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Abstract 

Studying cell heterogeneity can provide a deeper understanding of biological activities, 

but corresponding studies cannot be performed using traditional bulk analysis 

methods. The development of diverse single cell bioanalysis methods is in urgent need 

and of great significance. Mass spectrometry (MS) has been recognized as a powerful 

technique for bioanalysis for its high sensitivity, wide applicability, label-free detection, 

and capability for quantitative analysis. The paramount significance of single cell mass 

spectrometry (SCMS) techniques have been recognized, and they are becoming 

indispensable tools in fundamental research and studies of human diseases such as 

cancers and infectious disease. My studies consist of two major parts: (1) the 

development novel method to quantify nitric oxide (NO) using combined chemical 

reactions and SCMS techniques and (2) the investigation of cell heterogeneity using 

integrated bioinformatics tools and SCMS methods.  

In Chapter one, we reviewed the development of single cell mass spectrometry (SCMS) 

field and summarized multiple existing SCMS techniques. We also included the 

methods that have been used for quantitative studies of small molecules in single cells. 

In particular, we further developed the Single-probe, a microscale device that is ideally 

suited for SCMS study of live single cells under ambient environment, for molecular 

quantification in single cells. In Chapter two, the single-probe SCMS was coupled with 

chemical reactions to detect and quantify nitric oxide (NO) in single cells. We then 

performed detailed data analysis to study the subpopulations of cells based on their 
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NO expression levels. In Chapter three, cellular heterogeneity in infectious disease 

was revealed using the Single-probe SCMS, and we discovered the bystander effect 

of cells, which are uninfected cells adjacent to infected cells. In Chapter four, we 

developed a novel data analysis method for assessing the global metabolomic profiles 

from the SCMS experiments, allowing us to identify subpopulations and determine the 

number of subpopulations without prior knowledge. Finally, in Chapter five, a new 

machine learning method was applied to classify cells with different drug resistant 

levels. 
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Chapter 1: Single Cell Analysis 

1.1 Single cell analysis methods 

Limited by the sensitivity of instrument and sampling methods with relatively low 

spatial resolution in the past, so-called ‘bulk analysis’ has been the dominating method 

in the field of mass spectrometry (MS) for bioanalysis. However, traditional bulk 

analysis has several shortcomings that cannot be easily overlooked. First of all, the 

results of traditional bulk analysis methods are based upon the measurements of a 

population of cells, whereas cell heterogeneity, which plays an important role in 

biological activities and human diseases, is inevitably concealed. Individual responses 

from single cells might provide unique information that could revolutionize our current 

understanding. Moreover, bulk analysis methods tend to require a larger number of 

analytes, while certain samples (e.g., rare cells and limited patient samples) may not 

be easily obtained in a large quantity. Single-cell analysis, which enables studies on 

cell heterogeneity and reduces sample consumption, has become an emerging field 

in MS bioanalysis. 

To study molecular changes (e.g., RNA/DNA, proteins, and metabolites) at single-

cell level, many techniques, including DNA/RNA sequencing1, 2, Raman spectroscopy3, 

4, flow cytometry,5-8 and fluorescence optical microscopy9-11, have been developed. 

DNA/RNA sequencing techniques are well established, and these methods have been 

further developed for single cell study because of their powerful amplification 
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technologies. Compared with DNA, the high variability of RNA in single cell due to its 

selective transcription could better represent cell activity, and therefore, single cell 

RNA sequencing has been widely used in single cell studies.12, 13 Raman spectroscopy 

is a non-destructive label-free technique mainly focusing on interactions between cells 

and drug molecules as well as carrier systems and other nanomaterials.3, 4 Flow 

cytometry utilizes fluorescence of antibodies on cell surfaces to characterize the cell 

population of interest.5-7, 14 Fluorescence optical microscopy can be used to monitor 

cellular processes in single cells labeled with dye or fluorescent proteins such as GFP 

(green fluorescent protein).9 However, applications of these techniques are largely 

limited by their intrinsic drawbacks: DNA/RNA sequencing provide genetic information 

but cannot directly reflect cellular activity; only specific components are Raman or 

fluorescence active, whereas the majority of cellular species cannot be directly 

detected.  

MS is becoming a powerful bioanalytical method for untargeted analysis of 

biomolecules in single cells.15 The wide coverage of different molecules of MS allows 

for a large amount of biological information to be obtained from a minimal quantify of 

samples.16 Among different single cell MS (SCMS) methods, the vacuum-based 

techniques, including matrix-assisted laser desorption/ionization (MALDI) and 

secondary ion MS (SIMS), were first developed primarily due to their high spatial 

resolution for sampling.17, 18 However, the requirement of high vacuum environment of 

sampling and ionization and complex sample preparation can limit their applications 

such as analysis of live cells.19 With the development of novel sampling and ionization 
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methods, ambient-based SCMS techniques have been developed.20 These methods 

allow for measurement of single cells in their near-native environment with little or no 

sample preparation.  

SCMS analysis can provide broad coverages of molecules to acquire rich 

molecular information of single cells. Both qualitative and quantitative analyses are 

critical for better understanding of targets ranging from subcellular changes to 

biological systems. All SCMS methods are capable of qualitative analysis to obtain 

molecular compositions, and most of them can be used as semi-quantitative analysis 

methods to acquire the relative abundances of substances in single cells.16, 19, 21, 22 

However, only a few techniques have been established for quantitative analysis, i.e., 

to quantify the absolute amounts or concentrations of molecules of interest at cellular 

level. 

Compared with traditional quantitative studies using bulk samples, such as 

lysates prepared from populations of cells and tissues23-25, a major limitation of single 

cell quantitative analysis is the extremely small amounts of analytes in individual cells, 

and molecules with very low abundances may not be differentiated from background 

signal or noise detected for confident identification.26, 27 Other common challenges in 

SCMS measurements include matrix effect, sample loss, molecular identification, and 

instrument fluctuation.26, 27 In this chapter, we first briefly summarize multiple existing 

SCMS methods, and then focus on methods allowing for quantitative analysis of small 

molecules. 
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1.2 Single cell mass spectrometry 

1.2.1 Vacuum-based techniques 

Ionization is important as it is the first step to convert analytes into ions for MS 

analysis. Vacuum-based MS methods generally provide high sensitivity and high 

spatial resolution, making them to be naturally considered for single cell analysis. The 

SCMS technology development in this category started with secondary ion mass 

spectrometry (SIMS), followed by matrix-assisted laser desorption/ionization (MALDI), 

and lastly matrix-free laser desorption/ionization (LDI).  

1.2.1.1 Secondary ion mass spectrometry (SIMS) 

The first reported SIMS experiment was performed by Herzog and Biehböck in 

194928, and this technique was further developed for single cell analysis in 1960s29-31. 

SIMS allows for sensitive surface composition analysis by sputtering surface analytes 

with a focused primary ion beam (e.g., 16O-, 16O2+, 40Ar+, Xe+, SF5+, and Cs+) to 

generate secondary ions from surface molecules. These techniques generally provide 

superior spatial resolution (e.g., nanoSIMS can reach a spatial resolution as high as 

50 nm32). However, there are several major disadvantages of analyzing small 

biological samples (e.g., single cells) using these methods. First, the vacuum needed 

for the instruments is very high (e.g., ∼1.9 × 10−9 mbar), requiring powerful pumping 

systems and careful sample preparation. Because the primary ion beam can also 

collide with gaseous molecules present between the primary ion source and the 

surface sample, the produced interfering ions can affect the analysis of cellular 
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species.33 In addition, extra care is needed during sample preparation and 

measurement because the surface of analytes could absorb gas particles during these 

processes.21 Second, conventional SIMS ion beams have relatively low ionization 

efficiencies of biomolecules (e.g., a typical ionization efficiency of 10−4), which 

aggravate challenges of analyzing single cells.34, 35 Third, as a hard ionization method, 

analytes undergo bombardment by high-energy ion beam, resulting in large numbers 

of fragments that are challenging for data analysis.35, 36 The chemical damage 

decreased as atoms in the primary beam carried a smaller share of the incident kinetic 

energy, leading to the development of a new ion beam known as gas cluster ion beam. 

35, 37 In this chapter, we mainly focus on the discussion of two well-established methods, 

time-of-flight (TOF)-SIMS21, 34, 38-41 and Nanoscale SIMS (Nanoscale SIMS)32, 42, 43, 

and one new technique, gas cluster ion beam secondary ion mass spectrometry 

(GCIB-SIMS)37, that have been applied for single cell analysis.  

I. TOF-SIMS 

TOF-SIMS couples pulsed primary ion beam with a TOF analyzer, which detects 

ions based on their difference of drift time in field-free region. The utilization of the 

TOF analyzer enables the analysis of the precursor ions and their fragments at the 

same time, allowing for better identification abilities and enhanced mass 

coverage compared with conventional SIMS methods using other types of mass 

analyzers such as ion microscope analyzer and quadrupole.15, 17, 44  

TOF-SIMS has been applied to various mass spectrometry imaging (MSI) studies 

of a broad range of species (e.g., lipids40, 45, 46, metal ions47, 48, and metabolites49) with 
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spatial resolutions high enough for SCMS experiments (e.g., as high as 100 nm). MSI 

can provide spatial distributions of molecules in 2D, and 3D space. Currently, there 

are two strategies for MSI studies to obtain 3D information: microtomy and ablation. 

Microtomy has been widely used in nearly all MSI methods to prepare tissue 

samples.46, 50, 51 In 3D MSI studies, samples are embedded in a supporting medium, 

such as nitrocellulose in freezing temperature (~ -20℃). 

and sliced into micrometers size films (6-20 um). Multiple 2D MS images from 

consecutive slices are used to obtain 3D contribution. In single cell studies, microtomy 

has also been applied to slicing mouse germinal vesicle (GV) oocyte cells into 

successive section stacks (with 2 μm in thickness), which were then used to 

reconstruct 3D single cell MS images, as demonstrated by Pogorelov et al.52 Ablation 

does not require slicing samples, so this technique not only reduces the sample 

treatments, but provides a very crucial advantage to handle samples in small sizes 

such as single cells.39, 41, 53 Ablation is a combination of dynamic and static SIMS. 

Dynamic SIMS uses a higher dose of primary ions (sputter beam) to remove several 

top monolayers of the sample surface, whereas static SIMS utilizes a secondary ion 

beam (analytical beam) to sputter only the topmost atomic layer.21 Molecules on 

sample surface are desorbed and ionized by analytical beam, then a thin layer on the 

surface is ablated by sputter beam automatically. The ablation depth need to be 

measured since the ablating efficiency varies and is influenced by surface 

temperature.21 Atomic force microscopy (AFM) , scanning electron microscopy 

(SEM),38, 54, 55 and multilayer Irganox standard samples56-58 has been applied to 
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measuring the ablating efficiencies (depth of each time of ablation). Single cell 3D-

MSI-TOF-SIMS has been used in many different studies such as chemotherapeutic 

drug delivery (Fernandez-Lima et al)41 and proteins and lipids (Chen et al).39 However, 

the depth resolution of ablation methods is normally better than microtomy methods 

since microtomy depth resolution is limited by the sectioning methods.22  

II. Nano-SIMS 

NanoSIMS provides further improved spatial resolution (e.g., as high as 50 nm) 

for the detection of elemental and isotopic composition in samples. Although the 

fundamental principles of nanoSIMS and conventional SIMS techniques are similar, 

the major differences between them arise from the primary ion beam and mass 

detector. NanoSIMS usually uses a continuous primary ion beam with the most 

electropositive (Cs+ for negative ion mode) or electronegative (O‒ or O2‒ for positive 

ion mode) to achieve the highest ionization efficiencies. Different from TOF-SIMS, 

nanoSIMS is equipped with magnetic sector mass analyzer. A high lateral resolution 

(e.g., as high as 50 nm) can be achieved due to the combination of multiple factors, 

including the type of primary ion source, optimized ion beam optics, and specially 

designed mass analyzer.59 NanoSIMS has become an indispensable tool for analyzing 

biomaterials and biological samples requiring ultra-high spatial resolution (e.g., sub-

cellular) as discussed in recent reviews.32, 42, 43, 60-63  

III. GCIB-SIMS 

Although most SIMS-based techniques are well-known for high spatial resolution 

but a low mass range (< m/z 1000) measurements, a new generation of ion beam 
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source, GCIB (gas cluster ion beam), has been developed to shift their capabilities 

from fragment detection to molecular profiling.35 The clusters ions in GCIB-SIMS 

instruments are created through a supersonic expansion where high pressure gas 

(~106 psi; most likely noble gases such as helium or argon) expands and cools in a 

vacuum (~1 psi).37 This type of new ion beam sources significantly improved the 

ionization efficiency and expanded mass range because of the relatively large size 

and low energy of the clusters, allowing for study of relatively large biomolecules, such 

as lipids and fatty acid, from single cells with high spatial resolutions (1µm).35, 45, 64 

However, comparing with traditional SIMS, GCIB-SIMS has relatively low spatial 

resolutions and it is not commercially available for all users. 

1.2.1.2 Laser desorption/ionization 

Laser desorption/ionization (LDI)-based MS methods use a laser beam at certain 

wavelength to illuminate on sample surface where certain molecules are desorbed 

and ionized. After the first laser machine has been developed in 1960 by Maiman, LDI 

was observed by Honig and Woolston in 1963 that the laser induced emission of 

different types of charged particles, such as electrons and ions, and neutral atoms 

from different solid surfaces.65 However, this technique had not been widely used until 

the 1980s due to the limited coverage of types of molecules that could be ionized. The 

energy from the laser beam with certain wavelength can only be absorbed by specific 

molecules. The major LDI-based techniques include matrix assisted laser 

desorption/ionization mass spectrometry (MALDI-MS) and matrix-free LDI methods. 

I. MALDI-MS.  
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MALDI-MS was developed in the 1980s. This strategy significantly increased the 

ionization of larger biomolecules (up to 100k Da) such as proteins and polymers.66, 67 

The application of matrix, usually organic compounds with strong UV absorption, 

enables efficient absorption of the laser energy and ionization of the applied matrix 

molecules. The ionized matrix molecules transfer the energy to the analyte molecules 

for desorption, and the ionization of analytes occurs through interactions with ionized 

matrix molecules.68 MALDI-MS measurements generally render high spatial 

resolutions, providing a great potential for subcellular analysis as reported as early as 

1990s.69-71 High vacuum environment is required for MALDI to avoid the interference 

of the laser and atmosphere when the laser ionization technique was developed.17 

However, the pretreatments by matrix and requirement of high-vacuum working 

environment always draw concern about the alternation of the sample (e.g., 

delocalization of molecules). In addition, traditional matrix molecules commonly induce 

interferences with the detection of low-molecular weight compounds (<1,000 m/z), 

limiting studies of small molecules such as metabolites and drug compounds.72-74 

Atmospheric pressure (AP) MALDI-MS, in which desorption and ionization occur at 

ambient environment, can simplify the sample pretreatment procedures and increase 

experiment throughput.75  

This first MALDI-MS experiment used a 266 nm laser to analyze a mixture of 

alanine and tryptophan.76 Then, a variety of different matrices have been developed 

for detection of different type of analytes. For example, as a popular matrix, α-cyano-

4-hydroxycinnamic acid (CHCA)73 performs well at 337 or 355 nm wavelength for 
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analyses of peptides, nucleotides, and lipids. Due to its excellent capability of spatially-

resolved analysis, MALDI has become one of the most popular ion sources in MSI 

studies, including at the single-cell level. Based on the nature of different species of 

interest, detailed procedures of sample preparation for MALDI-MSI experiments may 

vary, but tissue sectioning and matrix application are generally required prior.77 With 

different types of matrix molecules, the coverage of MALDI-MS can be optimized to 

cover lipids77, 78, peptides79, proteins80, or even polymers81. MALDI-MS has become 

one of the most commonly used in tissue imaging and single cell analysis78 and was 

commercialized for general subcellular studies. The quantitative studies on single cells 

using MALDI-MS are reviewed in the next section.  

To date, although most commercial MALDI–MSI instruments enable analysis of 

samples with reasonably high spatial resolutions (e.g., pixel sizes ranging between 5 

and 20 μm), the ion yields are <10−6 for many types of analytes82, 83, limiting their 

abilities for single cell analysis. Numerous efforts have been devoted to improving the 

spatial resolution and ionization efficiency, while suppressing matrix interference, to 

promote single cell studies. The laser-induced post-ionization (MALDI-2) utilizes two 

pulsed lasers: one for analyte desorption and the other for ionization in the expanding 

particle plum. MALDI-2 greatly enhanced the ion yields for biomolecules such as lipids 

and metabolites. Combined with transmission mode (t-) of laser desorption, the t-

MALDI-2 technique achieved a small pixel size of 600 nm.84   

The selection of suitable matrix compounds is crucial for a successful MALDI 

experiment. Even though numerous efforts have been made to search for matrix 
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molecules with minimal interference at low m/z range, there is no report of perfect 

matrix with clean background that can cover the whole mass range. To minimize 

undesired matrix interference, different strategies have been adopted. First, inorganic 

materials, including nano cobalt oxide, carbon nanotubes, gold and silver 

nanoparticles, graphene, and nanostructure-based surfaces, were adopted in place of 

traditional organic matrices. Second, functionalized surfaces and substrates have 

been used to replace matrices. For example, self-assembled surfaces (SAMs) have 

highly organized, reproducible surfaces, where the samples are pretreated with a 

cationic solution without using any solid matrix.85 Another approach to surface 

modification is achieved by desorption ionization on porous silicon (DIOS), introduced 

by the Siuzdak group in 1999, that can be used for analyte deposition during sample 

preparation.86 Many other methods, such as using sol-gels and polymer coatings, 

have also been developed to modify the surface for sample loading.87, 88 

II. Matrix-free laser desorption/ionization (LDI)  

To eliminate the interference of matrix molecules, matrix-free laser 

desorption/ionization mass spectrometry (LDI-MS)89, 90 and label-assisted laser 

desorption/ionization mass spectrometry (LALDI-MS)91, 92 have been developed.74 

These techniques have been used for MS studies of relatively large cells such as 

plant93 and algae cells94. 

In the LALDI experiments, target molecules (e.g., peptides) need to be labeled 

with certain functional groups (e.g., fluorophores or polyaromatic) for desorption and 

ionization by soft lasers with visible wavelengths. Although some of these LDI 
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approaches are claimed as matrix-free, it is rare for them to completely avoid using 

any intermediate to analyze biological samples, primarily because of the complexity of 

biomolecules that require different levels of desorption and ionization energy.74 In fact, 

in previous experiments without using any intermediate, such analysis of unicellular 

microalgae by Pohnert et al.95 and studies of genus Hypericum by Svatos et al.93, the 

molecular coverages are generally lower than MALDI. Hence, an ideal material for 

universal coverage has not yet been reported. 

1.2.2 Ambient techniques 

Although the above vacuum-based MS techniques have been well demonstrated 

for single cell studies, alternation of sample environment, such as matrix application 

and requirements of high-vacuum, can alter metabolomic profiles of cells compared 

with those in their living status. To overcome these challenges, numerous ambient 

SCMS techniques have been designed. Compared with vacuum-based techniques, 

most ambient-based techniques require less or even no sample preparation, allowing 

for preservation or minimized alteration of the cell environment. However, in exchange 

for the simplified sample preparation process, additional time is often needed for single 

cell sampling; therefore, most ambient-based techniques generally have relatively 

lower throughput compared with vacuum-based methods. Most of these ambient 

SCMS techniques generally use physical probes, laser, or charged solvent droplets 

for analyte sampling and ionization.  

1.2.2.1 Probe-based methods 

I. Direct probe suction 
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Since the size of a single cell can be as small as micrometer scale, it is challenging 

to use regular sampling and preparation methods adopted in bulk analysis. 

Microprobes stratified the requirements of single cell analysis.  

The idea of microprobe was first proposed by Masujima in 1999,96 whereas the 

first SCMS experiment was successfully carried out using live single-cell video mass 

spectrometry (live single-cell MS or Video-MS) in 2008.97 In their studies, cells were 

monitored by a video-microscope, and the tip (1-2 µm) of a gold-coated capillary nano-

ESI emitter was used as a micropipette for sucking the cell contents (cytoplasm or 

organelle). The nanoESI emitter was then used as an ion source for MS analysis. The 

results showed the specific peaks of cytoplasm, organelle, cell culture medium, and 

solvent could be distinguished through statistical analysis (t-test). Later, Masujima 

applied the technique to study plant cells, and they also improved the coverage for 

larger molecules, such as lipids, by sonicating the tips containing single cell.20, 98, 99 In 

2016, the same group reported quantitative analysis using the live single-cell mass 

spectrometry.100 To further improve this technique, many efforts have been made such 

as coupling it with fluorescence imaging101, laser microscopy100, and micro-droplet 

array device102. 

Single cell sampling can be achieved through capillarity, by which cellular 

contents can be spontaneously drawn into capillaries without a suction force provided 

by a pump. Vertes’ group reported capillary micro-sampling system coupled with ion 

mobility MS detection for single cell analysis.103 A glass capillary was pulled to form a 

sharp tip (~1um), and the tip was inserted into the plant cells. Due to the capillary 
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action and turgor pressure, the cytoplasm automatically entered the glass capillary. 

After suction of cellular contents, the capillary was backfilled with 1 µL electrospray 

solution, and a platinum wire was inserted from the back to contact the electrospray 

solution. During the MS analysis, an ionization voltage (2 kV) was applied on the 

platinum wire to induce nanoESI. About 200 peaks were found in the mass spectra, 

and the application of ion mobility led to resolving 400 different ions from these peaks. 

Significant differences have been found between trichome and the other two types of 

cells, but not between pavement and basal cells. In 2015, 22 metabolites and 54 lipids 

were identified by the same group from human hepatocytes (HepG2/C3A) using 

similar techniques.104 In 2018, they also measured peptides in single neurons of the 

mollusk Lymnaea stagnalis.105 Cytoplasm and nucleus were separately analyzed by 

coupling the capillary micro-sampling system with fluorescence microscopy. 

Nonami’s group introduced cell pressure probe.106-108 To reduce the sample 

preparation time, they modified the previous cell pressure probe109-111 to enable direct 

injection via the ESI source of a Orbitrap mass spectrometer.108 Briefly, a high voltage 

was applied from a metal wire coiled around the capillary tip or an inserted internal 

wire electrode from the back of the ESI emitter.  

More methods have been developed based on similar concepts. For example, 

micropipette needle, which is a multifunctional device, was developed by the Yang 

group for SCMS studies.112 As a sampling device, the micropipette needle is large 

enough (~15 µm tip size) to extract an intact cell, instead of inserting into a single cell, 

for sampling single cells. The micropipette needle was also used as the container for 
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cell lysis (by organic solvents such as acetone and acetonitrile) and Paternò–Büchi 

(PB) reaction (assisted by UV irradiation) to determine the double-bond position in 

unsaturated lipids (through analyses of diagnostic MS2 fragments) at the single-cell 

level.  

The T-probe is another device developed by the Yang group in 2018 for direct 

suction of contents from single cells for MS studies.113, 114 In a T-probe, three fused 

silica capillaries (i.e., solvent-providing capillary, nanoESI emitter, and cell probe) 

sandwiched by two polycarbonate slides to join together at a T-shaped junction. The 

solvent is provided through one horizontal channel (liquid providing capillary) and flows 

towards the other horizontal channel (nanoESI emitter). Unlike other probes for direct 

suction using mechanical devices, such as a syringe or microinjector, to withdraw 

analytes from single cells, the T-probe takes advantages of the self-aspiration in 

nanoESI processes. During the SCMS experiment, ESI induces liquid displacement 

inside the nanoESI emitter and further generates a suction force in the cell probe, 

which is inserted into a cell. Cellular contents are extracted by the cell probe, mixed 

with the solvent from the solvent-providing capillary, and then immediately delivered 

to the nanoESI emitter for MS analysis.  

II. Probe microextraction by solid or liquid phases 

In addition to direct, non-separative extraction of cellular contents, microscale 

extraction can be performed through solid or liquid phases within the device to 

selectively extract or preconcentrate analytes of interest from the original cellular 

contents. In these processes, the extraction phase absorbs or dissolves the analytes 
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during sampling processes. Due to the small sample size for single cell analysis, 

microextraction needs to be performed using a lower phase ratio of extractant to 

sample.115 In SCMS studies, microextraction is operated using modified tips or MS 

compatible solvents, and experiments are conducted under ambient and open-air 

conditions.  

There are two microextraction-based methods reported in previous studies: solid-

phase microextraction (SPME)116 and liquid-liquid microextraction (LLME)117. SPME 

utilizes a solid needle as the extractant to insert into a single cell, while LLME utilizes 

organic solvents, such as methanol or acetonitrile, for extraction in ambient conditions. 

LLME methods usually have no requirement of another solvent for MS analysis, thus 

tend to have a higher throughput compared with SPME. More detailed explanation for 

SPME-AMS have been provided in Reyes-Garces’ paper.118 

The sampling process of the SPME based single cell ambient MS (SPME-SC-

AMS) is operated by inserting a needle in a single cell to absorb cellular contents onto 

needle surface. Since molecules in the solvent interacts with the solid sorbent on the 

probe during SPME-SC-AMS, i.e., selective partitioning between a solid sorbent and 

a liquid sample, the molecules in single cell are absorbed by the probe for the further 

MS analysis. However, the extraction efficiency is a primary concern for SPME-SC-

AMS. In order to enhance the extraction efficiency, tips were modified or coated with 

different materials, which could play a significant role in analysis. During MS analysis, 

the absorbed cellular analytes are released and ionized thought two different 

strategies. In the first strategy, the absorbed analytes need to be redissolved by 
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dipping the tips inside an organic solvent, which is then ionized for MS analysis. This 

concept was first introduced by Hiraoka et al. in 2012. Luan et al. modified this 

technique by using coated probes, surface-coated probe nanoelectrospray ionization 

MS (SCP-nanoESI-MS), to enhance the extraction efficiency in studies reported 2014 

and 2015.119-121 Specifically, a tungsten microdissecting needles (~1 µm tip size) 

coated with silanization (n-Octadecyldimethyl[3-(trimethoxysilyl)propyl]ammonium 

chloride) was inserted into single cell, aiming to enhance the adsorption of cellular 

contents. The probe was then inserted into a nanoESI emitter, which was preloaded 

with desorption/spray solvent (1 µL of methanol), for a short period of time (~30 s) to 

desorb extracted molecules. An ionization voltage was then applied on this nanoESI 

emitter for ionization and MS analysis. Quantitative analysis of perfluorinated 

compounds (PFCs) from single egg cells of Daphnia magna was performed using this 

technique. In the second strategy, the absorbed analytes are ionized with the 

assistance of solvent spray. As reported by Suzuki et al. in 2007, an ionization voltage 

was applied on the probe (a rust-free high-quality stainless-steel needle) upon 

finishing sampling a single cell, and the solvent (normally organic solvent) was then 

sprayed on the probe. With the assistance of the solvent and high voltage, analytes 

absorbed on the probe were ionized.122 Similar desorption and ionization methods 

were used by the DSP, in which the auxiliary solvent droplets were generated by a 

piezoelectric inkjet system.123 Many metabolites, including amino acids and flavonoids, 

in single plant cells were successfully analyzed using the DSP method. By reducing 
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the solvent volume and modifying tip surfaces differently, the throughput and 

sensitivity were further increased.124   

In LLME-based SCMS studies, organic solvents, such as methanol and 

acetonitrile, were frequently used as extraction solutions for small molecules due to 

their ability to break cytomembrane and high extraction efficiency. The basic strategy 

is to provide a solvent, normally by capillary, for dissolution or extraction of single cell 

contents, then deliver the solution to mass spectrometers for subsequent analysis. 

Solvent choice and the way of solvent delivery can dramatically influence the 

extraction and MS profiling.  

Nanospray desorption electrospray ionization (nano-DESI), which used a primary 

capillary for solvent delivery on sample and a secondary capillary for solution 

extraction and ionization, was introduced by the Laskin group in 2012 for MS tissue 

imaging.125 A spatial resolution of 12 µm with high signal-to-noise ratio in each 

individual pixel was reached, enabling its functions for SCMS studies. In 2017, 

Lanekoff et al. detected amino acids and plasmalogens in single cheek cells with nano-

DESI.126 

Droplet-based microextraction was developed by the Zhang group in 2016, and 

this technique has been used to detect numerous metabolites, such as uridine 

diphosphate N-acetylglucosamine (UDP-Glc-NAc), glutathione(GSH), and adenosine 

monophosphates, from breast cancer cells.127 In 2018, the same group further 

combined their droplet extraction technique with Pico-ESI-MS (pulsed direct current 

electrospray ionization mass spectrometry). Compared with nanoESI, the flow rate of 
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pico-ESI was dramatically reduced, leading to significantly increased ion signal 

duration (i.e., ~2 mins) and improved molecular identification (>300 phospholipids 

were identified) from single cells.128 

In 2014, nanomanipulation-coupled nanospray MS was introduced by Phelps et 

al.129 This method used one quartz probe to puncture the cell membrane, and then 

used a nanoESI emitter to extract analytes from the cell. Using the “two-tip” method 

can reduce the risk of tip clogging of the nanoESI emitter during cellular analytes 

extraction. In their studies, a Pd/Au-coated nanoESI emitter was pre-filled with 10 uL 

solution (chloroform:methonal (2:1, v/v) with 0.1% ammonium acetate). The solvent in 

the nanoESI emitter was injected into cells at a pressure of ~5 psi for 500 ms to extract 

analytes, such as triacylglycerol (TAG). The solution was drawn back at a pressure of 

~20 psi, and the nanoESI emitter was then transferred to a mass spectrometer for 

analysis, with a focus on TAG difference between healthy and tumorous adipocytes. 

In 2015, Phelps et al. used this technique to expand the molecular coverage to cellular 

lipids.129 

1.2.2.2 Desorption/ionization 

The concept of desorption electrospray ionization (DESI) was introduced by the 

Cooks group in 2004, focusing on a direct surface analysis.130 By spraying charged 

droplets generated by ESI onto the sample surface, molecules on the sample surface 

are desorbed and ionized in the atmosphere. DESI has been widely used in MSI of 

lipids131 and proteins.132 133 With improved spatial resolution, this methods was first 

applied on single cell analysis in 2012 and revealed significant differences in the lipids 
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of mouse oocytes at different status (unfertilized oocytes, two- and eight-cell 

embryos).134  

Lasers can also be a source of energy for the desorption/ionization of sample 

molecules. The first laser assisted ambient MS technique is laser ablation electrospray 

ionization (LAESI)135, which was introduced by Nemes and Vertes in 2007. In this 

study, an etched optical fiber tip was used to transmit mid-IR laser pulses to sample 

for ablation. Desorbed molecules were intercepted by the electrospray and delivered 

to the mass spectrometer. In 2009, the first single cell application of LAESI-MS was 

reported by Vertes et al in the studies of Allium cepa, Narcissus pseudonarcissus bulb 

epidermis, and single eggs of Lytechnius pictus.136 Later in 2010, LAESI-MS was 

applied for MSI of metabolites as well.135 Laser desorption/ionization droplet delivery 

mass spectrometry (LDIDD-MS) is another laser assisted desorption/ionization 

ambient MS technique, and it was first introduced by the Nam and Zare groups in 

2016.137 In their studies, laser (15Hz, 266nm) and DESI (methanol:waster, 1:1 v/v, 

5kV) were combined for desorption/ionization. With the assistance of laser, DESI 

created around 10 times higher extracted ion current. MSI experiments of mouse brain 

tissue and single cell analysis of HEK 293T cells were performed using this integrated 

method with 3 µm spatial resolution. 

1.2.2.3 High throughput ambient techniques 

Ambient SCMS techniques are usually coupled with microscopes to monitor the 

sampling process, providing users a more intuitive view of how single-cell analysis is 

performed. Although numerous ambient probe-based methods have been developed, 
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experiments generally require precise operating stage system, locating target single 

cells, and carefully optimizing experimental conditions; therefore, these methods 

generally have relatively lower experiment throughput comparing to vacuum-based 

SCMS techniques. To overcome this drawback, developing fluidic-based high 

throughput ambient SCMS techniques is regarded as an important direction. 

Inductively coupled plasma (ICP)-MS has been widely used for metal ion detection.138 

In 2018, the Yu and Wang groups developed the MicroCross sampling interface to 

quantify nanoparticles using ICP-SC-MS instrument.139 A MicroCross adapter was 

connected by four quartz capillaries. The organic-continuous phase was injected from 

the first and second head-on flowing inlets, and the dispersed phase (i.e., cell 

suspension) was delivered from the third inlet of the MicroCross adapter. Mixing these 

two phases formed monodisperse droplets in the transport capillary, which was 

connected with the fourth inlet of the MicroCross adapter, to introduce single cells to 

ICP-MS. High throughput (~12 ms/cell) experiments were conducted to reveal cell 

heterogeneity based on the significant discrepancy of cellular uptake of nanoparticles 

(AuNPs).  

Inertial-force-assisted droplet-free single-cell sampling (IDSS) was performed 

using eight circle spiral channels with a series of periodic dimensional confinement 

micropillars.140 Inside these channels, 104 periodic dimensional confinement 

micropillars were fabricated to accelerate Dean-like secondary flow to align and 

sample single cells from cell suspension. Quantitative SCMS analyses were 

performed using this setup as described in the next section. To perform quantitative 
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analysis, another channel was used to provide the internal standard solution. This 

channel was connected with the outlet of the cell sample channel, and the mixture was 

measured by ICP-MS. High through analyses (3.7 ms/cell) were carried out to 

determine the accumulation of Cu2+ by MCF-7, bEnd3, and HepG2 cells to study cell 

heterogeneity. 

Single-cell printer (SCP) is a commercially available device (Cytena Gmbh, 

Freiburg, Germany) that isolates single cells based upon microscopy and droplet 

operation. Cell suspension was continuously delivered to the nuzzle, which was 

monitored with microscopic devices, before being ejected. Droplets containing no cell 

or more than one cell were removed by vacuum suction to ensure single-cell isolation. 

Cahill et al. combined a SCP with the liquid vortex capture-mass spectrometry (SCP-

LVC-MS) for high-throughput SCMS measurements in 2019.141 SCP has also been 

adopted in single-cell proteomics studies, but this is out of the focus of this chapter.  

High throughout SCMS experiments can also be conducted without using 

microfluidics or SCP. The intact living-cell electrolaunching ionization mass 

spectrometry (ILCEI-MS), which was introduced by the Wang group,142 stands out due 

to its relatively simple design. Cell suspension was put in an in-house-built pressurized 

chamber, which was sealed and connected to a capillary with a constant inner 

diameter and a thin-walled tip. One end of the capillary was dipped into the cell 

suspension, and cells were introduced into the capillary driven by pressure from 

nitrogen gas. Because the inner diameter of the capillary was slightly smaller than 

cells, single cells moved in sequence to achieve single-cell isolation. A stainless-steel 
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needle was inserted in the cell suspension to apply a high voltage (1-2 kV), and the 

electric filed between the emitter and MS inlet induced single-cell electrolaunching. 

The ionization of single-cell components occurred in the ion-transfer tube of the mass 

spectrometer. More than 700 ions from over 5,000 cells were detected with a 

throughput of 51 cells/min.  

1.3 Single-probe single cell mass spectrometry 

The Single-probe, a miniaturized multifunctional device for in situ and real-time 

sampling, was introduced by the Yang group in 2014.143 A dual-bore quartz needle 

was pulled on one side to form a sharp tip (~10 um), and a solvent-providing capillary 

and a nano-ESI emitter were inserted into the two channels from the back. During 

analysis, the solvent-providing capillary connected with a syringe continuously 

provides solvent. Liquid junction is formed at the dual-bore quartz needle tip, which is 

inserted into a single cell, to extract cellular analytes. The solution containing cellular 

analytes is automatically drawn to the nano-ESI emitter channel through self-

aspiration followed by ionization. Extracted metabolites detected from MS include 

lipids, fatty acids, amino acids, and adenosine monophosphates (AMP, ADP, and 

ATP).112, 144-146 In 2019, glass chips containing microwells were adopted as a substrate 

to reduce sample loss during the quantitative analysis of anticancer drug amounts. 

The results showed board distribution across different cells, indicating the cell 

heterogeneities in pharmacokinetics.147 Using the Single-probe combined with an 

integrated cell manipulation system, studies have been extended to include both 
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adherent and non-adherent cells in 2021.148, 149 Recently, Lu group modified the 

Single-probe by immobilizing TiO2 onto the inner wall of the transfer capillary150 and 

applying porous graphitic carbon for the Single-probe mass spectrometry imaging 

(MSI) to enrich the signals of low-abundance sphingolipids151.  

1.4 Quantitative mass spectrometry 

While most SCMS methods excel in qualitatively examining molecular 

compositions, the pursuit of quantitative chemical insights, particularly concerning 

subcellular spatial distribution, remains a relatively unexplored frontier due to inherent 

limitation in many existing SCMS approaches. Quantitative SCMS techniques have 

emerged, predominantly building upon their qualitative counterparts, with 

advancements achieved through heightened instrument sensitivity, improved 

microscope resolution, more precise liquid handling, and the incorporation of 

standardized reference materials. These developments are instrumental in addressing 

the challenge of obtaining quantitative chemical information at the subcellular level, a 

fundamental requirement for comprehending cellular functions. 

1.4.1 Relative quantification 

As a comprehensive method, MS has the ability to obtain vast amounts of 

analytes at the same time. It is almost impossible to obtain absolute values for all 

analytes. Hence, relative quantification has been applied to compare the abundance 

of specific molecules. Due to the fact that absolute intensity varies for each scan, 

reference is required to normalize in standard. For an analysis using a certain 
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instrument, the total ion count (TIC) for each scan tends to be consistent. Hence, the 

signal from a uniform ‘constant’ background can potentially serve as a reference to 

measure the change of other species.16 This technique is predicated on the consistent 

and reproducible response exhibited by a specific substance in all samples subjected 

to identical experimental conditions. When the observed variations in concentration 

are substantial enough to yield meaningful conclusions, this method can be readily 

employed. Notably, it offers the advantage of applicability to all components within a 

complex mixture without the necessity of introducing reference standards. 

Nevertheless, this method is not without its critiques, primarily concerning its 

susceptibility to signal instability in the chosen reference substances, and its 

vulnerability to potential errors stemming from the suppressive influence of competing 

ions. 152 Hence, introducing a chemical as internal standard is the other approach. 

Comparing with TIC normalization, this method has better stability. However, 

introducing a chemical could cause potential suppressive issue. 

1.4.2 Absolute quantification 

In traditional mass spectrometry (MS) analysis of bulk samples, the use of internal 

standards for absolute quantification is a common practice. 100, 153-156 However, in the 

context of absolute quantification, particularly in single-cell studies, a more stringent 

set of criteria is necessary compared to internal standards used for relative 

quantification. First and foremost, to account for disparities in ionization efficiency, it 

is imperative that the internal standard closely resembles the chemical structure of the 

compound to be quantified, preferably in the form of an isotopically-labeled isomer. 
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Secondly, these internal standards must also exhibit a similar abundance to the target 

compound. This similarity is crucial to prevent misleading artifacts arising from 

competition during the ionization process. Lastly, it is essential to recognize that a 

single internal standard may not suffice for simultaneously quantifying multiple 

components in a single assay. As a result, corrections for the recovery rate of both the 

internal standard and the target molecules must be determined and applied. 

The materials in Chapter 1 are adapted from an article under review in TrAC.  
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Chapter 2: Quantification of Nitric Oxide (NO) in 

Single Cells using the Single-Probe Mass 

Spectrometry Technique 

2.1 Introduction 

In life processes, bioactive small molecules play critical roles such as cell signaling, 

regulation of enzyme activities, and treatment of diseases. Among all bioactive small 

molecules, nitric oxide (NO) is particularly important, and its production and abundance 

are tightly relevant to many physiological and pathological processes.157 NO is a 

signaling molecule regulating cell survival and proliferation in diverse biological 

systems.157-159 For example, in the cardiovascular system, NO regulates blood flow 

and blood pressure. The recognition of its role as a cardiovascular signaling molecule 

has been acknowledged with the 1998 Nobel Prize in Physiology or Medicine.157, 160-

163  

In biological systems, NO can be produced from exogenous (i.e., provided by NO 

donor compounds) and endogenous (i.e., produced by cells) resources. Exogenous 

NO donor compounds have been applied to the treatment of heart and blood pressure 

related disease.164, 165 For example, nitroglycerin (or glyceryl trinitrate) and sodium 

nitroprusside (SNP) contain NO in their structures, and they release NO through cell 

metabolism; they are widely used for the treatment of high blood pressure and heart 

failure.166-168 Endogenous NO can be generated by cells through the catalytical 
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reaction of the NO synthases (NOSs, a family of enzymes catalyzing the production of 

NO).165 For example, the anticancer drug doxorubicin (DOX) can promote the activities 

of NOSs, resulting in increased NO abundances in cells. 169-171 

The production and abundance of NO are tightly relevant to human health and 

diseases. For example, in the immune system, low concentrations of NO produce anti-

inflammatory effects by inhibiting the proliferation of T helper cells; however, high 

concentrations of NO lead to strong proinflammatory responses under abnormal 

conditions.172-176  

Similarly, the concentration of NO directly influences the angiogenesis in tumors: 

low concentration of NO promotes the growth and nutrition of tumors due to the 

formation of blood vessels, whereas high abundances of NO can suppress tumor 

growth.177, 178 Previous studies showed the NO level in cancer cells changed after the 

anticancer drug treatment.179, 180 Therefore, monitoring the abundances of NO in cells 

is important for both fundamental biological sciences and human diseases.  

The abundances of NO in tumors can significantly vary from cell to cell. Factors 

affecting its intracellular abundances include the intrinsic cell heterogeneity, variances 

in the expression of NOSs,181 and heterogeneity in immune response.182 Cell 

heterogeneity has been observed in most biological systems and multiple human 

diseases such as cancer. Particularly, cell heterogeneity is regarded as a major 

challenge for cancer studies and treatment.183, 184 Due to cell heterogeneity, NO levels 

in different single cells vary significantly.176, 185, 186 However, quantitative measurement 

of NO in single cells is very challenging, primarily due to its extremely short lifetime 
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(<1s) and low amounts (10−19 Mole) in single cells as well as very complex cellular 

species.187  

A variety of different methods have been developed for a quantitative analysis of 

intracellular NO. These analytical techniques include fluorescence188-190, 

colorimetric188, 191-193, chemiluminescence194-196, electrochemical197-199, gas 

chromatography200, 201, electron paramagnetic or spin resonance (EPR or ESR) 202-205, 

and magnetic resonance imaging (MRI).206, 207 Among these methods, fluorescence-

based techniques are commonly used, and some of them have been adopted in 

studies of single cells.208, 209 Because NO cannot directly produce fluorescence, probes 

(e.g., 2,3-diaminonaphthaline (DAN)) are needed to react with NO and produce 

fluorescent products for detection.210 However, fluorescence-based methods have 

several drawbacks, including interference of cellular autofluorescence and side 

reactions of NO with other species.210 In addition, these techniques are unable to 

detect nonfluorescent molecules, limiting their applications to studying broader ranges 

of cellular species.  

Mass spectrometry (MS) is a powerful tool to sensitively detect and accurately 

identify molecules at low abundances in a complex matrix.211-213 Recent developments 

in MS lead to the creation of a variety of different single cell MS (SCMS) methods. 

Based on their sampling and ionization conditions, these SCMS techniques can be 

generally classified into two groups: vacuum-based and ambient methods.15, 17, 20, 214 

Vacuum-based methods require high vacuum environment during analysis and 

complex sample preparation, but their sensitivity and throughput are relatively higher. 
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Matrix Assisted Laser Desorption/Ionization (MALDI) and secondary ion mass 

spectrometry (SIMS) are two wildly applied methods for SCMS and mass spectrometry 

imaging (MSI).15, 215-217 To overcome certain drawbacks of vacuum-based methods, 

numerous ambient SCMS techniques have been developed. These methods include 

desorption electrospray ionization (DESI)218, 219, nanospray desorption electrospray 

ionization (nano-DESI)220-222, video-MS97, 223, 224, Single-probe143, 145, 225, T-probe113, 114, 

laser ablation electrospray ionization (LAESI)135, 226, and pulsed direct current 

electrospray ionization mass spectrometry (Pico-ESI-MS)227, 228. 

MS is wildly used for quantitative analysis of cellular compounds such as 

metabolites and proteins.229, 230 In relatively quantification experiments, the intensities 

of ions of interest are commonly normalized to the total ion intensity (TIC) for 

comparison.16 This method has been often used in SCMS studies due to its 

convenience.16, 143  Another strategy for relative quantification is to add an internal 

standard with a fixed concentration into all samples, and intensities of all target ions 

are then normalized to that of the internal standard.100 In absolute quantification 

studies, internal standard spiking and standard addition are generally used. When the 

isotopically labeled compound is used as the internal standard, the target compound, 

which has the same structure as the internal standard, can be quantified without using 

any calibration curve.144, 147 However, due to the complexity of biological systems, 

isotopically labeled internal standards for multiple target molecules may not be 

conveniently available. Therefore, using unlabeled internal standards (e.g., analogs 

with structures similar to the target molecules) and calibration curves of target 
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molecules is an effective approach to absolute quantification.178 Standard addition is 

another strategy, in which a series of samples containing different amounts of standard 

are prepared. Based on the response curve, the absolute abundance of target 

molecule can be determined.231  

Quantitative measurement of analytes in single cells is very challenging, primarily 

due to their extremely limited sizes and complex compositions. Only a few SCMS 

techniques have been developed for absolute quantification of molecules in single cells. 

Yin et al. used electroosmotic extraction method to quantitatively extract Allium cepa 

cell and an internal standard (glucose-d2 solution) into a nanopipette for MS 

analysis.153 Our group has developed the quantitative Single-probe SCMS methods to 

measure the absolute abundances and concentrations of anticancer drugs in single 

cells.144, 147, 149 The Single-probe is a miniaturized, multifunctional device for in situ 

sampling and real-time MS analysis. To fabricate a Single-probe, a solvent-providing 

fused silica capillary and a nano-ESI emitter are embedded into two channels of a 

dual-bore quartz needle, which is laser-pulled to form a sharp tip (~10 um). During our 

routine SCMS analysis, the Single-probe tip is inserted into the target cell to extract 

cellular contents by a liquid junction of the solvent (e.g., acetonitrile with 1% formic 

acid) formed on the tip. The extracted cellular contents are spontaneously drawn to 

the nano-ESI emitter through a self-aspiration process. In quantitative Single-probe 

SCMS experiments, the internal standard (e.g., an isotopically labeled compound) is 

added in the solvent with a known concentration. The extracted target molecule in 

single cells are simultaneously ionized along with the internal standard for MS 
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detection.232, 233  

The quantitative Single-probe SCMS experiments have been conducted for both 

adherent and suspended cells. For adherent cell, a glass chip containing microwells 

(diameter: 55 µm; depth: 25 µm) was used as a substrate for cell culture.147 During 

experiments, only single cells inside single microwells were analyzed. The microwells 

were able to minimize the diffusion loss of  molecules, including cellular contents, the 

target molecules (e.g., anticancer drug irinotecan absorbed the cell), and the internal 

standard (e.g., irinotecan-d10), to ensure accurate quantification.147 To analyze 

suspended cells, an integrated cell manipulation platform was coupled to the Single-

probe SCMS setup. A single cell was captured using a cell-selection probe connected 

to a microinjection, which was used to provide a gentle suction for cell capture, and 

moved to the Single-probe tip.144 The liquid junction of the sampling solution (e.g., 

acetonitrile containing isotopically labeled drug compounds) formed on the probe tip 

immediately lysed the captured cell, and the single cell lysate was then analyzed by 

MS in real-time to obtain drug quantity. In order to determine the concentration of target 

molecules (e.g., anticancer drug), cell images were token during cell selection to 

estimate the volume of each target.144  



33 

 

 

Figure 1 Quantification of NO in single cells. (A) Reaction of AML and NO producing 

DAM. (B) Quantitative Single-probe SCMS cell setup. Glass chip containing 

microwells is used for cell culture and SCMS experiment. 

To the best of our knowledge, there are no reported studies of using MS method 

to quantify NO from single cells. Due to NO’s small molecular weight, high reactivity, 

and dissuasive properties, it is challenging to directly analyze this molecule using MS-

based methods. Detecting NO from live single cell is more challenging because of its 

limited amount in each cell. Alternatively, chemical reactions have been used for 

indirect MS detection of NO. It has been reported that Hantzsch ester can react with 

NO with a high efficiency and specificity.234-237 Using amlodipine (AML), a compound 

containing Hantzsch ester group,238 NO can efficiently (100%) and rapidly (<1 s) react 

with AML to produce dehydro amlodipine (DAM), a stable compound that can be 

sensitively detected by MS (Figure 1A).178 Because this reaction efficiency is nearly 

100%,178 NO can be quantified by measuring the amount of DAM produced from this 

reaction.178 These studies also demonstrated that AML does not react with other 
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reactive cellular species (e.g., reactive oxygen and nitrogen species as well as 

biological reductants) to produce DAM.178 The integration of SCMS technique with 

chemical reactions has been utilized in our previous studies of carbon double (C═C) 

bonds in unsaturated lipids.112 In the current study, we combined the quantitative 

Single-probe SCMS technique with the above chemical reaction (Figure 1A) to 

quantitatively measure the amounts of NO in single cells. 

2.2 Experimental section 

2.2.1 Experimental materials and instruments 

All data were obtained using a Thermo LTQ Orbitrap XL mass spectrometer 

(Thermo Scientific, Waltham, MA, USA). DAM extracted from cell lysates were 

analyzed using a nanoACQUITY ultra performance liquid chromatography (LC) 

(Waters, Milford, MA, USA) coupled to the Orbitrap mass spectrometer. 

Chemicals: amlodipine (AML, Cayman Chemical, MI, USA); dehydro amlodipine 

(DAM, Santa Cruz Biotech, TX, USA); oxasulfuron (OXF, internal standard for SCMS 

quantification of DAM); d4-AML (internal standard for LC-MS quantification of DAM, 

Cayman Chemical, MI, USA); sodium nitroprusside (SNP, Cayman Chemical, MI, 

USA); doxorubicin (DOX, Alfa Aesar, MA, USA). 

2.2.2 Cell culture 

Human colon cancer cells (HCT-116) were originally obtained from American Type 

Culture Collection (ATCC; Rockville, MD, USA). Cell culture medium for HCT-116 is 

McCoy’s 5A cell culture medium containing 10% FBS (fetal bovine serum) and 1% Pen 
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Strep (Life Technologies, Grand Island, NY, USA). All cells were cultured at 37◦C in an 

incubator with 5% CO2 supply (HeraCell, Heraeus, Germany). To prepare cells for 

SCMS experiments, cells were seeded in 12-well plates (5.0 x 105/mL with 2 mL/well) 

containing microwell glass chips. To prepare cells for LC/MS experiments, cells were 

seeded in Petri dishes (10 mL/dish) 12 hours prior to the drug treatment. AML 

(dissolved in DMSO) was added into culture medium (with a final concentration of 2.0 

µM AML) to treat the cells for 2 hours, and then the medium was disposed. Cells were 

washed by PBS for two times, and the prepared culture medium containing SNP 

(exogenous group) or DOX (endogenous group) was used to treat cells for 24 hours. 

Cells were then rinsed by fresh cell culture medium prior to direct SCMS experiments. 

In addition, rinsed cells were used for lysate preparation, DAM extraction, followed by 

LC/MS analysis.Cells in control groups, which were treated by AML (without SNP or 

DOX), SNP (without AML), or DOX (without AML), were used to determine if DAM is 

solely produced from the reaction between AML and exogenous or endogenous NO. 

2.2.3 Single-probe SCMS 

The Single-probe is a multifunctional sampling and ionization device. A Single-

probe is fabricated by integrating three major components: a needle pulled from dual-

bore quartz tubing (outer diameter (o.d.) 500 µm; inner diameter (i.d.) 127 µm; tip size 

<10 µm; Friedrich & Dimmock, Inc., Millville, NJ, USA) using a laser pipet puller (P-

2000 micropipette puller, Sutter Instrument, Novato, CA, USA), a fused silica capillary 

(o.d. 105 µm; i.d. 40 µm; Polymicro Technologies, Phoenix, AZ, USA), and a nano-ESI 

emitter produced using the same type of fused silica capillary. Detailed description of 
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the device fabrication and utilization has been reported in our previous studies.143, 145, 

147, 225, 232 Mass spectrometer settings include the ionization voltage of 4.5 kV, mass 

resolution of 60,000 (at m/z 400), isolation window of 1 m/z, CID of 20 normalized 

collision energy (NCE), and mass range from m/z 100-450. The sampling solution used 

in SCMS experiments was acetonitrile (ACN) containing 0.1% formic acid (FA) and 1.0 

µM OXF, and the optimized flow rates range between 0.1 µL/min and 0.3 µL/min in 

each experiment.  

2.2.4 LC/MS 

After disposing used medium, cells were washed by PBS. 2 mL 0.5% trypsin was 

used to detach cells for 3 mins, and trypsinization was stopped by adding 8 mL of 

culture medium. Cells were centrifuged at 1,000 rpm for 5 min, resuspend by PBS for 

washing, and then counted (BioRad TC20 cell counter, USA). To prepare cell pellet, 

cells were centrifuged at 1,500 rpm for 5 min. After discarding the supernatant, 200 µL 

Tris buffer (pH = 8.0) containing 8 M urea was added to cell pellet. The mixtures were 

sonicated for 20 s (FS-300N, Edeardda; with 50% power) and shaken (with ice bath) 

by orbital shaking for 5 min at 100 rpm. To precipitate proteins and extract DAM, 800 

µL cold acetone (-20◦C) was added into the cell lysate prior to overnight storage (-20◦C). 

Stored samples were centrifuged at 12,300 rpm at 4◦C for 5 min, and the supernatant 

was collected to another Eppendorf tube and dried at room temperature using a 

SpeedVac (SPD111V, Thermo Scientific, San Jose, CA, USA). The dried samples were 

resuspended in 200 µL methanol/water solution (methanol (20%)/ H2O (80%) with 0.1% 

FA). To desalt samples, 10 µL C18 desalting tips (PureSpeed, Rainin Pipetting 360◦, 
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Oakland, CA, USA) were used following vendor’s protocols. The eluted solutions were 

dried by the SpeedVac, and the dried samples were resuspended in 90 µL solution 

(MeOH (20%)/H2O (80%) with 0.1% FA) and 10 µL internal standard (100 nM d4-AML). 

Home-packed trap column (150 µm, 50mm, 3 µm, 100 Å; Daisogel, Japan) and 

C18 capillary column (150 µm, 150mm, 3 µm, 100 Å; Daisogel, Japan) were used for 

LC separation. Mobile phases A (ACN containing 0.1 % FA) and B (H2O containing 

0.1 % FA) were sonicated for 30 min to remove gas before use. During the analysis, 2 

µL sample was injected into the trap column, followed by 5 min trapping using 5% 

mobile phase B at a flow rate of 3 µL/min. Separation was performed in the analytical 

column at a flow rate of 500 nL/min and a column temperature of 50 ℃. LC gradient 

started from 5% mobile phase B for the first 1 min, followed by a quick increase to 45% 

mobile phase B in 5min. In the next 12 min, the percentage of mobile phase B was 

increased to 95% and held for another 5 min. Then the gradient of mobile phase B was 

changed back to 5% for 10 min re-equilibrium. The outlet of the analytical column was 

connected to a nanoESI emitter. The MS analysis parameters are listed as follows: 

ionization voltage +2.0 kV, ion transfer tube temperature 250 ℃ mass range 150–

1,500, mass resolution 60,000 at m/z 400, 1 microscan, 500 ms max injection time, 

and automatic gain control (AGC) on with the target value of 1E6. Each lysate was 

analyzed for three times (i.e., three analytical replicates). 

2.2.5 Extraction efficiency of DAM. 

For accurate quantification in LC/MS, the extraction efficiencies of DAM were 

measured from LC/MS analyses of two groups of cell lysate solutions.  
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1. Reference cell lysate solutions. 

These solutions were prepared from redissolved cell lysate extracts and then 

spiked with both DAM and its internal standard (d4-AML), implying 100% extraction 

efficiency of DAM. First, we prepared cell pellets. 0.77−3.62x106 cells/mL of cell 

suspension were aliquoted to 11 portions, and each portion (1 mL cell suspension) was 

centrifuged to prepare one pellet. The supernatant was discarded. Second, we 

prepared cell lysate solutions. Each cell pellet was lysed by urea (8 M). Using the 

above protocols (D. LC/MS), we performed protein precipitation, extraction of DAM, 

drying, desalting, and redissolution. Third, we spiked both DAM and d4-AML into lysate 

extracts for LC/MS measurements. Each redissolved extract was spiked with different 

amounts of DAM (with final concentrations of 2.0, 5.0, 7.5, 10.0, 12.5, 15.0, 17.5, 20.0, 

25.0, 30.0, and 50.0 nM) but the same amount of d4-AML (10.0 nM final concentration). 

The final volume of each solution is 100 μL. d4-AML was selected as the internal 

standard because its retention time is nearly the same as DAM, minimizing the 

difference of matrix effects, which are induced by co-eluted matrix components, and 

instrument fluctuation during LC/MS quantification.239 Last, we conducted LC/MS 

measurements. Without further extraction (i.e., 100% extraction efficiency), these 

samples were directly used for LC/MS analysis to obtain the relative peak areas of 

DAM/d4-AML.  

2. Cell lysate solutions containing extracted DAM and spiked d4-AML.  

To prepare these solutions, extracts were obtained from cell lysates containing 

DAM, redissolved, and then spiked with d4-AML for LC/MS measurements. First, we 
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prepared cell pellets using the same protocols as described above. Second, we 

prepared DAM-containing solutions of cell lysates. Each cell pellet was lysed using 

urea (8 M). Different amounts of DAM was added into lysates with a series of final 

concentrations (i.e., 2.0, 5.0, 7.5, 10.0, 12.5, 15, 17.5, 20.0, 25.0, 30.0, and 50.0 nM). 

Third, we extracted DAM from cell lysate solutions using cold acetone following the 

same protocols provided above (D. LC/MS). Fourth, we spiked d4-AML (10 nM final 

concentration) into each redissolved extract. Last, we performed LC/MS analysis of 

these samples to acquire the relative peak areas of DAM/d4-AML.  

Three analytical replicates for each group were tested. The DAM extraction 

efficiency of DAM (48.5 ± 7.4 %) was determined by comparing the ratios of DAM/d4-

AML obtained from these two groups of samples. This measured DAM extraction 

efficiency was used to correct the LC/MS measurement of average intracellular DAM 

(i.e., NO). 

2.2.6 Data analysis of cell subpopulations 

SCMS and LC/MS raw data were accessed using Xcalibur 5.0 (Thermo Fisher 

Scientific). In SCMS experiments, the detection of single cells was confirmed from the 

appearance of typical cellular species (e.g., PC(34:1), m/z 782.567).143 The LC/MS 

retention time was measured as 21.47 and 21.81 min for DAM and d4-AML, 

respectively. The peak areas of both DAM and d4-AML were exported from Xcaliber 

and imported into Microsoft Excel for quantification. 

D>2 Ashman’s criterion was used to confirm the presence of subpopulations with 

normal distributions in SNP (exogenous NO) treatment groups. By applying the mean 
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and standard deviation, the D>2 Ashman’s criterion for normal distribution were 

calculated using Eq. 1: 

D12 = 
√2|𝜇1− 𝜇2|

√𝜎1
2+ 𝜎2

2
                                        (Eq. 1) 

The presence of two subpopulations is confirmed if D12 > 2 in the post hoc 

grouping.  

Gamma distribution functions were used to fit results from DOX (endogenous NO) 

treatment groups. The dip test (R package ‘diptest’) was used to determine if 

subpopulations exist. The null hypothesis is that only monomodal is present in the 

dataset (Supporting information). 

All fittings were generated by a home-made python script (Supporting information). 

2.3 Results and discussion 

2.3.1 Establishment of calibration curves  

A. SCMS 

    During SCMS measurements, intensive isobaric background ions (ranging 

from m/z 407.1040 to 407.2090) interfered with the isolation and detection of the target 

ion DAM ([DAM+H]+, m/z 407.1325, Figure S1). These interfering ions significantly 

affected the direct quantification of NO (i.e., DAM) in single cell using MS1. In contrast, 

our experiments showed that the MS/MS spectra of the interfering ions were 

significantly different from those of [DAM+H]+ (Figure S2), indicating that DAM 

quantification can be performed using MS/MS to eliminate the influence of interfering 

ions. Due to the unavailability of isotopically DAM compounds, oxasulfuron (OXF) was 
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chosen as the internal standard of DAM. This is because [OXF+H]+ (m/z 407.1020) 

can be co-isolated with [DAM+H]+ (m/z 407.1325) for MS/MS analysis, whereas their 

fragments are significantly different (Figures S3 and S4). Another benefit of using 

MS/MS quantification is that mass spectra with a cleaner background can be obtained 

(Figure S5), resulting in improved detection sensitivity due to increased signal-to-noise 

ratio.240 Our experiments indicated that, using the Single-probe SCMS setup, the limit 

of detection for DAM is 0.2 and 0.05 nM in MS1 and MS/MS measurements, 

respectively. 

To establish the MS/MS calibration line, the Single-probe setup was used to 

analyze calibration solutions, mimicking the SCMS experimental conditions. A series 

of cell lysate solutions containing DAM (i.e., 0.2, 0.5, 1.0, 2.0, and 5.0 nM) and OXF 

(1.0 µM) were prepared as the calibration solutions. These calibration solutions were 

added into containers and sampled by the Single-probe for MS/MS (using CID at 20 

NCE) data acquisition. The following two equations (Eq. 2 and 3) were used to 

construct the calibration curve: 

  (Eq. 2) 

 Y = cY ∗t∗vY (Eq. 3). 

ΣA and ΣB are the integrated ion intensities (i.e., peak areas) of fragments of DAM 

and OXF, respectively; a and b are constants; X and Y are the amount (in moles) of 

DAM and OXF, respectively. Because the internal standard OXF is provided through 

the sampling solvent, its quantity can be obtained from its concentration cY, the data 
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acquisition time for each cell t, and flow rate of the solution vY. The major (i.e., most 

abundant) fragments in MS/MS spectra of DAM (m/z 346.0820) and OXF (m/z 

150.0663) were used to construct the calibration curve. The linear regression function 

resulted in an excellent fitting (R2 = 0.9933) (Figure 2A). This calibration curve was 

then used for quantitative SCMS measurements of DAM in single cells. All experiments 

were performed using the same instrument settings and on the same day. 

 

 

Figure 2 Calibration curves for (A) quantitative SCMS and (B) LC/MS measurements 

of intracellular NO amounts. ∑A and ∑B indicate MS/MS fragments’ peak areas of 

DAM and OXF, respectively. ∑A’ and ∑B’ indicate MS1 peak areas of DAM and d4-

AML, respectively. 

B. LC/MS 

LC/MS experiments were conducted to obtain the average NO amounts in single 

cells. To mimic the matrix effect in LC-MS experiments, cell lysate was used to prepare 

solutions containing the standard compounds. Briefly, cell lysate was dissolved in the 

solvent (MeOH (20%)/H2O (80%) with 0.1% FA). Both DAM and d4-AML (the internal 

standard for DAM) were added into the solutions with different final concentrations (i.e., 

DAM: 0.2, 0.5, 1.0, 2.0, 5.0, 10, and 20 nM, d4-AML: 100nM). Cell lysate aliquots were 

spiked with different amounts of DAM (final concentrations: 0.2, 0.5, 1.0, 2.0, 5.0, 10, 
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and 20 nM) but a fixed amount of d4-AML (final concentration: 100 nM). Each sample 

was analyzed with three analytical replicates. Because all interfering species were 

eliminated by LC separation, MS1 spectra were used to construct the LC/MS 

calibration curve using Eq. 2, whereas ΣA’ and ΣB’ indicate peak MS1 areas of DAM 

and d4-AML, respectively. X and Y represent the concentrations of DAM and d4-AML, 

respectively. The linear regression function resulted in an excellent fitting (R2 = 0.9892) 

(Figure 2B). This calibration curve was then used for quantitative LC/MS 

measurements of DAM in cell lysates. All experiments were performed using the same 

instrument settings and on the same day. For accurate quantification, the extraction 

efficiencies of DAM from cell lysates were measured. (E. Extraction efficiency of DAM). 

This measured extraction efficiency (48.5 ± 7.4 %) was then used to correct the LC/MS 

quantification of average intracellular DAM (i.e., NO) (Table 1). 

 

Cell 

group 

 

Treatment* 

concentration

s 

SCMS LC/MS 

Amount  

(amol) 

n** Amount  

(amol) 

SNP-L 0.25 mM 23.4±13.9 41 0.82±0.10 

SNP-M 1.0 mM 25.3±22.7 48 1.92±0.12 

SNP-H 4.0 mM 60.4±67.0 51 5.47±0.41 

DOX-L 0.75 µM 36.8±40.5 94 2.91±0.20 

DOX-M 2.0 µM 46.6±48.0 41 4.05±0.17 
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DOX-H 4.0 µM 61.7±93.9 60 10.72±0.48 

Table 1 Amounts of NO in single cells measured using SCMS and LC/MS methods. 

*Cells were treated by SNP (sodium nitroprusside) or DOX (doxorubicin) for 24 

h.  

**n indicates the number of single cells measured in each SCMS experiment. 

2.3.2 SCMS quantification of exogenous and endogenous NO in 

single cell 

 

Figure 3 Box plots indicating (A) exogenous (SNP treated, 24 h) and (B) endogenous 

(DOX treated, 24 h) NO amounts (amol) in single cells. (*: p<0.05, N/S: no significant 

difference) 

Cells were attached onto the microwell glass chip through incubation (Figure 1B). 

Using similar experimental protocols reported in our previous studies,147 only 

microwells containing one cell were measured using the Single-probe SCMS setup. 

1.0 µM OXF (the internal standard for DAM) was added in the sampling solvent, of 

which the flow rate was recorded for the analysis of each cell. The total amount of OXF 

was calculated using Eq. 3. Based on the calibration curve (Figure 2A), the integrated 

intensities of major fragments of DAM and OXF were used to quantify DAM in each 
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cell. For the control group, DAM was not detected which indicated the tiny influence of 

other factors on the reaction forming DAM. 

In SCMS studies of exogenous NO, AML treated cells were rinsed and then 

incubated (for 24 h) in medium containing three different concentrations of sodium 

nitroprusside (SNP), i.e., low (SNP-L, 0.25 mM), medium (SNP-M, 1.0 mM), and high 

(SNP-H, 4.0 mM). As a NO donor, SNP can be absorbed by cells and release NO 

through reactions with sulfhydryl groups in proteins.167, 168 NO molecules then react 

with intracellular AML and produce DAM (Figure 1A). Cells (n = 41−51) in each group 

were analyzed using the Single-probe SCMS technique. Our experimental results 

indicated broad distributions of intracellular NO of cells in all three groups, very likely 

due to cell heterogeneity (Figure 3A). Similarly, heterogeneous anticancer drug uptake 

in single cells has been observed in our previous studies.144, 147  The average NO 

amounts in SNP-L, SNP-M, and SNP-H group are 23.4 ± 13.9, 25.3 ± 22.7, and 60.4 

± 67.0 amol (10−18 mole)/cell, respectively (Table 1). Although there is no significant 

difference of results between the SNP-L and SNP-M treatment groups (t-test, p>0.05), 

higher concentration treatment in the SNP-H group significantly boosted NO 

production comparing to SNP-L treatment group (t-test, p<0.05) (Figure 3A).  

In the studies of endogenous NO in single cells, AML treated cells were rinsed 

and then incubated in medium containing anticancer drug doxorubicin (DOX), which 

stimulated the production of NO. As a transient paracrine and autocrine signaling 

molecule, NO plays important functions in the cellular and intercellular drug 

responds.241, 242 Previous studies proved that NO level in HCT-116 cells can be 
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increased by DOX treatment due to elevated NOSs activities.169, 170 To evaluate the 

relationship between DOX concentration and amount of endogenous NO in cells, HCT-

116 cells were treated (for 24 h) by DOX at three different concentrations, i.e., low 

(DOX-L, 0.75 µM), medium (DOX-M, 2.0 µM), and high (DOX-H, 4.0 µM). Cells (n = 

41−94) in each group were then analyzed using the Single-probe SCMS technique. 

Broad distributions of intracellular NO amounts were observed (Figure 3B). The 

measured NO amounts in single cells from the DOX-L, DOX-M, and DOX-H groups 

are 36.8 ± 40.5, 46.6 ± 48.0, and 61.7 ± 93.9 amol/cell, respectively (Table 1). Similar 

to results obtained from exogenous NO treatment, there is no significant difference 

between the DOX-L and DOX-M treatments (t-test, p<0.05), but higher concentration 

of DOX in the DOX-H group significantly stimulated NO production comparing to DOX-

L group (t-test, p<0.05) (Figure 3B). 

The mean values (23.4–61.7 × 10–18 mol/cell) of NO abundances in single cells 

obtained from our experiments may not be fairly compared with previously reported 

results. In fact, intracellular NO abundances can significantly vary for different cell 

systems. For example, the amounts of NO in RAW 264.7 cells, which were stimulated 

by lipopolysaccharide (LPS) to produce NO, were reported as 1.4–2.1 × 10–16 

mol/cell243, 244, whereas PC-12 cells exhibited a broad range of 4× 10–18 –4.5 × 10–14 

mol/cell208, 245. To the best of our knowledge, there is no reported studies of the same 

cell system used in our current work. Therefore, direct comparison the single-cell level 

cannot be performed. It has been reported AML treatment can stimulate the production 

cellular NO. However, in our control experiment, we were unable to detect DAM in 
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single cells only treated by AML, which can scavenge NO and produce DAM. Our 

results indicate that the amounts of NO, if any, induced by AML in HCT116 cells were 

below the detection limit of our Single-probe SCMS technique.   

2.3.3 Subpopulation analysis of NO quantities in single cells 

Cell 

groups 

Subpopulation 1 

(amol) 

Subpopulation 2 

(amol) 

SNP-L 15.7 ± 4.8 40.5 ± 11.6 

SNP-M 13.3 ± 6.9 52.3 ± 22.3 

SNP-H 33.6 ± 19.3 96.7 ± 18.2 

Table 2 Amount of exogenous NO in single cells in two subpopulations. 

Cell heterogeneity has been studied at different levels, such as transcriptomics 

and metabolomics, using statistical tools. Cells’ subpopulations can be evaluated 

based on the overall molecular profiles. For example, we have previously developed a 

tool, SinChat_MS, to quantify cell subpopulations based on their global metabolites in 

single cells.233 This tool can be also used to prioritize metabolite biomarkers of cell 

subpopulations and correct batch effect in SCMS studies. Cell subpopulation analysis 

can be also performed using individual cellular species. For example, Vertes et al. used 

gamma and normal distribution functions to fit the intensity distributions of multiple 

molecules (e.g., malate and ascorbate) in  E. densa epidermal cells and G. max-

infected root nodule cells and obtained subpopulations.246  
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Figure 4 Distributions of NO amounts in single cells. Bimodal (normal) distributions 

were observed in exogenous NO groups (SNP treatment, left panel). Unimodal 

(gamma) distributions were observed in endogenous NO groups (DOX treatment, right 

panel). 

In the current studies, we investigated the cells’ subpopulations, which reflect cells 

containing different amounts of NO, by fitting the distributions of NO amounts in single 

cells. We evaluated different distribution functions, and we discovered that normal and 

gamma distribution functions provided the best fittings for endogenous and 

exogeneous NO groups, respectively (Figure 4). Our fitting results also indicate there 

are two subpopulations of cells in all three exogeneous NO treatment groups (Figure 

4, left column). We further confirmed the presence of two subpopulations using the 

D>2 Ashmans’s criterion.246, 247 The D12 values for subpopulations 1 and 2 are 3.67, 

4.00, and 2.31 for SNP-L, SNP-M, and SNP-H treatment groups, respectively. The t-

test results indicate that these two subpopulations of cells contain significantly different 
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(p < 0.05) amounts of NO. The average amounts of NO in single cells from two 

subpopulations are summarized in Table 2. Compared with results shown in Table 1, 

grouping cells into two subpopulations leads to significantly reduced standard 

deviations. For cells containing endogenous NO, we observed one population (gamma 

distributions) in all three treatment groups (Figure 4, right column). To determine if 

there are multimodal distributions, dip test has been performed, yielding no clear 

evidence of multimodality (Supporting Information). Our results indicate that 

exogenous and endogenous treatment conditions resulted in different modalities of 

distributions of NO amounts in single cells, likely due to different levels of toxicities 

between SNP and DOX. Although there is no reported assessment of SNP toxicity to 

HCT-116 cells, our cell culture experiments indicated that, compared with cells in 

normal growing conditions, cell growth was not obviously inhibited by SNP at all three 

concentrations. Thus, more heterogenous cells were analyzed in our SCMS 

experiment. In contrast, DOX is a potent anticancer drug (IC50 = 0.96 ± 0.02 µM (72 h) 

for HCT-116 cells).248 Under our DOX treatment conditions (0.75, 2.0, or 4.0 µM for 24 

h), cells with relatively low drug resistance can be largely eliminated from SCMS 

measurements, resulting in less cell heterogeneity. Although broad distributions of 

intracellular NO amounts were observed in the previous studies, which were primarily 

based on fluorescence microscopy techniques, further investigation of cell 

subpopulations was not conducted.208, 244, 245, 249 The difference of cell heterogeneity 

can be potentially validated using other single cell analysis techniques such as single 

cell RNA sequencing. However, these studies are beyond the scope of our current 
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studies.  

2.3.4 LC/MS quantification of NO in cell lysates 

In the comparative studies, LC/MS analyses of cell lysates, which were prepared 

using cells under the treatment conditions that are the same as those in SCMS studies, 

were carried out to obtain the average quantities of NO in single cells. The total 

amounts of NO in cell lysates were calculated using the calibration curve (Fig. 2B), 

with the correction of extraction efficiencies. The average NO amounts in single cells 

were then calculated based the total number of cells in each sample (Table S1). First, 

LC/MS results exhibit a clear trend: the intracellular NO amounts increase as the 

treatment concentrations of SNP and DOX increase. This trend cannot be clearly 

observed in our SCMS measurements of cells treated by low and medium 

concentrations of SNP and DOX, likely due to a relatively small difference of 

intracellular NO abundances and cell heterogeneity. Second, the mean values of our 

SCMS results (23.4–61.7 × 10–18 mol/cell) are generally higher than those from our 

LC/MS measurements (0.9–10.7 × 10–18 mol/cell). This difference is likely due to cell 

heterogeneity in SCMS experiments, which also resulted in large standard deviations, 

and potential DAM loss in multiple sample preparation steps such as trypsin 

detachment and multiple rounds of cell washing and centrifugation. During these 

procedures, intracellular DAM might be lost due to cell rapture and diffusion across cell 

membrane, whereas the internal standard (d4-AML) cannot be added in these steps 

to compensate this loss. SCMS involves minimal sample preparation, which reduces 

the change of DAM loss between sample preparation and measurement. Sample loss 
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during LC/MS sample preparation can likely result in small amounts of DAM compared 

with those in SCMS experiments. Similar trends have been observed in our previous 

studies of intracellular anticancer drug compound.147 Third, our LC/MS results are 

lower than that (∼0.6 × 10–16 mol/cell) in LPS stimulated RAW 264.7 cells measured 

by LC/MS methods178, likely due to the intrinsic differences between these two cell 

lines and treatment conditions.  

2.4 Conclusion 

We combined the quantitative Single-probe SCMS technique with chemical 

reactions, in which AML quantitatively reacts with intracellular NO to produce DAM, to 

quantify NO amounts in live single cells. Two different compounds (i.e., sodium 

nitroprusside (SNP) and doxorubicin (DOX)) with different concentrations were used 

to produce exogenous (by SNP) or endogenous (by DOX) NO. Under all treatment 

conditions, intracellular NO amounts exhibited heterogenous distributions. The 

distributions of NO amounts in single cells were analyzed, and results indicated that 

two subpopulations of cell were present in all exogenous NO treatment groups, 

whereas only one population was discovered in each endogenous NO treatment group. 

This difference can be potentially attributed to different toxicities between SNP and 

DOX. Comparison studies of lysates of cells treated under the same conditions were 

performed using LC/MS method. The mean values obtained from single cells were 

significantly higher than those measured from population cells, likely due to cell 

heterogeneity and potential drug compound loss during cell lysate preparation. The 
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technique reported in the current study is applicable of quantifying NO in many other 

types of cells. However, this technique has a relatively low throughput due to manual 

selection and analysis of single cells. This drawback can be potentially solved by 

developing high throughput SCMS methods.  In addition, this method is largely limited 

to analyze adherent cells, whereas measuring non-adherent cells requires additional 

instrument modification.149, 250 The strategy of combining SCMS techniques and 

chemical reactions can be potentially further developed to study other cellular species 

of interest. 

The materials in Chapter 2 are adapted from an article just accepted in Analytical Chemistry 

Nov 2023. 

  



53 

 

Chapter 3: Single-Cell Mass Spectrometry Enables 

Insight into Heterogeneity in Infectious Disease 

3.1 Introduction 

Cell heterogeneity commonly presents in nearly all biological systems. In addition 

to the genetic variation, cellular heterogeneity can be induced by nongenetic 

mechanisms, i.e., cells possessing similar genotypes but actually expressing 

morphological and phenotypical differences.181, 251 Although cell heterogeneity has 

been reported in human diseases, such as cancer, diabetes, and chronic and age-

related diseases252, it is largely understudied in infectious disease. For the first time, 

this study will pave the way to study the heterogeneity that presents in infection with 

Trypanosoma cruzi (T. cruzi) at the single-cell level. 

T. cruzi is a protozoan parasite causing Chagas disease (CD), which is an 

understudied tropical disease with severe cardiac and gastrointestinal symptoms. At 

the cellular level, T. cruzi trypomastigotes invade host cells and differentiate into 

amastigotes, which can proliferate, differentiate back into trypomastigotes, and then 

escape the host cells. These newly produced trypomastigotes can then invade new 

cells and continue this cycle of damage.253 T. cruzi infection results in a major 

deregulation of lipid and glucose metabolism in the host cells.254, 255 Metabolic 

alterations proportional to CD severity were observed in the heart during experimental 

T. cruzi infection.256, 257 Differential spatial distribution of metabolic alterations in 
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experimentally-infected animals reflects sites of Chagas disease tropism.258-260 

However, all of these reported studies have been performed using traditional 

metabolomic, gene expression, or functional studies from extracts and lysates 

prepared from cell populations or infected tissues, which masks cellular-level 

heterogeneity and cellular-level spatiality.  

 

Figure 5 (a) Photo of the Single-probe single cell mass spectrometry (SCMS) setup. 

(b) The schematic of the working mechanisms of the experimental setup. 

Although single cell transcriptomics261-263 and proteomics264, 265 are increasingly 

important, metabolomics insight at the single-cell level can investigate cellular function 

that may not be rendered by other methods. Metabolites are smaller molecules (<1.5 
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kDa), including sugars, lipids, and amino acids.266, 267 Metabolites reflect cell status 

and unveil functions of associated metabolic pathways. Single cell metabolomics has 

a great potential to uncover the phenotypic variations from cell to cell and specifically, 

cellular heterogeneity. In metabolomic studies, mass spectrometry (MS) has become 

an important tool due to its high sensitivity, broad molecular coverage, and powerful 

structural identification capabilities. Traditional MS studies rely on bulk samples that 

do not reveal molecular information at the single cell level and often mask cellular 

heterogeneity. In contrast, single cell mass spectrometry (SCMS) is capable of 

profiling metabolites in individual cells and unveiling hidden subpopulations of cells. 

MS-based single cell metabolomics is capable of analyzing and determining the 

cellular metabolites that are altered after environmental perturbation.268 A series of 

SCMS techniques have been developed to analyze cells under vacuum (e.g., MALDI-

MS (matrix-assisted laser desorption/ionization-MS)  and SIMS (secondary ion mass 

spectrometry)269, 270 or ambient environment (e.g., live single-cell video-MS99, probe 

ESI MS271, LAESI MS136, and nano-DESI MS272). We have developed multiple 

microscale sampling and ionization devices, including the Single-probe273, 

micropipette112 and T-probe274, that can be coupled to MS for single cell metabolomics 

studies. Among them, the Single-probe SCMS method has been routinely used in our 

studies. Briefly, the Single-probe is a home-built device that can be coupled to a mass 

spectrometer for microscale sampling (e.g., from single cells and tissue slices) and 

MS analysis (Figure 5). The Single-probe tip is small enough (~9 µm) for insertion into 

single cells to extract intracellular analytes, which are immediately ionized by MS 
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analysis.232, 250, 273, 275-278 We have used this technique in different single cell studies 

such as investigating the difference in drug resistance232, 279, quantifying anticancer 

drugs in single cells155, 275, 280, 281, comparing metabolites in cancer stem cells and non-

stem cancer cells282, and determining the influence of the environment on algal cell 

metabolites283. In addition, the Single-probe device has been utilized for MS imaging 

studies to acquire the spatial distribution of molecules on tissue slices278, 284-287 as well 

as to analyze secreted metabolites inside multicellular spheroids.288 

3.2 Experimental section  

3.2.1 Parasite culture 

Beta-galactosidase-expressing T. cruzi strain Tulahuen (clone C4) were obtained 

through BEI Resources, NIAID, NIH289 and maintained in mouse C2C12 myoblasts by 

once-weekly passaging. Trypomastigotes were collected from culture supernatant and 

used for infections. 

3.2.2 Cell culture  

HeLa cells were cultivated in DMEM cell culture medium  (Corning) 

supplemented with 10% iron-supplemented calf serum (HyClone) and 1% penicillin-

streptomycin (Gibco) in 5% CO2 at 37 °C. C2C12 cells were maintained in DMEM 

media supplemented with 5% iron-supplemented calf serum (HyClone) and 1% 

penicillin-streptomycin (Invitrogen), in 5% CO2  and at 37 °C, as previously 

described259.  
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3.2.3 Cell infection and staining 

HeLa cells were infected at a host:parasite ratio of 1:10. Two days post-infection, 

cells were washed with ice-cold PBS and fixed with 0.7% glutaraldehyde for 5 min, 

fixing and killing the parasites. Cells were then rinsed three times with PBS for 4 min. 

Cells were then stained overnight with 1 mg/mL of X-Gal in PBS containing 2 mM 

MgCl2, 4.98 mM potassium ferricyanide and 5.76 mM potassium ferrocyanide,290 pH 

7.3 at 37°C.  

3.2.4 Single-probe single cell mass spectrometry (SCMS)   

The single-probe SCMS setup includes a Single-probe, a digital microscope, a 

digital camera, a computer-controlled XYZ-translation stage system (CONEX-MFACC, 

Newport Co., Irvine, CA, USA) and a Thermo LTQ Orbitrap XL mass spectrometer 

(Thermo Scientific, Waltham, MA, USA). The fabrication of the Single-probe and the 

SCMS set-up were detailed in details in our previous studies.232, 250, 273, 275-278 Briefly, 

the Single-probe was fabricated using a laser-pulled (P-2000 Micropipette Laser Puller, 

Sutter Instrument Co., Novato, CA) dual-bore quartz tubing (outer diameter (OD) 50 

μm; inner diameter (ID) 127 μm, Friedrich & Dimmock, Inc., Millville, NJ, USA) 

embedded with a fused silica capillary (OD 105 μm; ID 40 μm, Polymicro Technologies, 

Phoenix, AZ, USA) in one channel and a nano-ESI emitter, which is produced from the 

same fused silica capillary, in another channel. The three parts were sealed using UV 

curing resin (Light Cure Bonding Adhesive, Prime-Dent, Chicago, Il, USA).  

Glass coverslips containing cells were washed three times with fresh DMEM and 
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placed on the XYZ-stage system of the Single-probe SCMS set-up for data acquisition. 

The targeted single cells were selected for analysis by precisely moving the stage 

system guided by the microscope. The sampling solvent (50% acetonitrile/50% 

methanol (v/v)) with 0.1% formic acid) was continuously delivered through the fused 

silica capillary to extract cellular contents followed by ionization via the nano-ESI 

emitter and real-time MS analysis. MS experiments were conducted under the 

following parameters: 200 nL/min flow rate; mass resolution, 60,000; +4.5 kV 

ionization voltage; 1 microscan; 100 ms max injection time. MS/MS experiments were 

conducted under the following parameters: 200 nL/min flow rate; mass resolution 

60,000; +4.5 kV ionization voltage; 3 microscan; 500 ms max injection time. Collision 

energies were included in supporting information (Figure S4). 

3.2.5 SCMS Data Analysis     

SCMS data pretreatment was conducted following our established protocols.273, 

276 MS data were exported with peaks (m/z values and relative intensities) generated 

by Thermo Xcalibur Qual Browser 3.0 (Thermo Scientific, Waltham, MA, USA). The 

exported raw data was subjected to background and noise subtraction in which all 

peaks with relative intensity < 3x103 are removed. Background signals derived from 

organic solvent and cell culture medium were subtracted using an in-house R script 

as described in our prior work.274, 291 Normalization of ion intensities to total ion signal 

(TIC normalization) was subsequently performed. The normalized data was uploaded 

to Geena2 online software 
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(http://proteomics.hsanmartino.it/geena2/geena2_ssi_norm.php)292 for peak 

alignment (with a mass tolerance of 10 ppm) and subsequent analysis. Geena2 

parameters were as follows: analysis range from 150 to 1500 m/z, maximum   

number of isotopic replicas: 3, maximum delta between isotopic peaks: 0.01 Da, 

maximum delta for aligning replicates: 0.01 Da and maximum delta for aligning 

average spectra: 0.01 Da. After performing peak alignment, missing values (50%) 

were removed using an in-house Python script (SI Supporting File 1). 

Pretreated SCMS data were then imported to Metaboanalyst 5.0293-297 to perform 

principal component analysis (PCA), and hierarchical clustering. Random Forest 

analysis278 was used to identify misclassified and correctly classified adjacent 

uninfected cells in comparison to infected cells using an in-house R script (with 500 

trees and 7 predictors) (SI Supporting File 2).  Then, one-way analysis of variance 

(ANOVA)298 was performed with an adjusted p-value cutoff of 0.05 using False 

Discovery Rate (FDR) correction. The hierarchical clustering heatmap294 was 

generated using Ward’s minimum variance clustering method and Euclidean distance 

method, from normalized data with autoscale feature standardization. To minimize the 

technical variance232, 299, two replicates were performed for comparison under similar 

experimental conditions. Boxplots display median, upper and lower quartiles, with 

whiskers extending to the largest and lowest quartiles and outliers beyond the 

whiskers represented as dots. Annotations were generated as follows from the 

combined two replicates’ ANOVA test results. 1) Via LC-MS/MS to obtain MS/MS 

spectra (see below for parameters). 2) Via SC-MS/MS (see above).  Annotations 
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were generated from the resulting SC-MS/MS spectra by spectral comparison to data 

deposited in METLIN (https://metlin.scripps.edu)300, HMDB (http://www.hmdb.ca)301 

and GNPS (https://gnps.ucsd.edu/, see Table S3 for parameters)302, 303. 

3.2.6 LC-MS/MS analysis 

Metabolites were extracted from uninfected and infected HeLa cells using a two-

step extraction with 50% methanol followed by 3:1 dichloromethane-methanol (all 

Fisher Optima LC-MS grade). Extracts were resuspended in 50% methanol, as in our 

prior work.259 LC analysis was performed on a Thermo Vanquish LC equipped with a 

1.7 µm Kinetex C18 50 x 2.1 mm column, 100 Å pore size, protected by a 

SecurityGuard ULTRA C18 Guard Cartridge (Phenomenex).  Injection volume was 5 

µL. Auto-injector was washed with 10% methanol at a rate of 10 µL/s for 2 seconds. 

LC gradient was composed of mobile phase A (water + 0.1% formic acid) and mobile 

phase B (acetonitrile + 0.1% formic acid) at a flow rate of 0.5 mL/min (Table S1). The 

autosampler was maintained at 10 ℃ and the column compartment at 40 ℃.  

MS data were acquired on a Thermo Fisher Q-Exactive Plus hybrid quadrupole 

orbitrap mass spectrometer operating in positive parallel reaction monitoring (PRM 

mode, Table S2). Instrument calibration was performed using Thermo Fisher Calmix. 

All samples underwent a 12.5-minute runtime elution gradient as follows: start at 5% 

solvent B for one minute, gradual increase to 100% solvent B for eight minutes, hold 

at 100% solvent B for two minutes, drop to 5% solvent B for 30 seconds, and hold at 

5% solvent B for one minute (Table S1). Full PRM parameters were: scan range set 

https://metlin.scripps.edu/
http://www.hmdb.ca/
https://gnps.ucsd.edu/ProteoSAFe/static/gnps-splash.jsp
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to 100-1,500 m/z, default charge state was 1, resolution was 17,500, AGC target set 

to 2e5, maximum IT was 54 ms, isolation window set to 1 m/z, and normalized collision 

energy increased from 20-60%. MS source parameters were as previously described 

in259. 

Raw data files were converted to mzXML format using MSConvert.304   

3.2.7 Data availability  

Data from LC-MS (accession number MSV000087656) and SCMS (accession 

number MSV000089503) have been deposited in MassIVE.  

3.3 Results and discussion 

In the current study, we focused on metabolomics of single cells infected by T. 

cruzi, due to the crucial role of metabolism in CD.260, 305 The experiments were 

conducted using the Single-probe SCMS technique to analyze HeLa cells, which were 

used as the model system in three different groups: T. cruzi-infected, bystander (i.e., 

uninfected cells that are adjacent to infected cells), and control cells (no parasite 

exposure). Our results revealed striking bystander effects of infection, including 

metabolic pathways commonly perturbed in infected cells and bystander cells. These 

results help improve our understanding of host pathways of CD pathogenesis and may 

help develop new treatments to address late-stage disease that cannot be cured by 

antiparasitic agents. Furthermore, our approach is compatible with biosafety protocols 

and thus should have broad applicability to other intracellular pathogenic agents.  
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During chronic T. cruzi infection, only a minority of cells are infected.306, 307 

Although parasite persistence is required for disease progression308, CD symptoms 

can nevertheless develop even with low parasite load that may be spatially 

disconnected from sites of tissue damage.309, 310 SCMS analyses of infected and 

uninfected cells in the same culture plate, in comparison to control wells, can 

deconvolute direct effects of T. cruzi infection from bystander effects of infection. HeLa 

cells were used as a model and infected with beta-galactosidase-expressing T. 

cruzi.289 Cells were fixed by glutaraldehyde to kill the parasites and ensure biosafety. 

The fixed cells were stained by X-gal, enabling us to differentiate parasite-containing 

cells from bystander cells. The invasion of amastigote stage of parasites can be 

observed in bright-field microscopic images (Figure 6a), and the infected cells 

containing amastigotes can be clearly distinguished from the bystander cells. These 

observations match with previous publications regarding this parasite strain.311, 312 

SCMS measurements were performed not only on these infected and bystander cells, 

but also on control cells from a separate, uninfected culture well.  

PCA (principal component analysis) showed that the fixation and staining 

processes had no significant influence on the overall cellular metabolite profiles 

(Figure 6b, S4a). This conclusion was further confirmed (p = 0.49 from permutation 

test) by PLS-DA (partial least squares discriminant analysis) (Figure S4b and S4c). As 

expected, parasite-containing cells have different overall metabolite compositions 

compared with bystander cells. However, strikingly, both cell types differed in terms of 

overall metabolome from control and stained cells (both are uninfected). This finding 
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supports bystander effects of T. cruzi infection on the overall cellular metabolome and 

provides a metabolic mechanism to explain the development of Chagas disease 

lesions at sites with low parasite burden.313  

 

Figure 6 Influence of the optimized fixation and staining processes on the overall 

profiles of cellular metabolites in HeLa cells infected by T. cruzi. (a) Bright-field 

microscopy picture of HeLa cells infected with beta-galactosidase-expressing T. 

cruzi. Cells were fixed by glutaraldehyde and stained by X-gal. Infected cells with 

intracellular amastigotes T. cruzi (stained as deep blue in an oval shape; indicated by 

red stars) can be distinguished from bystander cells (adjacent uninfected cells; 

indicated by a black arrow). (b) PCA results. Without parasite infection, cells have 

comparable profiles of metabolites without (control) and with (stained) the fixation 

and staining processes. Cells exposed to parasites (infected and bystander cells) 

present significantly different metabolite profiles than unexposed cells (control and 

stained). 
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PCA results showed that a subset of bystander cells was particularly similar to 

(i.e., overlapped with) infected cells from the same culture plate (Figure 6b, Figure 7a). 

Indeed, random forest machine learning algorithms mis-classified 16 out of 53 

bystander cells as infected (Table 3). In contrast, 62 out of 68 infected cells were 

correctly classified. It is worth noting that a large portion of control cells was 

misclassified as stained cells and vice versa, supporting that fixation and staining 

processes have no significant influence on cell metabolites. We then manually 

regrouped the bystander cells into correctly classified and mis-classified subgroups 

and conducted PCA. We observed a high degree of similarity between the mis-

classified and infected cells (Figure 3b). Similar trends were observed from results 

from hierarchical clustering of metabolites (Figure S1). To determine metabolites with 

significantly different abundances among the infected and two bystander groups 

(correctly classified and mis-classified infected cells), we performed ANOVA (with 

False Discovery Rate (FDR) correction and adjusted p-value ≤ 0.05) (Table S4). We 

obtained 16 ions from all groups possessing strikingly similar patterns for both mis-

classified bystander cells and infected cells across two independent experimental 

replicates (e.g., lower levels of m/z 267.0620, 322.886, and 359.025 compared to 

correctly-classified bystander cells) (Table S4, Figure S2).  
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Figure 7 Impact of T. cruzi infection on the metabolome of bystander uninfected cells. 

(a) PCA of SCMS data highlighting metabolic overlap between T. cruzi infected cells 

and a subset of bystander cells. (b) PCA analysis of SCMS data as in (a), colored 

based on random forest classifier prediction. Mis-classified uninfected bystander cells 

have similar overall metabolomes to infected cells. 

    Predicted 

 

Correct 

Control Stained Infected Bystander 

Classification 

error 

Control 48 12 1 0 0.213 

Stained 25 13 0 0 0.658 

Infected 0 1 62 5 0.014 

Bystander 3 1 16 33 0.32 

Table 3 Random Forest classification of single cells. 

To annotate these ions, we performed MS/MS of both single cells (using the 

Single-probe SCMS method) and cell lysate (using LC-MS/MS). Similar to our 
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previous studies232, 299, some species could only be detected in the SCMS experiments, 

likely due to multiple reasons (e.g., differences in sample preparation methods, matrix 

compositions, and stabilities of molecules during sample preparation) (Table S4). As 

expected in untargeted metabolomics314, most metabolite features could not be 

annotated (Table S4). Among all annotatable metabolites, m/z 756.547 was annotated 

as PC(34:3), LPC(34:4), or PC(O-34:4)  (Table S4, Figure 4). This lipid significantly 

differed in abundance between cell groups (p = 2.33x10-4 using ANOVA test with False 

Discovery Rate correction (Figure 4a). It is interesting to note that, similar to infected 

cells, mis-classified bystander cells also contain high abundances of this species 

(Figure 4a). Other infection-elevated metabolites were also annotated as 

glycerophosphocholines (GPCs), including m/z 768.583, 780.5460, 782.5630, 

808.5770 and 810.5940 (Table S4, Figure S3). This observation concurs with our prior 

findings of infection-elevated GPCs in heart tissue in proportion to disease severity 

and in the infected esophagus and large intestine, in mice across multiple infection 

timepoints and parasite strains.255, 256, 258, 259 While confidently assigning a parasite vs 

host origin to these GPCs is challenging, very long-chain GPCs and 

lysoglycerophosphocholines (Lyso-GPCs) are elevated in isolated amastigote-stage T. 

cruzi compared to host cells.315 These findings may support further re-development of 

therapeutics targeting phosphatidylcholine metabolism, such as miltefosine, currently 

in clinical use for the related parasite Leishmania, but in this case to target the 

metabolic consequences of infection on the host.316, 317  
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Figure 8 Representative glycerophosphocholine (m/z 756.547) differentiating between 

cell groups. (a) Normalized intensity of PC(34:3) in three different cell types (p = 

0.000233 using ANOVA test with FDR correction). (b) LC-MS/MS mirror plot 

supporting PC annotation. Green, reference library MS/MS spectrum for 1-Oleoyl-2-

palmitoyl-sn-glycero-3-phosphocholine (PC 34:1). Black, experimental MS/MS 

spectrum for m/z 756.547. M/z 756.547 is smaller by 4.03 to 1-Oleoyl-2-palmitoyl-sn-

glycero-3-phosphocholine. 

3.4 Conclusion 

In conclusion, we used the Single-probe SCMS technique for metabolomics 

studies of cells with heterogeneous infection by T. cruzi at the single-cell level. This 

represents, to the best of our knowledge, the first implementation of single-cell 

metabolomics in mammalian-infectious disease. We discovered that necessary cell 
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fixation (to kill the parasites) and staining (to illustrate T. cruzi infection) have no 

significant influence on the overall cell metabolome (Figure 6b, S4). Our results 

demonstrate for the first-time bystander effects of T. cruzi on infection-adjacent 

uninfected cells (Figure 6b, Figure 7,Figure 8). Although our current studies cannot 

fully explain the mechanisms of the bystander effects, it is very likely that the uneven 

infection was due to the heterogeneity of host cells. The bystander cells may belong 

to a subpopulation of host cells containing lower levels of glucose, which is needed to 

support parasites’ replication internally. It has been reported that T. cruzi amastigotes 

transport extracellular glucose to fuel their own metabolism and replicate in the host 

cytosol.318 In addition, nutritional deficiencies in the host cells will lead the failure of T. 

cruzi infection.319 

Our results provide a significant insight into CD pathogenesis, explaining lesion 

development in sites that do not contain parasites.309, 310 This has major implications 

for CD treatment, indicating that killing parasites alone may not be sufficient. Our 

results may explain the failure of Benznidazole Evaluation for Interrupting 

Trypanosomiasis (BENEFIT) clinical trial320, and pave the way for future work to 

assess the role of metabolic heterogeneity in CD pathogenesis, tissue resilience, 

parasite dormancy and antiparasitic susceptibility. 
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Chapter 4: Quantifying Cell Heterogeneity and 

Subpopulations Using Single Cell Metabolomics  

4.1 Introduction 

It has been well accepted that nearly all biological systems are heterogenous321 due 

to genetic and phenotypic variances. Even within the isogenic cell populations, cell-to-

cell heterogeneity is prevalent, because of stochastic processes in transcription, 

translation, and metabolism.322 Uncovering cell heterogeneity is critical for studying 

fundamental cell biology and human diseases. For example, tumors contain 

heterogeneous distributions of malignant cells with varied physiological and biological 

properties.323 Such cell-to-cell heterogeneity was reported as a result of intrinsic and 

extrinsic factors,324 and recognized to play a key function in diseases evolution, drug 

resistance, and tumor relapse.325 In particular, cell heterogeneity reflects the 

effectiveness of cancer treatment and management, because an escape of a small 

subpopulation of cells, such as circulating tumor cells and cancer stem cells, from drug 

treatment can cause disease remission.326  

To date, a variety of single cell studies using different approaches (e.g., flow 

cytometry,327 image-based signaling marker colonization,328 single cell genomics,328, 

329 single cell transcriptomics,330, 331 single cell western blotting,332 and single cell 

metabolomics333) have revealed the coexistence of multiple cell subpopulations in the 

same environment. Among various platforms, single cell RNA-seq quantification334, 335 



71 

 

has gained most attraction, likely due to the availability of the instruments (e.g., 10X 

Genomics336) and analytical software packages.337-340 Although the transcriptomic 

profiling is informative and powerful, the downstream proteomic or metabolomic 

responses are still unclear. As metabolites can rapidly and accurately reflect cell status 

and functions, single cell metabolomics is a promising approach to uncovering cell 

heterogeneity. Among all analytical techniques, single cell mass spectrometry (SCMS) 

has become the most popular tool for single cell metabolomics studies.113, 153, 273, 341-

346 

Heterogeneous cells could be grouped into subpopulations with similar biological 

traits347, 348 (e.g., morphology,349 surface marker expression level,350 and intracellular 

metabolism333). Several SCMS metabolomics studies have been performed to group 

cells into different sub-groups based on individual characteristic metabolites.351,352 

However, to the best of our knowledge, no methodologies have been reported to use 

the overall metabolomic profiles of single cells to quantify the changes of cell 

heterogeneity and the associated cell subpopulations. The absence of relevant work 

is likely due to two major reasons: (1) the lack of the metrics to quantify cell 

heterogeneity using the single cell metabolomics profiling data and (2) suitable data 

analysis approaches that can determine cell subpopulations with minimum artificial 

bias without prior knowledge of specific subpopulations. In this regard, we report a 

comprehensive method combining SCMS experimental method with a novel 

bioinformatics tool to address these challenges. 
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Metastatic melanoma cancer cell lines have higher drug resistance than primary 

melanoma cancer cell lines.353  In this proof-of-concept study, we used two cancer 

cell lines as models: the primary melanoma (i.e., drug-sensitive cell line) WM115 

(Figure S1A) and metastatic melanoma (i.e., drug-resistant cell line) WM266-4 (Figure 

S1B). Previous studies reported differential expression of genes and global proteins 

in these two melanoma cell lines to unveil various proteins that are associated with the 

drug-resistant phenotype.354 The Single-probe SCMS experimental technique,225, 232, 

273, 282, 283, 355 a homebuilt method for real-time in situ data acquisition of live single cells, 

was combined with a novel bioinformatics tool, SinCHet-MS, for quantitative analysis 

of cell subpopulations. Briefly, we cultured cancer cells under normal conditions. Cells 

were attached to glass cover slips during incubation, and then treated by 1 µM 

vemurafenib, an anticancer drug for melanoma therapy, for 48 h, and then analyzed 

using the Single-probe SCMS method (Figure 9). Although batch-to-batch variation is 

commonly recognized in conventional metabolomic studies (e.g., using liquid 

chromatography (LC)-MS),356, 357 it is under-appreciated in most SCMS metabolomic 

analyses. To accurately evaluate the cellular response to microenvironmental stimulus 

(vemurafenib), we examined the batch-to-batch variation, which is potentially 

introduced by minor difference in sample preparation and fluctuations of instrument 

conditions on different days, and thus separating it from biological variance. We 

performed experiments for both the control (untreated) and treated cells within a batch, 

and repeated the experiments on a different day for both cell lines (Table S1). We then 

performed data pre-treatment, including noise removal, background reduction, peak 
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alignment, and ion intensity normalization, prior to analyses using SinCHet-MS (Figure 

9).358  Built on SinCHet,359 a computational toolbox with a graphical user interface 

(GUI) for analyzing  single cell mRNA expression and methylation data, we 

developed SinCHet-MS to analyze SCMS data by devising three crucial features: 

batch correction, a novel d-statistic for determining default cell subpopulation 

resolution for further investigation, and the sGF score (Subpopulation Generalized 

Fisher Product Score) for prioritizing biomarkers defining cell subpopulations.  

 

Figure 9 (A) Setup of the Single-probe SCMS experiment. (B) Analyzing a single cell 

guided by high-resolution microscopes. 

4.2 Methods 

4.2.1 Cell culture and sample preparation 

Human melanoma cell lines, WM-115 and WM-266-4 cells (generously provided by Dr. 

Yinsheng Wang at the University of California, Riverside) were classified as the 

primary and metastatic cell lines, respectively, as established from the same 
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melanoma patient. Cells were subcultured every three (WM-266-4) to five (WM-115) 

days in Dulbecco’s Modified Eagle Medium (Santa Cruz Biotechnology Inc., Dallas, 

TX) supplemented with 10% fetal bovine serum (FBS, Life Technologies, Grand Island, 

NY, USA) and 1% penicillin-streptomycin (Life Technologies, Grand Island, NY, USA). 

Cells were maintained in a cell incubator (HeraCell) at 37 °C in a humidified 

environment containing 5% CO2. When cells reached ~ 80% confluence, they were 

rinsed twice using phosphate buffered saline (PBS) solution followed by trypsinization 

in the incubator for detachment. Trypsinization was quenched and the cell suspension 

were then transferred onto a glass cover slip (diameter = 18 mm, VWR International). 

After overnight incubation, cells were attached to the coverslip, and then transferred 

to the XYZ-translational stage system (MFA-CC, Newport Co., Irvine, CA, USA) for 

SCMS experiments. To conduct Vemurafenib treatment, 500 µM Vemurafenib stock 

solution in dimethyl sulfoxide (DMSO) (>99.9%, MilliporeSigma Co. St. Louis, MO, 

USA) was prepared and diluted in the complete culture medium at a final concentration 

of 1 µM. Cells after overnight culture were then treated with 1 µM Vemurafenib solution 

for a duration of 48 h and maintained in the incubator, followed by washing with fresh 

culture medium (without FBS) twice to remove residual drug molecules prior to SCMS 

analysis. 

4.2.2 SCMS Experiments 

he Single-probe SCMS experiments were performed following our previously 

published protocols273, and only a brief description is provided here. A Single-probe 
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was fabricated by embedding a solvent-providing fused silica capillary (O.D. 105m; 

I.D. 40 m, Polymicro Technologies, Phoenix, AZ) , a nano-ESI emitter (produced from 

the same fused silica capillary using a butane micro torch) into a dual-bore quartz 

needle (produced from qual-bore quartz tubing (O.D. 500 m; I.D. 127 m, Friedrich 

& Dimmock, Millville, NJ) using a laser micropipette puller (Sutter P-2000, Sutter 

Instrument, Novato, CA)). The Single-probe device was coupled to a LTQ Orbitrap XL 

mass spectrometer (Thermofisher Scientific, San Jose, CA) (Figure 9A). Cells were 

cultured, attached onto glass coverslip, treated by anticancer drug, and then rinsed by 

fresh culture medium (no fetal bovine serum). The glass coverslip containing cells was 

placed onto the XYZ-translational stage (step size = 0.1 µm). Guided by a digital 

microscope (Shenzhen D&F Co., China), a target cell was selected and penetrated by 

gradually moving the stage (Figure 9B). Cellular metabolites were extracted by the 

liquid junction (acetonitrile with 0.1% formic acid) formed at the tip of the Single-probe, 

and immediately ionized and analyzed. WM-115 and WM-266-4 cells prepared on the 

same day were randomly selected and analyzed with the MS analysis parameters 

listed as follows: ionization voltage +4.5 kV, mass range 150–2000, mass resolution 

60,000 at m/z 400, 1 microscan, 100 ms max injection time, and automatic gain control 

(AGC) on. 

4.2.3 SCMS data pre-treatment 

The obtained SCMS raw datasets of all single cells were accessed using Xcalibur 

5.0 (Thermofisher Scientific). Detection of single cells was confirmed from the mass 
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spectra (including detected ions and their intensities) of common cellular species (e.g., 

PC (34:1); m/z 782.57). Background ions from the sampling solvent and culture 

medium were subtracted, and the instrument noise (i.e., ions with intensities < 103) 

was removed using an in-house developed software.358 We normalized ion intensities 

of each cellular metabolite to the total ion current (TIC) and submitted the datasets to 

Geena2292 for peak alignment and isotope grouping. The pre-treated data were 

submitted to MetaboAnalyst 5.0297 to select commonly detected species with 50% 

missing value (i.e., metabolites that can be detected in > 50% of all measured single 

cells). All datasets were subjected to log2 transformation prior to the downstream 

analysis. 

4.2.4 SinCHet-MS 

Built on SinCHet,359 a bioinformatics toolbox for performing heterogeneity analysis of 

single cell transcriptomes, we introduced a new tool, SinCHet-MS, for analyzing SCMS 

data (Figure 9). Details on how to run SinChet-MS were described in the manual 

(Supporting Information).   There are five panels: (1) Input/Output, (2) Data 

Processing, (3) Heterogeneity Analyses, (4) Subpopulation, and (5) Biomarkers.  In 

“Heterogeneity Analyses”, hierarchical cluster analyses were performed to group cells 

into subpopulations based on the similarities of metabolites’ profiles.  Clustergram 

and heatmaps are available for visual examination.  The following three novel 

features of SinCHet-MS: 

(1) Batch effect evaluation and removal. In the panel of “Data Processing”, we include 

a function to evaluate and remove potential batch effects. First, principal component 
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analysis (PCA), an unsupervised dimension reduction method, in “Data Processing” is 

used to quickly examine potential batch effect and then determine if undesirable batch 

or technical effect is observed. For instance, if data from different batches are clearly 

separated in PCA plot, especially when the separation of different batches of cells is 

observed, say, along the first PC, which means the difference due to batch difference 

explains the largest variability of the data, while the experimental effect of research 

interest (e.g., treatment effect) explains less variability of the dataset. In this case, the 

user could remove this observed undesirable batch effect by selecting Yes from the 

drop-down option (YES/NO) for debatching. COMBAT,360 a commonly used 

debatching method (based on empirical Bayes frameworks), often used in 

transcriptomic studies, was implemented to remove potential batch effects here.   

(2) The d statistic. In the ‘Subpopulation’ panel, we introduce a d statistic to determine 

the default number of clusters for further investigation of subpopulations. The d 

statistic was modified from the D statistic defined previously46.  Briefly, the D statistic, 

quantifies the overall change of heterogeneity before and after treatment, is defined 

as the areas under the Shannon Profiles (SPs) between two conditions.  The d 

statistic is defined as the difference of the Shannon index (H) between two conditions 

of research interest at the minimum number of clusters with significance estimated 

using permutation (Equations S1 and S2 in the Supporting Information). It is worth 

noting that these two statistic methods are different: the D statistic can be perceived 

as the heterogeneity difference between two conditions considering all possible 

clustering resolutions, whereas our novel d statistic is defined as the difference of the 
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Shannon index (H) between two conditions at a given clustering resolution of research 

interest. The default clustering resolution of SinCHet-MS is determined using the 

minimum number of clusters with the d statistic differs significantly between two 

conditions.  SinCHet-MS has the flexibility for users to explore alternative clustering 

resolutions. The statistical significance is estimated from the permutation test, similar 

to that reported in our previous publication359 and described in the Supplemental 

Equation S2 (Supporting Information).  

(3) Subpopulation Generalized Fisher Product Score (sGF). As implemented in 

‘BioMarkers’ panel, this function can be used to prioritize biomarkers. sGF was devised 

to summarize the overall difference among cell subpopulations for each metabolite, 

with the consideration of p-values from multiple comparison tests and fold change of 

pairwise comparison between the subpopulation of interest and any other 

subpopulation (Supplemental equations S3 and S4 in the Supporting Information). 

Those metabolites with Benjamini-Hochberg false discover rate (FDR) adjusted p-

values < 0.05 were regarded as the subpopulational biomarkers. 

Figure 10 The main Graphic User Interface (GUI) of the SinCHet-MS software 
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package. This GUI integrates functions of batch correction, determination and 

visualization of cell subpopulations, and prioritization of subpopulation diagnostic 

features. 

4.3 Results and discussion 

In total, we analyzed 75 and 128 cells for WM115 and WM266-4, respectively. The 

representative mass spectra of single cells (before and after vemurafenib treatment) 

are shown in Figure S2. Rich metabolomic information can be observed in a mass 

range of m/z 650–950, which encompassed a variety of lipids, along with background 

ions (e.g., m/z = 493.25). Numerous species were detected in each cell. To extract the 

essential information from all mass spectra, experimental data need to be carefully 

treated and analyzed.  

4.3.1 Batch correction for SCMS datasets 

Batch effect may be present in SCMS experiments. Debatching can enhance 

statistical power by enabling concurrent data analysis across multiple batches 

obtained under the same experimental condition. We used PCA to visualize cellular 

metabolomic profiles (for all cells) to evaluate potential batch effect: a significantly 

different PCA grouping between two batches (i.e., from the same cell line with the 

same treatment conditions) indicates an evident batch effect. To remove the observed 

technical batch effect, we performed batch correction, which is integrated in SinCHet-

MS based on COMBAT.360   



80 

 

Our experimental results indicate that for the sensitive cell line WM115, no significant 

batch effect was observed (data not shown). For the resistant cell line WM266-4, there 

is observed batch effect even though the biological differences are larger than the 

batch effect (Figure 11A). Figure 11B indicated that the debatch functions of SinChet-

MS can remove the batch effect for further analysis. However, group separation due 

to treatment effect was not observed in the first four PC dimensions before and after 

debatching (Figure 11A vs B; Figure S3A vs S3B). Similar trends can also be observed 

using box plot (Fig. S4). Such minimum change in cellular profiles agrees with earlier 

publications reporting higher drug resistance of metastatic melanoma, which 

corresponds with the hardness of medical therapies for melanoma cancer.24 As a 

proof-of-concept study, we demonstrated batch correction of SCMS data, which were 

acquired from the same passage of cells but with different time of experiments. The 

batch effect originated from different cell passages needs to be investigated in future 

studies. 

https://paperpile.com/c/A9a4Kl/WuHL
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Figure 11 Batch correction. PCA plots of WM266-4 cell lines (A) before and (B) after 

COMBAT in the PC1 and PC2 dimensions. (Symbols represent control (○) and 

treatment (∆) groups, and colors represent batch 1 (red) and batch 2 (blue) 

experiments.)  

4.3.2 Quantitative analysis of cell subpopulations and heterogeneity 

differences 

Cellular subpopulations can be reflected from variances of metabolite expression 

levels and their associated metabolic noise distributions. Previous studies have 

investigated cell subpopulations by fitting the relative abundances of certain 

metabolites using probability functions such as normal, lognormal, and gamma 

distributions.346, 361 These pioneering studies have demonstrated the possibilities of 
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using the combined SCMS experiments and statistical data analyses to reveal 

subpopulations of cells. However, only a limited number of metabolites were selected 

for analyses, whereas the majority of mass spectra information was not efficiently used. 

Our previous studies, in which machine learning and SCMS experiments were 

combined to predict phenotypes of cells, indicate that analyses involving all detected 

species produced higher reliability than those using selected metabolic biomarkers, 

which may result in information loss.232, 355  

For the first time, we performed systematic and quantitative analysis of the changes 

of subpopulations. In the current study, all detected ions (after pretreatment) were 

utilized for cell heterogeneity analyses. From SinChet-MS, our results showed that 

metabolomic heterogeneity was significantly changed by drug treatment in both cell 

lines (D = 83.2, p < 0.001 for WM115 (Figure S5A); D = 54.2, p < 0.001 for WM266-4 

(Figure S5B)). When there is no different D (with statistical significance between 

conditions (i.e., p ≥ 0.05)), the default number of cell clusters for user investigation is 

determined using the minimum value of the change points derived from the 

multivariate adaptive regression splines (MARS) model359. In this chapter, the number 

of subpopulations is determined using the d statistics with heterogeneity significantly 

different between the control and treatment groups (d = 0.13, p < 0.001 for WM115 

(Figure 5A); d = 0.02, p < 0.001 for WM266-4 (Figure 5B)). The composition of cell 

subpopulation before and after the treatment were examined and visualized in 

hierarchical heatmap and pie chart (Figure 12). For the sensitive cell line WM115, there 

was only one population in the control group; however, a new subpopulation emerged 
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after treatment (Figure 12A and B). For WM266-4 cells, the number of subpopulation 

(two) was unchanged, but their relative abundances were altered: ~7:3 and ~3:7 in the 

control and treatment groups, respectively (Figure 12C and D). The subpopulations of 

these two cell lines can also be intuitively visualized using tSNE (t-distributed 

stochastic neighbor embedding) without detailed quantitative information (Figure S6). 

These findings agreed with published studies reporting an increase in cell 

heterogeneity upon drug treatment for cancer cell line24. In addition, as shown in the 

representative single cell MS spectra corresponding to each subpopulation (Figure 

S7), the metabolomic features (m/z 650‒950) can be visually differentiated. 

 

Figure 12 Visualization of subpopulation compositions of control and drug treated 

single cells before and after drug treatment for (A & B) WM115 and (C & D) WM266-4 

cell lines using hierarchical heat map (left column) and pie chart (right column). The 

determination of cell subpopulation is based on the minimum number of clusters where 

d statistic indicates significantly different heterogeneity found between control and 

treatment.  

https://paperpile.com/c/A9a4Kl/WuHL
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4.3.3 Identification of subpopulational biomarkers 

As metabolites reflect cell metabolism, cells in different subgroups likely possess 

different metabolomic features.  For the first time, we identified and prioritized 

biomarkers for different subpopulations. SinCHet-MS provides three types of GF 

scores (Generalized Fisher scores): 1) subpopulation GF score (sGF), 2) grouped GF 

score (gGF), and 3) the widely used GF score as previously described.359 In the current 

study, sGF was utilized to prioritize subpopulation diagnostic features. The top three 

species with the highest sGF, representing significant contributions to the 

subpopulation discrimination, were visualized among all subpopulations in both cell 

lines (Figure 13). The diagnostic features with high loadings for the first two PCs were 

also displayed in the loading plot for each cell line (Figure S8). It is worth noting that, 

unlike metabolomic biomarkers discovered in conventional LC-MS362, 363 and other 

single cell metabolomic studies,113, 364, 365 the subpopulation biomarkers reported here 

were based on differences of metabolites’ abundances among cell subpopulations, 

rather than different treatment conditions or types of cells. Based on multiple 

comparison among subpopulations (FDR < 0.05), we prioritized 95 and 67 

subpopulational diagnostic features from WM115 and WM266-4 cells, respectively 

(Table S2–S3). Further, we conducted MS/MS to identify these diagnostic features 

using single cells and cell lysates (as detailed in the Supporting Information). As a 

result, a majority of identified subpopulation biomarkers are cellular lipids (e.g., 

phosphatidylcholine, phosphatidylethanolamine, diacylglycerol, triacylglycerol) that 

are related to cellular signal transduction,366 and their compositions are sensitive to 
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cells’ ambient microenvironment.367 Through the current proof-of-concept studies, 

these identified subpopulational biomarkers are likely associated with the emergence, 

expansion, or reduction of certain cell subpopulations due to change of  

microenvironment (i.e., drug treatment). However, the correlation between cell 

subpopulations and drug mechanisms are still to be understood.  

4.3.4 Evaluation of technical and biological variation of SCMS 

datasets 

We considered the influence of SCMS technical variation on our analyses. Our 

previous studies indicated that the technical variation of the Single-probe SCMS 

method is ~20%, which is determined from the relative standard deviation (RSD) of 

the ion intensities of standard compound solutions measured using different Single-

probe devices.232 The combined biological and technical variance (RSD = 95%~110%) 

of cells induced by drug treatment was estimated from the RSD of intensities of the 

top-121 (WM115) and top-103 (WM266-4) ions due to drug treatment. Similarly, the 

combined biological and technical variance between different subpopulations (RSD = 

75~98%) was also estimated from those 95 (WM115) and 67 (WM266- 4) metabolite 

biomarkers of subpopulations. Our results indicate that the technical variance is 

significantly less than the combined biological and technical variance in all cases, 

indicating the reliability of discovered biomarkers using our method. 

4.3.5 Limitations of SCMS datasets 

One limitation for this proof-of-concept study is that the sample size is small for the 
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analysis, primarily due to the limited throughput of the Single-probe SCMS technique. 

We analyzed a total of 75 WM115 cells (i.e., 31 and 44 cells from batch 1 and 2, 

respectively) 128 WM266-4 cells (i.e., 62 and 66 cells from batch 1 and 2, respectively). 

To evaluate if our biological findings shown above are reproducible, we performed the 

combined analysis (by pooling the data from both batches) and compared the results 

with those per-batch analyses, performed using the data from each batch separately. 

The observed agreement (Figure S9 and S10) indicated that findings from per-batch 

analysis are similar to those from the combined analyses. For sensitive cell line 

WM115, two subpopulations were identified in batch 1 and batch 2, respectively. Those 

two subpopulations represent the control and treated groups of cells separately 

(Figure S9A and S9B), which are the same as those two subpopulations identified in 

the combined analyses (Figure 12A).  In the combined analysis, only one cell from 

the treatment group was clustered differently from the rest of the cells in the treatment 

group (Figure 12A).  In addition, there are statistically significant correlations of sGF 

score, which were used to prioritize the subpopulation diagnostic features, between 

each batch and the combined analysis (Figure S9C). For the resistant cell line WM266-

4, even though the proportions of two subpopulations in batch 1 and batch 2 are 

different (Figure S10A and S10B), their proportions changed by treatment are similar 

to findings in the combined analysis (Figure 12C and D). Furthermore, there are 

statistically significant correlations of sGF score of subpopulation biomarkers between 

analyses by each batch and results from the combined analysis (Figure S10C). In 

summary, per-batch analysis generated similar conclusions drawn from the combined 
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analyses.  Although the sample size is small, but the observations made between 

batches were similar.  

 

Figure 13 Relative abundances of top-three subpopulation diagnostic features (with 

top-three highest sGF scores) for (A) WM115 and (B) WM266-4 cell lines. Annotated 

species were identified through MS/MS analyses. 

4.4 Conclusion 

In conclusion, for the first time from a metabolomics perspective, we reported a 

combined experimental and bioinformatic method to reveal changes of cell 

heterogeneity and quantify subpopulation compositions. Cellular metabolomic profiles 

of drug-sensitive and drug-resistant cancer cells were measured using the Single-
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probe SCMS techniques, and experimental data were subjected to batch correction 

prior to downstream analysis. Using comprehensive statistical analyses, we revealed 

that the subpopulations were evidently changed, and a new subpopulation emerged 

in drug-sensitive primary melanoma cancer cells (WM115) treated with vemurafenib. 

The emergence of new subpopulations was not clearly observed in the drug-resistant 

cell line (WM266-4); however, it was evident that proportional change between 

subpopulations occurred. Although the exact correlation between the determined cell 

subpopulations and specific cellular biophysical properties of each subpopulation is 

currently unclear, our technique provides a new label-free method, which is different 

from traditional targeted approaches (isotope tracing,368 fluorescent labeling,64 etc.), 

to study subpopulations. In addition, we integrated multiple functions for SCMS 

metabolomic studies, including the batch correction, visualization of cellular 

metabolomic profiles, comparison of cell heterogeneity, determination of 

subpopulations, and prioritization of subpopulational biomarkers, in a package with a 

user-friendly GUI (SinCHet-MS, freely available for non-profit academic use at 

http://lab.moffitt.org/chen/software/). SinCHet-MS could be applied to analyze single 

cell metabolomic datasets obtained from different instrument platforms. Profound 

understanding of cellular metabolism can be gained not only from the cell 

heterogeneity perspective, but also at the subpopulational resolution. 
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Chapter 5: Towards Early Monitoring of 

Chemotherapy-induced Drug Resistance Based on 

Single Cell Metabolomics: Combining Single-probe 

Mass Spectrometry with Machine Learning 

5.1 Introduction 

Chemotherapy is widely acknowledged as a cancer treatment approach, but its 

effectiveness is limited in the clinic369. This is because drug resistance impairs the 

effectiveness of various chemotherapeutic agents through intricate mechanisms, such 

as reduced drug uptake, increased cellular detoxification, oncogene mutation, and 

other mechanisms369, 370. Treatment failure and malignancy recurrence are caused by 

the decreased chemotherapeutic efficacy. There are two main categories of drug 

resistance: acquired drug resistance, which is defined as resistance that develops and 

changes in response to treatment pressure, and primary drug resistance, which refers 

to intrinsic resistance to chemotherapeutics prior to treatment because of genetic and 

epigenetic factors371, 372. Recent data suggested that a combination of the two types 

may be responsible for the drug resistance seen after chemotherapy.373, 374 Many 

methods have been reported to track chemotherapy-induced drug resistance, despite 

extensive mechanistic research aimed at radically improving our comprehension of 

drug resistance. These techniques include both established protocols (e.g., clinically 

applicable imaging-assisted tissue biopsy375, 376) and in-development methods (e.g., 
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drug monitoring, liquid biopsy, resistance-related protein monitoring, fluorescence-

labeled377 or nanoparticle-bound378, integral cell response monitoring,379 real-time 

monitoring using optofluidic chips380). Three significant limitations are still present, 

though. First, most published methods assess drug resistance based on cell 

populations, which inevitably loses the molecular details of tumor cell heterogeneity, 

which plays a crucial role in the development of cancer.381 Second, most approaches 

require a long monitoring period (e.g., one382 to several months383 after chemotherapy) 

for consistent results, depending on the kind of drug resistance. This exposes patients 

to toxicity and ineffective chemotherapy treatment. Third, certain techniques 

necessitate removing tumor cells from their natural biological milieu, which can change 

the biophysical and metabolic characteristics of the cells384 Therefore, new analytical 

techniques that can track chemotherapy-induced drug resistance in single cancer cells 

during the early stages of treatment in their native conditions are required. 

In order to overcome these constraints, we have previously described a technique 

that predicts cells with primary drug resistance (i.e., adhesion-mediated drug 

resistance) prior to drug intervention by combining single cell mass spectrometry 

(SCMS) experiments with machine learning (ML) data analysis.355 In the current study, 

we improved an analytical method to track the various levels of drug resistance that 

chemotherapy-induced exposure to drugs causes in living cancer cells. 
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5.2 Methods 

5.2.1 SCMS metabolomics and statistical analysis. 

In order to extract cellular metabolomic information from the raw data matrix, 

obtained SCMS metabolomic datasets containing three groups of single cells (control, 

10-day, and 20-day drug exposure) underwent a thorough data pre-treatment 

procedure that included background subtraction, noise removal, intensity 

normalization, peak alignment, and selection of common species (see "SCMS Data 

Pre-treatment" in the Supporting Information).291 After dimensionality reduction using 

partial least squares-discriminant analysis (PLS-DA) on pre-treated SCMS 

metabolomic datasets, individual cells' metabolomic profiles in various groups were 

intuitively displayed in two dimensions385. Furthermore, three groups' relative ion 

intensities of detected cellular species were compared using univariate analysis, such 

as analysis of variance (ANOVA), and metabolic biomarkers that differ significantly in 

abundance across all examined groups were found. 

5.2.2 Machine learning. 

Apart from the logical display of cellular metabolomic profiles through the use of 

a multivariate approach (PLS-DA), trustworthy mathematical models are essential for 

tracking drug resistance by forecasting the level of drug resistance (i.e., no, low, or 

high resistance) that individual cells will possess during chemotherapy. In order to 

build models that can recognize the underlying patterns in the acquired SCMS 

datasets and additionally identify drug-resistant cells by analyzing their cellular 
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metabolomic profiles, we utilized machine learning techniques. Our research 

employed three machine learning techniques: random forest (RF), which produces the 

ensemble model's most popular decision, artificial neural network (ANN), which 

enhances model prediction by changing the network's node and layer configuration, 

and multinominal penalized (also known as elastic net) logistic regression (LR), which 

forecasts categorical outcomes by maximizing the likelihood logistic function while 

minimizing less contributing variables386. Conventional untargeted metabolomic 

research has used RF, ANN, and penalized LR in applications like identification of 

detected metabolites by liquid chromatography-mass spectrometry (LC-MS) 

measurements, prediction of chromatographic retention time, and assessment of 

metabolic changes.387-389 In this chapter, we constructed a machine learning model 

using 80% of the single cells that were randomly selected from the obtained SCMS 

datasets as the training set. The remaining cells were used as the testing set to assess 

the predictive accuracy. To prevent model bias, each model was assessed using five 

independent predictions, which were then followed by a 5-fold cross-validation (CV). 

In An internal script was used for the model's development, validation, and 

assessment.390 

The randomForest() function from the R package "randomForest" was used to 

conduct RF. To put it briefly, the original dataset was supplemented with a response 

label variable. Eighty percent of the single-cell shuffled data were used for testing, and 

the remaining twenty percent were used for training. 500 trees were grown in order to 

create the predictive RF model. The number of variables that were split at each node 
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(called the "mtry" parameter) was optimized to 7, and other parameters were used by 

default. Ninety percent of the single cells in the training dataset were chosen at random 

to train a model. After 100 iterations of this process, the final averaged results were 

published. 

The R package "neuralnet" provided the function neuralnet(), which was used to 

implement ANN. In short, the ML model (apart from binary classification) in our study 

was constructed using a multi-label classification approach. As a result, three 

response label variables were made and added to the original dataset: "None," "Low," 

and "High." There was only one hidden layer with ten neurons, and the activation 

function was the "logistic." All parameters, with the exception of "linear.output = 

FALSE," were used by default. Before ANN modeling, the ion abundance of every 

identified metabolite in all datasets was pareto-scaled. 

Multinominal penalized LR was performed with the 'glmnet' R package. To put it 

briefly, three response label variables were made and added to the original dataset: 

"None," "Low," and "High." To train the model, we randomly selected 80% of the cells 

as the training set, and we used the remaining 20% of the cells as the testing set. All 

datasets underwent pareto-scaling before the penalized LR modeling, and the model 

was constructed using default parameters with the exception of alpha = 0.5, which 

characterizes an elastic net method. 
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5.3 Results and discussion 

5.3.1 Monitoring drug resistance during chemo-treatment using ML 

models. 

In our study, drug resistance was tracked during treatment using RF, ANN, and 

penalized LR. These models were used to predict the drug resistance levels (i.e., 

"none," "low," or "high") of individual cells using well-established models. Table 4 

presents the prediction accuracy of each model using the confusion matrix. In LC-MS 

metabolomic studies, our models produced excellent predictive accuracy (97.4% ± 

1.8%, 97.4% ± 2.8%, and 97.4% ± 2.3% for the RF, ANN, and penalized LR model, 

respectively). These models were compared with previously published models, but 

with comparatively fewer measurements (e.g., ~100)391, 392. Our models had less than 

perfect (100%) predictive accuracy, which may have resulted from cellular responses 

to the drug pressure that were not all the same. Our findings illustrated the predictive 

capacity of machine learning models, especially when analyzing minute variations in 

the cellular metabolomic profiles of various groups. Notably, Welch's two-tail t-test 

revealed that the three models' predictive accuracies on the testing set were 

comparable (p > 0.99), demonstrating their ability and dependability to track early-

stage resistance during treatment at the single cell level. 

5.3.2 Model comparison. 

Conventional LC-MS metabolomic studies are very interested in metabolic 

biomarkers, which have been found and used to track drug resistance in many studies 
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before.393, 394 We conducted a systematic comparison of the predictive accuracy (i.e., 

performance) of models using metabolic biomarkers determined by different methods 

versus models based on SCMS datasets. In other metabolomic research, biomarker 

discovery has typically relied on a range of criteria (e.g., statistical tests,128, 240 loading 

plots of multivariate analysis,113, 395, or variable importance396). ANOVA, principal 

component analysis loadings, and variable importance (VI) as determined by mean 

decrease accuracy (MDA)397, a value signifying a variable's contribution to the group 

separation (refer to “Model Comparison” in the Supporting Information), were utilized 

in our investigations to select biomarkers. Various numbers of biomarkers were found 

using the three above methods: 15 from VI (top-15 metabolites with the highest MDA 

obtained from the RF model constructed on SCMS datasets), 22 from PCA loadings 

(metabolites with highest PC1 and PC2 loading scores), and 24 from ANOVA 

(metabolites with ANOVA p-value < 0.05 and post-hoc p-value < 0.05 between each 

compared groups).396 Each dataset has a different number of variables, and the 

selection criterion has identified some metabolites as biomarkers that are either 

mutually exclusive or exclusively present. For instance, twenty metabolites were only 

found under one selection criterion, seven metabolites were mutually recognized as 

biomarkers by all the criteria, and forty-one metabolites in the SCMS datasets were 

not selected as biomarkers by any of the criteria. 

We then constructed ML models using the RF, ANN, and penalized LR algorithms, 

utilizing these biomarkers found through various approaches and all metabolites 

included in the SCMS dataset. Finally, we assessed the performance of these models 
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(Table 4). Even though different groups of metabolites were used to construct the 

models, all trained machine learning models generally demonstrated excellent 

predictive accuracy on the testing set. All together, they showed the potential of our 

approach to predict drug-resistant cells in a reliable (> 94.9% predictive accuracy) and 

fast (< 30 s computing time in model construction using pretreated SCMS data) 

manner. However, ML models based on biomarkers require less computing time than 

models based on SCMS datasets, most likely as a result of the inclusion of fewer 

variables. 

5.3.3 Multi-class ROC analysis. 

 

Figure 14 Multi-class ROC analysis of ML models including RF models constructed on 
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the (A) SCMS datasets, (B) ANOVA subset, (C) PCA loadings subset, (D) variable 

importance (VI) subset; ANN models constructed on the (E) SCMS datasets, (F) 

ANOVA subset, (G) PCA loadings subset, (H) VI subset; and penalized LR models 

constructed on the (I) SCMS datasets, (J) ANOVA subset, (K) PCA loadings subset, 

(L) VI subset. The model classification ability is represented by the averaged area 

under curve (AUC) from three pairwise ROC analyses (e.g., “High” vs. pooled “Low” 

and “None”, etc.) in each model. 

In LC-MS metabolomic studies, receiver operating characteristic (ROC) analysis 

was frequently performed for classification models despite the predictive accuracy386. 

The area under the curve (AUC), a complementary performance metric in a diagnostic 

model, was used to assess the classification capability.392, 398 To assess the 

classification ability of various machine learning models, we performed multi-class 

ROC analysis in our study, which is a generalized version of the conventional binary 

ROC analysis399 (Figure 14). An AUC was specifically computed using two sets of data: 

one group of cells (such as "none") and the other group made up of all remaining cells 

(such as pooled "Low" and "High"). For the other two cell groups (such as "Low" and 

"High"), this kind of computation was done once more, and the averaged AUC (i.e., 

¯("AUC" )) was the output. Thus, in predicting the cell attributes across all groups, all 

models demonstrated exceptional400 classification capability (¯("AUC" ) > 0.99), which 

is consistent with our previous findings of the excellent model predictive accuracy. 

Datasets 

Predictive 

Accuracy 

Error 

Rate

Predictive 

Accuracy 

Error 

Rate

Predictive 

Accuracy 

Error 

RateL
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(RF) * RF
** (ANN) * ANN

** (LR) * R
** 

SCMS 97.4% ± 1.8% 2.2% 97.4% ± 2.8% 2.1% 97.4% ± 2.3% 3.5% 

ANOVA 97.4% ± 1.8% 3.0% 97.4% ± 1.8% 4.3% 98.7% ± 1.2% 3.0% 

PCA 

Loadings 

97.9% ± 1.5% 4.3% 95.7% ± 2.6% 5.7% 94.9% ± 2.4% 5.2% 

VI 96.2% ± 1.0% 3.5% 98.3% ± 1.8% 1.7% 98.7% ± 1.9% 1.7% 

Table 4 Predictive accuracy of RF, ANN and penalized LR models based on SCMS 

datasets and biomarkers discovered using different criteria. 

*Predictive accuracy of single cells possessing no, low and high ADR was 

calculated from five independent predictions (average ± standard deviation). 

**Error rate was estimated using a 5-fold CV in each model. 

5.4 Conclusion 

We presented an analytical method to track drug resistance in cancer cells after 

drug exposure that combines single cell metabolomics with machine learning. Models 

were built using three algorithms: penalized LR, ANN, and RF. The datasets came 

from the SCMS analysis of cancer cells exposed to drugs and control cells. After 

building the models, we assessed their performance using a variety of methods, 

including 5-fold CV, predictive accuracy, and classification capability (i.e., ROC). 

According to our findings, the RF model built using SCMS datasets could predict 

individual cells with varying degrees of resistance (i.e., none, low, and high) accurately 

(86.5%) and quickly (~0.5 s). As a result, other labs could directly use the model for 
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simple predictions. While in vitro cancer cell lines were used in this chapter, it may be 

applied to early and real-time monitoring of chemotherapy-induced drug resistance in 

patient samples, so long as effective malignant cell isolation from clinical specimen is 

carried out401, followed by SCMS measurements and machine learning predictions 

based on a validated model. In addition to our previously published technique for 

identifying individual cells with primary drug resistance,355 we showcased new 

methods based on single cell metabolomics that may be applied to upcoming point-

of-care (POC)402 diagnostic tests in clinical settings. 

5.5 Author contribution 

Conceptualization, Z.Y., R.L., M.S., G.Z.; methodology, Z.Y., R.L., M.S., G.Z.; 

single cell MS and MS/MS analysis, M.S.; MS data analysis, R.L., Y.L.; Coding script 

preparation, G.Z., Y.L.; resources, Z.Y.; manuscript preparation, Z.Y., R.L., M.S., G.Z., 

Y.L. 
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Appendix 

A. Figures 

Chapter 2. 

 

Figure S1. MS1 of DAM and interfering ions. 

 

Figure S2. MS/MS of interference ions (upper) and DAM solution (lower). 



125 

 

 

Figure S3. Mass spectrum of DAM and its internal standard (OXF). 

 
Figure S4. MS/MS of co-isolated [DAM+H]+ (m/z 407.1325) and [OXF+H]+ (m/z 407.1020). 

Fragment ions of [DAM+H]+ and [OXF+H]+ are highlighted in blue and red, respectively. 
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Figure S5. MS/MS of standard OXF solution.  

Chapter 3. 

 

Figure S1. The schematic of the working mechanisms of the Single-probe SCMS experimental 

set-up. 
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Figure S2: Hierarchical Clustering of metabolite features differing between infected cells (I/C), 

correctly classified bystander cells (C/B) and mis-classified bystander cells (M/B). The 

annotated features are marked (*).  
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Figure S3. Box plots for 16 metabolites showed comparable behavior in infected cells (I/C) 

and in mis-classified bystander cells (M/B), as determined by ANOVA test with an adjusted p-

value ≤ 0.05. 

 

 

 

Figure S4. Annotated MS/MS spectra of [PC(P-20:0/14:0)+Na]+  at m/z 768.5813 (upper panel) 

and [PC(16:0/18:2)+Na]+ at m/z 780.5493 (lower panel), acquired from individual HeLa cells. 

CE: collision energy. 

 

m/z 

m/z 
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Figure S5. Annotated MS/MS spectra of [PC(16:0/18:1)+Na]+  at m/z 782.5654 (upper panel) 

and [PC(18:1/18:1)+Na]+ at m/z 808.5801 (lower panel), acquired from individual HeLa cells. 

CE: collision energy. 

m/z 

m/z 
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Figure S6. Annotated MS/MS spectrum of [PC(18:0/18:1)+Na]+ at m/z 810.6273 from 

individual HeLa cells. CE: collision energy. 

Chapter 4. 

 

Figure S1. Photos of WM115 (A and C) and WM266-4 (B and D) cells before (A and B) and 

after treatment (C and D) (1 µM for 48 h). 

m/z 
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Figure S2. Representative mass spectra of single WM115 (A-B) and WM266-4 (C-D) cells 

before (A and C) and after treatment (B and D) (1 µM for 48 h). The zoomed-in mass spectra 

illustrate m/z regions with abundant cellular species. Major lipid species including PC 34:1 and 

PC 36:2 are present in both cell lines before and after treatment with different relative intensity. 
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Figure S3. The main Graphic User Interface (GUI) of the SinCHet-MS software package. It 

integrates functions of debatching, determination and visualization of cell subpopulations and 

prioritization of subpopulational biomarkers. 

 

 

Figure S4. PCA score plots of WM266-4 cells (A) before and (B) after debatching in the PC3 

and PC4 dimensions. The shapes of the symbol represent control (○) and treatment (∆), and 

the colors of the symbol represent batch 1 (■) and batch 2 (■).  
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Figure S5. Change of cell heterogeneity before and after drug treatment for the (A) WM115 

and (B) WM266-4 cell lines using d-statistics. 

 

Figure S6. PCA score plots of (A) WM115 and (B) WM266-4 cells classified by subpopulations. 

The shapes of the symbol represent control (○) and treatment (∆), and the colors of the symbol 

represent batch 1 (■) and batch 2 (■).   
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Figure S7. Representative mass spectra of single WM115 (A-B) and WM266-4 (C-D) cells with 

different subpopulation. (A) Subpopulation 1 of WM115; (B) Subpopulation 2 of WM115; (C) 

Subpopulation 1 of WM266-4; (D) Subpopulation 2 of WM266-4. Major lipid species including 

PC 34:1 and PC 36:2 are present in both cell lines before and after treatment with different 

relative intensity. 
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B. Tables 

Chapter 2. 

Table S1. Calibration curve of DAM major fragments 

Ions Regression functions R square values 

Summary Y = 141.37X + 0.0809 0.9914 

318.05 Y = 37.36X + 0.0329 0.9939 

346.08 Y = 78.15X + 0.0412 0.9933 

364.09 Y = 25.86X + 0.0068 0.9495 

 

Chapter 3. 

Table S2. Parameters of the Thermo Fisher Q-Exactive Plus hybrid quadrupole orbitrap mass 

spectrometer used for Full MS/dd-MS2 analysis. 

Properties of Full MS/dd-MS2 

General 

Runtime 0 to 12.5 min 

Polarity Positive 

Default Charge 1 

Inclusion - 

Exclusion On 

Full MS 

Resolution 70,000 

AGC target 1 x 106 

Scan range 70 to 1050 m/z 

Maximum IT 246 ms 

dd-MS2 

Resolution 17,500 

AGC target 2 x 105 
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Maximum IT 54 ms 

Loop count 5 

TopN 5 

Isolation window 1.0 m/z 

Fixed mass - 

(N)CE/stepped NCE: 20, 40, 60 

dd Settings 

Minimum AGC 8.00e3 

Peptide match Preferred 

Exclude isotopes on 

Dynamic exclusion 10.0 s 

ESI Ion Source 

ID HESI 

Sheath gas flow rate 35 

Auxiliary gas flow rate 10 

Sweep gas flow rate 0 

Spray voltage 3.80 kV 

S-lens RF level 50 V 

Capillary temperature 320 ℃ 

Auxiliary gas temperature 350 ℃ 

 

Table S3. GNPS parameters used for annotation. 

 

GNPS Search Single Spectrum 

Search Options 

Find Related Datasets Do it 

Select Databases to Search All 

Parent Mass Tolerance 0.02 Da 
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Ion Tolerance 0.02 Da 

Min Matched Peaks 4 

Score Threshold 0.7 

Advanced Search Options 

Library Class Bronze 

Search Analogs Do Search 

Search Unclustered Data Don’t Search 

Top Hit Per spectrum 5 

Maximum Analog Search Mass Difference 500.0 

Advanced Filtering Options 

Filter StdDev Intensity 0.0 

Minimum Peak Intensity 0.0 

Min Peak Int 0.0 

Filter Precursor Window Filter 

Filter Library Filter Library 

Filter peaks in 50 Da Window Filter 
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Table S4. Metabolites differing between cell groups as determined by ANOVA (p-value <0.05, 

FDR-corrected) 

m/z Annotation p value FDR-corrected p value 

267.0620 N/A 1.66E-10 4.34E-09 

302.1440 N/A 0.001722 0.011115 

322.885 N/A 2.01E-27 5.66E-24 

359.0250 N/A 6.65E-16 3.99E-14 

429.9390 N/A 0.001033 0.007073 

431.9630 N/A 0.000185 0.001564 

515.2590 N/A 0.005041 0.026922 

523.2850 N/A 0.00346 0.019204 

537.3000 N/A 1.60E-06 2.15E-05 

665.3820 N/A 0.010602 0.048378 

756.5470 PC(34:3) or LPC(34:4) or PC(O-

34:4) (Library match to 1-Oleoyl-2-

palmitoyl-sn-glycero-3-

phosphocholine (PC 34:1)) (*) 

0.000168 0.001429 

768.583 [PC(P-20:0/14:0)+Na]+ (**) 0.000742 0.005306 

780.5460 [PC(16:0/18:2)+Na]+ (**) 2.59E-07 4.06E-06 

782.5630 [PC(16:0/18:1)+Na]+ (**) 9.58E-08 1.63E-06 

808.5770 [PC(18:1/18:1)+Na]+ (**) 2.57E-06 3.31E-05 

810.5940 [PC(18:0/18:1)+Na]+ (**) 0.000114 0.001031 

(*)Features were annotated by GNPS (cosine score = 0.92; number of shared peaks = 5; mass difference to library 

reference =4.03)  and supported by the annotated spectrum in Figure 4b. 

(**) Features were annotated manually and supported by the annotated spectra in the Figure S4-S6. 

N/A: Metabolites were not annotatable. 

Chapter 4. 

Table S1. Summary of the groups of cells used in the SCMS experiments. 

Cell Lines Batch Treatment Condition* Analyzed Cells 

 

WM115 

1 Control 13 

 Treatment 18 

2 Control 26 

 Treatment 18 

 

WM266-4 

3 Control 32 

 Treatment 30 

4 Control 29 

 Treatment 37 
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* 1 µM Vemurafenib was used treat cells for 48 h in the treatment groups. 

Table S2. Subpopulational biomarkers between subpopulation 1 and 2 in WM115. 

m/z RSD Identification PPM Ppost hoc
* 

189.987 128.1056   0.03309 

192.039 123.7538   0.012697 

203.052 103.7025   5.50E-05 

225.034 129.3706   0.01681 

296.065 150.745   9.37E-05 

341.012 176.1595   0.000441 

354.077 128.0285   0.040612 

383.115 137.969   0.000359 

405.097 173.8225   0.008092 

589.478 83.80356   9.45E-08 

605.452 116.7758   8.01E-10 

615.493 76.47161   8.92E-07 

617.509 73.18834   5.66E-06 

631.467 108.898   8.01E-10 

633.483 93.51578   9.28E-10 

641.509 84.88917   0.000501 

643.524 75.0312 [DG(36:2) + Na]+ † 4 0.000169 

657.483 116.3986   8.01E-10 

659.498 98.13423   9.15E-10 

700.486 95.96191   8.01E-10 

721.554 186.793   0.000521 

723.491 74.77151   7.04E-06 

726.501 71.44518   8.01E-10 

728.518 56.08359 [PC(30:0) + Na]+ † 2 1.70E-06 

740.553 100.734 [PE(O-35:1) + Na]+ † 4 8.01E-10 

742.475 109.1735   8.01E-10 

742.533 80.06013   8.43E-10 

742.569 89.43842   8.43E-10 

744.491 79.16645   9.53E-10 

752.517 61.77599   1.01E-08 

754.534 50.81652 [PC(32:1) + Na]+ †‡ 2 1.88E-05 

756.549 51.33026   0.000429 

766.569 83.4998 [PE(O-37:2) + Na]+ † 4 3.97E-07 

768.49 92.68474   8.01E-10 

768.549 76.8444   0.00706 

768.585 47.3431 [PE(P-37:0) + Na]+ † 3 0.002989 

770.507 69.87939   1.01E-08 

772.523 70.82742   7.45E-07 

776.516 96.64662   8.01E-10 
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778.533 62.08769 [PC(34:3) + Na]+ † 3 1.23E-07 

780.55 50.97458 [PC(34:2) + Na]+ † 1 0.000145 

782.566 50.84661 [PC(34:1) + Na]+ † 1 1.05E-05 

784.522 111.4313   8.01E-10 

788.516 100.5926   0.007988 

790.568 66.30461   1.05E-09 

794.506 99.14211   8.01E-10 

794.564 74.30683   1.43E-06 

794.601 130.933   0.000428 

796.523 64.26495 [PC(34:2) + K]+ † 2 2.51E-08 

796.58 76.08471   8.81E-07 

798.539 76.09119   4.37E-09 

804.549 51.08599 [PC(36:4) + Na]+ † 2 0.00061 

806.565 55.84285   0.010579 

808.582 49.38926 [PC(36:2) + Na]+ †‡ 0 0.008852 

810.597 46.10142 [PC(36:1) + Na]+ † 1 0.00692 

816.585 61.71127   5.00E-07 

818.601 102.5192   8.01E-10 

820.522 75.10244 [PE(39:4) + K]+ † 4 9.79E-10 

822.539 70.32211 [PC(36:3) + K]+ † 2 7.34E-09 

824.554 66.77384 [PC(36:2) + K]+ † 3 4.27E-08 

825.691 73.80641   1.50E-07 

826.571 101.7181   8.01E-10 

828.71 89.96173   3.93E-09 

830.565 62.75414   2.83E-05 

832.58 53.71502 [PC(38:4) + Na]+ † 3 0.001517 

834.597 77.88288 [PC(38:3) + Na]+ † 1 1.08E-09 

836.613 114.3903   0.000186 

841.665 100.8033   8.01E-10 

843.681 93.34589   9.53E-10 

846.539 79.29715   8.01E-10 

848.554 82.36365   8.01E-10 

851.707 69.3612   8.12E-06 

853.722 50.85418 [TG(48:6) + H]+ ‡ 4 0.002183 

856.741 73.06928   4.73E-07 

858.596 85.44335   5.34E-09 

867.681 90.26346   8.01E-10 

869.697 80.84171   4.88E-09 

871.713 92.1332   1.95E-09 

877.722 71.98826   0.003149 

879.738 53.06125   0.043587 

881.754 49.77383   0.01081 

893.696 85.14766   1.61E-09 

895.712 73.01709   1.22E-07 
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897.728 75.97223   1.25E-07 

899.744 124.2535   8.01E-10 

909.786 101.0202   0.001135 

919.713 87.96139   4.77E-08 

921.728 71.15654   5.35E-07 

923.744 74.74833   1.09E-07 

925.76 112.0745   8.01E-10 

947.744 114.6453   3.02E-09 

*FDR adjusted p-value from post hoc pairwise comparison between subpopulation 1 and 2 under 

a familywise error rate. 
†Biomarker identified at the population level. 
‡Biomarker identified at the single cell level. 

PC = phosphatidylcholine, PE = phosphatidylethanolamine, DG = diglyceride, TG = triglyceride. 

 

Table S3. Subpopulational biomarkers between subpopulation 1 and 2 in WM266-4. 

m/z RSD Identification PPM Ppost hoc
* 

174.013 159.4572   0.00298 

176.065 184.2156   0.001055 

184.073 54.73049   2.97E-10 

189.987 159.1209   0.030178 

203.052 163.2219   0.000611 

219.026 134.2137   0.036753 

226.95 134.136   0.045047 

354.076 219.6756   0.005098 

383.115 202.9088   0.001485 

650.434 111.3089   1.44E-07 

672.416 130.9384   0.005258 

678.501 99.25205   2.97E-10 

692.553 88.21998   3.05E-10 

703.573 159.5482   4.07E-08 

704.516 77.16659   2.97E-10 

706.534 80.57585 [PC(30:0) + H]+ † 5 2.97E-10 

708.538 107.4086   2.97E-10 

718.568 74.11582   2.97E-10 

720.547 90.48607   3.37E-10 

720.586 105.4016   2.97E-10 

725.55 207.105   0.000322 

730.531 90.67068   4.43E-09 

730.544 102.242   2.97E-10 

731.599 131.3111   1.97E-05 

732.55 76.242 [PE(35:1) + H]+ †‡ 5 2.97E-10 

734.566 80.08571   2.97E-10 
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742.566 106.06   0.01014 

744.546 117.12   4.40E-10 

744.584 73.40015   2.97E-10 

746.562 65.493   3.80E-10 

746.579 86.20477   2.97E-10 

746.602 82.15653   2.97E-10 

748.616 101.1125   3.05E-10 

758.566 63.44769 [PE(37:2) + H]+ † 4 2.97E-10 

760.582 65.28295 [PC(34:1) + H]+ † 4 2.97E-10 

762.584 66.62915   8.37E-08 

762.596 78.46355   1.17E-08 

770.599 54.68057   2.97E-10 

772.577 83.68257   2.97E-10 

772.615 71.29696   3.02E-10 

774.593 84.97327   2.97E-10 

774.631 96.38335   2.97E-10 

784.582 74.77287   2.97E-10 

786.597 67.40736 [PE(39:2) + H]+ † 4 2.97E-10 

794.612 116.6464   1.35E-06 

796.614 69.19304   2.97E-10 

811.661 141.1078   0.000206 

812.609 106.9853   1.00E-06 

813.677 151.3288   0.001812 

814.625 91.72509   2.97E-10 

830.545 132.5015   0.00117 

834.593 103.2547 [PC(38:3) + Na]+ † 6 0.032411 

1464.086 120.3208   2.97E-10 

1466.101 112.6823   2.97E-10 

1478.138 125.9171   2.97E-10 

1480.153 131.1825   2.97E-10 

1490.102 109.0322   2.97E-10 

1492.117 101.9152   2.97E-10 

1504.153 120.7291   2.97E-10 

1506.168 119.1866   2.97E-10 

1516.117 104.9038   2.97E-10 

1518.132 99.1318   2.97E-10 

1520.147 104.2193   2.97E-10 

1542.133 104.062   5.47E-10 

1544.148 101.6704   2.97E-10 

1546.163 106.3662   2.97E-10 

1570.164 119.6729   2.97E-10 

*FDR adjusted p-value from post hoc pairwise comparison between subpopulation 1 and 2 under 

a familywise error rate. 
†Biomarker identified at the population level. 
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‡Biomarker identified at the single cell level. 

PC = phosphatidylcholine, PE = phosphatidylethanolamine, DG = diglyceride, TG = triglyceride. 
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