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ABSTRACT 

Seismic fault interpretation is a critical task for any type of energy industry and correct 

fault mapping can be crucial for the success of a project. Common geometric seismic attributes 

such as coherence and curvature are routinely employed to enhance fault visualization in seismic 

data, but they can show limitations for sub-seismic faulting. Two projects are presented here 

showing how recently introduced geometric seismic attributes, such as total aberrancy, and 

unsupervised machine learning methods, such as self-organizing maps (SOM) and generative 

topographic mapping (GTM), can be applied for enhancing fault visualization.   

The first project focuses on an area with potential for CO2 storage in the carbonates of the 

Duperow Formation, northern Montana.  In this study, we compared broadband and multispectral 

coherence, curvature, and aberrancy, and we compared SOM and GTM techniques when including 

and excluding aberrancy attributes. Our results showed that integrating aberrancy attributes during 

the multiattribute analysis and the machine learning steps considerably enhance the visualization 

of lineaments with strikes similar to those of fracture sets seen only with well log data and missed 

by the conventional geometric seismic attributes and the ML scenarios excluding aberrancy 

attributes. 

The second project is related to wastewater injection and induced seismicity in basement-

rooted faults in northcentral Oklahoma. Here, different geometric seismic attributes were analyzed 

and integrated using unsupervised machine learning to identify potential basement-rooted faults 

and strike-slip-related structures. The machine learning results not only confirmed the existence 

of NE-SW faults that extend from the basement upward into the sedimentary section and that 

correlated with earthquake data but also the potential existence of other NE-SW structurally 

controlled features of anticlinorium shape.
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CHAPTER 1. APPLICATION OF A NOVEL GEOMETRIC SEISMIC ATTRIBUTE FOR 

ENHANCING FAULT VISUALIZATION IN AREAS OF POTENTIAL CARBON 

CAPTURE AND STORAGE 

 

ABSTRACT 

Seismic fault interpretation is a critical task for any type of energy industry and correct 

fault mapping can be crucial for the success of a project. Common geometric seismic attributes 

such as coherence and curvature are routinely employed to enhance fault visualization in seismic 

data, but they can present limitations for sub-seismic faulting. In this study, we highlight the 

usefulness of including the more novel aberrancy attributes for fault identification in multiattribute 

analysis and unsupervised machine learning techniques. We compare broadband coherence, 

curvature, multispectral coherence, and aberrancy when trying to map faults in a potential CO2 

storage location, and we compare self-organizing maps (SOM) and generative topographic 

mapping (GTM) techniques when including and excluding aberrancy attributes. Our results show 

that integrating aberrancy attributes during the multiattribute analysis and the machine learning 

steps considerably enhance the visualization of lineaments with strikes similar to those of fracture 

sets seen only with well log data. These lineaments were missed by the conventional geometric 

seismic attributes and the ML scenarios excluding aberrancy attributes. We demonstrate the 

potential of these novel geometric seismic attributes to map sub-seismic faults as well as provide 

an example that can encourage interpreters to include them in their interpretation workflows.    
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INTRODUCTION 

Fault mapping is fundamental to identify trap mechanisms, potential leak points, migration 

pathways, and to understand the structural setting of an area of interest, regardless of whether the 

target is oil and gas production, CO2 geological storage, or injection of fluids for enhanced oil/gas 

recovery and geothermal energy. Failing to correctly identify faults and fractures in the rock may 

have consequences from losing control of injected fluid, to inducing seismicity (Kay et al. 1993; 

Ellsworth, 2013). Seismic attributes such as coherence and curvature are systematically applied 

for structural seismic interpretation since they have a very well-documented record of successful 

case studies (Gupta et al. 2013; Schneider et al. 2016; Libak et al. 2017; and Karam et al. 2021). 

However, these attributes fail to properly image faults for which vertical offset is below seismic 

resolution. Multispectral coherence and aberrancy have been more recently introduced to help in 

cases where fault offset is lost in the frequency content or seen only as small bends with no clear 

discontinuity, respectively (Gao and Di, 2015; Li et al., 2018; and Lyu et al., 2020). Due to these 

capabilities, these attributes are showing promising results in helping interpreters detect potential 

faults in scenarios of sub-seismic offsets.   

For this study, we use the P-wave component of the multicomponent Kevin Dome dataset 

located in the region of the Sweetgrass Arch, Montana, U.S (Figure 1-1A). Kevin Dome is a large 

structural closure that naturally traps CO2 in the Devonian naturally fractured and interbedded 

limestone/dolostone Duperow Formation (Zaluski, 2018). As part of a partnership between the Big 

Sky Carbon Sequestration Partnership (BSCSP) and the U.S. Department of Energy (DOE), this 

region was identified as an ideal site to study additional underground storage of anthropogenic 

CO2. The initial phases of the project aimed to extract the naturally accumulated CO2 (Danielson 

33-17, CO2 production well) and re-inject it (Wallewein 22-1, CO2 injector well) on the brine-filled 
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side of the Duperow Formation (Figure 1-1B), with the objective of evaluating the viability, 

injectivity capacity, and storability on the target formation and other analogous formations (Onishi 

et al., 2019). Although EPA regulations did not allow for the storage of anthropogenic CO2 in 

Duperow, BSCSP altered the focus of the project to collecting data that aid in characterization of 

the reservoir (from well logs to cores) along with seismic data. 

Figure 1-1. A) Location of Kevin Dome seismic dataset within the state of Montana, B) generalized 

representation of the Kevin Dome subsurface and the project initially envisioned by the BSCSP 

(modified from Onishi et al. 2019), C) stratigraphic column in the Kevin Dome area (modified 

from Clochard et al. 2018). 
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In this seismic dataset, three main N-S fault trends are seen to clearly cut the reflectors 

below the target zone (Figure 1-2, F1, F2, F3). However, previous reports that integrate different 

types of available data into a static model indicate these faults are sealing faults that do cut the 

injection interval (Zaluski, 2018). Moreover, FMI logs highlighted the existence of fractures with 

NE-SW and NW-SE strikes, which are not obvious in the seismic amplitude volume. For these 

two reasons, we found this dataset appropriate to test the capabilities of aberrancy attributes and 

unsupervised machine learning (ML) methods to enhance fault visualization in carbonate rocks 

suitable for CO2 storage.  This study expands upon a previous work included in Bedle et al. (2022), 

which covered only the multiattribute analysis step. Here, we present both the multiattribute 

analysis and the different machine learning tests. 

Dataset 

The Kevin Dome dataset is a 3D multicomponent seismic survey of which we focused only 

on the primary P-wave pre-stack time migrated seismic volume. The seismic volume has a bin size 

of 55 x 55 ft, a record length of 2 seconds, and a sample interval of 2 milliseconds. Figure 1-2A 

shows the horizon probe created for the purpose of this study as well as the three faults (F1, F2, 

and F3) cutting the seismic reflectors below the target Duperow Formation.  

For the purpose of this study, previous fracture analysis performed with FMI data from the 

wells Danielson 33-17 and Wallewein 22-1 will also be included.  The location of these wells is 

shown in Figure 1-2B, and the details of the FMI analysis can be found in Zaluski (2018).  
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METHODOLOGY 

In this study, we highlight the usefulness of including aberrancy attributes for fault 

identification when doing multiattribute analysis and applying unsupervised machine learning 

(ML) techniques such as self-organizing maps (SOM) and generative topographic mapping 

(GTM). During the multiattribute analysis stage, we compare broadband coherence, k1-most 

positive and k2-most negative curvature, multispectral coherence, and aberrancy azimuth and 

magnitude; and during the ML stage, we compare SOM and GTM techniques when including and 

excluding aberrancy attributes (Figure 1-3). 

Before calculating any seismic attribute, and as part of a conditioning step, we first applied 

two filters to remove coherent (acquisition footprint removal filter; Falconer and Marfurt, 2008) 

and random noise (structure-oriented filter; Luo et al. 2002 and Fehmers and Höcker, 2003), one 

pass in each filter to avoid removing smaller scale features that could be related to geological 

Figure 1-2. Horizon probe covering the area of interest, the Duperow formation, and stratal 

mapping of surfaces compared to mapped horizons of Zaluski (2018). Note the faults (F1, F2, F3) 

below the target zone. Modified from Bedle et al. (2022). 
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content. After those two conditioning steps, we proceed to map the horizons of interest taking as 

reference surfaces mapped by Zaluski (2018). We focus on Bakken, Potlach, Upper Duperow, Mid 

Duperow, Lower Duperow, and Souris River; although we mapped two additional seismic 

reflectors above and below the target zones in order to create a seismic horizon probe that would 

serve as input for the next steps.    

We then proceed to calculate the conventional geometric attributes of broadband 

coherence, multispectral coherence, and curvature, and the most novel aberrancy attributes. For 

the multispectral coherence, we started by first analyzing the frequency spectrum (constrained to 

the target interval and middle to higher frequencies, as we are interested in small scale features), 

Figure 1-3. Workflow followed. 
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selecting the spectral voices of interest, and creating different combinations using RGB (red-green-

blue) blends to finally select the combination that better highlights geological content.  

Finally, we ran two unsupervised methods: SOM and GTM. Four tests are made, two for 

each method, with the objective of comparing results when including all attributes calculated 

(SOM 1 and GTM 1) and when excluding aberrancy attributes (SOM 2 and GTM 2).  Table 1-1 

shows the scenarios created and the specific seismic attributes included in each case.  

 

Table 1-1. Case scenarios created using SOM and GTM to test the capabilities of integrating 

conventional and novel geometric seismic attributes for fault visualization enhancement. SOM 1 

and GTM 1 including all geometric attributes and SOM 2 and GTM 2 excluding aberrancy 

attributes. *Aberrancy attributes were included using the mathematical conversion explained in 

the seismic attributes section. 

 

 

SOM 1 and GTM 1 SOM 2 and GTM 2 

Sobel filter similarity broadband Sobel filter similarity broadband 

k1-most positive principal curvature k1-most positive principal curvature 

k2-most negative principal curvature k2-most negative principal curvature 

Total aberrancy magnitude * Sobel filter similarity 54 Hz 

Total aberrancy azimuth * Sobel filter similarity 63 Hz 

Sobel filter similarity 54 Hz Sobel filter similarity 71 Hz 

Sobel filter similarity 63 Hz  

Sobel filter similarity 71 Hz  
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Seismic Attributes 

Since we are interested in enhancing the visualization of structural features only, we will 

focus solely on geometric seismic attributes as they have proved to be best for seismic structural 

interpretation. The seismic attributes considered to aid in the interpretations are: 1) broadband 

coherence, 2) coherence at 54 Hz, 3) coherence at 63 Hz, 4) coherence at 71 Hz, 5) k1-most 

positive principal curvature, 6) k2-most negative principal curvature, 7) aberrancy azimuth, and 8) 

aberrancy magnitude. The mathematical relationship between the coherence, curvature, and 

aberrancy can be visualized in Figure 1-4, as well as the fault expression they highlight in the 

seismic data. Dip is the most important constraint when calculating coherence, curvature, and 

aberrancy (Chopra and Marfurt, 2020). 

Broadband coherence is calculated over the full-bandwidth volume by measuring the 

similarity of neighboring traces (Bahorich and Farmer, 1995). It works very well when there is a 

clear discontinuity in the reflectors, and it has been proved to work not only with faults but also 

Figure 1-4. Relationship between the different geometric seismic attributes. A) mathematical 

concept of the geometric attributes, after Bhattacharya and Verma (2019), and B) geological 

relationship of attributes and faults, modified from Patel et al. (2021). 
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with stratigraphic edges such as the borders of a channel. Multispectral coherence uses the same 

approach as broadband coherence, but it is calculated from different spectral voice components. It 

shows features that may have been lost within the broadband seismic (Li et al., 2018).  

Similar to coherence, curvature can also be applied for structural and stratigraphic features. 

When used for stratigraphic features, k1-most positive curvature helps to identify anticlinal and 

domal features, while and k2- most negative curvature help with synclinal and bowl-like features 

(Chopra and Marfurt, 2007). Curvature works for structural features when the seismic expression 

of the fault is characterized by folded reflectors on each side of the fault (Chopra and Marfurt, 

2011). More specifically, upthrown-sides will have a positive anomaly captured by k1-most 

positive curvature while the downthrown-side will have a negative anomaly captured by k2- most 

negative curvature.  

Aberrancy is a more novel technique that was introduced by Gao et al. (2013) as an 

extension and complement of the existing curvature attribute. It is able to map planes of potential 

sub-seismic faults, whose seismic expression in the seismic amplitude volume is a subtle flexure 

of the reflector rather than a discontinuity; this would be the case for faults with vertical offset 

below seismic resolution (Gao and Di, 2015; Qi and Marfurt, 2018; Bhattacharya and Verma, 

2019). 

For the ML workflow, the aberrancy azimuth and the aberrancy magnitude will be 

integrated differently. Since aberrancy azimuth is a cyclical attribute, values of -180° and 180° will 

be considered the same after the normalization step prior to the ML application. In that sense, we 

separate the vector in its northing [1] and easting [2] components by applying the following 

equations: 
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𝑇𝑜𝑡𝑎𝑙 𝑎𝑏𝑒𝑟𝑟𝑎𝑛𝑐𝑦 𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 × 𝑠𝑖𝑛(𝑇𝑜𝑡𝑎𝑙 𝑎𝑏𝑒𝑟𝑟𝑎𝑛𝑐𝑦 𝑎𝑧𝑖𝑚𝑢𝑡ℎ)        [1] 

𝑇𝑜𝑡𝑎𝑙 𝑎𝑏𝑒𝑟𝑟𝑎𝑛𝑐𝑦 𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 × 𝑐𝑜𝑠  (𝑇𝑜𝑡𝑎𝑙 𝑎𝑏𝑒𝑟𝑟𝑎𝑛𝑐𝑦 𝑎𝑧𝑖𝑚𝑢𝑡ℎ)      [2] 

Machine Learning Methods 

Most of the studies that focus on the application of unsupervised ML methods in seismic 

data do so for seismic facies classification (Zhao et al. 2015; Maas et al. 2023, Lubo et al. 2023). 

However, fault identification may not necessarily fall into a different type of geoscience problem. 

We have seen that different fault expressions in the seismic amplitude volume may be visualized 

using different seismic attributes. In that sense, integrating all seismic attributes using ML could 

be a helpful way to find all different seismic fault patterns using a single volume rather than having 

to interpret in several seismic volumes that may as well correspond to a co-render of two or three 

different seismic attributes. 

A study of such was performed by Hussein et al. (2020), in which the authors probe the 

success of SOM for fault visualization enhancement using multispectral coherence, dip magnitude, 

aberrancy magnitude, curvedness, GLCM entropy, and GLCM homogeneity. Here, we will further 

test GTM method as well as other seismic attribute combinations, as mentioned in the previous 

section.  

Self-Organizing Maps (SOM) 

SOM is considered a projection technique for dimensionality reduction that helps in 

understanding high dimensional data through less complex outputs, such as for data visualization, 

clustering, and pattern recognition applications. A detailed mathematical explanation of SOM can 

be found in Kohonen (1982) while a user-friendly review and applications in geoscience is 

presented by Roy et al. (2011). 
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SOM starts by plotting the N-dimensional input data into an N-dimensional space (Figure 

1-5A). By using principal component analysis, the main directions of variability are computed, 

and the first components are defined by organizing the eigenvectors through their eigenvalues. The 

first two eigenvectors (principal components) are used to define the 2D latent space in which the 

input data will be projected (Figure 1-5B). During training, this latent space deforms, therefore 

called a manifold, to better represent the data (Figure 1-5C). After several iterations, the model 

finds convergence, and clustering is possible by assigning a 2D color bar (5D).  In that sense, data 

with similar colors is associated to patterns of similar nature, while data with different colors is 

interpreted to be associated with different features (Roy et al. 2011).  

Figure 1-5. Simplified projection steps in SOM, A) data is plotted in a multidimensional space, B) 

eigenvectors are computed and the principal components (PC) are determined to further select the 

initial manifold and start populating it with prototype vectors, C) manifold deforms to fit the 

natural clusters, D) prototype vectors are mapped against a 2D color bar (modified from Zhao et 

al. 2015b). 
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Despite their widely recognized applications, and as stated by different authors, SOM has 

different limitations both during training and clustering (Roy et al. 2014, Zhao et al, 2015; and 

Chopra and Marfurt, 2018c). GTM was introduced by Bishop et al. (1998) to solve for most of the 

SOM drawbacks.  

 Generative Topographic Mapping (GTM) 

GTM is a non-linear dimensionality reduction technique that uses optimized Gaussian 

mixture models to allow for a more probabilistic representation of the data in a lower dimensional 

space (Bishop et al. 1998; Roy et al. 2014). In contrast to the SOM, GTM transforms regularly 

spaced grid points from the 2D latent space into the N-dimensional space by using non-linear 

functions, a vector will represent the initial grid point inside the now called non-Euclidian 

Figure 1-6.  Application of Gaussian probability density functions for GTM, A) data in 2D space, 

B) Gaussian centers defined falling along the first eigenvector (iteration 1), C) Gaussians shrink 

and the manifold deforms, the centers are moving to fit the data (iteration 2), D) process continues 

deforming the manifold (iteration 3), and E) expectation can no longer be maximized by any 

further deformation (modified from AASPI documentation). 
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manifold, and a probability density function (PDF) of representing a data vector will be centered 

in each vector. During the training process, and using optimization EM-algorithms, the PDFs will 

change to better represent the data, and the final model will be projected back to the latent space 

by using Bayes’ theorem (Bishop et al. 1998). Clustering will be made by assigning a 2D color 

scale, and like SOM, features with similar colors can be associated with similar nature.  

A schematic representation is shown in Figure 1-6 for a 1-dimensional curve example from 

Bishop (1998). Data is plotted in a 2D space (Figure 1-6A), the projected latent points will fall 

along the corresponding first eigenvector, and a PDF centered on each point will be assigned 

(Figure 1-6B). Through several iterations (Figure 1-6C, D, E), the Gaussian functions will 

accommodate to better represent the data. 

RESULTS 

Multiattribute Analysis 

The results of the multiattribute analysis are presented in Figure 1-7 and Figure 1-8, and 

they are shown as seismic attribute extractions over three horizons near the zones of interest inside 

the Duperow formation: Upper Duperow, Mid-Duperow, and Lower Duperow. The length of the 

search window was specified as zero to ensure that the values over the surface extractions are those 

of the surface picked and are not affected by other attribute values above or below it.  

Broadband and multispectral coherence results are shown in Figures 1-7A and 7B 

respectively. Notice that the features seen in the coherence attribute are unclear and it is not 

possible to tell whether they are structural or stratigraphically related (white arrows, Figure 1-7A). 

With the multispectral coherence approach though, features with a NW-SE trend (cyan arrows, 

Figure 1-7B) become more obvious in all three horizons and some smaller features with NE-SW 

trend appear on the near Upper and Mid-Duperow (green arrows, Figure 1-7B). However, the 
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target faults F1, F2, and F3, observed below the Duperow Formation in the amplitude volume, 

remain absent. 

Curvature attributes give a better idea of the features with NW-SE and NE-SW trends (cyan 

and green arrows, Figure 1-8A). Notice they have a negative curvature response surrounded by a 

positive curvature response, similar to an elongated bowl-like shape feature. We can see these 

Figure 1-7. Surface extractions over the horizons of interest for A) broadband coherence and B) 

multispectral coherence, as an RGB blend of the three selected frequencies. 
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patterns mainly in the northwest zone near the Upper and Mid-Duperow horizons. Moreover, 

curvature attributes highlight one of the main faults (F1) in the three horizons of interest, notice it 

is characterized by a positive to the west and negative to the east response (yellow arrow, Figure 

1-8B). In the Lower and Mid-Duperow, a second NS pattern is seen, probably related to a second 

main fault (yellow arrow, F3).  

Figure 1-8B shows the results obtained with aberrancy attributes.  Aberrancy succeeds in 

mapping all three main faults with NS trend (yellow arrows) in the three horizons and it highlights 

other lineaments with NE-SW trend (green arrows), not previously seen with the more 

conventional attributes. Besides this, the features with NW-SE trend (cyan arrows) in the northwest 

and northeast of the near Upper and Mid-Duperow are more clearly distinguished than in the 

previous curvature attribute, and it is possible to notice a parallel geometric pattern with the other 

NW-SE trends and an almost 60° difference from the NE-SW lineaments.  

Moreover, aberrancy is able to provide us with another level of detail. When looking at the 

azimuths associated with each pattern, we can see that NE-SW features have a double signature of 

green and magenta colors (approximately 60° and -120°, respectively, in the color bar) while NW-

SE features have a double signature of cyan and red colors (approximately 120° and -60°, 

respectively). The main faults though, seem to have a single response of light green color 

(approximately 90°). These degree values indicate the direction of flexure. In that sense, we see 

two flexure values when we have bowl-like shape features, first flexure when it changes from 

positive to negative and second flexure when it changes from negative to positive, and a single 

flexure when we only have the bend associated with a fault.   
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This extracted information from the multiattribute analysis, particularly the aberrancy 

attributes, serves two purposes. First, it complements the data obtained from curvature attributes 

by pinpointing the precise location of flexure, which could signify faulting if we later confirm that 

these lineaments are structurally related. Secondly, it would enhance the visualization of seismic 

Figure 1-8. Surface extractions over the horizons of interest for A) curvature, as a co-render of the 

k1-most positive curvature and k2-most negative curvature, and B) total aberrancy, as a co-render 

of total aberrancy magnitude and total aberrancy azimuth.  
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lineaments, especially those associated with discontinuities with offsets below seismic resolution. 

This is different from curvature attributes, which primarily provide information about the adjacent 

sides of the flexure. In this way, we can effectively map the location of sub-seismic faults that may 

have been overlooked when using conventional seismic attributes like broadband and multispectral 

coherence. 

Finally, to visualize these seismic attribute responses over the seismic amplitude volume, 

their co-renders have been displayed as vertical sections in Figure 1-9. Notice how the faults F1, 

F2, and F3 from Figure 1-2 are clearly highlighted in the reflectors below target with the broadband 

(Figure 1-9A) and multispectral (Figure 1-9B) coherence, but within the zone of interest (Duperow 

Formation) there is no clear response. With the coherence attribute, we can see the uncorrelated 

Figure 1-9. Inline 420 showing the co-render of the seismic amplitude volume and the seismic 

attribute response in the vertical component: A) broadband coherence, B) multispectral coherence 

bandlimited to 54-63-71 Hz, C) curvature (k1-most positive and k2-most negative, and D) 

aberrancy (azimuth and magnitude). 
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noise in the Mid-Duperow, but the multispectral coherence helps remove it while sharpening the 

fault expression in the deeper reflectors. In Figure 1-9C, the positive (upthrown side) and negative 

(downthrown side) responses associated with each side of the faults can be seen in the curvature 

attribute. When looking at the results obtained with aberrancy attributes in Figure 1-9D, we can 

see these attributes provide much more information within the intervals of interest than the 

previous seismic attributes, as they highlighted both the magnitude and azimuth of the flexure. 

Observe again that the main faults are highlighted with light green colors in the azimuth attribute, 

which will indicate a flexure towards the east.   

Machine Learning  

Figure 1-10 and Figure 1-11 show the results obtained when integrating the different 

geometric seismic attributes using SOM and GTM, respectively. Similar to the multiattribute 

analysis, results are presented as attribute extractions with zero-length window over the horizons 

within the target zone of the Duperow Formation.  

SOM 1 and SOM 2 

Figure 1-10A shows the surface extractions over the SOM1 when integrating all the 

geometric seismic attributes while Figure 1-10B shows the results for the SOM2 when integrating 

only curvature and multispectral coherence attributes.  

Notice that in Figure 1-10A and B, each cluster (color) of the SOM seems to be associated 

with a seismic attribute, which in turn means it will be associated with the specific type of fault 

expression highlighted by each of them as seen in Figure 1-4. Purple clusters highlight the features 

marked by the multispectral and broadband coherence, therefore, where there is a discontinuity of 

the reflector; while orange clusters and green clusters highlight k1-most positive and k2-most 
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negative curvature, respectively, what would indicate the upthrown side and downthrown side of 

the fault, if lineaments are found to be structurally related. 

Figure 1-10. Surface extractions over the horizons of interest for A) SOM 1 calculated integrating: 

broadband coherence, multispectral coherence (54, 63, and 71 Hz), curvature (k1 and k2), and 

aberrancy (magnitude and azimuth), and B) SOM 2 calculated integrating only broadband 

coherence, curvature (k1 and k2) and multispectral coherence (54, 63, and 71 Hz). 



20 

 

 One may say that this would not be much different than an image created by the co-render 

of coherence and curvature attributes. However, notice that in Figure 1-10A, there is a higher level 

of contrast between the different features, which makes the subtler features more noticeable. This 

contrast seems to be provided by the inclusion of aberrancy attributes, as is the only parameter 

changing between each SOM scenario run. In other words, when comparing the SOM results when 

including (SOM 1) and excluding (SOM 2) aberrancy attributes, we can clearly see that SOM 1 

shows a better visualization of the different lineaments, especially those detected only by the 

aberrancy attributes in the multiattribute analysis step. Also, notice that the contrast for the main 

NS fault to the east (F1) is much clearer in SOM1 than in SOM 2.  

GTM 1 and GTM 2  

Similar observations can be made for the GTM results (Figure 1-11A and B). First, we can 

see that different clusters are being assigned to a specific seismic attribute, and therefore, fault 

expression associated; dark purple corresponds to broadband and multispectral coherence, while 

orange and light blue correspond to k1-most positive and k2-most negative curvature, respectively. 

However, we see that geometric pattern and, in general, lineaments mapping is easier over the 

volume that integrates aberrancy attributes and not only conventional attributes.  

GTM 1 provides a much better image in which all lineaments can be mapped. Notice that 

besides being able to more easily visualize NE-SW and NW-SE lineaments (green and cyan 

arrows, respectively), the contrast provided for the F1, F2, and F3 is outstanding (yellow arrows) 

if compared with any of the results observed in the multiattribute analysis and the SOM itself. In 

GTM 2 (and also in SOM 2), when excluding aberrancy attributes, only the N-S fault seen is F1, 

however, GTM 1 is able to capture the three of them. GTM 2 provides a less-quality image where, 
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despite being possible to see coherent patterns in the NW-SE, SE-NW, and N-S directions, it is 

more difficult to define exactly where the possible faults would go.  

 

Figure 1-11. Surface extractions over the horizons of interest for A) GTM 1 calculated integrating: 

broadband coherence, multispectral coherence (54, 63, and 71 Hz), curvature (k1 and k2), and 

aberrancy (magnitude and azimuth), B) GTM 2 calculated integrating only broadband coherence, 

curvature (k1 and k2) and multispectral coherence (54, 63, and 71 Hz). 
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SOM vs GTM 

Another noteworthy observation is that when comparing SOM and GTM, the results 

provided by GTM (Figure 1-11A and B) seem to facilitate the visualization of lineaments more 

easily than those provided by the SOM (Figure 1-10A and B). If comparing SOM1 with GTM1, 

which are the best images obtained for each method, we can see that the clustering made by the 

GTM is able to better integrate all the details provided by each individual seismic attribute into a 

single volume that enhance the visualization of all different geological features. Even when 

comparing the results of SOM2 with GTM2, the GTM method provides a better contrast between 

all different clusters.  

Figure 1-12 shows an interpretation of the surface extractions of the best-case scenario 

obtained, which was GTM 1. Notice that we are not only able to map the initial target N-S faults 

F1, F2, and F3 (solid lines) but also the different lineament types in the NE-SW and NW-SE 

Figure 1-12. Lineaments interpretation in the horizons of interest over the GTM 1 results. 
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directions (dashed lines). Notice there is a clear geometric pattern among the different lineaments 

mapped, which may indicate fracture control. 

DISCUSSION 

A question that arises is whether these subtle features observed in the seismic data are 

stratigraphically or structurally related. From the curvature response, we could infer they are 

stratigraphic, more specifically, karstic related. However, the clear geometric pattern seen between 

the NW-SE and NE-SW trends in the aberrancy attributes and ML results may lead us to infer there 

is a structural control associated and, therefore, potential sub-seismic faulting in these directions.  

Figure 1-13 shows two rose diagrams created from FMI log data of the Danielson 33-17 

and Wallewein 22-1 wells and presented in the report of Zaluski (2018). By being a naturally 

fractured reservoir, we would not expect to see any of the fractures of the Duperow Formation on 

the seismic data. However, and despite the difference in scale between seismic and well data, we 

can see there is a clear similarity between the strikes of the lineaments mapped with seismic-

Figure 1-13. A) Fracture group 1 reported in the Nisku and Potlach formations, B) fracture group 

2 reported in upper, middle, and intermediate Duperow (modified from Zaluski, 2018). Different 

colors represent different fracture sets. 
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derived data (Figure 1-12) and those observed in the fracture sets detected with FMI logs (Figure 

1-13).  

Fracture group 1 (NE-SW strike) is mainly present in the upper part near the Nisku and 

Potlach formation, while fracture group 2 (NW-SE) is more prominent in the Duperow Formation 

(Zaluski, 2018).  A similar pattern can be observed in the attribute and ML-assisted seismic 

interpretation, NE-SW lineaments are more obvious near Upper Duperow while NW-SE features 

are more easily seen in all the three horizons inside the Duperow Formation (Upper, Mid-, and 

Lower). 

In that sense and using the well data as a proxy and the only information available to get 

an insight into the planes of favorable weakness inside the formation of interest, we can confirm 

that our observations in the seismic data make geological sense and may have a structural 

component. More specifically, we could infer that the features observed may indeed be 

stratigraphic features structurally controlled and developed in those NE-SE and NW-SE directions 

of favorable weakness in the rock. 

The detection of this sub-seismic faulting can be crucial for any project aiming to inject 

fluids in a reservoir. This information further obtained from the inclusion of the aberrancy 

attributes in the multiattribute analysis and ML steps can be of great help to interpreters to better 

characterize reservoirs and understand the structural components of a target formation.  

Further studies should explore statistical measurements of improvement comparison 

between discontinuity detection using conventional methods versus more novel methods such as 

the aberrancy attributes. Moreover, automatic extraction of potential fault planes from both the 

aberrancy attributes volumes and the ML results could be explored.   
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CONCLUSIONS 

Seismic attributes such as broadband and multispectral coherence, and curvature, are some 

of the most common, if not the most, geometric attributes implemented by seismic interpreters to 

aid in structural interpretation. However, the inherent restrictions of seismic data resolution and 

the mathematical background of these attributes limit the amount of information that can be 

extracted from the seismic.  

In this study, we saw that broadband coherence and multispectral coherence, by being 

discontinuity-based attributes, failed in the scenarios where fault expression did not have a clear 

break in the seismic reflector. Curvature attributes, by being related to the fold of the reflector, 

were able to provide us with more information about the lineaments seen, indicating an elongated 

bowl-like shape for those with NE-SW and NW-SE trends, and that we inferred could be 

stratigraphically related but structurally controlled. 

We also showed that aberrancy attributes, by being related to the flexure of the reflector, 

were more sensitive to smaller perturbations of the reflector structure, therefore, allowing us to 

better visualize lineaments in the seismic that could potentially be related to faults with sub-seismic 

vertical displacement. In this study, aberrancy attributes helped enhance the visualization of both 

the reported NS faults, and potential faults with NW-SE and NE-SW strike, similar to the strikes 

seen with well log data for fractures inside the target interval. This NS, NW-SE, and NE-SW 

faulting was mostly missed by the conventional seismic attributes of broadband and multispectral 

coherence, and curvature.  

Nevertheless, it is important to recognize that adding another seismic attribute, such as 

aberrancy, to the list of recommended attributes for common multiattribute analysis workflows 

also increases the time spent by the interpreter. Here, we have shown how it is possible to integrate 
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all geometric seismic attributes in a way they can all contribute to have an image that highlight 

faults with different expressions in the seismic, from those with clear reflector discontinuity to 

those seen as subtle flexures of the reflector.  

Here, we tested SOM and GTM methods when using geometric attributes as input for the 

clustering process. We demonstrated that when integrating aberrancy attributes along with 

broadband and multispectral coherence, and curvature, the visualization of lineaments was 

considerably uplifted in comparison with the cases where they were excluded from the input 

attribute list, or even when interpreting in the individual attribute volumes during the multiattribute 

analysis stage. We also showed that from the ML methods tested, GTM showed better visualization 

results than SOM.  

In that sense, for interpreters working on structural interpretation, whether interested on 

focusing on multiattribute analysis only or applying ML methods, such as those presented here, 

we highly encourage making a common practice to include aberrancy attributes along with other 

common geometric seismic attributes. This will provide another level of detail of which seismic 

interpreters can considerably benefit from as more information can be enhanced that would allow 

for a better understanding of a structural setting, especially when information such as well logs are 

not available. 
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CHAPTER 2. REVEALING THE HIDDEN FAULTS OF THE OKLAHOMA BASEMENT 

THROUGH UNSUPERVISED MACHINE LEARNING AND INTEGRATION WITH 

EARTHQUAKE DATA 

 

ABSTRACT 

Oklahoma has recently drawn a lot of interest due to its increase in induced seismicity, 

which has been associated with the injection of wastewater in the sedimentary strata overlying the 

basement. Most of these seismogenic faults were unmapped and not present in the Oklahoma 

Geological Survey fault database before their reactivation. However, correctly knowing fault 

orientation and geometry, as well as the local stress fields are crucial to evaluate the reactivation 

potential of a fault, and therefore the potential seismicity hazard associated. Here, different 

geometric seismic attributes were analyzed and integrated using unsupervised machine learning to 

identify potential basement-rooted faults and strike-slip-related structures. The machine learning 

results not only confirmed the existence of NE-SW faults that extend from the basement upward 

into the sedimentary section and that correlated with earthquake data but also the potential 

existence of other NE-SW structurally controlled features of anticlinorium shape.  

INTRODUCTION 

The increase of seismicity in Oklahoma associated with the increase of wastewater 

injection has awakened a great interest among the scientific community to map and understand the 

fault structures that could be stressed to the point of rupture. These faults have been reported to be 

at basement depth and their existence has been revealed only by the recent earthquake events. In 

that sense, the current case in Oklahoma has clearly demonstrated that failing to map faults, no 
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matter the stratigraphic level, could not only become a potential geohazard for the communities 

but also jeopardize the societal perception of the energy industry techniques (Bedle et al. 2022). 

Most recently, different approaches have been applied for mapping and understanding 

basement faults in Oklahoma, including studies focused on earthquake data (Chen et al. 2017; 

Skoumal et al. 2019; Qin et al. 2019), core data (Hamilton et al., 2021), seismic attributes analysis 

over the sedimentary strata immediately overlaying the basement (Kolawole et al. 2019; Kolawole 

et al. 2020, Firkins et al. 2020; Patel et al. 2021), and aeromagnetic data (Chase et al. 2022; Elebiju 

et al. 2011). By using seismic reflection data, Kolawole et al. (2019, 2020) and Firkins et al. (2020) 

focused on coherence and curvature attributes while Patel et al. (2021) focused on curvature, 

coherence, and aberrancy. All of them have obtained promising results by integrating seismic 

attributes and confirming observations with earthquake data, demonstrating that it is possible to 

expand our knowledge on basement faults in Oklahoma with these types of approaches, despite 

the chaotic seismic facies associated with crystalline rocks.  

Another approach not yet tested is the integration of all the different types of seismic 

attributes through machine learning (ML) techniques. In this study, a 3D seismic dataset is used to 

explore the applicability of unsupervised ML methods for the identification of faults in the 

basement of Oklahoma. The observations are compared with available earthquake data in the area, 

which have already confirmed the presence of faults in the basement underlying the study area. If 

the ML methods appeared to be successful in the identification of basement faults through the 

integration of seismic attributes, this approach could be further expanded to other seismic datasets 

in the area and help to improve the knowledge on the structural geology of Oklahoma.  
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Dataset 

The 3D seismic dataset used for this study is located in Pawnee County, in the northern 

part of Oklahoma, and within the Cherokee Platform geological province (Figure 2-1A). It covers 

an approximate area of 44.6 square km, has a record length of 2.8 s, a sample rate of 0.002 s, and 

a bin size of 33.5 by 33.5 m. On the other hand, the earthquake dataset was obtained from Park et 

al. (2022) and is comprised of 594 events recorded between May 2014 and June 2019. 

The seismic characteristics of this dataset are rather straightforward. Parallel reflectors are 

associated with the sedimentary strata and chaotic reflectors are associated with the crystalline 

Figure 2-1. A) Oklahoma structural map reported by the OGS and earthquake data from the USGS, 

B) time slice at 550 ms showing the location of the earthquake data from Park et al. (2022), the 

faults from the OGS, and seismic facies identified in the area, and C) cross section indicating the 

three main horizons of interest: top of the Arbuckle formation, top of the basement, and the 

intrabasement reflector. 
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rocks that conform the basement. Besides the folding of the parallel reflectors, there is no other 

feature, such as obvious discontinuities, that can suggest faulting in the area, and the only 

information that confirms, so far, the existence of basement faulting comes from the earthquake 

data (Figure 2-1B).  

An interesting feature seen in the dataset is a continuous reflector within the basement 

interval, here called intrabasement reflector (IBR) for simplicity (Figure 2-1C). This reflector 

extends over the entire area and will help to correlate observations seen within the upper 

sedimentary strata and those associated with intervals at basement depth. 

Geological Setting 

Located in northeastern Oklahoma, the Cherokee Platform province has been considered a 

relatively stable platform when compared to the adjacent Anadarko and Arkoma Basins to the 

Figure 2-2. A) Map of the geological provinces of Oklahoma, B) cross-section A-A’ indicating the 

location of Pawnee County (modified from Johnson, 2008), and C) stratigraphic column for 

northcentral Oklahoma indicating the interval of wastewater injection and depth of seismicity 

(modified from Elebiju et al. 2011). 
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south and southwest in Oklahoma and Arkansas, where many major tectonic events occurred and 

the sedimentary section is much thicker (Drake and Hatch, 2020; Figure 2-2). Interestingly, the 

Oklahoma basement was generally assumed to be a tectonically stable basement until the increase 

in seismic activity revealed the reactivation of pre-existent basement faults.  

The Oklahoma basement is part of the Southern Granite Rhyolite Province of the Central 

United States and is considered to have formed about 1400 - 1340 Ma (Bickford et al., 2015). In 

the northeastern region, Denison (1981) classified these rocks into four units: Washington Volcanic 

Group, Spavinaw Granite Group, Osage Microgranite, and the Central Oklahoma Granite Group, 

of which the first three comprised the Northeast Oklahoma Province. The study area is underlain 

by the Washington Volcanic Group, which Denison (1981) describes as composed mainly of 

rhyolite with certain areas of andesite.  

Some main differences between the Northeast Oklahoma Province and the Wichita 

Province in the south were indicated by Denison (1981) as being the lack of diabase dikes and sills 

in northeastern Oklahoma, which are exceptionally common in the Wichita Province. Moreover, 

besides the granite and rhyolite, layered gabbroic mass and basalt spilite sequences are also present 

in the southern part (Denison 1981; Hames et al., 1997; Hogan et al., 1997; Hogan and Gilbert, 

1997). These gabbro and basaltic dikes in the Wichita Province are associated with the formation 

of the Southern Oklahoma Aulacogen, which developed during the rifting of the Laurentian 

Supercontinent in Late Proterozoic to Cambrian time and was accompanied by bimodal igneous 

activity (Hogan and Gilbert, 1997).  

Different studies focused on seismic reflection data covering the northern regions of 

Oklahoma have consistently reported distinct reflectors within the basement intervals and are 

referred to as intrabasement reflectors. Elebiju et al. (2011) and Kolawole et al. (2020) reported a 
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characteristic reflection pattern of trough-peak-trough, associated to an increase in acoustic 

impedance, and suggested it is related to a change from a more felsic rock, such as those of the 

granite-rhyolite province, to a higher impedance rock, such as a mafic intrusion. Besides helping 

to expand on the knowledge of the tectonic history of the basement in Oklahoma, these 

intrabasement reflectors are of interest because they can help understanding intrabasement 

deformation, and later reactivation and propagation up into the sedimentary cover, which will help 

explain fault connectivity and potential fluid migration pathways from the sedimentary strata to 

the basement and the relationship with current seismicity in northcentral Oklahoma (Kolawole et 

al., 2020). 

METHODS 

The methods implemented in this study for the structural interpretation of basement-rooted 

faults cover conventional seismic mapping, seismic attributes, assisted interpretation through 

application of ML techniques, and seismic time-to-depth conversion. The generalized workflow is 

presented in Figure 2-3.  

During the data conditioning step, we applied a structure-oriented filter, which is intended 

to attenuate random noise and enhance the edges of structures (Luo et al. 2002; Fehmers and 

Höcker, 2003). Using conventional mapping strategies, we continued to map the horizons of 

interest, so that we could make our interpretations using surface extractions. We then proceeded 

with the calculation of the selected seismic attributes, broadband coherence, multispectral 

coherence, curvature, and aberrancy, and their integration using self-organizing maps (SOM) and 

generative topographic mapping (GTM). Finally, we converted all seismic inputs and outputs to 

depth to be able to compare our structural interpretations with the earthquake data in the same 

domain as well as calculate dip and strikes of the faults interpreted. 
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Figure 2-3. Workflow followed. 
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Fault Interpretation Strategy 

There are two seismic imaging challenges in the study area. First, the faults expected are 

of strike-slip type (Qin et al. 2019). Strike-slip faults have two characteristics that make their 

mapping in seismic data difficult: their near vertical fault plane and the lack of significant vertical 

offset large enough to be seen with a limited vertical seismic resolution. And second, the strike-

slip faults in the area are basement-rooted faults, therefore, cut mainly the basement interval that 

corresponds to chaotic seismic facies.  

Figure 2-4. Fault interpretation styles. A and B are considered basement-rooted fault as they 

involve deformation of the basement top, and C are considered faults restricted to the sedimentary 

section. Schematic representation of faults in the area; depths and thickness not to scale. 
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For these reasons, our interpretation approach was based on the assumption that lineaments 

seen at different depths, with different horizons, and different seismic attributes and ML methods, 

could be inferred to be related to structural features rather than stratigraphic features. In that sense, 

we picked three horizons at different depths intervals, the top of the Arbuckle Formation (AR), the 

top of the basement (BR), and the intrabasement reflector (IBR).   

During the multiattribute and ML analysis, we analyzed surface extractions over the 

different horizons trying to identify lineaments potentially associated to discontinuities and that 

could extend from one depth interval to the other. We compared that with the seismic expression 

in the vertical section, and further classified the interpreted fault into one of the categories listed 

in Table 2-1 and shown in Figure 2-4, as well as determined their associated dip and strike. A and 

B- faults are considered as basement-rooted faults and were the focus of our attention in this study. 

Table 2-1. Fault interpretation and classification strategy. 

 

Seismic Attributes 

In this study, we focused only on geometric seismic attributes as the goal was to visualize 

structural features. Here, we evaluated broadband coherence, multispectral coherence, curvature, 

Fault Type Characteristic 

A-faults 

Potential discontinuity-related lineaments in the BR and IBR and could be even 

extended to the AR (Figure 2-4A). 

B-faults Potential discontinuity-related lineament in the BR and AR (Figure 2-4B). 

C-faults 

Potential discontinuity-related lineaments between AR and an upper reflector, 

that would indicate they would be restricted to the sedimentary section only, 

without the influence of the basement (Figure 2-4C). 
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and aberrancy. However, dip attributes were also calculated as they are needed for the calculation 

of any of the other ones considered. 

 

Dip Attributes 

The relationship between volumetric dip, curvature, and aberrancy is explained in Figure 

2-5A and 5B taken from Bhattacharya and Verma (2019) and Patel et al. (2021), respectively. In 

mathematical terms, dip is the measurement of slopes of the structure (first derivative of the 

structure), curvature is the measure of the changes in the slope (second derivative of the structure), 

and aberrancy is the measure of changes in curvature (third derivative of the structure). 

A vector dip is used to map the dip and strike of the reflector and is defined by an azimuth 

and a magnitude (Marfurt, 2006). In that sense, the dip attributes calculations will also have the 

azimuth and magnitude components that can be display together through co-rendering techniques. 

Figure 2-5. A) Mathematical concept behind main geometric seismic attributes (modified from 

Bhattacharya and Verma, 2019). B) Relationship between the different seismic fault expressions 

and the geometric seismic attributes of interest (modified from Patel et al. 2021) 
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Dip attributes will not be included in the input attribute list for any of the two ML methods, 

however, as explained by Marfurt (2006), accurate estimation of the vector dip is fundamental for 

further calculations of geometric attributes, such as coherence, and curvature, as this provides 

results with higher lateral resolutions and is less sensitive to structural folding. 

Coherence 

Coherence is one of the most common and well-known seismic attributes for any approach 

that implies mapping reflector discontinuities in seismic data or analyzing signal-to-noise ratio 

during processing or filtering steps. Despite the existence of different calculation approaches such 

as energy ratio, Sobel filter, and outer product, the concept behind continues to be the same: 

coherence measure the similarity of neighboring traces in the inline and crossline direction, within 

an analysis window, and considering the structure dip component (Bahorich and Farmer, 1995; 

Marfurt et al. 1998). However, the main limitation of coherence, or in general any discontinuity-

based seismic attribute, is faults with offset below seismic resolution (Gao et al., 2013; Gao and 

Di, 2015). In these cases, sub-seismic faults may appear as folds adjacent to faults that would be 

better detected by curvature attributes (Chopra and Marfurt, 2011). Another more recent approach 

is to apply multispectral coherence.  

To be able to capture any potential faults seen as a discontinuity, we tested three different 

coherence algorithms: energy ratio, outer product, and Sobel filter similarity. However, we decided 

to further interpret using Sobel filter similarity, since it showed the best signal to noise ratio. 

Multispectral coherence 

Multispectral coherence is based on the concept that different spectral bands highlight 

different geological features. In this case, the coherence attribute is calculated from different 

spectral voice components rather than the full-bandwidth amplitude volume. The volumes are then 



43 

 

co-rendered over a RGB (red-green-blue) mixer or added together by combining the covariance 

matrices of each spectral component (Li et al. 2018). The most important aspect of multispectral 

coherence is that it is able to show features that may have been lost within the broadband seismic 

(Chopra and Marfurt, 2018; Li et al. 2018, Lyu et al. 2020).  

For multispectral coherence, it was necessary to first make a frequency spectrum analysis 

and since the target was small scale features, inferred to be lost in the frequency content, we 

focused on the middle to higher frequencies. Sobel filter similarity was also considered for the 

calculation of these attributes, and the different combination of spectral voices was done using the 

RGB blending option. 

Curvature 

Curvature is another widely used attribute both for structural and stratigraphic seismic 

interpretation. In structural interpretation its main advantage is that can map subtle sub-seismic 

faults that lack a clear reflector discontinuity and are rather seen as a fold of the reflector (Chopra 

and Marfurt, 2011; Figure 2-5C). Chopra and Marfurt (2007) explained in detail the different types 

of curvatures that can be calculated. In this study, we focused on the most-principal curvature.  

Al-Dossary and Marfurt (2006) introduced the multispectral estimates of curvature (i.e 

long- vs. short-wavelength curvature) which takes into account that geological features can exhibit 

different curvatures of different wavelengths. According to Chopra and Marfurt (2007) and Chopra 

and Marfurt (2011), short-wavelengths correspond to intense, but highly localized fracture 

systems, and longer-wavelengths to a wider and even distribution of fractures. Here, we calculated 

and tested both options, however, we chose to continue our analysis with the long-wavelength 

calculations.  
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Aberrancy  

Aberrancy, as presented by Gao et al. (2013), is an extension of the existent curvature 

attribute. Mathematically, it is calculated as the spatial gradient of curvature, also referred to as 

flexure. The geological importance of aberrancy is that it is able to map faults with throw below 

seismic resolution, which means the fault seismic expression is a reflector bend rather than a proper 

discontinuity (Figure 2-5A and 5E, Gao and Di, 2015). In that sense, it would help map faults that 

cannot be highlighted with discontinuity-based attributes, such as the conventional coherence 

attribute.  

Gao et al. (2013) introduced aberrancy calculated over a horizon, while Qi and Marfurt 

(2018) extend it over volumetric calculations. As explained by Qi and Marfurt (2018), 3D 

aberrancy is defined as a vector with a magnitude, intensity of deformation, and an azimuth, 

direction in which the curvature decreases in signed value. In this study, we will present these 

components of the seismic attribute as a co-render of total aberrancy magnitude and total aberrancy 

azimuth using the long-wavelength estimation.  

For the ML step, aberrancy attributes were as well transformed before their inclusion in the 

attribute list. We separated the total aberrancy vector into its northing and easting components 

using the following equations: 

𝑇𝑜𝑡𝑎𝑙 𝑎𝑏𝑒𝑟𝑟𝑎𝑛𝑐𝑦 𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 × sin(𝑡𝑜𝑡𝑎𝑙 𝑎𝑏𝑒𝑟𝑟𝑎𝑛𝑐𝑦 𝑎𝑧𝑖𝑚𝑢𝑡ℎ) 

𝑇𝑜𝑡𝑎𝑙 𝑎𝑏𝑒𝑟𝑟𝑎𝑛𝑐𝑦 𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 × cos (𝑡𝑜𝑡𝑎𝑙 𝑎𝑏𝑒𝑟𝑟𝑎𝑛𝑐𝑦 𝑎𝑧𝑖𝑚𝑢𝑡ℎ)  

Unsupervised Machine Learning Methods 

There are different types of ML techniques that can be applied for fault identification in 

seismic data, from supervised techniques such as convolutional neural networks (CNN, Wu et al. 
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2018, Wu et al. 2019, Qi et al. 2020) and probabilistic neural networks (PNN, Mora et al. 2021), 

to unsupervised techniques such as self-organizing maps (SOM, Hussein et al. 2020; Perico et al. 

2021; Qi et al. 2022).  

Because of the chaotic seismic facies associated with the igneous basement and the 

expected strike slip faults in the area, fault mapping with conventional strategies, such as fault 

stick picking in the amplitude volume, is not possible. Applying PNN would not be the best option 

because there may not be clear fault planes to pick or track to constrain the seismic attribute 

responses, especially in the basement interval; and CNN approaches would imply getting rid of 

seismic attributes and depend solely on training datasets of faulted amplitude volumes in which 

most of the cases the fault planes are obvious, which is not our case. For these reasons, we focused 

on SOM and GTM, which allow to integrate several seismic attributes and focus on their combined 

response to different fault styles. 

Self-organizing maps (SOM) 

SOM was introduced by Kohonen (1982) and is considered a projection technique that 

helps representing multidimensional data into a lower dimensional space that further allows to 

cluster features of similar nature by assigning a 2D color scale. A user-friendly explanation of the 

mathematical approach behind the SOM method and its application for 3D seismic facies 

classification was covered by Roy et al. (2011).   

Similar to the principal component analysis (PCA) method, SOM starts by plotting the 

normalized N- input seismic attributes into an N-dimensional space in which the eigenvectors are 

computed (Figure 2-6A). The eigenvectors are organized by their corresponding eigenvalue, which 

determines the variance of the data. In that sense, the first two eigenvectors, now called principal 

components, represent the most important characteristics of the data while the last ones represent 



46 

 

uncorrelated noise (Guo et al., 2009). The first two principal components will define the direction 

of the new 2D latent space that will be further populated with equally spaced prototype vectors, 

which will also define the initial number of classes/clusters (Figure 2-6B). 

 A common practice is to over-define the number of prototype vectors and allow the method 

to find convergence into a lesser number of clusters (Roy et al., 2011). In our specific geoscience 

case, we are limited by the number of colors that can represent each cluster, being 256 the most 

common available amount in different software packages. In that sense, we start by defining 256 

prototype vectors.  

During the training process, these prototype vectors will move, therefore deforming the 2D 

projecting space, now called manifold, to better fit the input data vectors (Figure 2-6C). This 

process will iterate several times, moving prototype vectors in each iteration, until it finds a 

convergence. At the end, the initial protype vectors will have grouped themselves into a lower 

number of separate clusters that represent the input data and that can be visualized by using a 2D 

color scale (Figure 2-6D; Roy et al., 2011). 

 The final clustering process of the 3D volume is done by assigning to each voxel in the 

seismic data the color associated to the prototype vector that is closest to the data vector 

representing that specific voxel.  In that sense, voxels in the seismic volume with similar colors 

indicate similar nature, while voxels of different color indicate different nature (Roy et al., 2011).  

Nevertheless, SOM has several limitations, during the training process and the final 

clustering, with parameters such as training radius, neighborhood function, and learning rate; or 

steps such as the definition of a cost function to indicate convergence of iterations and, the most 

significant, the lack of probability density functions as measure of confidence in the clustering 
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results (Roy et al. 2014; Zhao et al., 2015; and Chopra and Marfurt, 2018c). To improve and solve 

most of these limitations, Bishop et al. (1998) introduced the GTM method as a more probabilistic 

reformulation of the widely applied SOM.       

Generative topographic mapping (GTM) 

Bishop et al. (1998) indicates that GTM is a non-linear dimension reduction technique that 

makes use of latent variable models to allow non-linear transformations to find correlations or 

patterns between data points. This method is based on Gaussian mixture models that are optimized 

using the expectation-maximization (EM) algorithm.  

As explained by Bishop et al. (1998) and Roy et al. (2014), in contrast to other models used 

for visualization, where the projection is done from the N-dimensional space to the 2D 

Figure 2-6. Simplified projection steps in SOM, A) data are plotted in a multidimensional space, 

B) eigenvectors are computed and the principal components (PC) are determined to further select 

the initial manifold and start populating it with prototype vectors, C) manifold deforms to fit the 

natural clusters, D) prototype vectors are mapped against a 2D color bar (modified from Zhao et 

al. 2015b). 
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visualization space, GTM model is defined by mapping regularly spaced grid points (u in Figure 

7A) from the 2D latent space into the N-dimensional data space by using non-linear basis functions 

(j in Figure 2-7A). In the N-dimensional data space, the initial latent space grid points are now 

represented by vectors (m) that form a 2D non-Euclidian manifold (Figure 2-7B). 

 Each m vector inside the manifold will be assigned a probability function of representing 

a data vector x, and a Gaussian mixture will be formed by integrating these probability functions 

(Figure 2-7C). In other words, by using Gaussian probability density functions centered on the 

reference vectors, GTM indicates the vector that is most likely to be associated with a data point, 

but also the probability of that specific data point belonging to one vector or another (Zhao et al., 

2015b). 

In the training process, and through iteration and application of the EM algorithm, the 

probability density functions will accommodate to better represent the data vectors until 

convergence. Finally, and using Bayes’ theorem, the final posteriori probabilities of the data 

Figure 2-7. Simplified steps in the GTM method. A) regularly spaced grid points in the 2D latent 

space, B) 2D non-Euclidian manifold in the N- dimensional data space, and C) probability 

functions centered on the m vector (modified Roy et al. 2011 and Zhao et al. 2015b). 
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vectors are calculated and projected back to the 2D latent space where clustering can be made (Roy 

et al., 2014).  

In this way, by using Gaussian mixtures model and EM-algorithm, GTM solves many of 

the issues associated to the SOM method, such as the mentioned lack of theorical basis for 

choosing training parameters and proof of convergence, and the lack of a measure of confidence 

in the clustering process.  

Velocity Model and Depth Conversion 

For the velocity model we used different data and parameter constraints from the literature. 

We used a 1D local S-wave velocity model and a Vp/Vs ratio equal to 1.73 from Tan et al. (2020) 

to calculate the P-wave velocity. We estimated the expected basement top depth to be between 

0.914 and 1.07 km (true vertical depth sub-sea, SSTVD), from the elevation map of the Oklahoma 

basement presented by Crain and Chan (2018), as well as the closest basement-penetrating wells 

from Campbell and Weber (2006), which indicate basement depths ~1 km (SSTVD).   

We created a two-layer 3D velocity model, the first layer corresponding to the sedimentary 

section and first meters of the basement, and the second layer assuming the intact basement. We 

used an average velocity of 3.5 km/s for the first layer of 1.5 km, and we left the same calculated 

P velocities for the rest of the section (Appendix. Table 1). The 1D P-velocity model estimated 

from Tan et al. (2020) is shown in Figure 2-8B and the 3D velocity model derived from it is shown 

in Figure 2-8C.  The converted seismic data to depth is shown in Figure 2-9.  
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Figure 2-8. A) Location of the closest basement-penetrating well and contour lines of the elevation 

map of the Oklahoma basement (from Campbell and Weber, 2006 and Crain and Chan, 2018), B) 

1D P-velocity model estimated from the S-velocities presented in Tan et al. (2020) and C) derived 

3D velocity model. 
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Figure 2-9. A) Depth slice at 800 mSSTVD with the earthquake data projected to the horizontal 

plane, B) top of the Arbuckle, top of the basement, and intrabasement reflector horizons after time-

to-depth conversion, C) ABCD cross section covering the NE, central, and SW areas of the seismic 

volume converted to depth, earthquake data projected to the cross-section for reference.  
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RESULTS 

Multiattribute Analysis 

The results of the multiattribute analysis are shown in Figure 2-10 for the three horizons of 

interest: top of the Arbuckle, top of the basement, and the intrabasement reflector.  

Figure 2-10A shows the surface extractions of the broadband coherence results. Notice that 

we can see some discontinuities marked by the red arrows on all three horizons; we have labeled 

them as sharp lineaments. At the top of the Arbuckle there are three lineaments (L1, L2, and L3) 

seen with NE-SW strikes. At the top of the basement, only L1 can be inferred and a potential fourth 

lineament, L4, in the noisier area to the NE can be seen. The discontinuities in the IBR are very 

well visualized and many lineaments are detected. Notice we can see some discontinuities that 

could be correlated with the continuation of L1 and L2 in depth. Another lineament, L5, is seen 

between L1 and L2, also showing a NW-SE strike. To the NE of the volume, we can see several 

discontinuous patterns, and we can infer a possible lineament that could correlate with L4 of the 

upper horizons.  

Figure 2-10B shows the RGB (red-green-blue) blend of the spectral calculations of 

coherence at 38 Hz, 49 Hz, and 60 Hz, and the surface extractions for each horizon of interest. 

Similar observations to those seen with broadband coherence can be made, however, observe that 

at the top of the basement lineament L1 is more clearly seen and L2 starts to appear. In the IBR, 

the discontinuities are better highlighted as well and the possible continuations of L1, L2, L4, and 

L5, in depth can be inferred.   
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Both broadband and multispectral coherence over the IBR horizon show many more other 

lineaments than the upper horizons, some of them with an almost N-S strike besides the 

predominant NE-SW direction. However, we have labeled and focused only on those that can be 

correlated with the shallowest lineaments as this would provide more confidence on the mapping 

of potential basement-rooted faults in the sedimentary section.  More intense deformation or 

fracturing of the basement evidenced by these discontinuities over the inferred mafic intrusion 

should not be discarded. 

The co-render of long-wavelength k1-most positive and k2-most negative curvature are 

presented in Figure 2-10C. Here, the linear patterns change drastically as we cannot longer see 

sharp lineaments, but rather broad lineaments (yellow arrows) marked by positive and negative 

curvature anomalies. This attribute better highlights features most likely related to folds in the 

reflector, more specifically, the positive curvatures would indicate anticlinorium-shapes, while 

negative curvature would indicate synclinal-shapes. Notice there are some clear positive anomalies 

that show a linear and a parallel-to-each-other pattern. To the NE of the seismic volume, both in 

the top of the Arbuckle and the top of the basement, we can see positive curvatures labeled as L4, 

L6, and L7, and that have a NE-SW direction. To the SE, we can see two positive anomalies as 

well, labeled as L1 and L8, and that has a NE-SW strike. And to the SW, we can see two other 

positive anomalies, L9 and L10, with an almost E-W strike, and a negative anomaly with a NE-

SW strike, L11. Two smaller features can be seen in the center, L2 and L3. In the IBR, we can 

only see one clear negative feature that we could correlate with the projection in depth of a 

potential fault L1.  
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Figure 2-10. Multiattribute analysis results, A) broadband coherence, B) RGB blend of the 

multispectral coherence combination of 38 – 49 – 60 Hz, C) co-render of long-wavelength most-

positive curvature k1 and most-negative curvature k2, D) co-render of long-wavelength total 

aberrancy magnitude and total aberrancy azimuth. 
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Figure 2-10D shows the co-render of long-wavelength aberrancy magnitude and aberrancy 

azimuth. In the aberrancy attributes, we can see now the flexures associated with the previously 

identified curved features.  Notice that the previous positive anomalies labeled as L4, L6, and L7 

can be seen in the top Arbuckle and top basement with the aberrancy attributes as a double 

signature flexure, dark blue and yellow, which can be correlated to each side of the positive 

anomaly, when it changes from negative to positive and positive to negative again. The same 

double flexure signature can be seen for L8, L9, and L10. However, what we labeled as L1 and L2 

in the aberrancy extractions for the top of the Arbuckle and top of the basement have mainly a 

single flexure pattern in red for both lineaments, while the L11 show a much broader single flexure 

in yellow towards. In the IBR not much information can be extracted. 

Unsupervised Machine Learning 

The integration of all geometric seismic attributes using SOM and GTM methods and the 

surface extractions over each ML volume are shown in Figure 2-11A and 11B, respectively.  

Notice that both SOM and GTM show similar images, however, the surfaces extractions over the 

GTM volumes show clearer patterns and the contrast between clusters is better highlighted than 

those obtained with the SOM. In any case, when integrating all data in a single volume using ML 

it is easier to correlate the relationship between the sharp and broad lineaments seen during the 

multiattribute analysis and at different depths. 

 Notice that both in the SOM and GTM, there are some orange to pink clusters, in the top 

Arbuckle and top basement, that align with the location of broad lineaments associated with 

positive curvature anomalies seen during the multiattribute analysis stage. This would indicate 
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areas of potential folding with anticlinorium shapes. This is true for the lineaments labeled as L4, 

L6, L7, and L8, but also for the areas close to sharp lineaments labeled as L5, L9, and L10.  

Notice that with the ML surface extractions, more information can be inferred regarding 

the sharp features. In the previous multiattribute step we labeled L9, L10, and L11 as broad 

lineaments, however, notice they look sharper in the ML. In fact, lineament L11 is much clearer 

than in the multiattribute analysis, in the ML extractions it can be inferred due to its very linear 

and sharp break from the orange/pink clusters to those greener to yellowish. The same happens for 

lineaments L2 and L3, both in the top Arbuckle and top basement, which are seen as sharp features.  

Figure 2-11. Machine learning results and surface extractions over the horizons of interest. A) 

SOM results and B) GTM results. 
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Lineament L1, though, has a different expression, and it is associated with blue and purple 

clusters in the top Arbuckle and top basement. These clusters seem to be associated with areas 

where we saw clear discontinuities marked by the broadband and multispectral coherence. Notice 

the same can be observed in the IBR. Purple to blue clusters show the areas of sharp discontinuities 

and that could be associated to the projection in depth of the lineaments L1, L2, L4, L5, and 

potentially, L3.  

Figure 2-12. Interpretation of potential basement-rooted faults using the GTM results. A) 2D view, 

per horizon of interest, and B) 3D view correlating IBR and AR. Inset image shows a rose diagram 

with the strikes calculated for the faults interpreted with the seismic derived outputs. 
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Basement-Rooted Fault Interpretation  

Figure 2-12 shows the interpretation of potential basement-rooted faults both in 2D view, 

per horizon of interest, and 3D view, along with a rose diagram of the strikes calculated. Notice in 

Figure 2-12A, we have colored coded the interpreted faults as A or B- fault type (black and white, 

respectively) following the fault interpretation strategy previously shown in Figure 2-4 and Table 

2-1.  The details of each fault interpreted are presented in Table 2-2, and several cross sections are 

shown in Figure 2-13 and 2-14. These cross sections were used to 1) guide the structural 

interpretation along the different depth intervals, 2) classified the potential faults depending on 

their integrated seismic expression (using the inputs obtained from the seismic attributes, machine 

learning, and amplitude volume), and 3) calculated dips and strikes.  

 

Figure 2-13. Cross sections A-A’ and B-B’ covering the northeastern and central areas of the 

seismic volume. 
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Cross section A-A’ focused on the three folded structures in the NE side of the seismic 

volume (Figure 2-13 and 2-14). Notice that the flexure related to these structures extends from the 

basement top far up into the sedimentary section overlaying the Arbuckle. The fact that we could 

see several discontinuities below in the intrabasement reflector could also suggest there is a 

structural control between the anticlinorium-style folds and pre-existent basement structures. 

Because of this, we have considered the potential existence of a fault at each side of these folds, 

and that could be controlled or joined to faults coming from the basement. We have labeled them 

as L4-1, L4-2, L6-1, L6-2, L7-1, and L7-2. From these potential six faults, L4-1 could be 

interpreted as an A-type basement-rooted fault, as we could track it in the basement top and 

Figure 2-14. Cross sections focusing on the upper section of the seismic volume from top of the 

basement to the top of the Arbuckle and the overlying sedimentary strata. 
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correlated it with discontinuities seen in the IBR. The other potential faults, L4-2, L6-1, L6-2, and 

L7-1, L7-2, could be B-type, which means they could be tracked from basement top into the upper 

sedimentary section, but could not be tracked in the IBR. The fault interpreted as L1 can also be 

seen in the cross-section A-A’. Notice its expression is much clearer than the others. In Figure 2-

13, we can see discontinuities both in the upper sedimentary section and BR, and the deeper IBR. 

We have interpreted this potential L1 basement-rooted fault as an A-type.  

Cross section B-B’ focuses on potential faults mapped in the center and SW area of the 

seismic volume (Figure 2-13 and 2-14). Notice most of these faults have an A-type expression, as 

they could be tracked from the top of the Basement to the IBR. The potential faults L1, L2, and 

L5 seem more intuitive than the others. Notice they show a clear alignment of discontinuities in 

the IBR, and a series of different fault expressions in the upper section, from small discontinuities, 

to folded reflectors, and strong flexures, as well as clear lineaments in the ML extractions. These 

faults are those we mapped with the most confidence than the others seen with an A-type 

expression. On the other hand, L3 shows a sharp flexure both in the AR and BR as well as clear 

lineament in the ML extractions, which would indicate B-type expression. However, it could be 

tracked to the IBR and connected with a shorter alignment of discontinuities. In that sense, we 

could as well classify it as an A-type with less confidence than a B-type. Similar to L4, L8-1 and 

L8-2 are potential faults associated with anticlinorium-shape features seen as folded basement and 

Arbuckle top, and folded overlying strata. L8-2 could be correlated as well with a short alignment 

of discontinuities in the IBR.  

Cross-section C-C’ and D-D’ focused on the potential faults mapped to the SE side of the 

seismic volume (Figure 2-14). Potential faults L9 and L10 were seen with sharp flexures, 
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associated folded reflectors, and a clear linear pattern in the ML extraction. In the amplitude 

section, we can see those patterns very clearly, a subtle break in the basement top and sharp 

flexures in the upper reflectors and far up from the Arbuckle. In the IBR, there were no 

discontinuities that could be correlated, and we considered these potential faults as basement-

rooted faults with B-type expression. The potential fault L11 is the least intuitive, despite that it 

was clearly seen with the ML as a sharp change from one type of clusters to the other, its expression 

was not so clear in the seismic attributes. It was marked as a negative curvature alignment and a 

very broad flexure. In the amplitude volume it is as well shown as subtle flexure of the reflectors 

from the basement to the Arbuckle. We classified it as a potential basement-rooted fault with a B-

type expression.  

Table 2-2. Classification, dip, and strike of potential faults interpreted using multiattribute 

analysis and ML methods. 

Lineament 

More 

confident 

classification 

Less 

confident 

classification 

Dip 

[°] 

Strike 

[°] 
Vertical Extension Observation 

L1 A  84 205 Above Arbuckle 
Discontinuities seen in AR, BR, and IBR, as well as 

associated folded reflectors and flexures. 

L2 A  85 206 Above Arbuckle 

Discontinuities, folded reflectors, and sharp flexures in 

the AR and BR. In the IBR, there is a clear long 

alignment of discontinuities. 

L3 B A 89 61 Above Arbuckle 

Short discontinuities, folded reflectors, and sharp 

flexures in the AR and BR. In the IBR, it could be 

connected to a short alignment of discontinuities. 

L4_1  A 87 69 

Probably above 

Arbuckle (overlying 

strata is folded) 

Folded reflectors from BR to AR and overlying strata. 

Discontinuities in the IBR. 

L4_2  B 86 249 

Folded reflectors from BR to AR and overlying strata. 

Broad flexures to each side of the positive curvature 

anomaly. It could possibly connect with major L4_1 

fault. 

L5 A  86 215 Above Arbuckle 
Discontinuities in the IBR, folded reflectors, and 

flexures from BR to AR and overlying strata. 

L6_1  B 82 60 
Probably above 

Arbuckle (overlying 

strata is folded) 

Folded reflectors from BR to AR and overlying strata. 

Broad flexures to each side of the positive curvature 

anomaly. They could possibly connect with major 

faults, L1 and L4_1. 

L6_2  B 82 260 

L7_1  B 84 66 

L7_2  B 81 248 
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L8_1  A 89 221 

Folded reflectors from BR to AR and overlying strata. 

In the IBR, it could be connected to a short alignment 

of discontinuities. 

L8_2  B 82 44 

Folded reflectors from BR to AR and overlying strata. 

Broad flexures to each side of the positive curvature 

anomaly. It could possibly connect with major L8_1 

fault. 

L9 B  85 79 Above Arbuckle 
Strong flexure of the BR (subtle discontinuity also 

seen in cross section), folded AR and upper horizons.  

L10 B  88 72 Above Arbuckle 
Strong flexure of the BR, folded AR, and upper 

horizons.  

L11  B 89 51 

Probably above 

Arbuckle (overlying 

strata is flexure) 

Subtle flexure on the BR, and upper AR. Sharp break 

in the ML results. 

 

Comparison with Earthquake Data 

Figure 2-15A shows the comparison between the basement faults lineaments marked by 

earthquake data (from the catalog of Park et al. 2022) and the faults interpreted in this study using 

seismic attributes and ML methods. Notice the easternmost fault tip of the potential fault L9 

coincides with one of the smaller clusters seen with the earthquake data. A similar situation 

happens with the potential fault L10, which seems to coincide with some smaller events to the 

west. More noticeable from all of them is lineament L11 which was seen as a very sharp linear 

contrast in the ML extractions. L11 coincides with one of the largest clusters seen.  

Figure 2-15B and C compare the rose diagram created using the strikes direction of the 

faults mapped with the seismic data and the rose diagram created using lineaments seen from the 

visual clustering of earthquake events (Figure 2-15D; Appendix, Figure 1 and Table 2). The 

potential basement-rooted faults mapped in the area showed strikes ranging from 25°/205° to 

80°/260°, and a mean vector of 57°/237°, while earthquake data show strikes ranging between 

45°/236° and 90°/260°, and a mean vector of 61°/241°. Finally, the earthquake’s depths are 

between 4650-7100 mSSTVD, which is very deep into the basement and sometimes below the 

IBR (Figure 2-15E), which is between depths of 4900 and 5740 mSSTVD. 
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Figure 2-15. A) Comparison between the horizontally projected earthquake data and the faults 

interpreted using seismic attributes and ML methods, B) and C) rose diagrams comparing faults 

interpreted in the seismic volumes and lineaments from earthquake data, respectively, D) 

lineaments interpreted from visual earthquake clustering, and E) 3D view of the seismic events 

and the interpreted faults.  
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DISCUSSION 

Applicability of Multiattribute Analysis and Machine Learning Methods 

The results presented in this study showed how multiattribute analysis and ML methods 

helped identify potential basement-rooted faults in a dataset in northcentral Oklahoma. Through 

correlation between different horizons surfaces at different depths, it was possible to identify 

eleven potential basement-rooted faults of which at least six could be tracked all the way to the 

IBR. Some of these potential faults were mapped with more confidence than others. L1, L2, and 

L5 were mapped with a higher level of confidence as they show clear evidence of discontinuity in 

the IBR and co-located lineaments in the BR and AR, therefore, having an A-type basement-rooted 

fault expression. On the other hand, L3, L9, and L10 were also mapped with more confidence as 

a B-type basement-rooted fault expression as they show clear evidence of discontinuity and sharp 

flexures and lineaments over the BR and AR. 

However, ML extractions were critical to identifying potential faults such as L11 that 

showed more subtle expressions in the multiattribute analysis and were mapped with less 

confidence. L11, along with L9 and L10, also interpreted with less level of confidence, were 

mapped near the horizontal projection of much deeper earthquake events and showed similar 

strikes as well. Despite L11 being mapped with a lower confidence level when compared with 

other potential basement-rooted faults in the area, it was still more clearly seen with ML 

extractions. In that sense, the application of ML methods would be an important complementary 

tool that can help expand or provide other insights, especially for features that could escape from 

multiattribute analysis.  

Regarding the comparison between the two different unsupervised ML methods, SOM and 

GTM, we could evidence the clear improvement in the clustering when using GTM over SOM. 
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This can be an expected result as the GTM method was designed as a reformulation of the SOM 

method that helped solve one of its main drawbacks, the lack of confidence measurement in the 

clustering step, by using probabilistic density functions that allow the prototype vectors to better 

fit the data points, therefore, improving the clustering results, and final visualization.  

However, something that is noteworthy to mention for both ML methods tested is that they 

both allowed the integration of the different seismic fault expressions into a single volume which 

not only facilitated the structural interpretation but also helped highlight potential basement-rooted 

faults that are most likely to be missed if using only multiattribute analysis.  

Correlation with Hypothesis of the Oklahoma Basement Deformation 

The results observed in the multiattribute analysis correlate with what previous authors 

have proposed for Oklahoma (Figure 2-16). Kolawole et al. (2019, 2020) inferred that the 

basement faults detected through seismic activity correspond to pre-existing basement faults that 

further propagated into the sedimentary section and were later reactivated through wastewater 

injection into the Arbuckle. Therefore, it would be expected for these faults to show higher 

discontinuities and displacements in the deeper intervals (IBR), making them more detectable with 

coherence attributes, than in the upper intervals (top of the Arbuckle and top of the basement), for 

which curvature and aberrancy would work better. 

Moreover, despite focusing on the discontinuities of the IBR that could be correlated with 

lineaments in the shallowest horizons, it was possible to see other discontinuous patterns with N-

S and NE-SW directions in the IBR. This could be as well an indication of intense deformation 

and fracturing of the basement, of which the fault planes may not be necessarily seen or possibly 

tracked in the upper horizons.  
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When considering the features found within folded structures like L4, L6, L7, and L8, it's 

important not to dismiss the possibility that these might be connected to positive flower structures. 

The presence of positive flower structures associated with strike-slip faulting would suggest a 

transpressional regime, aligning with what other researchers have suggested for various regions in 

Oklahoma. These suggestions point to a transpressional stress environment and the development 

of larger faults with seismic indications of faulted reflectors near the basement, as well as 

potentially faulted anticlinal folds in the upper layers (as mentioned by Liao et al., 2017, and 

Kolawole et al., 2020). 

Implications of Seismicity under the Current Oklahoma Stress State 

In northcentral Oklahoma, where our study area is located, Qin et al. (2019) found a 

dominant maximum horizontal stress ranging from 80° – 90° and defined a regime of strike-slip 

type using focal mechanisms solutions. The authors mapped the reactivated faults in the area using 

relocated earthquakes catalogs and found strike angles mainly distributed in the ranges of 55°– 75° 

(NE-SW) and 105° – 125° (NW-SE), with steeply dipping angles larger than 70°, which they 

Figure 2-16. Hypothetical model for the basement faults and connection with upper sedimentary 

strata in Oklahoma. Modified from Kolawole et al.  (2020). 
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indicated are conjugate features relative to a maximum horizontal compression stress orientation 

of N85°E in the area.  

The observed strikes ranging from 25°/205° to 80°/260° and the near 60° degrees 

difference would indicate a potential conjugate faulting in our area as well. These strike directions 

are also similar to those observed with earthquake data, which would indicate that some of the 

mapped potential basement-rooted faults could have strikes favorable for reactivation under the 

current stress state of Oklahoma if the conditions are met.  

To check which of the potential basement-rooted faults mapped had strikes more favorable 

for reactivation, we assessed the fault slip potential (FSP) using the methodology presented by 

Walsh et al. (2017). This methodology provides a single deterministic calculation of the Mohr-

Coulomb pore pressure to slip for each fault using as input the fault geometry, the orientation and 

magnitudes of the stress field, and the coefficient of friction of the material. More specifically, we 

plotted 1) the Mohr diagram, taking into account the stress field magnitudes, 2) the stress state of 

Figure 2-17 Fault slip potential analysis. A) Fault map color code according to the delta pore 

pressure required to make the fault slip and B) Mohr-Coulomb diagram results. 
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each fault, which are calculated based on the fault strike and dip, and 3) the frictional slip line, 

which takes into account the coefficient of friction. The pore pressure to slip for each fault is 

determined as the horizontal distance from the corresponding fault stress state points to the 

frictional slip line. Since the approach is deterministic, we assume no uncertainty on the input 

parameters. To have a more probabilistic assessment of FSP, we would need more information 

regarding the ranges of variability of the input parameters.  

Figure 2-17 indicates the FSP results of the lineaments interpreted. We used a SHmax 

direction of 85°, as in Qin et al. (2019), and a reference depth of 5 km for the rest of the parameters. 

The specific details of the stress data used can be found in the Appendix, Tables 3 and 4. Observe 

that the two largest potential basement-rooted faults in the area, L1 and L2, have the strikes least 

favorable for reactivation, while the potential basement rooted faults that are inferred to bound the 

folded structures, L4, L6, L7, L8, have strikes that would potentially have reactivation if the delta 

pore pressure varied between ~10 and ~25 MPa. On the other hand, we can see how structures 

such as L11 and L3 are the closest to slip under minimum changes in pore pressure. Overall, this 

correlates with the earthquake data; L11, L10, and the easternmost tip of the potential fault L9, 

showed seismicity, indicating there has been slip of those faults. These faults showed strikes 

favorable to slip in the FSP analysis of Figure 2-17.  

Finally, the potential basement-rooted faults mapped in our dataset showed near-vertical 

dip with values larger than 80°. We can infer that these potential faults are near vertical structures 

that are rooted in the basement and propagated into the overlying sedimentary strata. The exact 

timing of events is out of the scope of the project, however, the folding of the sedimentary 

structures far above the Arbuckle would at least indicate a relative post-Ordovician deformation. 

Additionally, the fact that the observed lineaments extend above the Arbuckle would as well be a 
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crucial observation regarding the structural connectivity and fluid pathways between the interval 

of wastewater injection, the Arbuckle, and the interval of seismicity, the basement.  

CONCLUSIONS 

This study's findings align with previous research on Oklahoma's basement faults, which 

suggests that these faults were pre-existent faults that propagated into the sedimentary section and 

were recently reactivated through wastewater injection. The detection of higher discontinuities and 

displacements in the deeper intervals (IBR) reinforces the existent intense basement deformation 

despite the pre-seismicity belief of an intact basement in northcentral Oklahoma.   

The geometry of the mapped potential basement-rooted faults, their similarity with already 

reactivated faults in the area, and the fault slip analysis under the current stress state of Oklahoma 

indicate that many of these newly interpreted NE-SW faults have strikes favorable for reactivation 

if the conditions on pore pressure change are met. Moreover, the positively folded structures seen 

in the upper horizons could not only be evidence of propagation of basement-rooted faults in the 

upper sedimentary strata but could also be inferred to be associated with a transpressional regime. 

However, more details regarding the kinematics of the inferred structures would be needed to 

complement this matter.   

The integration of different geometric attributes through unsupervised ML methods was 

shown to be a promising approach for identifying previously unseen potential basement-rooted 

faults in Oklahoma. In this study, we have interpreted eleven potential basement-rooted faults of 

which three, L9, L10, and L11, could be associated with already proven seismogenic faults, and 

other three, L1, L2, and L5, show a clear fault expression of a basement-rooted fault cutting an 

IBR and deforming, folding, and locally showing offsets in the upper BR and AR and overlying 
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sedimentary strata. This approach could be extended to other datasets in the area and aid in the 

interpretation of basement structures as well as help improve structural maps for Oklahoma.  
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APPENDIX 

APPENDIX A. 1D Velocity Model 

Appendix. Table  1. Shear wave velocity and calculated compressional wave velocity using a 

Vp/Vs ratio of 1.73. The input P-velocity was averaged for the first 1.5 km. 

Depth Range(km) S-velocity(km/s) P-velocity [km/s] Input P-velocity [km/s] 

0~0.5 1.215 2.101 3.520 

0.5~1 2.170 3.755 3.520 

1~1.5 2.718 4.703 3.520 

1.5~2 2.910 5.034 5.034 

2~2.5 3.178 5.498 5.498 

2.5~3 3.323 5.750 5.750 

3~3.5 3.416 5.909 5.909 

3.5~4 3.384 5.855 5.855 

4~4.5 3.456 5.978 5.978 

4.5~5 3.526 6.100 6.100 

5~5.5 3.507 6.067 6.067 

5.5~6 3.529 6.105 6.105 

6~6.5 3.559 6.157 6.157 

6.5~7 3.586 6.203 6.203 

7~7.5 3.629 6.278 6.278 

7.5~8 3.652 6.318 6.318 

8~8.5 3.637 6.292 6.292 

8.5~9 3.614 6.253 6.253 

9~9.5 3.634 6.287 6.287 

9.5~10 3.663 6.337 6.337 
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APPENDIX B. Earthquake Lineaments Mapped 

Appendix. Table  2. Estimated strikes of the lineaments mapped using the visual clustering of 

earthquake data. 

Lineament Strike Lineament Strike 

1 66 13 55 

2 59 14 53 

3 53 15 56 

4 65 16 54 

5 80 17 44 

6 51 18 50 

7 55 19 80 

8 58 20 78 

9 55 21 78 

10 56 22 66 

11 57 23 88 

12 54   

 

Appendix. Figure  1. Lineaments mapped from visual clustering of earthquake data. 
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APPENDIX C. Input Parameters for Fault Slip Potential Analysis 

Appendix. Table  3. Values used as stress data input for the fault slip potential assessment. 

Parameters marked with * were taken from Chase et al. (2020) 

Parameter Input value Comments 

Vertical Stress 

Gradient 
1.102 psi/ft 

Assuming a value equal to 124.6 MPa calculated as the overburden 

pressure at 5 km depth.   Density of the sedimentary section 

assumed as 2.71 g/cm3 (limestone) for the first 1 km, and 2.5 g/cm3 

(rhyolite) for the 4 km of basement. 

Maximum Horizontal 

Stress Gradient 
1.374 psi/ft 

Assuming the estimated mean SHmax magnitude value of 155.4 

MPa for Oklahoma * 

Minimum Horizontal 

Stress Gradient 
0.677 psi/ft 

Assuming the estimated mean SHmin magnitude value of 76.6 MPa 

for Oklahoma * 

Initial Pore Pressure 

Gradient 
0.420 psi/ft Assuming an estimated mean value of 47.5 MPa at 5 km * 

Maximum Horizontal 

Stress Direction 
85° Mean SHmax for northcentral Oklahoma (Qin et al. 2019) 

Coefficient of Friction 0.68 For Oklahoma granite basement faults * 

Reference Depth for 

Calculation 
16404.2 ft Reference 5 km depth for the seismic events 

 

Appendix. Table  4. Fault geometry values used as input data for the fault slip potential assessment. 

Fault List 
Strike 

[Degrees] 

Dip 

[Degrees] 

Length 

[km] 

L1 205 84 8.839 

L2_1 205 86 2.195 

L2_2 207 85 1.737 

L3 61 90 1.219 

L4_1 69 87 1.432 

L4_2 250 86 1.189 

L5_1 220 86 2.012 

L5_2 180 86 0.762 

L6_1 81 83 0.701 

L6_1_1 39 82 0.792 

L6_2 260 82 0.792 
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L7_1 66 84 0.762 

L7_2 248 81 0.610 

L8_1 222 89 0.914 

L8_2 44 83 1.219 

L9_1 89 84 1.158 

L9_2 69 86 0.457 

L10 73 89 0.640 

L11 52 89 2.865 

 

 


