller η than the MMW weights. Consequently, this results

in a few large weights and most weights being 0 (i.e. non-robust weights). The general

expression for MMW weights is provided in Theorem 3.1 below.

Theorem 1 For a fixed λ and pm = τ for all m, the maximum η such that wm −wm′ ≥ 0

for Sm − Sm′ ≤ 0 for all m,m′ ∈ {1, . . . ,M} is given by η̃ = S(1)

√
2 log{c(λ)} where

S(1) = min(Sm), c(λ) = λ(1− τ)(1− α)/{τ(1 + λα)}, and log{c(λ)} > 0. In this case, the

thresholds are given by

t̃m(λ) = Φ̄

0.5

(
S(1)

√
2 log{c(λ)}
Sm

)
+ log(cm)

(
S(1)

√
2 log{c(λ)}
Sm

)−1
 . (6)

A proof of this theorem is given in Section A of the Supplemental Material.

Under the MMW criteria, the impact of weighting is minimized in that proportion of up-

weighted tests is maximized among all η values with non-increasing weights for Sm ≥ S(1)

and pm = τ . Calculating the weights for the MMW criteria is as straightforward as the

fixed η case. The MMW η is η̃ = S(1)(2 log{c(λ̂)})1/2 where λ̂ is such that (3) holds

when using (6) for the thresholds. The value of τ guarantees that the weights satisfy the

MMW criteria for non-null probabilities equal to τ . This is a tuning parameter set by the

investigator. As we demonstrate in our simulation studies, setting τ = max(pm) is effective

for studies that are low in power. For studies with more robust power, we find setting τ to

mean or qth percentile of the observed pm’s can give better results. It is important to note

that weighted FDR methods control the FDR regardless of whether optimal weights are

used and – as long as weights are reasonable – are more powerful than their un-weighted

counterparts (Roeder and Wasserman, 2009; Habiger, 2017).
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3.3 WABH algorithm

R code to run our proposed testing procedure along with data to replicate the results of our

analysis in Section 5 are available on GitHub (McLain and Zheng, 2022). A general form for

implementing the WABH procedure at level α is given in Algorithm 1. Our implementation

uses logistic regression to obtain Sm and Pm in step 1. The functional form between zm

and pm, and zm and fm is required for step 2. While our procedure only uses the estimates

of pm in step 2, specifying a plausible model for zm and fm is important since a poor model

can have a negative impact on the estimates of pm.

There are multiple measures of the impact of weighting such as the proportion of up-

weighted tests (i.e., those with wm ≥ 1), the maximum weight, and the proportion of

tests that are inconclusive (e.g., those with wm < 0.1). Inconclusive tests are those that

are essentially ignored by the testing procedure, i.e., they are likely to be not rejected

due to their low weight. Reporting which tests are inconclusive is an important step

in implementing the WABH (or other weighting procedures) so that the tests that were

essentially not included in the testing procedure can be known.

4 Simulation Study

To test the properties of the proposed methods we performed simulation studies with

logistic regression models. We considered a two-dimensional 100 × 100 grid of data. Let

S1 index the set of false nulls. The coordinates of the tests in S1 were simulated from a

zero-mean Gaussian random field (GRF) with Σs(m,m′) = exp{−(||zp
m−zp

m′||2/s)2} where

zp
m is the two-dimensional coordinates for point m and || · ||2 is the l2-norm. The tests in

S1 were those with the largest K = ||S1|| simulated values. The data were generated via

logit{Pr(Xim = 1|Yi, bi)} = α∗
0 + α∗

0m + α∗
1mYi + bi, (7)

where α∗
0 = −1, α∗

0m follows a zero-mean GRF with covariance function C2Σ50(m,m′),

α∗
1m ∼ U(0, 2θ) for allm ∈ S1 (α

∗
1m = 0 otherwise), bi ∼ N(0, 0.82), and Yi = 0.5bi+ϵi where

ϵi ∼ N(0, 0.52). Recall from (4), that the power heterogeneity is driven by V ar(Xim) =
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Algorithm 1 A general form for the WABH algorithm.

1. For m = 1, 2, . . . ,M

(a) Compute X̄m and R2
m to obtain Sm.

(b) Compute the unweighted p-value Pm.

2. Implement AdaPT or CAMT on the unweighted p-values, extract estimates of pm for

all m.

3. Specify ηm = η directly or specify τ and compute η̃ = S(1)

√
2 log{c(λ)}. Compute

gm.

4. Compute the optimal weights by

(a) plugging (gm, pm) into (3) and solving for λ̂, and

(b) compute optimal weight wm = tm(λ̂){M−1
∑

m tm(λ̂)}−1 using tm(λ̂) in (2).

5. Compute weighted p-values Qm = Pm/wm.

6. Implement adaptive BH procedure:

(a) find k∗ = max
{
m : Q(m) ≤ mα/(π̂0M)

}
where π̂0 = M−1

∑
m(1− pm), and

(b) compute δm(Q) = I(Qm ≤ tWABH) where tWABH = min {α, k∗α/(π̂0M)}.

X̄m(1− X̄m), which will be a function of α∗
0m in that extreme α∗

0m will have low V ar(Xim).

Thus, C2 = V ar(α∗
0m) controls the amount of power heterogeneity among the tests.

The simulation settings were varied over C = 0.5, 1.5, and 3, corresponding to low,

moderate, and high power heterogeneity, respectively, s = 0.01, 5, and 10, corresponding

to low, moderate, and high spatial clustering, respectively, K = 100 or 500, and the

expected effect size θ = 0.25, 0.5, or 0.75 for low, moderate, or high average power. All

simulations used n = 200. The fitted model for the mth test was

logit{Pr(Xim = 1|Yi, X
+
i )} = α0m + α1mYi + α2mX

+
im
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Figure 2: Average false discovery rates (FDR) by power heterogeneity (C), number of true

signals (K), effect size (θ), and spatial dependence (s) for M = 10000 tests and n = 200.

where X+
im = logit{(M−1)−1

∑
j ̸=m Xij}. Section B of the Supplemental Material contains

example plots of the data.

For all settings, the p-value weights were estimated using Algorithm 1 where pm was

estimated using AdaPT, or CAMT. For both AdaPT and CAMT,

log{pm/(1− pm)} = γ0 + γ1h5(z
p
m1) + γ2h5(z

p
m2) + γ3h5(z

p
m1z

p
m2) (8)

where zpmj is coordinate j of test m and h5(z) is a vector of 5 degree natural cubic splines

with evenly spaced knots evaluated at z. Further, log(km) = h5(Sm). To select η we used

the MMW criteria with τ = 0.5 or 0.9. We note that for AdaPT and CAMT the the beta

assumption on the distribution of non-null p-values is likely misspecified. We also included

the Adaptive BH, IHW, LAWS, and SWFDR procedures in the simulation. Adaptive BH

was implemented with π̂0 being estimated using Storey (2007) with a threshold set at 0.05

17



as suggested for dependent data (Blanchard and Roquain, 2009). IHW was fitted with

one covariate (Sm), as this was all the software allowed, with five-folds and automatic

selection of the number of bins. SWFDR was fitted with a design matrix consisting of the

two-dimensional coordinates and Sm to estimate the null probability for each test. To fit

LAWS we used a threshold of 0.9 (the default) with a Gaussian kernel and bandwidth set

to 4.5. LAWS does not model the non-null p-value distribution via covariates, thus Sm was

not used.

The methods are compared in terms of FDR = B−1
∑

b I(Rb > 0)(Vb/Rb) and Power =

ETP/K (ETP = B−1
∑

b Sb) where Sb, Vb and Rb denote the number of correct discoveries,

false discoveries and total discoveries from the bth iteration. Procedures set FDR control

level to α = 0.05. All simulations were run for B = 500 iterations. For brevity, we show

the WABH when pm was estimated using CAMT with τ = 0.9 only. Section B of the

Supplemental Material contains results of WABH with AdaPT and other τ values along

with other common methods.

In Figure 2, we present summarized FDR results of simulation studies. The AdaPT,

Adaptive BH, IHW, and WABH procedures all controlled the FDR with values that are

less than or close to the nominal level in all settings. The CAMT had high FDR when

the proportion of false null hypotheses or expected effect size (θ) was low. For example,

when K = 100 and θ = 0.25, the FDR ranged from 0.2 − 0.6 and 0.2 − 0.3 in the low

to moderate, and high heterogeneity settings, respectively. For K = 100 and θ = 0.75,

the CAMT FDR ranged from 0.06 − 0.16, while for K = 500 the FDR was controlled

reasonably well for θ ≥ 0.5. The LAWS procedure also resulted in FDR values that were

above the nominal level when θ = 0.25, and some θ = 0.5 settings. Lastly, the FDR for

the SWFDR procedure was above the nominal level in all high heterogeneity settings.

In Figure 3, we present summarized power results of simulation studies. Overall, among

the procedures which control FDR in most settings (i.e., AdaPT, Adaptive BH, IHW, and

WABH) the WABH procedure had the largest power. AdaPT had larger power for θ = 0.75,

K = 500 when s ≤ 5. For θ = 0.75, the LAWS procedure controlled the FDR and had
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Figure 3: Estimated power (ETP/K) by the power heterogeneity (C), number of true

signals (K), effect size (θ), and spatial dependence (s) for M = 10000 tests and n = 200.

the largest power (CAMT has larger power only when the FDR≥ α). Further, LAWS

performed well (FDR controlled and high power) for θ = 0.5 and K = 500. As a result, the

LAWS procedure appears to perform well in high-powered settings, however, such settings

are not likely in our application of interest.

5 Data Analysis

Our sample was drawn from the population described in detail by Yourganov et al. (2015),

and follows the same inclusion/exclusion criteria, behavioral testing, and behavioral anal-

yses. In brief, all participants were adults with chronic left-hemisphere stroke and aphasia.

All individuals were scanned using a 3T MRI scanner. Lesions were obtained by hand
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by an expert on a high-resolution T2-scan for optimal identification of lesion boundaries.

Lesions were coregistered to the individual’s T1 scan. Each individual’s lesion was warped

to have a common size and shape through enantiomorphic normalization (Nachev et al.,

2008) using our clinical toolbox (Rorden et al., 2012). Therefore, for each individual, the

lesion was mapped as a binomial volume with a resolution of 181× 217× 181 voxels (each

1mm3), though many of these voxels are outside the brain or have zero damage for all sub-

jects. For this study, we included the 220 individuals enrolled at the time of these analyses.

Data from 834582 candidate voxels – voxels with damage to at least one subject – were

considered.

To fit WABH we used CAMT to estimate pm with the MMW criteria and τ = 0.9.

The side-information consists of zp
m the 3-dimensional voxel coordinates and Sm. The

relationship between zp
m and pm was similar to (8) with natural cubic splines on all three

coordinates and all two-way interactions. We used 12 degrees of freedom for the splines

which had the smallest BIC among the many values tested. The comparison methods

included the 10% Rule, BH, ABH, AdaPT, and CAMT methods. For AdaPT, penalized

regression splines with an automatic degree of freedom selection were used to relate zp
m and

pm and Sm with fm. We attempted an analysis with LAWS on this data also but it was not

computationally feasible and failed to converge. Part of the issue is that LAWS requires a

full cubic 3D structure. After removing slices with no candidate voxels more than 2× 106

tests were still present (more than twice the tests of other procedures). For AdaPT and the

WABH with AdaPT, we removed voxels with damage in less than 0.5% of subjects due to

the convergence issue. Among voxels with non-zero damage, 360038 (43.1%) have damage

in less than 5% of subjects. Codes and data to replicate the data analyses are available on

GitHub McLain and Zheng (2022).

Lesion status was regressed as a function of the Aphasia Quotient (AQ) score (Y ) and

total lesion size (X+). Checking the assumptions of all tests individually is not possible,

so scatterplots of Y and X+ were examined to determine the nature of the relationship

between Y and Xm. This should suffice since X+ is a measure of the average probability,
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Figure 4: Inconclusive voxels (top, in blue), p-value weights (middle), and significant voxels

(bottom, in red) for the WABH procedure. The plots are overlayed on a white structural

brain image for reference.

and if the average probability is related to some transformation of Y then it is plausible

that the voxel-level probabilities are related to the same transformation. Scatterplots of Y

and X+ showed a linear relationship when both were logit transformed. As a result, both

Y and X+ were included in the model after a logit transformation.

In Figure 4, we present a map of the estimated p-value weights, inconclusive voxels, and

significant voxels for the WABH procedure with prior non-null probability estimated using

CAMT. By knowing the weights, voxels, where the tests were inconclusive, can be shown.

For example, the blue voxels in Figure 4 have weights less than 0.1 and thus could very

likely contain type II errors. Such results are critical to show researchers which areas still

require further study. Other weight metrics show that the WABH with AdaPT resulted

in 36% up-weighted tests, 64% inconclusive tests, and 2.79 as the maximum weight. The
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WABH procedure with CAMT has 23% up-weighted tests, 75% inconclusive tests, and 4.84

as the maximum weight.

The WABH with CAMT, AdaPT, and CAMT find 26568, 20, and 174953 significant

voxels respectively, while WABH with AdaPT, 10% Rule, BH, and ABH find no significant

voxels. Many of the significant voxels for WABH with CAMT appear to be located in and

around the inferior frontal gyrus, which contains Broca’s region which is a main area linked

to speech production.

6 Discussion

In this paper, we proposed the use of weighted adaptive BH hypothesis testing for VLSM

analysis. While the weighted adaptive BH procedure has been proposed by others, this

paper was the first to incorporate heterogeneous prior non-null probability and proposed

approach for estimating effect sizes in a manner consistent with anticipated low power

assumptions of VLSM (see Theorem 3.1). The specific weighting scheme is available in

Algorithm 1. Our simulation studies showed that our proposed method has a better per-

formance than the other commonly used methods. Specifically, we found that while CAMT

has high power the FDR was well above the nominal level, particularly in settings with

a smaller expected effect size (θ) or a number of non-nulls (K). LAWS also had difficulty

controlling the FDR for low values of θ. An in-depth assessment of why these methods

– both of which have solid theoretical guarantees on their FDR values – fail to control

the FDR is beyond the scope of this paper. However, it is evident that these methods

have difficulty when θ and K are small. As a result, their inflated FDRs are in situations

where estimating properties about pm and fm are challenging due to low power and/or a

small number of non-null tests. The proposed method was the most powerful among those

that controlled the FDR for most settings. The findings of the data analysis are consis-

tent (though can’t be confirmed) with the findings of the simulation study, where CAMT

(AdaPT) found many more (less) significant voxels than our proposed method.

Our proposed WABH procedure ignored the dependence between the hypotheses tests.
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The WABH procedure has been shown to provide asymptotic FDR control under a weak

dependence structure on the p-values (Habiger, 2017), which is plausible for our setting.

Benjamini and Yekutieli (2001) showed that the BH procedure still controls the FDR

under a positive regression dependence structure (PRDS) and proposed modifications to

the original BH procedure for arbitrary dependence. The PRDS property is satisfied if

the test statistics are Gaussian, nonnegatively correlated and the testing hypotheses are

one-sided. Since VLSM are usually one-sided tests and the spatial correlation between the

test statistics will be (mostly) non-negative, the assumptions proposed by Benjamini and

Yekutieli (2001) may be reasonable for the application of interest. However, extending the

WABH to more general dependence scenarios is of interest.

In the data analysis, the number of discoveries was positively associated with the severity

of weighting (i.e., heavier weighting resulted in more discoveries). However, heavy weighting

results in many inconclusive hypotheses (up to 75% in our data analysis), and the regions

are likely to include type II errors which need to be studied further. P-value weighting

results in more discovered voxels by down-weighting voxels where discovery isn’t likely and

up-weighting voxels where it is. The result is more overall power in exchange for essentially

not testing some voxels. It is important to acknowledge these later regions in reporting.

This is why results such as Figure 4 should be included when they are employed so that

the impact of weighting is transparent. Codes and data to replicate the data analyses are

available on GitHub McLain and Zheng (2022).
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Supplemental Material

A. Proof of Theorem 3.1

For a fixed pm = p for all m, to prove theorem 1 we wish to find the maximum η such that

wm − wm′ ≥ 0 for Sm − Sm′ ≤ 0 for all m,m′ ∈ {1, . . . ,M}. (9)

To show that η̃ in the text is the unique solution to (9), we first establish sufficient criteria

for the weights to be non-increasing in S, then show that η̃ is the largest such η that satisfy

this condition.

Let tm(λ) ≡ t(λ, η, Sm, pm) where recall that

t(λ, η, Sm, pm) = Φ̄
[
0.5gm + log{c(λ; pm)}g−1

m

]
where

c(λ; pm) =
λ(1− pm)(1− α)

pm(1 + λα)

For a fixed pk = τ for all k, note that wm − wm′ ≥ 0 ⇔ t(λ, η, Sm, τ) ≥ t(λ, η, Sm′ , τ).

Thus, we seek the largest η such that t′(c, η, Sm, τ) ≤ 0 for all Sm ∈ [S(1), S(M)], where

S(1) = min(Sm), S(M) = max(Sm) and

t′(c, η, Sm, τ) =
d

dS
t(c, η, S, τ)

∣∣∣∣
S=Sm

= −ϕ

[(
η

2Sm

)
+ log{c(λ; τ)}

(
Sm

η

)][
log{c(λ; τ)}

η
− η

2S2
m

]
. (10)

Note that,

(i) if ηm = Sm

√
2 log{c(λ; τ)} then t′(c, ηm, Sm, τ) = 0.

Further, the derivative of the latter portion of (10) with respect to η is negative for all

η > 0 (which is sufficient since the first portion is negative for all p, S and η), thus for

ηm = Sm

√
2 log{c(λ; τ)}

(ii) t′(λ, ηm − ϵ, Sm, τ) < 0 for 0 < ϵ < ηm, and
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(iii) t′(λ, ηm + ϵ, Sm, τ) > 0 for ϵ > 0.

By (i) if Sm − Sm′ < 0 then ηm − ηm′ < 0 and by (ii) t′(c, ηm′, Sm, τ) < 0. As a result,

t′(c, η̃, Sm, τ) ≤ 0 for all Sm ∈ [S(1), S(M)] where η̃ = S(1)

√
2 log{c(λ; τ)}. As a result, (9)

holds for η̃. The fact that η̃ is the largest η to satisfy (9) follows from (iii).

B. Simulation Study Results

In Figure 5 and Figure 6, we present additional summarized results of simulation studies

with more parameters settings for WABH (WABH procedures with CAMT estimated non-

null probability and MMW η where τ = 0.5 or 0.9, WABH procedure with AdaPT estimated

non-null probability and MMW η where τ = 0.9, WABH procedure with Storey constant

non-null probability). All procedures have acceptable FDR values, and the WABH proce-

dures with AdaPT or CAMT estimated non-null probability have FDR values which are

near 0.05. The WABH procedure with constant non-null probability have similar conser-

vative FDR values to the Regular BH, Adaptive BH and Ten Rule procedures. WABH

procedures with CAMT estimated non-null probability have relatively larger power than

the other WABH procedures. When the spatial dependence is large, the WABH procedure

with AdaPT estimated non-null probability has larger power than Regular BH, but less

power than the WABH with CAMT estimated non-null probability. The power of WABH

procedure with constant non-null probability has not much difference with the Regular BH

procedure. In Figure 7, we can find that the signals will change from randomly spread to

clustered when the spatial dependence increases. Figure 8 shows the lesion status examples

for low, moderate and high power heterogeneity.
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Figure 5: Average false discovery rates (FDR) by power heterogeneity (C), number of true

signals (K), effect size (θ), and spatial dependence (s) for M = 10000 tests and n = 200.
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Figure 6: Estimated power (ETP/K) by the power heterogeneity (C), number of true

signals (K), effect size (θ), and spatial dependence (s) for M = 10000 tests and n = 200.
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Figure 7: Examples of simulation signals (light blue) with low to high spatial dependence

(top to bottom) for 500 true signals out of M = 10000 tests.
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Figure 8: Examples of simulation lesion status with low to high power heterogeneity (top

to bottom) for 500 true signals out of M = 10000 tests. Light blue refers to lesion.
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