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Abstract 

In an era where the global energy landscape is increasingly defined by the dual imperatives of 

efficiency and sustainability, the natural gas sector stands at a crucial juncture. The engines 

powering this sector, especially Natural Gas Fired Reciprocating Engines (NGFRE), are well 

known for their performance as well as considerable emissions, posing a stark challenge to 

environmental sustainability goals. This thesis addresses this pivotal issue, presenting a machine 

learning-based solution to optimize NGFRE performance while substantially reducing their 

environmental footprint. 

The research is anchored in an experimental framework involving the AJAX DPC-81 engine 

compressor, evaluated across a spectrum of operational loads from 40% to 75%. The study 

leverages an extensive array of sensors to collect detailed real-time data on engine performance, 

emissions, and vibration parameters. Central to the methodology is the strategic adjustment of the 

Air Management System (AMS), varying air/fuel ratio to explore their impact on engine dynamics 

and emissions. The study also incorporates a comprehensive vibration analysis, providing critical 

insights into the engine's operational stability under different load conditions. Machine Learning 

(ML) techniques, including Linear Regression, Artificial Neural Networks (ANN), and Support 

Vector Machines (SVM), are integrated with a Programmable Logic Controller (PLC). This 

integration not only facilitates a nuanced analysis of the collected data but also enables the accurate 

prediction of engine performance, paving the way for real-time adaptive control systems. 

The findings of this research are both revealing and impactful. A notable instance is observed at a 

40% engine load with a 70% bypass valve opening, where emissions of methane (CH4) plummet 

by 64%, nitrogen oxides (NOx) by 52%, and Volatile Organic Compounds (VOC) by 50%. This 

substantial decrease highlights the effectiveness of the ML-driven approach in curbing harmful 
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emissions. Further, the study unveils the manipulation of the bypass valve position can lead to 

enhanced fuel efficiency and improved engine stability. For example, at a 75% engine load, the 

research demonstrates that optimal emission reduction is achieved with a mere 10% bypass valve 

opening, illuminating the delicate interplay between engine load parameters and environmental 

emissions. 

In conclusion, the study demonstrates the effectiveness of ML in enhancing NGFRE performance. 

It sets a foundation for developing intelligent engine systems that can self-adjust for optimal 

performance and minimal environmental impact, forging a path to a future where the two are 

seamlessly integrated.   
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Chapter 1: Introduction 

1.1 Background  

Energy serves as the foundation for economic growth and development. Energy stands as the 

bedrock of economic vigor and advancement. The discovery of large reserves of natural gas in 

various countries as well as improved distribution of gas has made possible a wide variety of uses. 

Presently, fossil fuels predominantly fulfill the global energy demand with over 80%. 

Nevertheless, the technologies associated with fossil fuel extraction, transportation, processing, 

and, notably, their utilization especially combustion have adverse consequences on the 

environment, leading to both direct and indirect detrimental effects on the economy [1-6].  

Natural Gas (NG) has served as a fuel for more than a century. It underwent significant 

advancements, particularly during the oil crises of 1974 and 1980 [7]. In the past two decades, 

reserves of NG varied from 123.5 trillion cubic meters (Tcm) in 1996 to 186.6 Tcm in 2016, 

increasing by 51.1% [8]. However, NG has emerged as a highly favored energy source that 

effectively addresses engine-related combustion issues while matching energy density [9]. Various 

countries consider NG a prime candidate for powering vehicles due to its abundant availability, 

cost-effectiveness, lower emissions, and compatibility with traditional diesel and gasoline engines. 

Notably, among fossil fuels, NG  combustion yields the most minor greenhouse gas emissions and 

minimal suspended particles [10]. 

NG refers to hydrocarbon-rich gas as a gaseous fossil fuel that is found in oil fields and natural gas 

fields. It occasionally contains carbon dioxide (CO2), nitrogen (N2), and helium (He) depending 

on factors such as climate, location, or processing [11, 12]. While it is commonly grouped with 
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other fossil fuels and sources of energy, many characteristics of NG make it unique. The term NG 

is often extended to gases and liquids from the recently developed shale formations [13-16] as well 

as gas (biogas) produced from biological sources [17-19]. Along with these newer uses, there has 

been an increased need not only for the compositional analysis of natural gas but also for analytical 

data that provide other information about the behavior of natural gas. Consequently, the utilization 

of natural gas as a vehicle fuel has gained substantial traction in recent years, and this trend is 

anticipated to persist [20]. 

 NG is considered a promising fuel for both sustainability and alternative fuels due to its interesting 

chemical properties with a high H/C ratio and high research octane number (about 130) [21]. It 

also has relatively wide flammability limits [22]. The lower peak combustion temperatures under 

ultra-lean conditions in comparison to stoichiometric conditions lead to a lower knock tendency 

of NG engines, allowing a higher power for the same engine displacement by increasing the boost 

pressure level [23].  

Engines powered by NG and engineered for high compression ratios, lean-burn conditions, or 

extensive exhaust gas recirculation are positioned to potentially exceed the performance metrics 

of gasoline engines in terms of torque and power [24, 25]. These engines also show promise in 

significantly reducing emissions and improving thermal efficiency [25]. NG engines have been 

demonstrated to emit less CO2 than diesel engines at equivalent air-fuel ratios while maintaining 

similar levels of thermal efficiency in very lean conditions [26, 27]. Exceptionally low levels of 

nitrogen oxide (NOx) and carbon Monoxide (CO) emissions have been achieved at lean 

equivalence ratios [12]. Moreover, unburned hydrocarbon (HC) emissions can also be reduced 

below the corresponding levels for gasoline engines, [28]. However, NG engines produce lower 

power than gasoline engines and have higher combustion instability in lean burn conditions [29]. 
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Despite these challenges, the trend toward increased production and utilization of NG is on the 

rise [30]. This is highlighted by the widespread consumption across various sectors, as depicted in 

Figure 1, signaling NG's critical role in the current energy paradigm and accentuating the pressing 

need to prioritize advancements in this field.  

 

Figure 1. U.S. Natural Gas Consumption by Sector from 2010 to 2019(billion cubic feet per 
day).[www.eia.gov] 

Reciprocating engines are pivotal in the processing and transportation of NG. Their ability to 

achieve substantial pressure ratios makes them indispensable in settings such as oil refineries, 

power generation facilities, and compressed natural gas (CNG) stations [31-34]. Although these 

compressors are designed for steady, rated loads, they often operate under fluctuating demands, 

deviating from ideal conditions. This variability has notable implications, especially in the 

Transmission and Storage (T&S) sector of the natural gas industry, where methane (CH4) 

emissions are a significant concern, accounting for approximately one-third of the sector's methane 

emissions [35]. 
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Two-stroke reciprocating engines are lauded for their impressive power-to-weight ratio, 

straightforward design, and compact nature, outpacing their four-stroke counterparts. However, 

this advantage is offset by their higher fuel consumption and emissions profile [36]. Among the 

environmental concerns is the release of CH4 when NG is used as fuel. Methane's global warming 

potential towers over that of CO2, being 25 to 30 times more impactful over a century [37-39]. 

This issue is particularly acute in two-stroke engines where the design of their ports and the 

resultant scavenging losses elevate the amount of unburned fuel, further exacerbating methane 

emissions [12]. Therefore, mitigating methane emissions from two-stroke Natural Gas Fired 

Reciprocating Engines (NGFREs) becomes critically important. Adding to the challenge, NG 

combustion in these engines tends to be less stable under partial-load operations, presenting 

another front in the quest for efficient and environmentally friendly engine technology [29, 40].  

The NG gathering sector in the United States is a vast network, boasting over 5,200 gathering 

stations [41]— hubs responsible for the compression and enhancement of natural gas quality—

linked by an extensive web of approximately 407,000 miles of pipelines [42]. A decent number of 

compressors that are used in the compression stations are NGFRE’s. The specialty of these integral 

engines is that the engine and compressor relate to the same crankshaft. The engine studied in this 

research is also an NGFRE which is discussed later in the methodology section in detail.  

Typically, NGFREs are engineered for harsh operation, pausing only for oil changes, unforeseen 

downtime, or during the few months intervals of scheduled maintenance. Yet, the challenge lies in 

harnessing advanced technology to elevate their performance and minimize emissions—a task 

complicated by the remote locations of some compressors. These sites are often beyond the reach 

of regular monitoring, not due to a lack of will, but rather due to logistical and technological 

constraints [43]. 
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1.2 Formation Processes and Hazards of Emissions 

Nitrogen oxides (NOx), Carbon monoxide (CO), CH4, and volatile organic compounds (VOCs) 

exert detrimental effects on both human health and the environment. Therefore, it is imperative to 

mitigate their release into the atmosphere [44]. Different emissions gasses are discussed below. 

Figure 2 shows the relationship between the equivalence ratio of a fuel-air mixture and various 

exhaust gas components typically measured in internal combustion engines. The equivalence ratio 

is a measure of the air-fuel mixture, with a value of 1.0 representing a stoichiometric mixture (the 

exact chemical balance between fuel and oxygen). Ratios below 1.0 indicate a fuel-lean mixture 

(excess air), while ratios above 1.0 indicate a fuel-rich mixture (excess fuel). The curve for NOx 

peaks just before the equivalence ratio of 1.0, suggesting that NOx emissions are highest near the 

stoichiometric ratio and decrease in both fuel-rich and fuel-lean conditions. The HC curve, on the 

other hand, shows higher concentrations in fuel-rich conditions and drops as the mixture becomes 

leaner. The CO curve peaks in fuel-rich conditions (indicating incomplete combustion) and 

decreases towards leaner mixtures. The O2 curve shows the remaining oxygen in the exhaust, 

which is higher in lean conditions due to excess air and lower in rich conditions as more oxygen 

is consumed during combustion [45]. 
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Figure 2. Spark-ignition engine emissions for different fuel/air ratios adapted from Stone, 

1991[45] 

1.2.1 NOx 

NO2 is distinguished by a reddish-brown hue and is toxic and corrosive, becoming visibly 

noticeable when present in substantial ambient quantities [46]. NOx constitutes a group of 

emissions of significant concern in spark-ignition (SI) engines, encompassing several compounds 

such as nitric oxide (NO), NO2, nitrous oxide (N2O), dinitrogen trioxide (N2O3), and dinitrogen 

tetroxide (N2O4). Predominantly, NO and NO2 are encountered, with the latter compounds 

occurring in relatively minor quantities [47]. Kinetic equations [1,2,3] represent the basic steps of 

the Zeldovich mechanism [48-50]. 

N2+O→NO+N 
1 

N+O2→NO+O 
2 

N+OH→NO+H 
3 
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The genesis of NOx in spark ignition (SI) engines is primarily through the oxidation of nitrogen 

molecules within the engine cylinders, a process that intensifies at elevated temperatures [51]. The 

factors influencing the formation of NOx include the availability of oxygen, the peak combustion 

temperature, the fuel-to-air ratio, and the duration available for the reaction between atmospheric 

oxygen and nitrogen [52, 53]. An effective strategy for NOx mitigation centers on precise engine 

control. In contrast to other emissions like CO, CH4, and VOCs, where enhanced combustion 

efficiency yields notable reductions, NOx reduction demands targeted control measures due to its 

unique formation mechanisms during combustion. 

1.2.2 CO 

Carbon monoxide (CO), an invisible and odorless gas, poses a significant risk to human health. 

It can stealthily bind to hemoglobin in the blood, leading to oxygen deprivation. This insidious 

interaction can cause symptoms of suffocation even at low concentrations, highlighting the 

necessity for stringent controls on CO emissions [44]. The production of CO is intricately 

linked to the combustion process within an engine's cylinders. It is primarily the result of 

incomplete fuel burning, where the availability of unburnt fuel and the temperature within the 

combustion chamber dictate the decomposition and subsequent partial oxidation of fuel 

molecules [54-56]. Figure 3 shows the variation of CO in the engine. 
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Figure 3. Variation of Carbon monoxide in  SI engine with air/fuel ratio (adapted from Novak 

and Blumberg, 1978 [57]) 
The concentration of CO emissions is closely related to the air-to-fuel ratio during combustion. 

For fuel-lean mixtures, the CO levels tend to remain relatively constant, despite the variation in 

air-to-fuel ratios. However, CO can still be produced from fuel-lean mixtures due to factors such 

as suboptimal mixing, and localized pockets of rich fuel [58]. Notably, non-road vehicles and 

machinery account for a considerable portion of CO emissions, highlighting the broader 

environmental impact of this pollutant [59, 60]. 

1.2.3 VOCs 

VOCs are a diverse group of carbon-based chemicals. VOCs are primarily formed during 

incomplete combustion when fuel is not fully oxidized [61, 62]. They can originate from a range 

of precursors within the natural gas itself, and their formation is influenced by various factors one 

of them being incomplete combustion with the presence of higher hydrocarbons [44]. The control 

of VOC emissions from natural gas engines is crucial due to their environmental and health 
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impacts, including their role in the formation of ground-level ozone and their potential to 

contribute to the greenhouse effect [63]. 

1.2.4 CH4 

CH4 is the primary component of natural gas and a potent greenhouse gas with a global warming 

potential significantly higher than carbon dioxide over 100 years [64, 65]. In natural gas engines, 

methane is released during incomplete combustion processes, particularly under lean burn 

conditions or when misfires and incomplete fuel-air are mixed [66]. The formation of CH4 is 

attributed to lower oxygen combustion temperatures. The engine design and operating conditions, 

such as the timing of ignition and the quality of the air-fuel mixture, can influence methane 

emissions. The hazards of methane extend beyond its immediate flammability and asphyxiation 

risks; its release into the atmosphere contributes considerably to climate change, making its 

mitigation in the exhaust systems of natural gas engines a critical environmental goal [67, 68]. 

Regarding other emissions like sulfur oxides (SOx) and particulate matter (PM), they hold minimal 

importance for natural gas-fired engines. SOx emissions are contingent on the sulfur content of the 

fuel, which is exceedingly low in natural gas fuels. Conversely, PM is a concern primarily for 

engines utilizing liquid fuels [69]. 

Table 1 shows the emission standards set by the Environmental Protection Agency (EPA) for a 

stationary NGFRE. 
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Table 1. New Source Performance Standards for Stationary Engines [70] 

 
Engine type 

and fuel 

Maximum 
engine 
power 

 
Manufacture 

date 
Emission standards (ppmvd ref. 15% O2) 

NOx CO VOCs 
Non- 

emergency SI 
NG and non- 
emergency SI 

lean-burn 
LPG (except 

lean-burn 
500 ≥ HP < 

1350) 

 
 
 
 

HP < 500 

 

7/1/2008 

 

220 

 

610 

 

80 

 

7/1/2011 

 

150 

 

610 

 

80 

 

1.3 Challenges to Reduce Emissions from Natural Gas Engines 

In the pursuit of environmental sustainability and compliance with stringent regulatory standards, 

reducing emissions from natural gas engines presents a multi-faceted challenge. This section 

explores the inherent difficulties faced by the industry and the scientific community in mitigating 

emissions, underscoring the significance of the research objectives outlined in previous sections. 

1.3.1 Technical Challenges 

The technical complexity of natural gas engines is a primary barrier. The intricate balance required 

between combustion efficiency and emission formation is a delicate one. Achieving complete 

combustion, while simultaneously minimizing NOx, CO, CH4, and VOCs, demands precise 

control over the combustion process [71]. Factors such as combustion chamber design [72, 73], 

fuel quality [74, 75], air-to-fuel ratio (AFR) [44], ignition timing [21], and exhaust gas 

recirculation [76] rates must all be optimized, often conflicting with one another in terms of desired 

outcomes.  
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Furthermore, the transient nature of engine operations, particularly in the oil and gas industry 

where engines often run at varying loads, exacerbates the difficulty of maintaining optimal 

combustion conditions. The lag in response times of current feedback and control systems may 

lead to periods of suboptimal performance, where emissions could spike beyond acceptable levels 

[77]. 

1.3.2 Operational Challenges 

Operational practices also contribute to the challenge of emissions reduction. The variability in 

engine loads, the fluctuation of fuel composition, and the maintenance of engine components play 

significant roles in emissions profiles. Furthermore, the retrofitting of older equipment to meet 

new standards often requires significant capital investment and can lead to operational 

inefficiencies. 

Furthermore, the integration of machine learning algorithms within existing Programmable Logic 

Controllers (PLCs) presents its own set of challenges. While PLCs are widely used in industrial 

control systems, they are traditionally not designed for the complex data processing required by 

sophisticated machine learning applications. Upgrading these systems to handle advanced 

analytics involves not just hardware and software changes, but also a rethinking of the operational 

protocols and data management practices [78]. 

In addressing these operational challenges, the research seeks to develop a comprehensive 

understanding of real-world engine operation and the factors influencing emissions. Such as the 

usage of sensors such as suction pressure, discharge pressure, speed, etc. This understanding is 

crucial for designing a predictive model that can account for the variability and unpredictability of 

operational conditions. The thesis aims to leverage real-time sensor data to inform machine 
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learning algorithms, enabling them to predict and adjust engine performance on the fly, thereby 

ensuring emission reductions even under the most challenging operational scenarios. 

1.3.3 Regulatory Challenges 

Regulatory frameworks continue to evolve, often outpacing the ability of industry stakeholders to 

comply. The gap between regulatory expectations and technological capabilities can lead to a 

situation where the available technology is not sufficient to meet the new standards, thereby 

requiring substantial research and development efforts. 

Regulatory challenges represent a significant obstacle to the implementation of emission reduction 

strategies in NG engines. Compliance with environmental regulations requires constant vigilance 

and adaptation from operators in the oil and gas industry. The landscape of regulatory standards is 

both complex and dynamic, with variations not only at national levels but also across regional and 

local jurisdictions. The stringent emission standards set by bodies such as the Environmental 

Protection Agency (EPA) and the International Maritime Organization (IMO) necessitate the 

deployment of advanced technologies and practices to limit the output of NOx, CO, CH4, and 

VOCs. 

1.3.4 Monitoring and Prediction Challenges 

Accurate monitoring and prediction of emissions are crucial for effective control strategies. 

However, the variability in operating conditions, coupled with the limitations of current sensing 

technologies, poses significant challenges in acquiring real-time, accurate emissions data. 

Furthermore, predictive models often require extensive data for training, which can be difficult 

and costly to obtain. 
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1.3.5 Research and Development Challenges 

There is a need for an integrated approach that combines advanced modeling techniques, 

experimental data, and real-world operational insights to develop solutions that are both effective 

and pragmatic.  

Engine Load is a parameter commonly used as a performance parameter to represent the amount 

of work done by the Engine. In the previous research Casting et al. [79] focused on modeling 

engine operation with a particular emphasis on volumetric, isentropic, and effective efficiencies. 

These efficiencies were found to be primarily dependent on two key parameters: the dead 

volumetric ratio, significantly affecting volumetric efficiency. Elhaj et al. [80] conducted a 

numerical study of a two-stage reciprocating engine, expanding diagnostic capabilities for 

predictive condition monitoring. comparison of detection and diagnosis techniques showed 

discrepancies with the vibration and acoustics sensors. However, the pressure measurement 

produced through that model is intrusive. Additionally, the accuracy is highly dependent on the 

usage of additional devices. Winandy et al. [81] presented a simplified model of an open-type 

reciprocating engine, revealing the key processes that influence mass flow rate, compressor power, 

and discharge temperature. A simplified steady-state model was proposed to determine the 

ambident losses and exhaust temperate, however, there is no utilization of this model on industrial 

compressors to prove its robustness. Farzaneh-Gord et al. [82] performed a thermodynamic 

optimization of design parameters for reciprocating air compressors, utilizing a mathematical 

model based on mass conservation. Although, the study revealed the area ratio of suction to 

discharge valve. There is no account for the engine's health and performance, which make a 

massive impact on the prediction of any parameter. Hennigsson et al. [83] predicted emissions 

such as NOx using cylinder pressure data by using data-mining techniques. Although the prediction 
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accuracy was decent the research lacked in in utilizing the model in real-world scenarios because 

the model was validated using the static model. Yap et al. [84] presented a simulation-based work 

using an Artificial Neural Network (ANN) to optimize engine parameters to reduce emissions, 

however, the data collection was a huge concern. Additionally, the study was done on the steady 

AFR ratio which makes a dramatic difference in the combustion stability  

To address these challenges, the current thesis endeavors to advance the understanding of emission 

processes and develop innovative solutions through the integration of real-time sensor data and 

machine learning algorithms into engine control systems. This research contributes to the broader 

goal of reducing the environmental impact of the oil and gas industry and advancing toward a more 

sustainable future. 

1.4 Objectives of the Research 

The objectives of this research encompass several key areas. First, it seeks a thorough 

comprehension of the variable to determine the optimum bypass valve position by analyzing the 

Air Management System (AMS) across different loads and bypass valve positions through 

performance and combustion analysis. Second, the study aims to explore the correlation between 

the engine load and the vibrations associated with it, this would determine whether the vibration 

can be used as a parameter to predict the engine performance. Finally, a precise machine learning 

algorithm is introduced, powered by real-time sensor data from the  

, aimed at delivering precise predictions of engine performance. The primary goal is to reduce 

emissions from the engine, collectively contributing to performance enhancement and minimizing 

environmental impact within the oil and gas (O&G) sector. 
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1.5 Summary of Chapter One 

In this chapter, the crucial role of emissions in the oil and gas industry has been discussed. NG 

remains a significant fossil fuel resource, especially in the context of reciprocating engines used 

for T&S. However, these engines pose a substantial challenge due to their significant contribution 

to methane and other emissions. The literature review revealed that there is less study on the 

utilization of real-time sensors to predict engine performance. This research sheds light on 

performance prediction and reduction of emissions from the industrial engine. 
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Chapter 2: Literature Review 

In this section, the role of reciprocating engines in the natural gas industry is discussed. Different 

performance testing devices and research related to prediction of the engine performance are 

reviewed.  

2.1 Industrial Engines and their Challenges 

The United States has experienced an NG boom due to the development of unconventional wells 

development. The U.S. Energy Information Administration has forecasted natural gas production 

to increase by 56% by 2040 [85].  Much of this increase is a consequence of major added resources 

that have become accessible for commercial production due to advances in hydraulic fracturing 

and horizontal drilling. During this same period, the U.S. has seen an increased demand for NG in 

the stationary electricity generation and transportation sectors [41]. With the increasing energy 

demand, the use of NG to support these needs is also increasing at a great pace. It is also important 

to make sure that while the demands are met are focused on the harm it causes to the environment 

[41, 86]. Figure 4 shows the NG compression stations all over the U.S. and it is fascinating that a 

decent number of engines are used to meet the demand in the U.S. 

Many of such engines used in the compression stations are NGFREs. What makes these integral 

engines unique is that the engine and compressor are connected to the same crankshaft. The engine 

used for the study is an NGFRE at SECM at the University of Oklahoma, which will be discussed 

in detail in the methodology section.  

Reciprocating internal combustion engines, a well-established technology, are utilized extensively 

for various applications including power generation, transportation, and a multitude of industrial 

processes. Annually, the production of these engines on a global scale surpasses, underscoring 
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their prevalence and the scale of their use [87]. In the context of combined heat and power (CHP) 

installations, reciprocating engines offer a versatile range of capacities, extending from modest 10 

kW units to substantial 10 MW single units. Moreover, by synchronizing multiple engines, it is 

possible to achieve even greater capacities, exceeding the 10 MW mark within a single power 

generation facility [88]. 

 

Figure 4. Natural Gas Compressor Station in the U.S (Map courtesy of U.S. Energy Information 
Administration (EIA)) 

NG, chiefly composed of methane, is typically both invisible and odorless, making its detection in 

upstream operations a challenge. Currently, methane stands as the second most prevalent 

greenhouse gas globally, contributing to 20% of worldwide greenhouse gas emissions [89]. 

Recognized for its potency and relatively short atmospheric lifetime compared to carbon dioxide, 

methane exerts a significant immediate impact on climate change [90, 91]. Indirectly, it also affects 

human health and plays a role in the atmospheric breakdown of various substances [92]. Notably, 

energy-related activities are responsible for approximately 20% of anthropogenic methane 

emissions, with the oil and gas sector being the predominant source within this category [93][5]. 
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Numerous manufacturers provide these engines specifically for distributed power generation. Due 

to their operational efficiency and adaptability, natural gas-fueled reciprocating engines are 

particularly favored for Combined Heat Power CHP operations. They are designed for continuous 

operation and are only halted for reasons such as oil pumping malfunctions, unforeseen engine 

downtime, or scheduled maintenance, the latter of which typically occurs at multi-month intervals 

[94]. Figure 5 represents the different segments of methane emissions. 

 

 

Figure 5. Methane Emission by Segments. Source (www.eia.com) 

This underscores the sector’s critical responsibility in the concerted efforts to reduce emissions 

and mitigate climate change. Within the spheres of regulation and operations, emissions of NG are 

categorized as either vented or fugitive. Emissions are deliberate discharges that occur under 

controlled conditions during standard operational processes. The patterns of NG emissions are 

notably inconsistent, displaying significant variations across both location and time [95-97], which 

complicates their predictability [98, 99]. On the other hand, fugitive emissions arise from 
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unintended releases due to equipment malfunctions, such as compromised valves or flange 

connections. However, when the combustion of the NG is involved in industrial engines, it tends 

to give more emissions. 

This robust and continuous service profile underscores the importance of operational reliability 

and the need for effective emission management strategies, given the substantial role these engines 

play in the energy sector. The frequent and prolonged operation of these engines highlights the 

potential environmental impact they have, particularly in terms of CH4 emissions, and the 

importance of developing and implementing emissions reduction technologies.  

2.2 Techniques for Mitigating Emissions 

In the realm of emission reduction strategies for SI engines, they can be broadly categorized into 

two distinct approaches: pre-combustion methods, involving adjustments to combustion 

parameters that effectively reduce emissions, and post-combustion methods, which center on 

treating exhaust gases independently after the combustion process has taken place. An explanation 

of different methods and their feasibility for the test engine was discussed.  

2.2.1 Exhaust Gas Recirculation (EGR) 

Exhaust Gas Recirculation (EGR) is recognized as an effective mechanism for mitigating the 

emission of NOx, which are significant pollutants emitted by combustion engines [16]. EGR 

operates by recirculating a portion of an engine's exhaust gas back into the combustion chamber. 

This recycled gas acts as an inert buffer, mixing with the intake air and thereby reducing the overall 

oxygen content available for combustion. The result is a lower combustion flame temperature, 

which directly impacts the formation of NOx[100, 101]. 
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The relationship between flame temperature and NOx production is critical; even modest decreases 

in temperature can lead to a substantial reduction in NOx levels due to the exponential relationship 

between temperature and NOx formation [102]. Through the application of EGR, the engine can 

maintain optimal combustion conditions and mitigate NOx emissions effectively without the need 

to retard injection timing. However, EGR can lead to increased fuel consumption and the potential 

for soot contamination in the engine's lubricating oil. Additionally, this technology is still in 

development for natural gas-burning engines, and due to substantial alterations required in the air 

intake and exhaust systems, it currently poses challenges in terms of cost-effectiveness [103]. 

2.2.2 Spark Retardation 

In spark ignition engines, the formation of flame, premature burning, and behaviors of emissions 

are all influenced by ignition timing [55]. The impact of timing for spark on the combustion of an 

engine fueled with hydrogen was studied by Shi et al. [104]. They discovered that with the 

advanced spark ignition angle, the brake thermal efficiency initially increases followed by a 

decline. NOX, HC, and CO emissions also decreased with retarded spark timing. NOX emissions 

increase as the fraction of hydrogen volume increases, whereas HC and carbon monoxide are 

reduced. The impact of adding a high percentage of hydrogen on the performance of engines fueled 

by hydrogen–gasoline blends was studied by Elsemary et al. [105]. The finding was that at an 

ignition timing of 30 °CA BTDC, the consumption of fuel is reduced, and the thermal efficiency 

improves. Zhang et al. [106] studied the impact of a spark-timing hydrogen/methanol engine on 

combustion and emissions with the coefficient of excess air at 1.20 and discovered that with 

increased spark advance angles, after the initial increase, the indicated thermal efficiency begins 

to decline. Along with the more advanced ignition timing, the flame production time lengthens 

while the flame propagation period shortens. This technique is low-cost and easier to implement. 
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However, it does not provide convenient real-time access to altering combustion parameters while 

the engine operates. 

2.2.3 Catalysts 

In the operation of internal combustion engines, the exhaust stroke plays a pivotal role by expelling 

combusted gases through the exhaust system. These gases, comprising unburned hydrocarbons, 

nitrogen oxides (NOx), and carbon monoxide (CO), are then routed through a device that resembles 

a muffler in appearance but serves a far more critical function—the catalytic converter [107, 108]. 

This component is essential in transforming harmful emissions into less hazardous substances via 

catalysis, a process of accelerated chemical reactions induced by catalysts. Given the crucial role 

of the catalytic converter, engine, and exhaust system design must be meticulously calibrated to 

ensure that emissions are effectively neutralized before release into the atmosphere [108]. 

The application of catalytic converters extends well beyond the realm of automotive emissions 

control. They are increasingly utilized across various industrial sectors, notably in processes such 

as hydrogen production and methane autothermal reforming, to curtail the emission of noxious 

gases [109]. In these settings, catalytic converters facilitate the reduction of complex pollutants 

into simpler, environmentally benign components, thereby contributing to cleaner production 

methods and adherence to stringent environmental regulations. 

2.2.4 Fuel Blends 

The concept of fuel blending involves the addition of alternative fuels to a primary fuel source to 

enhance engine performance and reduce emissions. Various blends have been explored for their 

efficacy in improving engine operation. 
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The integration of ethanol into fuel for spark-ignition engines, for instance, has been shown to 

improve thermal efficiency. This improvement is due to ethanol's compatibility with higher 

compression ratios, which enhances combustion without causing engine knock, thus enabling 

engines to operate more efficiently [5]. 

In another study, Tu et. al investigated the effects of hydrogen blending in NGFRE. They 

discovered that the addition of hydrogen stabilized engine performance, particularly when 

combined with the Air Management System (AMS). At higher loads, the engine demonstrated 

enhanced efficiency. An increase in indicated thermal efficiency (ITE) was also observed with 

hydrogen use. The researchers identified optimal operational conditions for the engine: a load of 

60% with a bypass valve position of 60% and a hydrogen blend of 40%. These findings suggest 

that strategic blending of hydrogen with natural gas can lead to both stabilized engine performance 

and improved efficiency. However, despite the advantages offered by fuel blending, economic 

feasibility remains a significant concern. Many alternative fuels, including those that have shown 

promise in enhancing engine performance, are currently more expensive than conventional fuels. 

This cost barrier can limit the widespread adoption and routine use of alternative fuel blends. 

Additionally, some major concerns with the addition of hydrogen as a fuel include the high NOx 

emissions and the in-cylinder temperature [110] 

2.2.5 Air Management System (AMS) 

In prior investigations, Hassan [44] showcased the effective regulation of the Air-Fuel Ratio (AFR) 

in an NGFRE using an AMS. The emissions, such as NOx, CO, and VOCs, from a spark ignition 

engine were demonstrated to be highly contingent on the AFR. The complexity of controlling AFR 

in two-stroke engines was underscored, primarily due to the ratio of the mass of participating air 

in the combustion process to the mass of fuel, known as the actual or trapped AFR [111]. Hence, 
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achieving the optimal AFRs was accomplished indirectly through an AMS. During typical engine 

operation, as the piston approaches the top dead center (TDC), intake air is introduced through a 

stuffing box and a scavenging/reed valve into the non-combustion zone of the cylinder. The reed 

valve facilitates unidirectional airflow, permitting intake while closing during air escape attempts. 

As the piston moves towards the bottom dead center (BDC), this trapped air begins migrating 

towards the combustion zone through the opening generated between the piston and cylinder wall 

due to piston motion. The AFR is the ratio of the mass flow rate of air to the mass flow rate of fuel 

as given below. 

𝐴𝐴𝐴𝐴𝐴𝐴 =  
𝑚̇𝑚𝑎𝑎𝑎𝑎𝑎𝑎

𝑚̇𝑚𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
 

Were, 

𝑚̇𝑚𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑜𝑜𝑜𝑜 𝑎𝑎𝑎𝑎𝑎𝑎 

𝑚̇𝑚𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑜𝑜𝑜𝑜 𝑓𝑓𝑓𝑓𝑒𝑒𝑙𝑙 

The AMS encompasses a proportional butterfly valve, referred to as a bypass valve, which is 

orchestrated by a PLC. The optimal valve positions are ascertained experimentally by correlating 

the bypass valve position with the concentration of pollutant gases in the exhaust stream. 

Additionally, a two-way catalyst is positioned downstream in the exhaust system, effectively 

transforming CO and VOCs into CO2 and H2O, further ameliorating pollutant emissions. These 

concepts are later shown in the experimental section. 

The effectiveness of utilizing the AMS at various loads is mentioned here. At 40% load, the bypass 

valve significantly reduced CH4 and NOx emissions by 84% and 63%, respectively, enhancing 

combustion stability and ITE by 4.2%. These improvements were observed at a full 100% bypass 
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valve position. At 60% load, the optimal emission reduction for CH4 and VOCs occurred at a 60% 

bypass valve opening, while for NOx, the ideal setting was at 40%. A 70% bypass valve opening 

resulted in a notable 68% reduction in CH4 emissions and a substantial 3.8% ITE improvement. 

During a 75% load, the most effective reduction in CH4 and NOx emissions was achieved at a 40% 

bypass valve opening, with minimal changes in VOCs, and a modest 1.5% increase in ITE [44]. 

2.3 Devices for Performance Testing 

To determine engine performance special devices are used which help in evaluating the 

performance of the engine. Some devices are discussed below.  

2.3.1 Integral Compressor 

A reciprocating compressor is a machine that does mechanical work on a gas to raise its pressure 

and make it a useful and convenient power source for industry. The purpose of a compressor is to 

move air (or other gases) from one place to another [112]. A working cycle of the compressor 

commonly consists of four successive thermodynamic processes: suction (d-f-a), compression (a-

b), discharge (b-c), and expansion (c-d), as shown by the dashed lines in Figure 6. The occurrence 

of the expansion process is due to the residual high-pressure gas in the dead volume V0 at the end 

of the discharge process (i.e., Point c), assuming that there is no gas pressure drop through the 

suction and discharge valves, that intake and discharge are constant pressure processes, and that 

no gas is left inside the cylinder at the end of the discharge step [113]. 
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Figure 6. Piston stroke position superimposed on P-V diagram for single-stage compressor [113] 

The advantages of a reciprocating compressor over a centrifugal machine are: 

1. Greater flexibility in capacity and pressure range 

2. Higher compressor efficiency and lower power cost 

3. Capability of delivering higher pressures 

4. Capability of handling smaller volumes 

5. Less sensitive to changes in gas composition and density 

With the numerous advantages of reciprocating compressors, these are commonly employed for 

natural gas T&S as discussed in the previous sections. The engine under study is also an NGFRE 

which comprises an integral engine-compressor, this compressor acts as a load on the engine. 

Figure 7 shows the overall components of the compressor. The crankshaft is indeed connected 
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with the engine on the other side of the compressor frame known as the integral engine-

compressor. 

 

Figure 7. Overview of Integral compressor 

The safety of reciprocating compressors managing hazardous materials is dominated by their 

piston rod sealing systems. These require appropriate design, maintenance, and operator attention 

[114].  

2.3.1 Dynamometer 

The power generated by a rotating shaft needs to be measured to get the power that can be 

generated. The measuring instrument used is called a dynamometer. The brake power of the 

rotating shaft is obtained after the result of the torque value [115]. A dynamometer is a critical tool 

for measuring the power output of an engine. It works by applying resistance (load) to the engine 

and measuring the force the engine can produce against this resistance. This resistance can be 
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created through various means, such as hydraulic fluids or electromagnetic fields, depending on 

the type of dynamometer used. The data collected can then be analyzed to understand the engine's 

performance characteristics, such as power and torque [116, 117]. Figure 8 shows a water brake 

dynamometer.  

 

Figure 8. Water Brake Dynamometer 

However, the use of dynamometers presents several challenges. Calibration of these devices must 

be exact and often, which can be both time-consuming and costly. Additionally, they must be able 

to accurately simulate the real-world conditions under which the engines operate, which can be 

complex given the variety of environments engines are exposed to. There is also the issue of heat 

management, as the resistance applied can generate significant heat, which must be dissipated 

effectively to prevent damage to both the engine and the dynamometer. 



 

28 
 

2.3.2 Generator 

A generator is a device that transforms motion-based energy (including both potential and kinetic 

energy) or fuel-based energy (derived from chemical sources) into electrical power intended for 

utilization in an external electrical circuit. This conversion process allows for the measurement of 

electrical output as a proxy for engine performance. They are capable of being made such that they 

are reliable in starting and operation, capable of being started automatically; they work on readily 

available fuel which presents few problems in storage and handling; however, there are a wide 

range of types and ratings available worldwide [118]. Figure 9 shows the electric generator 

powered by the engine. 

 
Figure 9. Electric generator by Caterpillar 

Challenges arise in the use of generators for performance testing due to their efficiency variance 

at different power levels and under different loading conditions [119-121]. The precision of 

measuring electrical output as a representation of mechanical performance can also be affected by 

factors such as ambient temperature and generator wear over time. Moreover, generators may not 
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capture the transient behaviors of the engine under rapidly changing loads, which can lead to a less 

accurate portrayal of engine capabilities [122]. 

2.3.3 Other Techniques Used to Measure  Performance: 

2.3.3.1 Chassis Dynamometers 

While traditional dynamometers measure engine performance directly, chassis dynamometers are 

designed to assess the performance of a vehicle's drivetrain, including the engine. The vehicle is 

driven onto rollers which measure the power output of the drivetrain wheels, thus providing a 

system-level performance assessment that includes losses through the transmission and drive 

shafts. 

2.3.3.2 Engine Test Cells 

Engine test cells are specialized rooms designed for safe and efficient engine testing. They are 

acoustically insulated and equipped with advanced ventilation systems to manage exhaust gases, 

temperature, and humidity. Test cells typically house an engine test stand and all necessary 

measurement devices and can be automated for various test cycles. 

2.3.3.3 Torsional Vibration Measurement Systems 

These systems are dedicated to measuring the torsional vibrations of the crankshaft and other 

rotating components. Torsional vibrations can indicate issues with engine balance, alignment, and 

overall mechanical integrity, which are all crucial for performance. 
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2.3.3.4 Fuel Consumption Meters 

Fuel consumption meters are designed to measure the amount of fuel used by the engine in real-

time. They provide direct feedback on the engine's fuel efficiency and are essential for tuning and 

optimizing fuel maps for better engine performance. 

2.3.3.5 Techniques Used in Literature 

In gas engine performance monitoring, the effectiveness of the physics-based modeling approach 

hinges on two performance indicators: the heat loss index and the power deficit index. These 

metrics gauge performance degradation, with the heat loss index quantifying thermal power 

wastage relative to optimal engine health, and the power deficit index measuring the shortfall in 

engine output power caused by deterioration. While offering valuable insights into performance 

changes and being robust against operational data variability, obtaining these reliable indicators 

poses challenges. No single measured parameter can fully capture the engine's systemic 

degradation, and many operational signals may not provide meaningful degradation data. 

Therefore, there is a necessity to refine methods that aggregate all significant operational data, 

filtering out non-contributory signals, to develop a comprehensive monitoring approach that 

accurately tracks performance decline over time, irrespective of the engine's operational conditions 

[123]. 

In SI engines the performance was measured using various parameters including brake mean 

effective pressure (BMEP), brake power (BP), brake specific fuel consumption (BSFC), and brake 

thermal efficiency (BTE). These parameters were computed based on measurements such as 

volumetric fuel consumption rate, exhaust gas temperature, exhaust smokiness, and exhaust-

regulated gas emissions including nitrogen oxides, carbon monoxide, and total unburned 
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hydrocarbons. Additionally, the engine brake torque and engine speed (N) were used to calculate 

the performance quantities. The measurements were conducted at different loads and with different 

fuel blends to assess the engine's performance under various conditions [124]. 

Verman et. al  [125] measured the performance by conducting tests on a 4-stroke, 4-cylinder spark 

ignition engine fueled with different blends of ethanol and premium gasoline. The tests were 

conducted at varying speeds (2200, 3200, 4200 rpm) and loads (5, 10, 15, 20 kg). The performance 

parameters, including BMEP, brake torque (BT), BP, BTE, and BSFC, were then recorded and 

analyzed based on the engine's response to the different fuel blends and operating conditions. 

2.3.3.6 Vibration  

Vibration emerges as a highly promising and reliable medium for the comprehensive monitoring 

of engines. Beyond its role in monitoring, vibration has convincingly demonstrated its efficacy in 

being harnessed for the accurate prediction of engine performance.  

Vibrations are intrinsic to various facets of our daily experiences, mirroring the fundamental 

principles seen in the human anatomy—where vocal cords vibrate for voice generation and leg 

muscles oscillate for coordinated walking. In the context of machinery, vibrations can serve as 

indicators of performance and potential faults, evident in devices such as pumps or generators. 

External forces, such as powerful winds affecting improperly constructed structures like 

suspension bridges, can also induce vibrations. When these external vibrations align with the 

natural frequencies of a system, resonance occurs, leading to potentially hazardous oscillations 

[126, 127].  

The accelerometer is mostly a piezo-electric accelerometer, and it is considered the standard 

vibration transducer for machine vibration measurement. Data capture regarding the vibration 
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emitted by a machine, or other body, begins with the sensor. The accelerometers shown in Figure 

10 consist of a piezoelectric crystal that has a mass attached to one of its surfaces. An ICP amplifier 

is a standard for electronics in transducers that have built-in amplifiers. When the mass is subjected 

to a vibration signal, the mass converts the vibration (acceleration) to a force, this then being 

converted to an electrical signal. This is the basis of the “accelerometer”. The accelerometer output 

may then be processed to provide the instantaneous velocity and displacement signals. 

 

Figure 10. Piezo-Electric accelerometer adapted from Ghemari 2018 [128] 

Instances of structural failure, such as the breaking of bridges, turbines, or airplane wings, can be 

attributed to resonance phenomena [129]. Vibration signals, offering crucial insights, undergo 

analysis in both the frequency and time domains. In contemporary vibration analysis, the Fast 

Fourier Transform (FFT) takes center stage, serving as a key component of discrete Fourier 
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transform and frequency domain analysis. Notably, frequency domain analysis, facilitated by 

techniques like FFT, proves especially valuable in the study of machines featuring rotating 

elements, such as bearings [129]. 

Zhao et.al [130] study explores the importance of accurate combustion parameters for engine 

control. Challenges in identifying the parameters from engine vibration signals, which include 

non-combustion-related elements caused by engine dynamics. A mathematical model and pattern 

recognition are used to extract combustion parameters, with corrections made for discrepancies. 

Gravalos et. al [131] explored the vibration behavior of a SI engine fueled with gasoline, ethanol, 

and methanol blends through experiments. Three fuel types, including unleaded gasoline for 

comparison, were used with varying blend percentages. Gasoline-ethanol blends yielded 

intermediate results at both frequencies. An algorithm was developed to reliably identify the fuel 

type, irrespective of engine speed. 

Ghazaly et. al [132] proposed an algorithm based on unsupervised learning and vibration sensors 

to detect misfires. The behavior of the self-organization map for the engine vibration signals was 

investigated. the maximum accuracy in detecting the misfire is 93.55% for a 3D vibration signal 

at 3000 rpm. 

The literature above underscores the significance of vibration as a substantial parameter for 

predicting engine performance. However, there is less study regarding the NGFRE and how the 

application of vibration can be useful in terms of performance prediction. Therefore, in this 

research, an investigation into vibration analysis is undertaken to ascertain its correlation with 

engine performance. 
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This study endeavors to optimize AMS efficiency by identifying the optimal bypass valve 

positions through detailed emissions and combustion analyses. It will also examine vibration data 

across three axes to evaluate whether vibration metrics can serve as viable predictors within a 

machine learning framework. Ultimately, drawing on the insights from the vibration analysis, a 

machine learning algorithm is developed to predict engine performance. 

In summary, the previous research on AMS has laid a crucial foundation for emissions reduction. 

The present study is designed to harness the full capabilities of this technology, with the integration 

of machine learning models aiming to achieve a more effective, automated system that 

dynamically responds to engine loads, thereby enhancing the performance and environmental 

benefits of NGFREs. 

2.4 Summary  

This chapter provides an in-depth exploration of the role of compressors in the NG industry, 

especially within the context of the U.S. expanding NG production. It emphasizes the increasing 

demand for NG in electricity generation and transportation, while also addressing the importance 

of environmental considerations. The focus is on NGFREs used in compressor stations. 

Furthermore, the review covers techniques for mitigating emissions in spark ignition engines, 

encompassing methods like Exhaust Gas Recirculation, spark retardation, catalysts, fuel blends, 

and the AMS. Various devices for performance testing, including dynamometers, generators, and 

compressors, are discussed, highlighting their significance in assessing engine performance. The 

AMS's potential for reducing emissions is emphasized, but the need for an optimum bypass 

position is identified. The importance of vibration analysis is discussed which could be a potential 

parameter for the performance prediction.   
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Chapter 3: Methods and Procedure 

3.1 Introduction  

This research is centered on enhancing efficiency and reducing emissions in NGFRE. A critical 

component of this study is the optimization of the  AMS, pivotal for engine performance. The 

AMS is analyzed across various operational loads, with a focus on performance and combustion 

analysis,  

The potential of vibration analysis as a tool for predicting engine performance is also assessed, 

potentially expanding the scope of engine monitoring capabilities. At the heart of this research is 

the implementation of machine learning algorithms. These algorithms are designed to process real-

time data gathered from sensors and interfaced with a PLC, aiming to deliver accurate predictions 

of engine performance parameters. 

The primary objectives are twofold: firstly, to improve the performance of natural gas aspirated 

engines, and secondly, to significantly reduce their emission output. This contributes to a broader 

goal of enhancing environmental sustainability within the oil and gas industry. 

3.2 Software to Calculate the Engine Performance 

The accurate assessment of engine load is a critical component in the operational management of 

engines, particularly in the energy-demanding oil and gas industry. To this end, PowerFlow 

software by Cooper Machinery Services emerges as a vital tool in the sector, renowned for its 

capability to simulate and calculate the load dynamics of compressor-engine systems. PowerFlow 

integrates the principles of thermodynamics and fluid mechanics to offer a sophisticated simulation 

environment, which provides a detailed analysis of energy flows within power systems. 

PowerFlow uses the principles of thermodynamics to model the flow of energy in a compressor-
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engine system. The following are the key principles of thermodynamics that are used by 

PowerFlow: 

The First Law of Thermodynamics: 

The First Law of Thermodynamics states that energy cannot be created or destroyed, only 

transformed. This means that the total energy in a system is constant. In a compressor-engine 

system, the energy is transferred from the engine to the compressor and from the compressor to 

the air. 

The Second Law of Thermodynamics: 

The Second Law of Thermodynamics states that entropy always increases over time. Entropy is a 

measure of the disorder in a system. In a compressor-engine system, entropy increases as the air 

is compressed and heated. 

The Ideal Gas Law 

The Ideal Gas Law states that the pressure, volume, and temperature of a gas are related by the 

following equation: 

PV/T = N*R 

 

4 

 

where: 

P is the pressure of the gas 

V is the volume of the gas 

T is the temperature of the gas 
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N is the number of moles of gas 

R is the ideal gas constant 

The Ideal Gas Law is used to model the behavior of air in a compressor-engine system. 

The Isentropic Efficiency: 

The isentropic efficiency of a compressor is a measure of how efficiently the compressor converts 

the energy of the engine into the energy of the air. The isentropic efficiency is defined as the ratio 

of the actual work done by the compressor to the ideal work done by the compressor. 

The Polytropic Efficiency: 

The polytropic efficiency of a compressor is a more general measure of the efficiency of the 

compressor. It is defined as the ratio of the polytropic work done by the compressor to the adiabatic 

work done by the compressor. 

The principles of thermodynamics are used by PowerFlow to calculate the following: 

• The power input to the compressor 

• The power output of the compressor 

• The efficiency of the compressor 

• The pressure ratio of the compressor 

• The temperature of the air at the inlet to the compressor 

• The temperature of the air at the outlet of the compressor 

Figure 10 shows the how the load calculation using the PowerFlow software. 
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Figure 10. Calculation of engine performance in PowerFlow 

While PowerFlow software stands as a robust tool for simulating compressor-engine systems 

within the oil and gas industry, it is not without its limitations. The software, grounded in the 

principles of thermodynamics and fluid mechanics, necessitates a deep technical understanding 

and a substantial investment of both time and resources. Its complexity can impose a steep learning 

curve and the potential for costly licenses, making it less accessible for some operations. In this 

context, incorporating additional sensors and Machine Learning algorithms could greatly enhance 

the efficiency and accessibility of performance prediction. These modern technologies promise to 

streamline the process, reduce costs, and democratize the ability to optimize engine systems across 

the industry. 

3.3 Sensors Technologies in Engine Performance 

In the realm of engine diagnostics and optimization, sensor technology plays an indispensable role. 

The accurate measurement and monitoring of various engine parameters are critical for 
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understanding and enhancing engine performance, particularly in the context of reducing 

emissions and improving efficiency in NGFREs. 

3.3.1 Types of Sensors  

A variety of sensors play pivotal roles in monitoring and optimizing engine performance. In 

NGFREs, these sensors are crucial for accurate data collection and subsequent analysis. 

Pressure Sensors: Key to the operation of NGFREs, pressure sensors meticulously measure the 

pressures in various engine parts. They primarily focus on suction and discharge pressures. The 

suction pressure sensor evaluates the gas entering the cylinder, whereas the discharge sensor 

measures the pressure after the gas has been compressed. These sensors are fundamental for 

accurately predicting engine performance by providing insights into the engine's efficiency in 

compressing and processing the gas, thereby offering a detailed understanding of overall engine 

performance. 

Temperature Sensors: Positioned strategically within the engine, temperature sensors 

continuously monitor its thermal state. Specifically attached to the exhaust, they play a critical role 

in preventing overheating and in maintaining the engine within a safe operating temperature range. 

This is particularly crucial during experimental phases when selecting the optimal bypass valve 

positions, as it ensures the engine does not exceed its maximum operating temperature of 800 °F.  

Flow Meters: Integral to NGFREs, flow meters measure the rate at which fuel and airflow into 

the engine. This data is vital for calculating the AFR, a key factor in achieving efficient 

combustion. Understanding AFR is crucial, as it directly influences the combustion quality and, 

consequently, the engine’s performance and emission levels. 
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Oxygen and NOx Sensors: These sensors serve dual purposes. Oxygen sensors are utilized to 

measure the oxygen concentration in the exhaust gases, indicating combustion efficiency. NOx 

sensors, meanwhile, specifically track the levels of nitrogen oxides in the exhaust, which is critical 

for managing emissions and ensuring compliance with environmental regulations. Notably, these 

sensors are affordable, which makes their usage practical and widespread. The data they collect 

are also used extensively in combustion analysis. 

Vibration Sensors: To monitor engine health, vibration sensors are employed, measuring 

movements along the x, y, and z axes. These sensors are adept at detecting early signs of 

mechanical failures or deteriorations, making them particularly valuable in the maintenance and 

monitoring of reciprocating engines. In line with existing literature that highlights the role of 

vibration analysis in predicting engine performance, this research also utilized vibration sensors 

for such predictions. These sensors are instrumental in forecasting key performance indicators like 

engine load. This approach not only corroborates findings from previous studies but also 

strengthens the methodology used in this research for engine load prediction 

Further details and specifications of these sensors, including their placement, operational ranges, 

and integration with the engine system, are elaborated in the experimental section. The accurate 

and synchronized functioning of these sensors is foundational for the data-driven analysis that 

underpins this research, particularly about machine learning-based prediction. 

3.3.2 Sensor Used for Performance Measurement  

Understanding how sensors contribute to measuring engine performance is essential in the context 

of NGFREs. In these engines, load is often indicated by the pressure at which the compressor 

operates. The load is defined as the amount of work done by the engine to compress the gas. 
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Essentially, the higher the pressure on the compressor, the harder the engine works to compress 

the gas. The operational load of these engines typically ranges between 40-75%, as recommended 

by engine manufacturers. Thus, a key performance parameter is measured based on the amount of 

gas compressed and the engine's operating speed [133]. 

As discussed earlier, considering the limitations of the software, the research incorporates 

additional sensors alongside suction pressure, discharge pressure, and speed to advance the 

technology. This expansion not only elevates the research but also leverages various parameters 

crucial for load prediction. Furthermore, these parameters have the potential to aid in predictive 

maintenance, offering broader utility in engine management. In this research, these parameters are 

used for predicting the load of NGFRE: 

1. Suction Pressure: This measures the pressure of the incoming gas to the compressor, 

defining one aspect of the compressor's functionality. 

2. Discharge Pressure: This indicates the pressure of the gas after compression, providing 

insight into the output side of the compressor. 

3. Speed: This parameter, accounting for the engine's operational rate, is crucial for 

understanding the engine's dynamic performance. 

4. Vibration: Vibration sensors attached to the combustion chamber can detect piston 

movement, aiding load determination. 

5. NOx: Measurement of nitrogen oxide emissions offers insights into engine efficiency and 

environmental impact. 

6. O2: Oxygen levels in the combustion process influence combustion efficiency and 

emissions. 
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3.4 Machine Learning 

Machine learning (ML) has gained prominence in contemporary technology applications, widely 

recognized for its ability to train models, make predictions, and automate decision-making 

processes. Its prevalence in industrial applications is particularly noteworthy, with uses ranging 

from predictive maintenance to fault detection. Within the context of this research, machine 

learning is employed as a strategic tool to predict engine performance, particularly focusing on 

engine load, using various parameters. The following sections delve into several machine learning 

algorithms that will be explored for their efficacy in enhancing predictive accuracy and operational 

efficiency in engine management systems. 

3.4.1 Introduction 

ML is a rapidly expanding domain in every domain with extensive applications, involving the 

automated detection of meaningful patterns in data. The focus of machine learning tools is on 

imparting to programs the capability to learn and adapt [134]. In the realm of Information 

Technology, ML has emerged as a fundamental component, often concealed but central to our 

lives. Given the continuous surge in data volumes, there is a strong expectation that intelligent data 

analysis will increasingly establish itself as an essential element for technological advancement 

[135]. With ML the problems can be solved simply by building a model that is a good 

representation of a selected dataset. 

A taxonomy categorizes machine learning algorithms according to the desired outcome of the 

algorithm. This categorization comprises: A) Supervised learning, B) Unsupervised learning, and 

C) Reinforcement learning. The taxonomy of various methods in machine learning is illustrated in   
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Figure 11. It also demonstrates how the classification is done up to the different algorithms utilized 

in ML.  

 

Figure 11. Taxonomy of the different methods presented (adapted from Badillo et al. 2020 [136]) 

3.4.1.1 Unsupervised Machine Learning Methods 

In unsupervised learning, the algorithm is given a set of objects and attempts to group them into 

classes (Clustering) without any prior knowledge of these classes or any labeled output [137]. 

Unsupervised machine learning methods are beneficial in description tasks because they aim to 

find relationships in a data structure without having a measured outcome. This category of machine 

learning is referred to as unsupervised because it lacks a response variable that can supervise the 

analysis [138]. Typical clustering algorithms are K-means [139], hierarchical clustering [140], and 

spectral clustering [141] 

Unsupervised learning aims to recognize fundamental dimensions, elements, groups, or paths 

within a given data framework. Various techniques widely employed in mental health 

categorization and psychometric studies fall within the domain of unsupervised learning. These 
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encompass principal components analysis, factor analysis, and mixture modeling, which is one 

rationale for our emphasis on supervised learning, as elaborated below [142]. 

It is not possible to directly measure the performance of clustering because the correct output labels 

are not known as a priority. Instead, the performance depends on whether interesting trends in the 

data have been captured by the clusters or not.  

3.4.1.2 Supervised Machine Learning Methods 

 In Supervised learning, labeled training data is used to train a function that can be applied to new 

samples. Feedback on the accuracy of the function is provided by a critic during the training and, 

if needed, alterations are made to the function to attain the desired result. A function (or model) is 

constructed by pairing input and desired output with labeled training data in supervised learning. 

The form of supervision is manifested in the desired output, enabling the adjustment of the function 

based on its actual performance. Utilizing additional observations (predictions or classifications) 

after training might yield a valuable output (reaction). The most common supervised learning tasks 

are regression and classification [138, 140, 143]. The mathematical model created in this study 

utilizes Linear Regression, Artificial Neural Networks (ANN), and Support Vector Machines 

(SVM).  Figure 12 illustrates supervised machine learning which is the most common technique 

in the classification problem.  
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Figure 12. Block Diagram of  Supervised Learning Algorithm 

3.4.2 Linear Regression 

The goal of linear regression, as a part of the family of regression algorithms, is to find 

relationships and dependencies between variables. It represents a modeling relationship between 

a continuous scalar dependent variable y (also label or target in machine learning terminology) 

and one or more (a D-dimensional vector) explanatory variables (also independent variables, input 

variables, features, observed data, observations, attributes, dimensions, data point, etc.) denoted 𝑋𝑋 

using a linear function. In regression analysis, the goal is to predict a continuous target variable. It 

means we train the model on a set of labeled data (training data) and then use the model to predict 

labels on unlabeled data (testing data) [144, 145]. Linear regression does not have any 

hyperparameters, however, the advantages and disadvantages are given below to understand the 

model. 
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Advantages of linear regression: 

1. Simple method for modeling the relationship between a dependent variable and one or 

more independent variables. 

2. Regression is computationally efficient, which makes it fast to run on large datasets. 

3. The coefficient of a linear regression model can be interpreted as the estimated effect of 

each independent variable on the dependent variable. This makes it easy to understand and 

communicate the results of the model [146, 147].  

Disadvantages of linear regression: 

1. Linear regression assumes that the relationship between the dependent and independent 

variables is linear. If the connection is non-linear, the model may not accurately capture 

the trend in the data. 

2. Linear regression is sensitive to outliers, which can have a significant impact on the 

coefficients of the model. 

3. Linear regression is limited to continuous data and cannot handle categorical data or 

missing data [146, 148].  

3.4.3  Artificial Neural Network (ANN) 

Artificial Neural Network (ANN) has been a hot topic in artificial intelligence since the 1980s. It 

abstracts the human brain neural network from the perspective of information processing, 

establishes a simple model, and composes different networks according to different connections 

[149]. In engineering and academia, these are often directly referred to as neural networks. A 

neural network is a computing model, by many nodes (or neurons) connected [150]. The output of 
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the network varies depending on how the network is connected, the weight value, and the incentive 

function [151].  

In an artificial neural network, a neuron processing unit can represent different objects, such as 

features, letters, concepts, or some meaningful abstraction pattern. The type of processing unit in 

the network is divided into three categories: input unit, output unit, and hidden unit. The input unit 

accepts signals and data from the outside world [152]. The output unit realizes the output of the 

system processing result which is engine load. A hidden unit is a unit that is located between the 

input and output units and cannot be observed outside the system [153]. 

 

Figure 13. Structure of Artificial Neural Network (ANN) 
 

Figure 13 shows the structure of the ANN. The hyperparameters are generated by the Randomized 

Search method which is mostly used to find the ideal hyperparameters that tend to have the highest 

prediction accuracy. The hyperparameters are as follows: 

• Activation function: ReLu and Logistic 

• Solver: Adam 

• Alpha: 0.0001 

• Number of Iterations: 500 
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• Hidden layers: 100 & 200 

Advantages of ANN: 

1. ANNs can model complex non-linear relationships in data, making them effective for tasks 

such as image recognition and speech processing. 

2. ANNs can adapt and learn from new data, making them suitable for applications where the 

underlying patterns may change over time, like stock market predictions. 

3. ANNs can perform multiple tasks simultaneously, allowing for faster and more efficient 

data processing [154, 155]. 

Disadvantages of ANN: 

1. Training and fine-tuning ANNs can be a complex and time-consuming process, requiring 

a large amount of data and computational resources. 

2. ANNs are prone to overfitting, where the model fits the training data too closely, leading 

to poor generalization on unseen data. 

3. ANNs are often considered "black boxes," making it challenging to interpret the decision-

making process, which can be problematic in applications that require transparency and 

accountability [156]. 

3.4.4 Support Vector Machine (SVM) 

Support Vector Machine (SVM) is an ML approach that has been used for both classification and 

regression problems [157, 158]. The goal of SVM is to find the optimal decision boundary that 

separates the classes which is applicable mostly in classification cases. Similar to all regression 

methods, the objective of Support Vector Regression (SVR) is to postulate a function on the 
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input(s) that can help estimate the observed output. As the name suggests, the core concept behind 

SVR is the ability to objectively choose a subset of training data called support vectors. These 

support vectors define the model, which is usually a hyperplane in some feature space. To achieve 

this, several notions need to be introduced. SVR has proven as one of the most powerful machine 

learning methods that have shown remarkable accuracy in predicting Internal Combustion Engine 

(ICE) emissions and performance  [159-163]. Figure 14 This shows the illustration of SVM and 

the optimal hyperplane that serves as the idea of SVM. 

 

Figure 14 Illustration of Support Vector Machine (SVM) principles adapted from Badillo 2020 

[136] 

The hyperparameters are generated by Randomized Search which is mostly used to find the ideal 

hyperparameters that tend to have the highest prediction accuracy. The hyperparameters are as 

follows: 

• Regression Cost (C): 0.01 

• Regression loss epsilon: 0.10 

• Kernel: Linear 
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Advantages of SVR: 

• Robust Regression: SVR is robust to outliers in the data, as it focuses on minimizing the 

error within a specified margin. 

• Effective in Non-Linear Regression: Like SVM, SVR can manage non-linear regression 

tasks effectively by using kernel functions. 

• Tuning Parameters: SVR provides tuning parameters to control the width of the margin 

and the tolerance for errors, offering flexibility in model optimization. 

Disadvantages of SVR: 

• Model Complexity: Fine-tuning an SVR model may be challenging due to the need to 

select appropriate kernel functions and parameters. 

• Computationally Demanding: SVR can be computationally intensive, especially when 

using non-linear kernels and large datasets. 

• Interpretability: SVR models may be less interpretable compared to traditional linear 

regression models. 

3.5 Overview of Data 

The data examined in this study included several parameters, such as Suction Pressure, Discharge 

Pressure, Speed, Exhaust Temperature, NOx, O2, and Engine load. Figure 15 represents the 

pairwise correlation plot which shows the relation with the other parameter. This image displays a 

scatter plot matrix showcasing the relationships between various engine parameters such as 

Suction Pressure, Discharge Pressure, Speed, Vibration, Exhaust Temperature, NOx, O2, and 

Engine Load. Each plot compares two variables, revealing potential correlations. For example, 

there's a visible positive correlation between Suction Pressure and Discharge Pressure, indicating 
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that as one increases, so does the other. Conversely, Vibration and Engine Load display a dispersed 

pattern, suggesting a weak or non-linear relationship. This matrix is a valuable tool for quickly 

visualizing and assessing the interdependencies within multiple variables of engine performance.  

 

Figure 15. Pairwise correlation plot of the data 

Before advancing with the data analysis, an examination is conducted to identify any potential 

outliers. Through data visualization, certain data points that deviate significantly from the norm 

are identified and subsequently removed. This process can result in a clean dataset devoid of 
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outliers, ensuring the accuracy of predictions and eliminating potential data-related errors. Table 

2 shows the sample data that is used for the ML algorithms 

Table 2 shows the sample data, offering an overview of their characteristics. Additionally, it is 

evident that NOx had the highest variability compared to the other parameters. As a result, a 

selection process is conducted to determine which parameters will be considered to predict the 

engine load in the final load prediction model. This is done to ensure that variations in certain 

parameters do not significantly impact the accuracy of load predictions. 

Table 2. Sample Data for the Machine Learning Algorithm 

Suction 
Pressure 

(psi) 

Discharge 
Pressure 

(psi) 
Speed 
(rpm) 

Vibration 
(mm/s) 

Exhaust 
Temperature 

[oF] 
NOx 

(ppm) O2 (%) Load(%) 
27.3 353.0 377.1 4.8 605.1 725.5 11.1 40 
23.3 363.7 381.5 4.8 605.1 235.4 11.5 39 
35.3 330.0 385.9 4.8 605.6 190.2 11.6 44 
43.5 395.5 412 4.2 750 432 10.0 55 
35.8 334.9 388 4.8 604.4 10.2 11.0 45 

3.6 Summary  

The methodology for enhancing efficiency and reducing emissions in NGFREs is detailed. The 

optimization of the AMS is central to the research, and the potential use of vibration analysis for 

performance prediction is explored. Machine learning algorithms are employed to process real-

time sensor data, to accurately predict engine performance. A variety of sensors, including 

pressure, temperature, flow, oxygen, NOx, and vibration sensors, are utilized for monitoring, and 

optimizing engine performance. The focus is placed on the analysis of crucial parameters—Suction 

Pressure, Discharge Pressure, Speed, Vibration, NOx, and O2 —which are integrated into a 

thermodynamic model for load calculation in NGFREs. Various machine learning techniques such 

as linear regression, ANN, and SVR are discussed for their application in data analysis. The 
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dataset's preparation and cleansing are highlighted, ensuring the accuracy of machine learning 

predictions. The foundation for improving NGFRE performance and reducing emissions through 

advanced monitoring and predictive methods is thus established in this chapter.  
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Chapter 4 Methodology 

4.1 Experimental Setup 

4.1.1 AJAX DPC-81 Integral Engine-Compressor 

The Sustainable Energy and Carbon Management Center (SECMC) located on the campus 

of the University of Oklahoma is used for experimental tests. The engine used in this study is an 

AJAX DPC-81 single-bore, two-stroke, naturally aspirated, natural gas-fired reciprocating lean 

burn engine designed to operate at a specific AFR, much higher than the stoichiometric AFR. This 

engine is an integral compressor-engine i.e., a compressor is installed on the same crankshaft as 

the engine. The engine functions at various load levels determined by three primary parameters: 

maximum discharge pressure, average suction pressure of the compressor, and engine speed. These 

specified factors are manually modified to establish the desired engine load. The engine 

specifications are given in Table 3. 

Table 3 AJAX DPC-81 engine specification 

Engine type SI, two-stroke, natural gas aspirated, water-cooled 

Rated power 81 BHP 

Rated speed 475 rpm 

Number of cylinders 1 

Bore × stroke 10.5 in. × 12 in. 

Swept volume 1039 in3 

Combustion type Lean burn 
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The AJAX DPC-81 represents an integrated engine-compressor unit, housing a gas compressor 

and a reciprocating engine within a unified frame shown in Figure 16. This configuration employs 

a single crankshaft responsible for driving the pistons in both the power and compressor cylinders. 

This specific design is particularly favored for field installations due to its emphasis on minimal 

maintenance, enhanced fuel efficiency, and extended operational lifespan. Mirroring the 

operational principle of conventional two-stroke engines, the engine cycle commences with air 

intake into the combustion chamber. Post-compression by the piston, the air-fuel mixture ignites 

and propels the piston in a rearward direction. This energy is then transmitted through the 

crankshaft, driving the compressor piston, and facilitating gas compression within the compressor 

cylinder. 

 

Figure 16. AJAX DPC-81 integral engine compressor 
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Input parameters for specific engine loads are estimated using PowerFlow sizing software by 

Cooper Machinery Services, which uses compressor parameters to calculate the engine load. For 

this experiment, the natural gas is received from city supply lines. 

 
(a) 

   (b)      (c)  
Figure 17 Air management system (AMS) components and operating mechanism adapted from 

Ahmad et. al [20]  a) Bypass pipe location. B) Bypass pipe closed. C) Bypass pipe opened. 
The setup of the experiment's bypass system, consisting of a bypass pipe and a butterfly valve, is 

observed in Figure 17. The valve permits a portion of the intake air to exit before reaching the 

combustion chamber. Consequently, a wider opening of the bypass valve results in reduced air in 

Moinuddin Ansari, Mohammed A.
Need to find pressure
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the combustion chamber, leading to a richer combustion. The bypass mechanism offers a simple 

means to regulate the AFR during combustion by limiting excess air in the combustion chamber. 

 
Figure 18 Engine setup. a) Flow meter. b) In-cylinder Pressure setup. c) PLC. d) Exhaust pipe 
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In Figure 18, an illustrative depiction of the engine and its associated components is presented.  

a) The initial segment of Figure 14 displays a flow meter installed immediately after the air intake 

filter. 

b) The subsequent section showcases another flow meter connected after the fuel tank. 

Additionally, a separate flow meter is affixed post the bypass valve assembly to monitor air 

bypassing through the system. Moreover, data regarding in-cylinder pressure is gathered via a 

pressure port affixed to the engine combustion chamber, along with an exhaust temperature sensor. 

c) The third part exhibits a speed sensor affixed to the flywheel cover, which collects data from 

the magnet affixed to the flywheel. Concurrently, data collection is managed by a Programmable 

Logic Controller (PLC). 

d) Lastly, the fourth portion highlights the exhaust system, featuring a catalyst attachment. 

Furthermore, sensors are positioned both before and after the catalyst to facilitate emissions 

sampling, utilizing MKS. The exhaust system is also equipped with a Testo gas sampling probe 

for comprehensive analysis.  

The engine is fitted with a catalyst on its exhaust pipe, aimed at transforming harmful emissions 

into less detrimental substances. A catalyst is a material that facilitates an acceleration in a 

chemical reaction without undergoing consumption in the process. Essentially, it neither initiates 

the reaction nor is a resulting product. During catalysis, these catalysts reduce the activation 

energy, which is the energy needed to initiate a reaction, leading to a faster and more efficient 

occurrence of the reaction. Consequently, in the catalyst's presence, atoms readily detach from 

their molecules to generate novel substances. 
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Figure 19 CAD model of the Bypass Valve. (a) Side view, (b) Front view 

The bypass valve assembly is a unit affixed to divert air away before it reaches the combustion 

chamber. This assembly comprises a butterfly valve linked to a motor that can be regulated through 

the PLC. The operation functions in increments of 10%, allowing a controlled amount of air to 

bypass as shown in Figure 20. As it opens wider, a greater volume of air is directed away. The 

maximum aperture achievable is 100%. The functionality is visually detailed in Figure 19. 

Three Wilcoxson PC420V-EX series vibration sensors are utilized to collect engine vibration 

readings. The sensors are designed to endure vibration limitations of 250 g peak and shock limits 

of 2500 g peak, with a transverse sensitivity of 20mA. The low-frequency response range of these 

sensors is 10 Hz - 1 kHz, and the high-frequency response range is 4.0 Hz - 2.0 kHz. The 

installation of vibration modules is conducted using 2 sensors provided by WAGO, which is then 

affixed to the engine cylinder. Subsequently, they are programmed into the PLC cockpit 

application for monitoring purposes. The vibration modules are installed on the cylinder head of 
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the engine to measure vibrations in the x (longitudinal) (mm/s), y (lateral) (mm/s), and z-axis 

(vertical) (mm/s). The location of these accelerometers is illustrated in Figure 20. 

 
Figure 20 3-Axes vibration sensors setup. 

a)Front view. b) Side view 

The vibration values in the x, y, and z-axis of the engine are calculated using the RMS (root-mean-

square) formula, which involves taking the square root of the arithmetic mean of the squares of 

these values. The sensors are connected to a Wago 4-channel analog input 4-20 mA to establish a 

link with the PLC. The output signals from the vibration sensors, along with other data, are 

immediately logged in the PLC for subsequent analysis. The vibration signals underwent further 

filtering to eliminate any noise or high-frequency components, ensuring the collected data's 

reliability and accuracy for precise predictions. 
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Figure 21 Vibration sensros from Windrock Portable Analyzer. (a) Accelerometer, (b) Velocity 
probe 

Additionally, Figure 21 shows vibration sensors from the Windrock 6400 series, including the (a) 

Accelerometer and (b) velocity probe, are utilized. Both sensors had a sensitivity of 100 mV/g. 

The Accelerometer transformed mechanical or physical motion into an electrical signal 

proportionate to the component's actual movement or vibration. It is placed at various test points 

on engines. The velocity probe converted mechanical or physical motion into an electronic signal, 

which the analyzer then processed to reflect actual movement or vibration. The output of the sensor 

is in inches per second (ips) velocity and could be precisely integrated for measuring components 

vibrating at lower frequencies, such as frames, cylinders, and skids. The velocity probe is 

commonly used with FFT data collection. 
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4.1.2 Data Collection Equipment 

 Exploring engine performance and emissions required the use of various instruments such 

as thermocouples, pressure sensors, flow meters, gas analyzers, and engine monitoring devices. 

Among these, the primary tools are the MKS gas analyzer, Testo gas analyzer, and Windrock 

engine monitor. Two gas analyzers are employed to capture emission data from the exhaust gas. 

The MKS 2030 Fourier Transform Infrared Spectroscopy (FTIR) analyzer, specifically engineered 

for gas analysis tasks like detection and measurement, played a crucial role. Its capability spans a 

wide range of gases, encompassing NOx, COx, CH4, and VOCs, through the analysis of their 

infrared spectra. However, it cannot measure highly concentrated gases like oxygen or nitrogen. 

As the measurement of oxygen is crucial for combustion optimization, a Testo 300 combustion 

analyzer is specifically used for this purpose. Additionally, to evaluate engine performance and 

combustion stability, the Windrock 6400 engine analyzer is employed. This device records in-

cylinder pressure about the crank angle, captures flywheel speed, and monitors the engine's 

primary ignitions. Figure 22 illustrates the equipment used for data collection. 
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Figure 22 Data collection equipment’s. a) MKS gas analyzer. b) Testo mobile gas analyzer. c) 
Windrock engine monitor. 

4.2 Experimental Setup 

Based on specific operational needs, the engine can operate within a load range of 40% to 75%. 

The engine's performance varies at each load level within this range. This range, often termed the 

rated load range, is carefully managed and the engine demonstrates optimal operation within these 

specified percentages. 
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In well sites, gas compressors are employed to lift gas from the production well and convey it to 

transportation pipelines. The compressor's operating load is contingent on the well's gas volume, 

optimizing efficiency. In contrast, compressors at stations operate at fixed loads to uphold gas 

pressure and ensure a steady flow in pipelines for end-users. The research replicated the 

functioning of AJAX compressors, typical in this scenario. While replicating an actual well site or 

compressor station is unfeasible, the study utilized city pipeline natural gas to power the 

compressor. To minimize gas wastage, the compressor is integrated into a circuit configuration, as 

depicted in Figure 23. 

 
Figure 23 Schematic diagram of engine setup 
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Figure 24 shows the schematic of the experimental setup. The engine component of AJAX utilizes 

natural gas from a make-up tank sourced from the city's gas pipeline. This make-up tank, along 

with a compressor and a high-pressure tank, is interconnected within a circuit. Gas from the make-

up tank is compressed by the compressor and pressurized within the high-pressure tank. When the 

pressure reaches a certain level, the compressor ceases to draw gas from the make-up tank. A 

suction regulator between the compressor and the make-up tank ensures continuous natural gas 

cycling within the circuit. Additionally, a check valve prevents gas from backflow into the make-

up tank while allowing the tank to supply-more gas to the circuit if the pressure drops too low. 

Both the suction regulator and discharge regulator are utilized to establish the desired suction and 

discharge pressures at various loads.  
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Figure 24 Schematic of Experimental Setup 

4.3 Experimental Procedure 

The AJAX DPC-81 engine is tested across a load range from 40%, translating to 32.4 BHP, up to 

75%, equivalent to 60.8 BHP. However, due to its configuration, the engine cannot operate at a 

100% load, with 75% being the maximum attainable load during this study. The operating 

conditions for different loads are outlined in Table 4. 
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Table 4 Operating conditions of AJAX DPC-81 

 Operating parameters 
Engine Load (%) 40% 45% 50% 55% 60% 65% 70% 75% 

Power (BHP) 32 37 41 45 49 53 57 61 

Max discharge pressure (psi) 30 36 40 45 50 52 55 60 

Average suction pressure (psi) 420 425 430 440 450 455 520 550 

Engine speed (rpm) 350 365 380 400 410 435 430 450 

Bypass valve position varied (%) 0-80 0-80 0-70 0-70 0-60 0-60 0-20 0-20 

 
The experiment comprised of utilizing the bypass valve. For each load starting from 40% the 

bypass is incremented at 10% till the exhaust temperature reaches its limit. The same method is 

followed for the remaining engine loads. Emission data is post-catalyst, along with in-cylinder 

pressure and primary ignition for combustion analysis. 

4.4 Analytical Methods 

4.4.1 Emission Analysis 

To mitigate the influence of moisture on gas commodities and ensure more dependable data, the 

compositions are transformed to a dry volume basis. Additionally, considering the engine's 

operation across various oxygen levels rather than a consistent one, a reference point is necessary 

to standardize the exhaust gas measurements. Hence, the emission data obtained from the MKS 

analyzer is adjusted to a dry basis and standardized to a 15% O2 level for comparison with the 

emission standards for stationary spark ignition engines set by the New Source Performance 

Standards(NSPS). 
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Were, 
 x: normalized mole fraction of the gas in ppm 

 xexhaust: mole fraction of the gas measured in ppm 

 ppm: parts per million of the gas on a dry basis 

 ppmvw: parts per million of the gas on a wet basis 

 H2O: water composition in exhaust gas measured in percentage 

 O2%: oxygen composition in exhaust gas measured in percentage 

4.4.2 Combustion Analysis 

To assess engine combustion stability concerning cycle-to-cycle variability (CCV), the Standard 

Deviation of peak pressure (𝜎𝜎𝜎𝜎𝜎𝜎𝜎𝜎𝜎𝜎) is measured. Pressure values for each crank angle (CA) are 

gathered over 250 cycles, and corresponding calculations are performed. 𝜎𝜎𝜎𝜎𝜎𝜎𝜎𝜎𝜎𝜎 is considered a 

robust indicator of CCV [164]. These values hold particular significance for part-load conditions, 

as lean-burn engines often exhibit high CCV under partial load. Additionally, the Indicated Mean 

Effective Pressure (IMEP) is computed across 250 cycles and graphically represented. IMEP plots 

offer valuable insights into CCV. The IMEP is determined using the formula [165]. Furthermore, 

the Coefficient of Variation (COV) for IMEP is also calculated. 
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 IMEP = ∮𝑝𝑝𝑝𝑝𝑝𝑝
𝑉𝑉𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
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 COV = 𝜎𝜎𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼
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Were, 

P = in-cylinder pressure at a particular CA 

Vswept = swept volume of the cylinder 

𝜎𝜎𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = standard deviation of IMEP for 250 cycles 

IMEP = average IMEP for 250 cycles 

Furthermore, the Indicated Thermal Efficiency (ITE) is computed for the external bypass system 

at every 20% increment of the bypass valve position and compared with the ITE of the original 

operation. The ITE of the engine is determined using the provided formula. 

 ITE = 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 .  𝑉𝑉𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 .  𝑅𝑅𝑅𝑅𝑅𝑅
60 .  ṁ𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 .  𝑁𝑁𝑁𝑁𝑁𝑁
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Were,  

RPM = revolutions per minute  

ṁ𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = mass flow rate of fuel per second  

NCV = net calorific value of fuel 

Heat release rate (HRR) is a measure illustrating how quickly energy is produced through fuel 

combustion. The generated heat is primarily transmitted via the piston and transformed into 
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mechanical energy. Following the principles of the first law of thermodynamics, the heat release 

rate can be computed using the model presented below.  

 dQ𝑛𝑛
dθ

=  γ
γ−1

P dV
dθ

+ 1
γ−1

 V dP
dθ

  + Q̇cr +   Q̇HT 
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γ =  

Cp
C𝑣𝑣
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were, 
 

dQ𝑛𝑛
dθ

 : heat release rate 
 
dV
dθ

 : rate of change of cylinder volume with respect to crank angle 
 
dP
dθ

 : rate of change of in-cylinder pressure with respect to crank angle 
 
P : in-cylinder pressure at each crank angle 
 
V : cylinder volume at each crank angle 
 
Cp : specific heat in constant pressure of the fuel 
 
C𝑣𝑣 : specific heat in constant volume of the fuel 
 
Q̇cr : heat lost to crevices 
 
Q̇HT : heat lost to cylinder walls 
 

4.5 Vibration Analysis 

Three Wilcoxson PC420V-EX series vibration sensors are utilized for the collection of engine 

vibration readings. The sensors have a transverse sensitivity of 20mA and are designed to endure 

vibration limitations of 250 g peak and shock limits of 2500 g peak. A low-frequency response 

range of 10 Hz - 1 kHz and a high-frequency response range of 4.0 Hz - 2.0 kHz are provided by 
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these sensors. Subsequently, they are programmed into the PLC ecockpit application for 

monitoring purposes. The vibration modules are installed on the cylinder head of the engine to 

measure vibrations in the x (longitudinal) (mm/s), y (lateral) (mm/s), and z-axis (vertical) (mm/s). 

The RMS (root-mean-square) formula is employed to compute the vibration values in the x, y, and 

z axes of the engine, which entails taking the square root of the arithmetic mean of the squares of 

these values. 

XRMS = �1
𝑛𝑛

( 𝑥𝑥12 𝑥𝑥22 + ⋯ .  𝑥𝑥𝑛𝑛2)   

FFT is a mathematical technique used to convert time-based signals into frequency-based signals. 

This transformation is essential in vibration analysis, as it allows for the identification and analysis 

of different frequency components within a vibration signal. When applied to vibration data, FFT 

decomposes the complex, time-varying signal into its constituent frequencies, revealing the 

different vibrational modes and intensities present. This process is crucial for diagnosing 

mechanical issues in machinery, as different fault conditions often manifest as changes in the 

frequency spectrum of vibrations. FFT results can yield to detection of anomalies, identify wear 

and tear, and predict potential failures in mechanical systems [166, 167]. 

4.6 Summary 

The specifications of the Ajax DPC-81 engine are presented, followed by an overview of the data 

collection equipment, encompassing various sensors and data collection plans. Subsequently, the 

experimental setup and procedure are detailed. The discussion extended to analytical methods, 

including emission and combustion analysis. Lastly, the utilization and calculations involving 

vibration sensors are also addressed. 
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Chapter 5 Results and Discussion 

This section presents a detailed analysis of the results from the tests performed on the AMS. The 

engine's performance is rigorously evaluated at various loads ranging from 40% to 75%. The 

bypass valve settings are adjusted according to the load; at 40% and 45% loads, the valve is opened 

to 80%, while at 50% and 55% loads, it is set to 70%. For loads of 60% and 65%, the bypass valve 

opening is capped at 60%, and at higher loads of 70% and 75%, it is limited to 20%. This part of 

the discussion will illuminate the optimal bypass valve positions identified for these different load 

levels. 

Subsequently, vibration analysis is conducted to select load conditions—specifically 40%, 50%, 

60%, and 75%. This involves employing Wilcoxon sensors mounted on the engine, supplemented 

by vibration sensors from Windrock, to capture the engine's vibrational dynamics under 

operational stresses followed by FFT analysis. 

The final segment of this section delves into the findings from the machine learning models. These 

results, stemming from comprehensive data analysis, are expounded upon to shed light on their 

predictive accuracy and potential implications for engine performance optimization. 

5.1. Emission Analysis for the Air Management System (AMS)  

The advantage of using the AMS is that it does not hinder the incoming air so that the engine can 

run more efficiently. In current experiments the bypass is opened in 10% increments until the 

allowable exhaust temperature limit i.e., 700 OF is reached, and the emissions and combustion data 

are collected.  

In Figure 25, a clear trend in emissions behavior is evident as the bypass valve position is varied. 

CH4 emissions show a significant decrease, dropping from 8314 ppm to 2952 ppm, indicating 
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effective control over unburnt fuel emissions through the AMS. CO2 emissions initially rise with 

the increase in bypass valve position up to 30%, followed by a gradual decline to 2.15% at 60% 

bypass valve position. In contrast, both NOx and VOC emissions peak early but then display a 

marked reduction after the 30% bypass point. CO emissions, although on an upward trajectory, 

remain relatively low. Notably, the data analysis reveals that most emissions attain their lowest 

levels at a 70% bypass valve position, suggesting an optimal setting for emissions reduction at a 

40% engine load. 

The observed emission trends in Figure 25 can be attributed to various factors. The substantial 

reduction in CH4 emissions is likely a result of improved combustion efficiency achieved through 

the AMS, effectively reducing the amount of unburnt fuel. The initial increase and subsequent 

decrease in CO2 emissions correlate with the bypass valve position, indicating more complete 

combustion at certain settings. The reduction in NOx and VOC emissions after the 30% bypass 

point could be due to higher exhaust temperatures, which facilitate more efficient combustion, 

thereby reducing these emissions. The high exhaust temperatures also result in less available O2 in 

the exhaust, contributing to the reduction of NOx and VOC. The upward trend in CO emissions, 

despite remaining low, suggests an incomplete oxidation process, likely due to the lower 

concentration of O2 available for converting CO to CO2 [168, 169]. 
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Figure 25. Emissions of 40% engine load and different bypass valve position 

In Figure 26, displays emissions data for a 45% engine load, where CH4 and VOC emissions 

significantly reduce at higher bypass openings, indicative of improved combustion and catalyst 

efficiency. NOx emissions initially increase due to a lean air-fuel ratio but subsequently decrease 

as the bypass valve opens further, enriching the mixture. CO2 follows a similar trend, initially 

rising and then decreasing significantly after the 30% bypass point. Conversely, CO emissions 

start increasing beyond 60% bypass, likely due to insufficient oxygen for complete conversion to 

CO2. The data suggests that a 60% bypass valve position optimally reduces most emissions, with 

a 70% bypass at 45% load being ideal for emission reduction. 
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The trends at a 45% load in Figure 26 are influenced by several factors. The reduction in CH4 and 

VOC emissions is attributed to enhanced combustion and catalyst performance at higher exhaust 

temperatures. The initial NOx increase, followed by a decrease, is linked to changes in the air-fuel 

ratio: from leaner to richer with increased bypass opening. This adjustment also affects CO2 

emissions, which drop after an initial rise due to more complete combustion at richer mixtures. 

The rise in CO emissions at higher bypass positions indicates a lack of oxygen for full oxidation, 

underscoring the importance of bypass valve management for balancing engine performance and 

emissions [168]. 

 
Figure 26. Emissions of 45% engine load and different bypass valve position 
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Figure 27 presents the emissions trends at a 50% engine load with the bypass valve utilized up to 

70%. Notably, NOx emissions initially surge but then decrease by 43% at a 70% bypass, likely 

due to reduced O2 concentration. CH4 and VOC emissions show a marked downward trend, 

halving from 6022 ppm to 3104 ppm and from 36 ppm to 17 ppm, respectively. This reduction is 

attributed to increased catalyst efficiency and improved engine performance at higher exhaust 

temperatures. CO2 emissions fluctuate slightly before sharply declining past the 50% bypass point. 

Conversely, CO emissions exhibit significant variations, peaking at a 60% bypass valve opening, 

possibly linked to fluctuating O2 levels and air-fuel ratio changes. The data suggests that a 60% 

bypass valve opening is the most effective for minimizing emissions at this load. 

At 50% engine load, the emissions behavior as depicted in Figure 27 can be explained by several 

engine dynamics. The initial NOx spike and subsequent reduction align with the changes in O2 

concentration due to bypass valve adjustments. The significant decrease in CH4 and VOC 

emissions is a result of higher catalyst efficiency under increased exhaust temperatures, coupled 

with better engine performance. The fluctuating CO2 emissions reflect the engine’s response to 

varying combustion efficiencies, while the notable increase in CO emissions at a 60% bypass 

opening could be linked to a temporarily richer air-fuel mixture, affecting the CO to CO2 

conversion process. This analysis indicates that managing the bypass valve position is crucial for 

optimizing emissions, with 60% bypass emerging as an optimal setting at this load for balancing 

engine efficiency and environmental impact [168]. 
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Figure 27. Emission of 50% engine load and different bypass valve position 

Figure 28 showcases the emissions at a 55% engine load, with the bypass valve positions extended 

up to 70%. The data reveals a consistent decrease in CH4 and VOC emissions, dropping 

significantly from 5013 ppm to 2457 ppm and 27 ppm to 7 ppm, respectively. NOx emissions, on 

the other hand, show an increase up to the 20% bypass position, likely due to the high Heat Release 

Rate (HRR) characteristic of this load. CO2 emissions initially rise until the 40% bypass position, 

possibly due to increased O2 presence, but subsequently undergo a sharp overall decrease, ending 

at 2.48%. This trend is attributed to the reduction in O2 concentration at higher bypass positions. 

CO emissions, while generally following a downward trend, experience a slight uptick post the 

50% bypass point, ultimately resulting in a 42% reduction at the highest bypass position. The 
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analysis suggests that a 50% bypass valve position optimally reduces emissions, striking a balance 

between performance and exhaust temperature constraints. 

At a 55% engine load, as depicted in Figure 28, the emission trends reflect the complex interplay 

of engine dynamics and bypass valve settings. The steady decline in CH4 and VOC emissions can 

be attributed to the enhanced efficiency of combustion and catalytic processes at this load. The 

initial rise in NOx emissions correlates with the increased HRR, a characteristic of this engine 

load, before tapering off due to richer air-fuel mixtures at higher bypass settings. The fluctuation 

in CO2 emissions highlights the effect of varying O2 levels on combustion, with a notable reduction 

observed as the bypass valve opening increases. Interestingly, the CO emissions' pattern at this 

load is more consistent than at 50% load, with a significant overall reduction, indicating improved 

combustion efficiency. The data points to a 50% bypass position as the ideal setting for emission 

reduction at this load, considering both the performance and the limitations imposed by exhaust 

temperatures [168]. 
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Figure 28. Emissions at 55% engine load and different bypass valve position 

Figure 29 presents the emissions at a 60% engine load with a set 60% bypass position. At this 

higher load, bypass valve operation is restricted by exhaust temperature limits. The data shows a 

general downward trend in most emissions. CH4 and NOx emissions see initial declines of 17% 

and 11%, respectively, with a more pronounced decrease past the 40% bypass position, mainly 

due to lower oxygen concentration and enhanced engine performance. CO emissions initially 

decrease steeply, recording the lowest levels at the 40% bypass setting, likely due to higher O2 

availability. However, CO increases again at 50% and 60% bypass positions, correlating with 

reduced O2 levels. VOCs exhibit the lowest emissions at 30% and 60% bypass positions, benefiting 

from increased catalyst efficiency at higher exhaust temperatures. CO2 emissions show an initial 
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increase up to the 40% bypass position, then drop to 2.86%, with further reductions being limited 

by exhaust temperatures. The analysis indicates that the most effective bypass position for 

reducing emissions at a 60% load is 50%. 

The emission trends at a 60% engine load, as seen in Figure 29, are indicative of the interplay 

between bypass valve positions and engine operating conditions. The substantial decrease in CH4 

and NOx beyond the 40% bypass point can be attributed to the richer fuel mixture and reduced 

oxygen concentration, leading to more efficient combustion. The pattern of CO emissions, 

decreasing initially and then increasing at higher bypass settings, reflects the changing oxygen 

levels impacting the oxidation process. The varying emissions of VOCs at different bypass 

positions are linked to the catalyst’s performance, which improves with the increase in exhaust 

temperature. Similarly, the initial rise and subsequent fall in CO2 emissions highlight the engine’s 

response to varying combustion conditions. These findings suggest that managing the bypass valve 

position is critical for optimizing engine performance and emissions, with a 50% setting emerging 

as optimal at this load [40, 168]. 
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Figure 29. Emission at 60% engine load and different bypass valve position 

Figure 30 displays the emission trends at a 65% engine load, with bypass valve adjustments up to 

60%. The data reveals a general decline in most emissions. CH4 emissions notably reduce by 70%, 

mainly due to decreased unburnt fuel. CO2 also trends downward, moving from 2.98% to 2.4%, 

although the reduction is less marked at higher loads, likely due to the lower O2 concentration 

impacting CO2 conversion. VOC emissions initially decrease until the 30% bypass position, then 

spike at 40%, but eventually exhibit significant reductions at 60% and 70% bypass positions, 

attributable to improved catalyst efficiency. NOx emissions, which are high at 0% bypass, decrease 

as the bypass opens. However, both NOx and CO levels rise at 50% and 60% bypass positions, 
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probably due to reduced O2 availability. Based on this analysis, a 40% bypass valve position 

emerges as the optimal setting for emissions reduction at this load. 

The emission behavior at a 65% engine load, as depicted in Figure 30, can be explained through 

various engine dynamics. The significant drop in CH4 emissions is likely due to improved 

combustion efficiency, reducing unburnt fuel presence. The downward trend in CO2 emissions, 

although less pronounced at higher loads, points to challenges in achieving complete CO2 

conversion due to lower O2 levels. The fluctuating VOC emissions, particularly the spike at 40% 

bypass, might be influenced by temporary inefficiencies in the catalyst, which is rectified at higher 

bypass settings. The initial high NOx levels and their subsequent decrease correlate with the richer 

fuel mixture achieved through bypass adjustments. However, the increase in both NOx and CO 

emissions at higher bypass settings highlights a potential imbalance in the air-fuel mixture, 

emphasizing the need for careful management of bypass valve positions. This trend analysis 

underlines the importance of optimizing the bypass valve position to achieve the best balance 

between engine performance and emission control, with 40% bypass being optimal at a 65% 

engine load [168, 170]. 
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Figure 30. Emission at 65% engine load and different bypass valve position  

Figure 31 highlights the emission trends at a 70% engine load with bypass valve settings up to 

20%. This high load condition reveals a general trend of decreasing emissions, a sign of more 

efficient combustion processes. CH4 emissions show a reduction from 1744 to 1466 ppm at the 

20% bypass position, although the variation between 10% and 20% bypass positions is minimal. 

CO2 emissions follow a steep downward trajectory, indicating reduced emissions due to a lower 

O2 concentration hindering complete conversion. NOx emissions, starting at 96 ppm at 0% bypass, 

achieve their lowest levels at the 20% bypass setting, again linked to reduced O2 concentration. 

VOCs also significantly decrease, with the 10% bypass position demonstrating the lowest 



 

84 
 

emissions, a result of improved catalyst efficiency at higher exhaust temperatures. While the 

bypass valve setting adversely affects CO levels, they remain within safe ranges. However, the 

20% bypass position presents operational challenges, particularly in temperature management. The 

data suggests that a 10% bypass valve position is most effective for minimizing emissions at this 

high engine load. 

In Figure 31, the emission patterns at a 70% engine load underscore the effectiveness of fine-

tuning the bypass valve for emissions control. The reduced CH4 emissions across both 10% and 

20% bypass positions reflect a more efficient combustion, with little unburnt fuel. The sharp 

decline in CO2 emissions can be attributed to the lower oxygen levels at higher loads, which affects 

the complete conversion of CO to CO2. The pattern of NOx emissions reflects a direct correlation 

with O2 concentration, where reduced levels lead to lower NOx emissions. The significant decrease 

in VOCs at the 10% bypass position highlights the optimal interplay between the catalyst 

efficiency and exhaust temperatures at this setting. Despite the bypass valve's negative impact on 

CO levels, they remain controlled, indicating an efficient combustion process. However, 

operational constraints, particularly related to temperature management at higher bypass settings, 

suggest that the 10% position is the most suitable for achieving both optimal performance and 

emission reduction at a 70% engine load. 
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Figure 31. Emissions at 70% load and different bypass valve position 

Figure 32 reveals the impact of the bypass system on emissions at a 75% engine load, with valve 

positions up to 20%. CH4 emissions demonstrate a notable downward trend, dropping from 1811 

to 1490 ppm, indicative of the AMS efficiency in enhancing performance and reducing unburnt 

fuel. CO2 emissions show a decrease from 3.4% to 3.2% at a 10% bypass position, a trend that 

becomes more pronounced at higher loads, highlighting the bypass system's influence on 

emissions. However, CO2 levels rise at the 20% bypass, suggesting increased O2 accumulation in 

the exhaust. NOx emissions consistently decrease, with the lowest levels at 20% bypass. VOCs 

also follow a downward trend, reflecting the catalyst's effectiveness at higher loads. CO emissions, 
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in contrast to the 70% load, decrease with the lowest levels at 20% bypass. Despite the minimal 

differences between 20% and 30% bypass positions, a key limitation at 20% is managing exhaust 

temperatures. Thus, the optimal bypass position for a 75% load is determined to be 10%. 

The emission data for a 75% engine load, as shown in Figure 32, underscores the AMS's role in 

reducing emissions across different bypass valve positions. The consistent decrease in CH4 

emissions across the load spectrum is a testament to the AMS's ability to improve combustion 

efficiency and minimize unburnt fuel. The trend in CO2 emissions, with an initial decrease 

followed by an increase at higher bypass settings, indicates a complex interaction between 

combustion efficiency and O2 concentration. NOx emissions' downward trajectory further 

illustrates the AMS's effectiveness in controlling emissions, particularly in reducing NOx levels at 

higher bypass positions. VOC emissions also decrease, albeit not as significantly as CH4, showing 

the catalyst's increased efficiency at higher operational loads. The reduction in CO emissions at 

75% load, differing from the pattern observed at 70% load, suggests variations in combustion 

processes and O2 availability at different bypass settings. The analysis indicates that a 10% bypass 

position optimally balances emissions reduction and operational constraints like exhaust 

temperature at this high engine load [168]. 
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Figure 32. Emissions at 75% load and different bypass valve position 

In conclusion, Emissions related to various engine loads are discussed in detail, revealing distinct 

impacts on emissions for each load condition. This highlights the critical need for optimizing the 

bypass valve position differently for various loads. It is worth noting that the highest bypass valve 

position recorded the least emissions; however, due to exhaust temperature limitations, this 

position cannot be conclusively considered as the optimum choice. 

5.2 Combustion Performance  

Figure 33 presents an empirical analysis of the Indicated Thermal Efficiency (ITE) at different 

engine loads (40% to 75%) and bypass valve positions. Initially, at lower bypass positions, ITE 

values are high for all loads, suggesting higher thermal efficiency due to richer air-fuel mixtures. 
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As bypass valve positions increase, ITE also rises across all loads, signifying better fuel utilization. 

The pattern varies with load; at 40% and 45% loads, ITE gradually decreases until a 40% bypass, 

then increases significantly as the bypass opens to 80%, indicative of more efficient combustion 

at these settings. At higher loads of 70% and 75%, ITE sees a steeper increase at a 20% bypass, 

reflecting more effective combustion and improved efficiency at these higher bypass settings. 

These variations highlight the engine's different operational characteristics at various loads and 

bypass valve positions. 

The trends in ITE across different loads and bypass valve positions, as seen in Figure 33, provide 

valuable insights into engine performance under varying operational conditions. At lower loads 

(40% and 45%), the gradual increase in ITE at higher bypass positions suggests that the engine 

becomes more efficient in fuel utilization when the air-fuel mixture is richer. This indicates a 

balance between maintaining efficient combustion and managing airflow. The substantial increase 

in ITE at higher loads (70% and 75%) at a 20% bypass position indicates that these engines achieve 

optimal combustion efficiency at a specific bypass setting, which aligns with the engine’s design 

for higher load operations. The variation in ITE response to bypass valve adjustments underscores 

the importance of tailoring these settings to engine load for optimal performance, emphasizing the 

interplay between airflow, fuel utilization, and combustion efficiency [30, 37, 168]. 
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Figure 33. ITE for different loads and bypass valve positions 

Figure 34 provides an analysis of the cycle-to-cycle variability (CCV) in terms of the standard 

deviation of peak pressure (σPpeak) across different bypass valve positions for engine loads ranging 

from 40% to 75%. σPpeak values, which indicate combustion stability, are shown on the y-axis, 

while bypass valve positions are on the x-axis. The results show a general trend of decreased σPpeak 

values at wider bypass valve positions, suggesting more stable combustion due to greater air 

bypass. This observation is particularly apparent at bypass positions beyond 50%, where the engine 

tends to operate with a richer air-fuel mixture, leading to more stable combustion. At lower bypass 

positions, corresponding to leaner air-fuel mixtures, σPpeak values are higher, indicative of less 

stable combustion. For the lower loads (40% and 45%), σPpeak increases up to 50% bypass, 

signifying leaner mixtures and less stable combustion. Beyond 50% bypass, a steep decline in 
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σPpeak values occurs as the mixture becomes richer. In contrast, higher loads show lower σPpeak 

values, with a slight increase at maximum bypass, indicating better stability at these settings. 

The trends in CCV and σPpeak values across various bypass valve positions, as depicted in Figure 

34, offer crucial insights into the combustion stability under different engine operating conditions. 

At lower bypass settings, the engine runs on leaner air-fuel mixtures, which, while efficient, can 

lead to higher CCV as reflected in increased σPpeak values. This suggests a susceptibility to 

combustion efficiency fluctuations under these conditions. However, as the bypass valve opens 

wider (beyond 50%), allowing more air to bypass, the engine transitions to richer air-fuel mixtures, 

enhancing combustion stability as evidenced by the significant reduction in σPpeak values. This 

trend is more pronounced at lower loads (40% and 45%), where the shift from a lean to a richer 

mixture markedly improves stability. For higher loads, the engine demonstrates inherently more 

stable combustion, with σPpeak values remaining relatively low, even at maximum bypass. These 

findings highlight the importance of optimizing the air-fuel mixture through bypass valve 

adjustments to achieve stable and efficient engine operation across different load conditions [30, 

168]. 
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Figure 34. σppeak for different loads and bypass valve position 

Figure 35 presents the standard deviation of Mean Effective Pressure (σMEP) across different 

engine loads (40% to 75%) and bypass valve positions. σMEP, which measures cycle-to-cycle 

variations in combustion pressure, is shown on the y-axis, with bypass valve positions on the x-

axis. The graph reveals a general trend where σMEP decreases as the bypass valve position 

increases, suggesting more consistent combustion cycles with richer mixtures achieved by 

allowing more air to bypass. This trend is more pronounced at lower loads (40% and 45%), where 

an increase in bypass position correlates with decreased σMEP, aligning with emission reduction 

trends. At higher loads, the decrease in σMEP is less significant, reflecting a less pronounced 

reduction in emissions at these loads. 

The data in Figure 35 highlights the relationship between bypass valve positions, combustion 

stability, and engine load. At lower loads, the decrease in σMEP with increased bypass valve 
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positions indicates improved combustion stability due to richer air-fuel mixtures. This is consistent 

with the observed trend in emission reduction, where increased bypass leads to lower emissions, 

suggesting more efficient combustion. On the other hand, at higher loads, the impact of bypass 

valve position on σMEP and emissions is less dramatic. This suggests that at these higher loads, the 

engine operates more consistently, regardless of the air-fuel mixture changes. These observations 

underscore the importance of bypass valve adjustments in achieving optimal combustion stability 

and efficiency, particularly at varying engine loads [40]. 

 

Figure 35. σMEP for different loads and bypass valve positions 
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5.3 Optimum Bypass Valve Positions 

Figure 36 provides a visual comparison of the bypass valve positions as a function of engine load 

percentages. The horizontal axis represents the engine load in percentage terms, starting from 40% 

and increasing incrementally to 75%. The vertical axis denotes the bypass valve position, also in 

percentage terms. Each bar corresponds to a specific engine load percentage and reflects the 

optimum bypass valve position required at that load.  

As the engine load increases, the bypass valve position generally appears to decrease. For example, 

at a 40% engine load, the bypass valve position is around 70%, indicating a higher opening. 

Conversely, at a 75% engine load, the bypass valve position is significantly lower, close to 10%, 

suggesting a much smaller opening. This pattern suggests that the need for bypassing air decreases 

as the engine load increases. 

 
Figure 36 Optimum bypass valve position for different loads 
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5.4 Vibration Analysis 

line graph in Figure 37 represents the Root Mean Square (RMS) vibration measurements in 

millimeters per second for three axes (X, Y, and Z) as a function of the bypass valve position at 

40% engine load, expressed as a percentage. The X-axis of the graph represents the bypass valve 

position, while the Y-axis indicates the vibration RMS. Each line, marked with distinct colors, 

corresponds to one of the three axes of vibration measurement. 

As the bypass valve position increased from fully closed (0%) to more open positions, the graph 

shows a downward trend in all these axes, reaching a minimum at around 60% valve position, and 

then a spike is observed for 70% bypass.  

The peak vibration for the X and Y axis occurs at 20%, however the Z-axis peaks at 10% bypass 

this proves that vibration is independent of bypass. The lowest values observed are on the 60% 

bypass position for all the axes. At 70% bypass, all the vibrations spiked peaked due to the 

maximum opening of the bypass.  
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Figure 37. Line graph of Average RMS Vibration at 40% load and various bypass valve 

positions 

Figure 38 shows the relationship between engine vibration (in millimeters per second) and engine 

load (expressed as a percentage). The x-axis displays the vibration intensity, while the y-axis 

represents the engine load. Each data point corresponds to a specific instance of engine operation, 

capturing the load at a given level of vibrational intensity. 

The plot reveals a dispersion of vibration data across a broad range of engine loads, without a clear 

or consistent pattern to suggest no correlation between the two variables. As vibration intensities 

increase, there is a wide spread of engine load percentages, indicating that higher vibrations do not 

necessarily correspond to higher or lower engine loads predictably. 

The data suggests that engine load is influenced by factors beyond just the measured vibration 

intensity. This could imply that vibration, while an important parameter for engine health 

monitoring, may not be a standalone indicator of engine load. For engine diagnostics and 
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performance optimization, this graph indicates the need to consider additional parameters 

alongside vibration to accurately assess engine load [131, 132]. 

 
Figure 38 Scatter plot of vibration for different engine load 

Figure 39 comprises three pairs of graphs, each depicting vibration data from an AJAX DPC-60 

Engine Frame at 40% load and three different bypass positions (0%, 40%, and 80%). Each pair 

consists of a time waveform and an accompanying FFT graph. The time waveform plots show the 

raw vibration signal over time, illustrating the engine's dynamic behavior through its operating 

cycle. FFT is a mathematical technique used to transform time-domain data into frequency-domain 

data. In these FFT plots, the X-axis represents frequency in cycles per minute (CPM), and the Y-

axis indicates the vibration amplitude. The top-left graph (a) displays a time waveform 

representing vibration in the axial direction, with amplitude measured in inches per second plotted 

against time in milliseconds. The irregular waveform suggests a complex vibration signature with 

notably high amplitude, indicating significant axial engine movement. In the (b) middle-left graph, 
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a frequency spectrum is derived from the axial time waveform data, presenting dominant vibration 

frequencies in CPM (cycles per minute). The spectrum data for the 0% bypass position exhibits 

spikes at starting points, indicating normal engine conditions. In contrast, the spectra for the 40% 

and 80% bypass positions reveal spikes indicating prolonged and substantial variations in 

vibration, particularly evident in the second and third pairs of graphs (c). 

 
Figure 39. Time wave and FFT graph of 40% load and different bypass valve positions. a) 0% 

bypass. b) 40% bypass and c) 80% bypass. 

Figure 40 comprises three pairs of graphs, each illustrating vibration data from an AJAX DPC-60 

Engine Frame at 50% load and three distinct bypass positions (0%, 40%, and 70%). Each pair 

includes a time waveform and a corresponding FFT graph a, b and c. Notably, the time waveform 

for the 0% bypass position displays a few spikes. The accompanying spectral graph (a) represents 

FFT data, where spikes are primarily concentrated at the starting frequency, indicating relatively 

low vibration levels. However, the spectral graphs on the top right and bottom left (b) shows a 

multitude of spikes, indicating higher and more variable vibrations at increased bypass positions. 
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Figure 40. Time wave and FFT graph of 50% load and different bypass valve positions. a) 0% 

bypass. b) 40% bypass and c) 70% bypass. 

Figure 41 shows engine vibrations at a 60% load with three different bypass valve positions: 0%, 

30%, and 60%. The time waveform at the top left of the figure for the 0% bypass valve position 

reveals an array of vibration spikes, suggesting considerable engine movement in the axial 

direction. This is an indication of less stable engine operation. 

The (b) shows the vibration at 40% bypass valve position. Here, a significant reduction in vibration 

spikes suggests improved combustion and a more stable engine operation. This is in stark contrast 

to the (c) 70% bypass valve position, where an increase in vibration spikes is observed once again. 

The pattern of spikes at different bypass valve positions indicates that while some bypassing is 

beneficial for reducing vibrations and optimizing engine performance, there is a threshold beyond 

which further bypassing can degrade engine stability. This highlights the delicate balance that must 

be maintained when adjusting the bypass valve to ensure optimal engine performance. 
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Figure 41. Time wave and FFT graph of 60% load and different bypass valve positions. a) 0% 

bypass. b) 40% bypass and c) 70% bypass. 

Figure 42 features three pairs of comprehensive graphs, each offering a detailed glimpse into the 

vibration data stemming from an AJAX DPC-60 Engine Frame operating at a substantial 75% 

load. These pairs thoughtfully encompass a trio of bypass positions 0%, 10%, and 20%, providing 

a comprehensive exploration of the engine's vibrational dynamics. In each pair, there is a precise 

time waveform artfully paired with a corresponding FFT graph. These graphs effectively illustrate 

the distinct impact of heightened load conditions. Notably, at the (a) 0% bypass position, the 

spectral graph displays common spikes, indicative of typical vibrations. However, upon closer 

inspection of the (b) 10% bypass scenario, the time waveform (bottom left) reveals pervasive 

fluctuations throughout the recorded data, while the spectral graph (top-right) highlights a 

profusion of spikes across the entire dataset, implying inconsistent engine speeds over time. In 

contrast, the (c) 20% bypass configuration presents an entirely different story, where the time 

waveform exhibits strikingly prominent spikes, dwarfing those in other scenarios. Furthermore, 

the corresponding spectral graph (bottom right) unmistakably highlights pronounced and sustained 

vibrations, reflecting the engine's substantial oscillations throughout the entire cycle. 
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Figure 42. Time wave and FFT graph of 75% load and different bypass valve positions. a) 0% 

bypass. b) 10% bypass and c) 20% bypass. 

In summary, FFT analysis has unveiled a noteworthy insight: vibration patterns vary across 

different bypass valve positions and tend to escalate with heightened bypass valve positions and 

engine loads. This crucial knowledge would have remained concealed without the application of 

FFT. This underscores the importance of not relying solely on vibration data for predictive 

purposes, emphasizing the necessity of a well-rounded setup for accurate predictions beyond 

vibration metrics alone. 

5.5 Machine Learning  

Figure 43 presents a heatmap a correlation matrix of various engine parameters, providing a visual 

summary of how each variable potentially influences the others. Dark blue cells indicate a strong 

positive correlation, suggesting a direct and proportional relationship between parameters, such as 

between Suction Pressure and Discharge Pressure, where an increase in one is associated with an 

increase in the other. Light blue to white cells represents a weaker positive correlation. The shades 

of red illustrate negative correlations, with dark red indicating a strong inverse relationship, such 
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as between O2 and Load, implying that higher engine loads tend to have lower oxygen levels. Cells 

closer to white indicate a negligible or no correlation, as observed between Vibrations and most 

other parameters, suggesting that vibrations do not significantly correlate with engine performance 

metrics like RPM, NOx, and Load. This heatmap is a powerful diagnostic tool, enabling quick 

identification of relationships that could be leveraged for optimizing engine performance and 

developing predictive maintenance schedules. 

 
Figure 43. Correlation plot of the data 

This scatter plot in Figure 44 visualizes the relationship between the suction pressure (in psi) and 

the loa, where each dot represents an individual observation of the engine’s performance at varying 

conditions. The suction pressure is plotted along the x-axis, and the engine load is plotted along 
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the y-axis. The plot is color-coded based on the engine load ranges, from 40 to 75%, allowing for 

a visual segmentation of data points across the load spectrum. A fitted line, likely representing a 

linear regression model, is drawn through the data points, indicating a positive correlation between 

suction pressure and engine load—suggesting that as suction pressure increases, the engine load 

tends to increase as well. The spread of the data points reveals that at lower loads (blue points), 

the data are more tightly clustered around the fitted line, implying a more consistent relationship 

between suction pressure and load. As the load increases (green to yellow points), the spread 

becomes wider, indicating more variability in the engine load at higher suction pressures. This plot 

is essential for understanding how suction pressure affects engine load, and the linear model 

provides a predictive tool for estimating load based on suction pressure readings. 

 
Figure 44 Correlation of suction pressure with engine load  



 

103 
 

The scatter plot Figure 45 illustrates the positive correlation between discharge pressure (measured 

in psi) and engine load, with discharge pressure plotted on the x-axis and engine load displayed on 

the y-axis. The data is color-coded, representing load ranges from 30.00 to 75.00, allowing for 

visual segmentation by operational conditions. A linear regression line in red indicates the 

relationship trend, showing that as discharge pressure increases, engine load generally increases 

as well. The clustering of data points is tighter at lower discharge pressures, suggesting a more 

consistent relation to engine load, while at higher discharge pressures, the data points disperse 

more, suggesting other factors may also be influencing engine load. This visual analysis is vital 

for optimizing engine performance based on discharge pressure, and the linear model provides a 

predictive baseline for engine load estimations. 

 
Figure 45 Correlation of  discharge pressure vs engine load 
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Figure 46 shows a scatter plot graphically representing the relationship between the engine's speed 

(RPM) and its load (%). Each point on the plot corresponds to a specific measurement, with the 

color indicating the range of the engine load. The blue points represent the lower load ranges (30-

45%), green indicates middle load ranges (45-60%), and yellow shows the higher load ranges (60-

75%). The red line depicts the trend line, showing a positive correlation between engine speed and 

load; as the engine speed increases, the load also tends to increase. This trend suggests that at 

higher RPM, the engine is under greater load, which could be due to higher gas throughput or 

increased resistance within the engine system. The spread of the points, particularly the vertical 

dispersion at specific RPMs, could indicate variability in the engine's load capacity at those speeds 

or reflect changes in operational conditions such as fuel quality or environmental factors. Overall, 

the graph provides a clear visualization of how these two parameters interact across different 

operating conditions. 
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Figure 46 Correlation of speed with engine load 

Figure 47 displays the relationship between the coefficient of determination, denoted as R-squared 

(R²), and the number of predictors used in a statistical model. The R-squared value is a statistical 

measure that represents the proportion of the variance for a dependent variable that's explained by 

an independent variable or variables in a regression model.  

On the x-axis, the number of predictors used in the model increases from 1 to 3. On the y-axis, the 

R-squared values are plotted, which range approximately from 0.85 to just above 0.95.The graph 

shows that as the number of predictors increases, there is an initial sharp increase in the R-squared 

value, indicating a significant improvement in the model’s explanatory power with the addition of 

the first predictor. The subsequent increase in the number of predictors results in a more gradual 

rise in the R-squared value. This suggests that each additional predictor contributes to a smaller 

increase in the variance explained by the model.  
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The highest R-squared value observed is with three predictors, which indicates the best model 

performance among the ones presented. However, without additional context on the nature of the 

predictors and the model, the implications of this increase cannot be fully understood. 

 
Figure 47. Effects of R-square with the number of predictors 

Figure 48 shows a comparative analysis is presented between the actual engine load and the load 

predicted by the SVR model. The data points predicted by the SVR model are depicted in cyan, 

offering a visual correlation with the actual engine load measurements. This graph effectively 

illustrates the alignment of the SVR-predicted data with the real engine load, underscoring the 

model's accuracy.  
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While the presence of outliers is noted, which is a common occurrence in machine learning models, 

their quantity is minimal, suggesting a high level of precision in the model's predictive capabilities. 

Overall, this graph serves as a clear indicator of the SVR model's performance in accurately 

forecasting engine load, demonstrating its potential utility in practical applications. 

 

 
Figure 48 Prediction comparison of Actual engine load and load predicted by SVR model 

Figure 49 presents a comparison between the actual engine load and the load predicted by the ANN 

model. In the graph, the actual load data, calculated using the PowerFlow model, is represented by 

black-colored data points, while the load predictions made by the ANN model are shown in purple. 

The graphical representation indicates that while the ANN model achieves a high degree of 

accuracy, as evidenced by the proximity of the purple points to the black ones, the predictions do 

not entirely mirror the pattern of the actual load. The data points, although closely packed, show a 
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slight deviation from the actual load pattern. This divergence can be attributed to the ANN model's 

accuracy, which stands at 92%. Due to this level of accuracy, the predicted data does not align 

perfectly with the actual engine load. The graph highlights the capability of the ANN model to 

predict engine load with reasonable accuracy, although it indicates that the model has a slightly 

lower precision compared to other methods like SVM.  

 
Figure 49 Prediction comparison of Actual engine load and load predicted by ANN model 

In Figure 50, the x-axis of the graph is labeled "Predicted Engine Load (%) and y-axis is labeled 

"Actual Engine Load (%)" and has a similar range. The predicted load is the load which is predicted 

by the linear regression algorithm, the actual engine load is the load which is calculated using the 

powerflow model.  

This range suggests that the model is being evaluated over a variety of engine loads, providing a 

comprehensive assessment of its predictive capability. The graph includes a line of best fit, 
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indicating the relationship that the multiple linear regression model has found. The dots are closely 

clustered around this line, which suggests a strong correlation between the predicted and actual 

values, indicating the model's high accuracy. 

Above the scatter plot, the model's performance metrics is provided: an R-squared (R²) value of 

0.9868 and an adjusted R-squared of 0.9867. These value is close to 1, which signifies that the 

model explains a very high proportion of the variance in the actual engine load, considering the 

number of predictors used. The closeness of the R-squared and adjusted R-squared values also 

indicates that the model is not overfitted, as the adjustment for the number of predictors has not 

significantly reduced the R-squared value. 

 
Figure 50. Prediction comparison of actual engine load and load predicted by linear regression 

model 



 

110 
 

Table 5, compares the performance of three different machine learning models: SVM, ANN, and 

Linear Regression. The performance of each model is evaluated using four metrics: Mean Squared 

Error (MSE), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and R-squared 

(R²). 

For the linear regression model, the MSE is 1.280, the MSE is 1.131, the MAE is 0.532, and the 

R² is 0.986. These values suggest that the SVM model has a high degree of accuracy, with a strong 

correlation between the predicted and actual values, as indicated by the R² value close to 1. 

The ANN shows significantly higher error metrics with an MSE of 7.383, RMSE of 2.717, and 

MAE of 2.103. Its R² value is 0.922, which is lower than the SVM and Linear Regression models, 

indicating a lower fit to the data. 

The SVM model has an MSE of 1.313, RMSE of 1.145, MAE of 0.544, and an R² of 0.986. These 

metrics are similar to those of the SVM model, suggesting that both models have a similar degree 

of accuracy and predictive capability. 

The R² values for both the SVM and linear regression models are extremely high, suggesting that 

these models are highly effective at predicting the outcomes they are designed to predict. The 

Neural Network model, while still useful, is less accurate according to these metrics. 
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Table 5. Accuracy of machine learning models 

Model 

MSE RMSE MAE R2 

Linear Regression 1.280 1.131 0.532 0.986 

ANN 7.383 2.717 2.103 0.922 

SVM 1.313 1.145 0.544 0.986 

Equation 12 represents the formula that is derived from linear regression. The equation has the 

bias of the parameter which needs to be multiplied and then lastly it has a constant that needs to 

be subtracted. This equation is directly incorporated into the PLC. 

Engine Load = 0.583*suction _pressure + 

0.043313*discharge_pressure+0.1294*speed-

41.178 

 

12 
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Chapter 6 Conclusions  

6.1 Air Management System (AMS) 

The AMS was experimentally investigated on the AJAX DPC-81 NGFRE in terms of emissions 

and combustion analysis. The experiments were conducted at load varying from 40-75% with the 

bypass valve positions varied depending upon the exhaust temperature limitation for instance on 

40% the max bypass position was 80% whereas for 75% load, the max bypass was 30%.   

6.1.1 40% Load 

• The optimal reduction in emissions, including CH4, VOC, and NOx, was observed at a 

bypass valve position of 70%. At this position, CH4 and VOC emissions decreased by 64% 

and 52%, respectively. Conversely, an increase in CO emissions was noted as the bypass 

valve opened further, reaching the highest level at an 80% bypass valve position. 

• Combustion stability showed improvement as the bypass valve opened, with a 2% increase 

in ITE noted at a 70% bypass. The highest ITE was recorded at an 80% bypass valve 

position, indicating enhanced fuel efficiency and engine performance. 

6.1.2 45% Load 

• A significant reduction in NOx, CO2, VOC, and CO emissions was achieved at a 70% 

bypass valve position. A slight increase in CO was noted post-60% bypass. A steep 

decrease in NOx emissions was recorded between 30% to 60% bypass, reaching the lowest 

at 80% bypass. 

• Combustion stability was suboptimal at a 40% bypass but showed marked improvements 

beyond a 60% bypass, peaking at an 80% bypass. An increase in ITE of 3% was observed 

at a 70% bypass position. 
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6.1.3 50% Load 

• At a 60% bypass valve position, there was a minimum in emissions for CH4, CO2, NOx, 

and VOC, with reductions of 54%, 38%, and 50%, respectively, indicating a general 

downward trend in emissions. 

• Improved combustion stability was noted with increases in bypass, with the most stable 

condition at a 60% bypass valve position. 

6.1.4 55% Load 

• At a 50% bypass valve position, a downward trend was observed for CH4, CO2, NOx, 

VOC, and CO emissions, with methane showing the largest decrease at 43%. Other 

emissions also saw substantial reductions. 

• Combustion stability improved with increases in bypass, and a noticeable 1.8% 

improvement in ITE was observed at a 50% bypass valve position. 

6.1.5 60% Load 

• A significant reduction in CH4, NOx, VOC, and CO emissions was observed at a 50% 

bypass valve position, with CH4 decreasing by a notable 55%. Emissions of NOx and VOC 

were lowest at the highest bypass valve position. However, CO2 emissions increased 

alongside the opening of the bypass valve, with CO levels rising post-30% bypass. 

• Combustion stability experienced substantial improvements at a 50% bypass, reaching 

optimal levels at a 60% bypass. An increase in ITE was also associated with the widening 

of the bypass. 
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6.1.6 65% Load 

• At a 40% bypass valve position, emissions of CH4 and CO2 showed a downward trend with 

reductions of 41% and 13%, respectively. NOx emissions were minimized at a 50% bypass 

but spiked at a 60% bypass position, while CO levels were lowest at a 40% bypass but 

increased at higher bypass settings. 

• Combustion stability showed a 3% improvement at a 40% bypass, with the highest stability 

observed at a 50% bypass. ITE displayed an upward trend with the increase in bypass valve 

opening. 

6.1.7 70% Load 

• At the minimal 10% bypass setting, there was a downward trend for CH4, CO2, and NOx 

emissions, with reductions of 16% for CH4 and 24% for NOx. CO2 also followed a similar 

downward pattern. CO emissions, however, showed an upward trend with increased bypass 

valve positions. VOC emissions appeared relatively unaffected at the maximum bypass. 

• The ITE improved significantly at higher loads, indicating enhanced combustion 

performance and overall smoother engine operation. 

6.1.8 75% Load 

• At a 10% bypass valve position, a downward trend in CH4, NOx, VOC, and CO emissions 

was noted. A 13% reduction in methane was observed at a 10% bypass, with the lowest 

levels recorded at a 20% bypass. NOx saw a 20% reduction at a 10% bypass, with the 

lowest observed at a 20% bypass. 

• Combustion stability was bolstered by the incremental opening of the bypass valve, with a 

2.3% increase in ITE noted at the maximum bypass position. 



 

115 
 

6.2 Vibration Analysis 

Vibration analysis was conducted across three axes of the engine with 40, 60, and 75% load and 

different bypass valve positions. The average RMS (mm/sec) indicated that vibration levels 

fluctuated at various bypass valve positions. Vibration measurements mostly fell within the 4-5 

mm/sec range, suggesting that at given loads, vibrations are typically within this bandwidth due to 

which a linear relation was hard to establish. Further, FFT analysis illustrated that while time 

waveform vibrations were present, spectral analysis confirmed the engine operated ideally at 40% 

load. As the load increased, spectral spikes suggested variations in engine speed, leading to an 

increased frequency of spikes in the FFT data. At 75% load, a high frequency of spikes was 

recorded, reinforcing that vibration does not directly correlate with load linearly. Nevertheless, 

vibration data are valuable for engine monitoring and fault detection purposes. 

6.3 Machine Learning 

The research collected data across engine loads ranging from 40% to 75%, including variables 

such as suction pressure, discharge pressure, engine speed, NOx, O2, and exhaust temperature. An 

analysis to evaluate linearity between these variables and engine load revealed that suction 

pressure, discharge pressure, and speed had a significant correlation with engine load, indicating 

their potential as predictive indicators. Contrarily, vibration analysis demonstrated that vibrations 

did not exhibit a clear correlation suitable for the machine learning model. 

Three machine learning models were employed: Linear Regression, SVR, and ANN, with R-

squared values of 0.98, 0.96, and 0.92, respectively. These models were validated against the 

thermodynamic model generated in the PowerFlow software. From the linear regression model, 
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the development of a formula for load prediction was developed that can be seamlessly integrated 

into a PLC for real-time engine performance prediction, monitoring, and optimization. 

6.4 Future Work 

Future work will focus on incorporating the determined optimal bypass valve positions into the 

PLC, along with the established load prediction formula. This integration will empower the PLC 

to autonomously predict engine load and adjust the bypass valve accordingly, ensuring peak 

performance for varying load conditions. Such enhancements will render the system self-

sustaining and self-regulating. Additionally, the integration of advanced AI and ML techniques 

will be explored to bolster predictive maintenance strategies and facilitate accurate methane 

emission predictions, further enhancing the system's efficiency and environmental compliance. 
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Appendix 

Table 6 Table of uncertainties 

Variables Uncertainty 

NOx ± 5.35 ppm 

CO ± 0.12 ppm 

CO2 ± 0.013 % 

CH4 ± 59.10 ppm 

VOCs ± 0.18 ppm 

O2 ± 0.69 % 

H2O ± 0.72 % 

T ± 4.23 °F 

P ± 10.03 psi 

MEP ± 27.75psi 

HRR ± 30.27 J/o 

ITE ± 3.47 % 

AFR ± 0.86 
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