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Abstract 

Mass spectrometry (MS) is a powerful tool for qualitative and quantitative 

biological sample analysis, with its high sensitivity, broad applicability, and strong 

robustness. While insights into ‘what’ and ‘how’ can be provided by mass 

spectrometry, MS technique coupled with traditional separation methods, such as 

liquid chromatography LC-MS, do not provide a satisfactory key to the question 

‘where’ with high enough resolution. Accordingly, two different types of MS 

methods are being developed to analyze sample species with spatial resolution, one 

being single cell mass spectrometry (SCMS), and the other as mass spectrometry 

imaging (MSI). 

In general, SCMS provides chemical insight of individual cells, whereas MSI can 

reveal the spatial distributions of chemical substances at a micrometer resolution. 

With the in-house microscale sampling device developed in the Yang group, the 

Single-probe, SCMS and MSI could be conducted. Both methods require specific 

protocols for sample treatment, experiment operation, data acquisition, and data 

analysis. Both SCMS and MSI studies are focused on analysis of small molecules 

(e.g., metabolites, lipids, and drug compounds). Different from SCMS studies, MSI 

measurements allow for acquiring spatial information on top of the chemical 

information provided by MS, and the spatial information has brought more 

complexity in the output data which require more advanced data analysis tools. 
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In this dissertation, the background of spatially resolved MS methods, i.e., MSI 

techniques, are first introduced, followed by a summary of previously published 

studies on quantitative SCMS metabolomics projects. In Chapter 3, MSI attempts 

on three different types of samples, including mice retina, patient breast, and co-

cultured cancer cell spheroids, are introduced. In Chapter 4, the metabolomic 

profile changes of heart tissues upon Trypanosoma Cruzi infection have been 

investigated with the Single-probe MSI technique. The compatibility between MS 

and two commonly adopted strategies, fixation and staining, is studied, suggesting 

that X-gal staining has significantly altered the chemical profile. In Chapter 5, to 

handle SCMS data with better efficiency and higher mass accuracy, a Python-based 

MS data pretreatment platform with an easy-to-use graphical user interface (GUI) 

and an innovative peak alignment algorithm is developed to be compatible with 

improvised SCMS experiments. In Chapter 6, advanced statistical methods used for 

MS data processing are discussed in the context of MSI study of mice brain with 

Alzheimer's Disease as an example. The fusion of ion images from MSI and 

fluorescence images from immunohistology staining has improved the spatial 

resolution to a higher level, leading to more precise mapping of chemical 

substances and more findings involved in Alzheimer’s Disease development.
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Chapter 1 Introduction 

 

1.1. Background 

In order to achieve better understanding of disease pathogenesis and biological 

activities, finer spatial resolution is required to break down the whole organism into 

multiple components at levels of organs, tissues, and cells.1 Apart from MS-based 

methods, microscopy imaging2, fluorescence imaging3, magnetic resonance 

imaging4, positron emission tomography5, Raman spectroscopy imaging6, 7, and 

photoacoustic imaging8 can all provide biological or chemical information with 

spatial resolution. However, MS has the unique capability of detecting hundreds or 

even thousands of species at the same time without extra labeling, making it 

extremely powerful for bioanalytical tasks, such as untargeted analysis and 

biomarker discovery.9, 10 Different strategies have been employed to obtain spatial 

information as MS data is being collected, with MSI and SCMS as the two major 

strategies and thus the main topics throughout this dissertation.  

MSI was first conceptualized more than 50 years ago by Castaing and Slodzian, 

who proposed reading the sample plane as multiple periodically aligned pixels with 

mass spectrometers.11 From MS scans from all pixels, a heatmap can be constructed 

for each extracted ion chromatogram, thus mapping the distribution of the selected 
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ions in the scanned region of interest in a visualizable and rather intuitive manner. 

The sample of MSI is typically a flat plane from either thin tissue sections or special 

cell cultures.12, 13  

The MS analysis on single cells can be traced back to 1970s as well when Iliffe and 

coworkers studied the concentration of amino acid in individual neurons with MS.14 

Instead of scanning throughout the surface, most SCMS methods, on the other hand, 

rely on a successful isolation of single cells, usually with the assistance of sampling 

compartment with sharp focus or device with precise fluidic control, thus providing 

the spatial information of the chemical profile obtained from the mass spectra.15, 16 

There have also been other MS-based methods, such as MasSpec Pen17, 18 and 

chemical cartography,19 that provide spatial information along with chemical 

profile, but the spatial resolution MasSpec Pen and chemical cartography can reach 

is lower than most MSI or SCMS methods. The size of MS data has also increased 

dramatically with higher throughput and instrument sensitivity. To efficiently 

analyze MS data, multiple software packages have been published with different 

algorithms and statistical methods.20-22 
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1.2. Categories of MS techniques 

Today, MSI, SCMS and other MS studies have been reported by many different 

groups across the world. Depending upon the ionization method, two main 

categories can be defined: vacuum-based methods and ambient-based methods. 

 

1.2.1. Vacuum-based method 

1.2.1.1. Secondary Ion Mass Spectrometry (SIMS) 

Secondary Ion Mass Spectrometry (SIMS) is an ionization method first developed 

in 1910, where ions were found to be generated from ion bombardment on a solid 

surface.23, 24 Along with the development of vacuum systems and mass analyzers, 

SIMS became a more mature technique after 1970s when a series of studies on 

SIMS were conducted in the field.25 By sputtering the sample surface with a 

primary ion beam (e.g. He+, Ne+, C60+), secondary ions can be generated at the site 

of the bombardment and can be detected by the coupled mass analyzer and detector. 

The spatial resolution of SIMS can be as high as nanometer level with a proper 

focus of the primary ion beam, but the usage of SIMS on biological samples is so 

far hindered by the hard ionization causing fragmentation and thus difficulty in 

finding the nominal mass of the parent ion species. 
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Figure 1-1 Schematic diagram of SIMS 

 

1.2.1.2. Matrix-assisted Laser Desorption/Ionization (MALDI) 

Matrix-assisted Laser Desorption/Ionization (MALDI) is nowadays one of the most 

popular vacuum-based ionization methods  due to its high sensitivity and 

biocompatibility as a soft ionization technique.26, 27 With MALDI, specific matrix 

molecules must be applied onto the sample surface prior to the experiment, which 

absorb energy from the laser beam and transfer the energy to other species for 

ionization. Depending on the specific target of the studies, pipelines with different 

matrices molecules have been established, such as 2,4,6-trihydroxyacetophenone 

(THAP) for lipids and α-Cyano-4-hydroxycinnamic acid (HCCA) for peptides.26 
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Figure 1-2 Schematic diagram of MALDI 

 

1.2.2. Ambient method 

1.2.2.1. Electrospray ionization (ESI) 

Electrospray ionization (ESI) is another commonly used technique in mass 

spectrometry, which was first reported in 1968 by Malcolm Dole28 It was later 

applied to biological macromolecules by John Bennett Fenn, who was awarded the 

Nobel Prize in Chemistry in 2002 for this contribution.29 Despite the broad use of 

ESI, the theoretical basis of the ESI mechanism is yet to be fully determined. In the 

most accepted theory, the presence of high voltage and assistance of nebulizing gas 

prompted the sprayed, charged solvent droplets fragment into multiple smaller 

droplets due to overwhelming electrostatic repulsion against the surface tension. As 
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the fragmentation process repeats, the droplet degrades steadily until a mist of 

electrospray is formed.30, 31   

 

Figure 1-3 Schematic diagram of ESI 

 

1.2.2.2. Desorption electrospray ionization (DESI) 

Desorption electrospray ionization (DESI), which is the first type of MS technique 

for surface analysis in ambient environment, was developed by Graham Cooks’ 

group.32 In the DESI ionization process, an electrospray is generated to spray 

charged solvent droplets onto the surface of the sample, resulting in the transfer of 

energy and desorption of ionizable species from the sample.33, 34 
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Figure 1-4 Schematic diagram of DESI 

 

1.2.2.3. Laser ablation electrospray ionization (LAESI) 

Laser ablation electrospray ionization (LAESI) is an ambient ionization technique 

developed in the Akos Vertes lab in 2007.35 In the process of LAESI, analyte 

species blazed on the sample plane undergo desorption and get released into the air, 

then mixed, ionized, and carried to the MS inlet by the mist of electrospray flows 

over the sample surface.  
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Figure 1-5 Schematic diagram of LAESI 

 

1.2.2.4. Nano desorption electrospray ionization (Nano-DESI) 

Nano desorption electrospray ionization (Nano-DESI) is a liquid-extraction based 

ionization method for surface sampling developed by the Julia Laskin group in 

2010.36, 37 Briefly, solvent flows through two connected capillaries and forms a 

liquid bridge at the junction between the two capillaries, where analytes from the 

surface are extracted and delivered to the MS inlet by the secondary capillary.  

 

Figure 1-6 Schematic diagram of Nano-DESI 
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1.2.2.5. Single-probe 

The Single-probe is a homemade micro-sampling device developed in the Zhibo 

Yang group in 2014.38 The Single-probe consists of a laser-pulled dual-bore quartz 

tip and two capillaries (I.e., one is capillary providing solvent and the other one is 

a nano-ESI emitter) inserted into the two bores of the dual-bore quartz tip. Liquid 

junction for analyte extraction forms at the sharp tip of the probe, which can be as 

small as ~9-10 μm to sample a specific single cell or a pixel on the plane.38, 39 

 

Figure 1-7 Schematic diagram of the Single-probe 

Pan, N.; Rao, W.; Kothapalli, N. R.; Liu, R.; Burgett, A. W. G.; Yang, Z. Analytical 

Chemistry 2014, 86 (19), 9376-9380. 
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1.3. Categories of sampling methods 

According to the actual experimental setup, sampling of analyte could take place 

either before or during the ionization process. Spatial information is provided 

during ionization when the ionization process is guided with focused laser, ion 

beam, ion spray, or physical junction at designated spot.39-43 While the ionization 

process does not provide any spatial information, special sampling strategies can 

be adopted to separate the analytes at different pixels or from different cells. 

 

1.3.1. Sampling during ionization 

SIMS, MALDI, DESI, LAESI, Nano-DESI and Single-probe are ionization 

methods that have capabilities to sample from a specific spot with guidance from 

focused ion beam, laser, electrospray, or physical tips of capillaries or probes. 

 

1.3.2. Sampling before ionization 

Although numerous ionization methods can provide spatial information during the 

occurrence of ionization, those methods may not work well for the actual system 

under study or match the original equipment of the laboratory. An additional 

sampling could be performed prior to the ionization process. For example, Single 

Cell Printer technology with Liquid Vortex Capture mass spectrometry (SCP-LVC-
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MS) couples Single Cell Printer, a fluidic-based single cell separation device, 

followed by Liquid Vortex Capture and then electrospray ionization.44 The Nonami 

group fabricated cell pressure probe with a sharp tip as 3-5 micrometers for 

sampling from a specific cell on a non-even sample surface, without cell separation, 

fixation, or sectioning as sample preparation.45 The probe containing analyte could 

be relocated for injection towards mass spectrometer using electrospray ionization.  

 

1.4. Applications 

With the label-free and non-specific nature of mass spectrometry, different 

applications have been established in multiple fields depending upon the target 

study. For bioanalytical assays, the target for MS studies falls on two major 

categories: metabolites and proteins. 

 

1.4.1. Application in metabolomics 

In the field of mass spectrometry, metabolites usually refer to small molecules 

(<1500 Da in molecular weight) that are intermediate or end product of 

metabolism.46 Compared with proteins, which have amino acid backbones, the 

analysis of metabolomics is usually complicated by a large number of potential 

candidates, which may render similar or even identical m/z values, in MS1 and 
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complex fragmentation patterns in MS2 measurements due to the variety in the 

nature of the sample, complexity of treatment, and experimental conditions.47, 48 

Large amoutns of SCMS metabolomics studies have been reported. For example, 

Yin et al. performed electroosmotic extraction with a custom-built sampling 

platform to study the abundance of flavonoids and glucose in Allium cepa cells.49 

Another micro-sampling device, the Single-probe, was applied on HCT-116 and 

HeLa cell lines to study the metabolomic change under irinotecan treatment.50 

 

1.4.2. Application in proteomics 

Protein is one of the basic building blocks for cells, tissues, and organs.1 Despite 

the limited possibility of amino acid residues that composes the smallest unit of a 

protein, post translational modifications (PTMs) are commonly found in in vivo 

samples, which increase the complexity and diversity of protein structure by 

introducing different proteoforms.51 Bogdan et al. developed Single Cell 

ProtEomics by Mass Spectrometry (SCoPE-MS) system in 2018 to study the 

relationship between mRNA and protein levels in single mammalian cells, followed 

by the upgraded version SCoPE2 in 2021.52, 53  
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1.5. Currently methods and published tools for MS data analysis 

Different software packages have been built to handle MS data, including large 

applications designed for multiple purposes such as MZmine21, 54, 55, or a specific 

function for a certain step in the whole workflow such as imzMLConverter.56 Given 

numerous options (e.g., whether chromatographic separation is included in the 

experiment, whether the acquired spectra is based upon profile or centroid, whether 

the analysis is targeted or untargeted, whether the analytes are protein or small 

molecules, and other options that may be unique to actual experimental setup), it is 

impossible to summarize and present a universal data analysis workflow for all 

types of MS experiments. However, as the general purpose of mass spectrometry 

measurements are essentially the same, strategies including noise filter, peak fitting, 

background removal, signal normalization, peak alignment, structural identification 

are commonly used.57, 58 A few examples of currently published/commercialized 

software for MS data analysis are listed here. 

 

1.5.1. Liquid chromatography tandem mass spectrometry data analysis 

Liquid chromatography–mass spectrometry (LC/MS) is a widely used method in 

analytical chemistry.59 It combines the capability of chromatographic separation 

with the powerful detection of mass spectrometry. The separation of analytes 

converts complicated mixtures into individual components, thus significantly 
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reduces the difficulty in analysis. OpenMS is an open-source LC/MS data analysis 

framework based on C++ and Python.60 Functions including file handling, signal 

processing, identification and quantification were made available in the TOPP (The 

OpenMS Proteomics Pipeline).61 XCMS is another open-source software available 

online designed for LC/MS-based data analysis which brings up an advantage as 

nonlinear retention time correction for LC/MS peaks.20, 62 

 

1.5.2. Mass spectrometry imaging data analysis 

MSI, which is introduced in Section 1.1, is another emerging field under rapid 

growth with an urgent need for the development of analysis packages for data 

processing and visualization. MSI QuickView is a software that generates 2D ion 

images with RAW data without prior format conversion, which significantly 

increases the efficiency for MSI data processing.63 Cardinal is another package built 

in R for MSI data analysis, with a unique unsupervised image segmentation method 

named spatial shrunken centroids.64, 65 

 

1.5.3. Structural identification 

After MS data is generated and treated, connections must be made between the 

processed peaks and actual chemical substances before answers to biological 
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questions can be obtained. To identify the structure of peaks detected, two different 

strategies are commonly adopted. Based upon the m/z values of the precursor and 

fragment ions, the potential structures of the original compound can be derived for 

identification. In the field of proteomics, this method for identifying peptide 

sequence is called de novo sequencing with numerous published tools including 

PEAKS, PepNovo, and NovoHMM.66-68 The other strategy is searching through the 

queries for the known substance in the database that matches best with the observed 

features. Mascot and MaxQuant are two examples of popular protein database 

search software packages.22, 69 Besides proteomics usages, there are also databases 

for metabolomics studies such as METLIN and Human Metabolome Database 

(HMDB).46, 70 Hybrid methods such as PEAKS DB and machine learning assisted 

method have also been studied to further improve the efficiency of structural 

identification.71, 72 
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Chapter 2 State-of-Art Quantitative Single Cell Mass 

Spectrometry on Small Molecules 

 

Section 2.3 of this chapter is included in a review manuscript with Yunpeng Lan 

(co-1st author) and Dr. Zhibo Yang, which is currently under review. 

 

2.1. Abstract 

To better understand the current state-of-art of quantitative single cell mass 

spectrometry (SCMS) methods adopted on small molecules, we collected 

information in multiple papers and summarized the methods for each study to learn 

how each group is handling the quantitation task differently. Methods extracted 

from different papers are described first, followed by discussion on how the 

methods can affect the data analysis process of SCMS data. 

 

2.2. Introduction 

In the field of mass spectrometry, so-called “bulk analysis” has been the golden 

standard for biological sample analysis with LC-MS as a routine tool for its label-

free nature, high sensitivity, wide applicability, capability of quantitation and high 
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reproducibility. However, traditional bulk analysis has its limitations and 

shortcomings in many different aspects. SCMS results generated from individual 

single cells can provide insights into cell heterogeneity, which is an important 

concept that leads to more detailed pictures and reasonable explanations of 

biological activities. However, limited by the analyte amount of SCMS, strategies 

adopted in traditional bulk analysis such as LC-MS or GC-MS can hardly be 

directly applied, especially when the system was coupled with a sophisticated 

sampling device for single cell isolation. Numerous efforts have also been made to 

obtain quantitative information for chemical substances instead of only qualitative 

analysis. Not only the detail numbers can provide more information and help us 

catch subtle chemical profile differences, but also give us more understanding on 

subpopulations within a certain group, which provides more biological information, 

especially in comparison studies for marker discovery, disease pathogenesis, and 

drug metabolism studies. Especially for certain applications and diseases, 

significant changes, or patterns in the abundance of chemical species were enough 

to draw conclusions for diagnosis or other purposes. Despite the rich information 

from quantitative analysis, there has been increased difficulty compared with 

qualitative analysis due to higher requirement for sensitivity, system stability, and 

introduction of standard. Hereby we introduce a collection of quantitative SCMS 

studies based upon their normalization strategies, followed by summary and 

discussions. 



25 

 

 

2.3. Quantitative SCMS examples 

2.3.1. Relative quantification without internal standard 

Zhang et al. have coupled two different methods, droplet extraction and pulsed 

direct current electrospray ionization (pico-ESI) together, for single-cell analysis.1 

In situ single-cell analysis usually has the cell samples submerged in culture 

medium, which introduces a severe matrix effect interfering with MS detection at 

the single-cell level. Droplet extraction is a probe-based sampling method which is 

capable of minimizing the matrix effect of MS detection.2 Cells were first washed 

with cold washing solution to remove culture medium, and the biochemical 

reactions in cells were weakened. A vacuum drying oven was used to dry the 

washed cells and localize cell contents on the surface of the cell culture dish. An 

emitter tip was used to soak the dried cells with extraction solvent, suck the extracts, 

and deliver to MS with the assisted solvent. During the ionization process, pico-

ESI was adopted by connecting a DC electrode at the rear of the emitter. With the 

pulsed voltage applied onto the electrode and careful tuning, pulsed electrospray 

was established as pico-ESI.3 The extended ion signal duration (up to 100 times) 

allowed for acquiring more MS2 spectra for molecular identification.  
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Figure 2-1 Schematic diagram of droplet extraction and pico-ESI.  

Zhang, X.-C.; Zang, Q.; Zhao, H.; Ma, X.; Pan, X.; Feng, J.; Zhang, S.; Zhang, R.; 

Abliz, Z.; Zhang, X. Analytical chemistry 2018, 90 (16), 9897-9903. 

 

The stability of this method was tested using glucose and isotopically labelled 

glucose prior to studying human glioblastoma cell line (A172) and normal human 

astrocyte cell (HA) lines. Experimental results indicated that these two cell lines 

were differentiated on the PCA plot, with glioblastoma cells associated with a 

higher degree of PC desaturation. A potential biomarker for the cancer cell line, 

PE(20:1), was also identified in MS2 spectra. In addition, m/z 508.3398 was 
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identified as PC(17:1) in A172 cell line only, whereas this peak was contributed 

from two isobaric ions, PC(17:1) and PE(20:1), in HA cells.  

Nakashima et al. conducted single-cell metabolites’ profiling using the pressure 

probe electrospray ionization-mass spectrometry (IEC-PPESI-MS).4 The cell 

pressure probe was originally developed to measure cellular properties, including 

turgor pressure and cell volume, of plant cells. The cell pressure probe has a sharp 

tip (3-5 µm), which is pre-filled with silicone oil, for precise sampling from a 

specific single cell. Using a microscope, images of tip geometry and position 

changes of meniscus, which is between the cell sap and silicone oil inside the tip, 

were captured to calculate sample volumes. Coupled to a mass spectrometer, a 

titanium wire electrode was inserted into the quartz capillary tip for ionization and 

detection of cellular analytes. 
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Figure 2-2 Experimental setup of IEC-PPESI-MS.  

Nakashima, T.; Wada, H.; Morita, S.; Erra-Balsells, R.; Hiraoka, K.; Nonami, H. 

Analytical Chemistry 2016, 88 (6), 3049-3057. 

 

In this study, the pressure probe was used to sample a small amount of sap directly 

from stalk cells of tomato cultivar “Micro-tom”.  As the volume extracted from 

each cell is very small, adjacent cells can be analyzed in one batch. The lower limit 

of detection of several standard metabolites was reported as femtomole level, with 

a higher sensitivity in the negative ion mode due to lower background peaks. For 
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example, the lower limit of detection of ascorbic acid was dropped down to 1 and 

0.01 femtomoles for positive and negative ion mode, respectively. Compared with 

the design with an external electrode, the one with an internal electrode increased 

the detection sensitivity of ascorbic acid by 32000 and 4000 times under the 

positive and negative ion modes, respectively. Differences in metabolite 

composition of cells from different trichomes were discovered, especially in 

flavonoids and acyl sugars. Molecular compositions were quantified based on 

relative peak intensity. 

Abouleila et al. conducted live SCMS analyses of circulating tumor cells (CTC).5 

CTCs are considered to be directly related to cancer metastasis, and studies of this 

type of rare cells are crucial for cancer diagnosis and treatment. Blood samples from 

gastric cancer (GC) and colorectal cancer (CRC) patients were collected for single 

cell analysis. Red blood cells were first removed from the blood samples with red 

blood cells lysis buffer. The remaining cells, including CTCs and lymphocytes, 

were isolated by the ClearCell FX system prior to being transferred to an imaging 

petri dish. Cells are separated through Dean Flow Fractionation in curved channels. 

Separated single cells were then picked up by nanospray tips under a microscope 

and then kept in –80 °C environment until subsequential metabolite extraction and 

MS analysis. PCA-DA (principal component analysis followed by discriminant 

analysis) of MS data was carried out, and the results indicated clear separations 

between different cell types. 155 different species showed significant differences 
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between CTCs and lymphocytes (with log2-fold change > 1 and p < 0.05). Among 

these 155 species, acylcarnitine metabolites, sterol lipids, and eicosanoids were 

more abundant in CRC, whereas glycerophospholipids showed higher abundances 

in GC CTCs.  

 

2.3.2. Relative quantification with internal standards 

The Masujima group coupled 3D holographic and tomographic (HT) laser 

microscopy with live single-cell mass spectrometry to obtain mass spectra with 3D 

spatial resolution.6 In their studies, human hepatocellular carcinoma cells (HepG2) 

were placed under the HT laser microscope. With a micromanipulator, a small 

volume of cytoplasm was extracted using a nanospray tip. The extraction volume 

was estimated according to the refractive index change in HT microscopy images 

captured from different angles. The spatial information of the extract was also 

monitored using the HT microscope. The nanospray tip was then coupled to an 

Orbitrap Velos Pro mass spectrometer for analysis. To quantify one of the detected 

species, methionine sulfoxide, a stable isotopically labeled internal standard, L-

histidine-15N3, was added in the ionization solvent. The trapped volume in each 

measurement was estimated at around 1 pL ± 11 aL. Using a calibration curve, the 

concentration of methionine sulfoxide in the extract was estimated as 5.1 pmol/mL. 
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The Nonami group has also used the cell pressure probe for MS studies of tulip 

cells.7 In this particular study, the pressure probe was coupled with an external 

electrode to apply high voltage to the analyte for electrospray ionization. A number 

of species (e.g., sugars, amino acids, vitamins, fatty acids, and secondary 

metabolites) were detected from different types of tulip cells. Particularly, 

metabolites related to the Krebs cycle were investigated in more detail. To obtain 

more accurate concentrations of the substances, mannitol was added in the cell sap 

as the internal standard, and the relative abundances of other species were compared 

by normalizing their peak intensities to potassiated mannitol. 

Kertesz group combined single-cell printer technology with liquid vortex capture 

mass spectrometry (SCP-LVC-MS) for quantitative single-cell analysis.8 The 

isolated droplets containing only one cell were selected by SCP and then captured 

by the LVC probe. At the upper surface, the dropped cells were mixed with a 

solvent that causes cell rupture due to osmotic pressure.9 Cell contents were 

released and transported towards the mass spectrometer for ionization within 

several seconds.  
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Figure 2-3 SCP-LVC-MS system with zoomed view at SCP-LVC interface.  

Cahill, J. F.; Riba, J.; Kertesz, V. Analytical chemistry 2019, 91 (9), 6118-6126. 

 

 

LVC has the potential to be coupled with different liquid-based ionization methods, 

and ESI has been adopted in this study. With this sampling method, a high 

throughput (>20 cells/minute) analysis has been achieved. For normalization, 1 nM 

of diacylglyceryltrimethylhomo-Ser(32:0) (DGTS(32:0)), a lipid not detected in 

single cells but shares great structural similarity with DGTS class lipids in cells, 

was added into the LVC solvent as the internal standard. The system was tested 
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using three different types of cells: Euglena gracilis (EuGr), Chlamydomonas 

reinhardtii (ChRe), and Hela cells. Untargeted chemical profiling was performed, 

and the difference in chemical compositions was clearly observed among three 

different types of cells, allowing for a rapid classification of cell types based upon 

specific lipids. Quantification of lipids in ChRe cells under nutrient deprivation 

treatment was performed, and it was discovered that nutrient conditions affected 

the abundances of DGTS(34:4), DGTS(34:3), DGTS(38:4), MGDG(34:7), 

pheophytin a, and chlorophyll a. 

 

2.3.3. Absolute quantification with internal standards 

Yin et al. developed a method using precise electroosmotic extraction for 

quantitative single-cell analysis.10 The electroosmotic extraction was performed 

with a custom-built platform combined with two electrodes and one pulled sharp 

nanopipette. 



34 

 

 

Figure 2-4 Schematic workflow of electroosmotic extraction.  

Yin, R.; Prabhakaran, V.; Laskin, J. Analytical chemistry 2018, 90 (13), 7937-7945. 

 

Extracted volume was measured using images acquired by a high-resolution 

microscope. To perform quantitative analysis, 40 pL of 2 mM glucose-d2 solution 

(the internal standard) was also extracted by the device after the extraction of 

cytoplasm from Allium cepa cells. The nanopipette was then transferred to a mass 

spectrometer and used as a nanoESI emitter for MS analysis. More than 50 
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metabolites, including four flavonoids that were not previously reported, were 

detected from the 2-5 picolitres of extracted cytoplasm in the positive ion mode. 

Intensities of glucose and glucose-d2 were found to be well-correlated with their 

concentrations. It was discovered that, compared with other in situ SCMS analysis 

without separation, separation of compounds due to the mixing of water and 

hydrophobic electrolyte alleviated signal suppression. 

Pedro and Rudewicz quantified the drug amiodarone (AMIO) and its metabolite, 

N-desethylamiodarone (NDEA), in single liver HepG2 and HepaRG cells.11 In 

these studies, live cell 3D confocal microscopy imaging was coupled with high-

resolution MS. To visualize different cellular components, cells were stained with 

three different fluorescent dyes: HCS LipidTOX Red phospholipidosis detection 

reagent (for phospholipids), Hoechst 33342 (for nucleus), and CellTracker Green 

CMFDA (for cytoplasm). A Yokogawa single-cell sampling system was used for 

whole-cell sampling. With the fluorescence label, cells ruptured during the 

sampling process could be easily ruled out. Each intact cell was isolated under the 

guidance of the confocal microscope, sucked into a platinum-coated glass tip (10 

µm ID), completely lysed by methanol and water, dried by a heating block (70-

95 °C), redissolved by methanol/water containing the internal standard (AMIO-D4 

and NDEA-D4) with a known concentration, and then sprayed into the mass 

spectrometer. Calibration curves were established using a series of solutions of 

AMIO and NDEA containing their internal standards (AMIO-D4 and NDEA-D4) 
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at different concentrations. The volume of each cell was measured from sliced 

images using the 3D fluorescence confocal microscope. Concentrations of AMIO 

and NDEA in each cell were determined using the external calibration curve, 

amounts of AMIO and NDEA in each cell, and the volume of the analyzed cells. 

Using the interquartile range method, outliers were excluded from statistical 

analysis. 38 HepG2 cells and 31 HepaRG cells were analyzed to determine their 

intracellular AMIO and NDEA concentrations. NDEA concentration was found to 

be positively correlated with AMIO concentration in both types of cells, and a 

higher conversion ratio from AMIO to NDEA was found in HepaRG cells 

compared with HepG2 cells. Morphological changes were also studied in terms of 

the shape and volume of cells, phospholipid droplets, and nucleus. 

The Yang group developed the Single-probe quantitative SCMS methods to 

determine the amounts and concentrations of intracellular drug compounds in 

single cells.12, 13 The unique design of the Single-probe allows for flexible adoptions 

of sampling solutions with different compositions. 

In these quantitative SCMS experiments, the internal standard (e.g., an isotopically 

labeled drug compound) with a known concentration was added in the sampling 

solution (e.g., acetonitrile or methanol/water). Both the target molecules (e.g., 

intracellular drug compounds) and their internal standard were simultaneously 

detected by MS. To measure the drug amount in adherent cells, a glass chip 
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containing microwells (diameter: 55 µm; depth: 25 µm) was used as a substrate in 

cell culture and drug treatment. The Single-probe was used to analyze single cells 

located inside individual wells, which minimized the diffusion loss of both 

intracellular drug and internal standard molecules during experiments. In these 

studies, HCT-116 and HeLa cell lines were used as models and treated by irinotecan 

with a series of treatment times and concentrations. The intracellular amounts of 

irinotecan were determined based on its peak areas relative to the internal standard 

(irinotecan-d10), the concentration of irinotecan-d10, flowrate of sampling solution, 

and data acquisition time. Comparative LC/MS studies were performed, and the 

results indicated that LC/MS experiments resulted in lower drug uptake, likely due 

to drug loss during sample preparation. To measure intracellular drug 

concentrations, the Single-probe SCMS setup was coupled with an integrated cell 

manipulation platform. T24 and K562 cells were treated by gemcitabine, rinsed by 

PBS, and resuspended in PBS. A single cell was captured by a cell-selection probe 

through a gentle suction from a connected microinjector, and the captured cell was 

transferred to the tip of the Single-probe by moving the manipulation platform. The 

single cell underwent a rapid lysis in the sampling solution containing the internal 

standard (13C,15N-labeled gemcitabine), followed by immediate MS analysis. The 

intracellular gemcitabine concentration in a single cell was determined from the 

measured drug amount, using the similar method as described above, and the cell 
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volume, which was measured using an inverted microscopy during single cell 

selection. 

Circulating tumor cells (CTCs) have also been studied by Zhang et al.14 Suspended 

CTCs were sampled with nanocapillaries and microcapillary holder with Ag/AgCl 

wire inserted for electro-osmotic extraction of cellular contents. In order to perform 

ease-to-use volumetric measurement during real sample analysis, experiments were 

conducted using a microscope to monitor the relationship between volume sucked 

into the tip and the electro-osmotic extration parameters (i.e., time and voltage). A 

linear relationship was found between extraction voltage and volume, and the 

combination of -2 V and 40 seconds was selected to acquire an extraction volume 

of ~120 fL. Two pairs of colorectal cancer cell lines were selected with different 

metastatic ability. Cell lysates were analyzed using LC-MS to screen meaningful 

metabolites. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway 

analysis was carried out, and 14 metabolites from six different pathways were 

selected as the target analytes for the next-step single cell analysis. Isotopically 

labeled compounds were added as internal standards for quantification. With the 

observed cell heterogeneity and 11 quantified target metabolites, an unsupervised 

non-negative matrix factorization machine learning algorithm was adopted for 

clustering, and a 4-metabolite fingerprint classifier was built to divide CTCs into 

groups with different metastatic potentials. 
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2.3.4. Absolute quantification with standard addition 

Rubakhin et al. used MALDI-MS for quantitative analysis of signaling peptides 

(SPs) in single neurons.15 Neurons in the central nervous system contain highly 

varied abundances of SPs, which are critical for decoding brain functions. In these 

studies, tissues were harvested from Aplysia californica, and individual neurons 

were surgically isolated under a microscope. Single neurons were then dried on the 

sample plate and isotopically labeled with succinic anhydride or iTRAQ (isobaric 

tags for relative and absolute quantitation) for MALDI-MS studies for relative 

quantifications of SPs such as cerebrin and Cβ peptides. In addition, absolute 

quantification of cerebrin was performed with standard addition. Briefly, the same 

spot is consecutively spiked with known amounts of cerebrin and re-analyzed after 

each addition. Each MALDI sampling process consumes a limited portion of the 

analyte, allowing for standard addition method for the same sample. The 

consistency of the signal from angiotensin I, which was added as an internal 

standard in the first step of sample preparation, validated the non-destructive nature 

of the sampling process. This is a very sensitive technique with a reported limit of 

detection and limit of quantification as 19 and 64 fmol, respectively. The 

experimental results indicated that an average of 230 fmol of cerebin were detected 
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in the F- and C-clusters compared with 700 fmol in ULAB nerves, which are in 

good agreement with the succinic anhydride labeling approach. 

 

2.4. Results and discussion 

Among the literature introduced above, four major categories based upon 

normalization strategies were listed including relative quantification without 

standard, relative quantification with internal standard, absolute quantification with 

internal standard, and absolute quantification with standard addition. When 

absolute quantification is being conducted, the standard compound must be an 

isotopically labelled version of the target analyte. Any differences in the chemical 

structure can possibly cause changes in ionization efficiency and thus lead to biased 

quantification result. For relative quantification, there is much more flexibility in 

the selection of standard compounds. 

Different strategies have been applied for the identification of compounds in the 

samples. As the amount of analyte from individual single cells is highly limited, 

one is to mix a group of cells, while the other is to extend the signal duration of MS 

detection. However, given that MS/MS is not always available and reproducible, 

database matching is still the most popular method given by the limitation of single 

cell analysis. 
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2.5. Conclusion 

Various methods for quantitative single cell mass spectrometry on small molecules 

are introduced and discussed in this chapter. From the summary, the workflow of 

single cell separation, mass spectrometry analysis, followed by data analysis can be 

a stereotype of the whole quantitative single cell mass spectrometry workflow. 

Given that MS/MS analysis is usually not available due to the limitation of 

experimental setup and low sample amount from individual cells, structural 

identification based upon MS1 database matching, which is the current dominating 

method, makes accurate mass detection and alignment a key factor towards 

efficient data mining and analysis, which is going to be the main topic for chapter 

5.  
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Chapter 3 Special Sample Preparation for Mass Spectrometry 

Imaging Study: Retina, Breast, and Spheroids 

 

This chapter involves three unpublished collaborative projects. The retina project 

was a collaboration with Dr. Pengchun Yu’s group in Oklahoma Medical Research 

Foundation. After the sacrifice of mice and harvest of retina by Fei Han in the Yu 

group, the remaining work (cryo-sectioning, microscopy imaging, mass 

spectrometry) was conducted by me. The breast project was a collaboration with 

Dr. Zoran Gatalica in University of Oklahoma Health Sciences Center, where the 

breast biopsy was conducted. After that, cryo-sectioning, microscopy imaging, and 

mass spectrometry experiments were carried out by me. The spheroid project was 

a collaboration with Zongkai Peng in Dr. Zhibo Yang’s group. Cell culture, 

spheroid culture, drug resistance induction and fluorescence imaging were jointly 

performed by me and Zongkai Peng. Cryo-section was carried out by me. 

 

3.1. Abstract 

As mass spectrometry imaging has become an emerging field of study, different 

samples were brought into the sight of researchers, including untypical samples that 

could be hardly treated with traditional MSI sample preparation methods due to 
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their physical properties. In this chapter, the MSI preparation for three main types 

of samples will be discussed, including in vivo samples such as mice retina, patient 

breast, and in vitro samples such as cancer cell spheroids. 

 

3.2. Introduction 

After the concept of mass spectrometry imaging has been introduced, different 

applications have been established on brain, liver, kidney tissues. A standard 

workflow has been established with embedding and snap freeze, which is widely 

applicable to many other types of tissues including heart and lung, sharing similar 

physical property. However, as the spatial resolution of mass spectrometry imaging 

has been pushed towards higher limits, different objects with all kinds of purposes 

have been brought up. Three specific samples will be discussed in this chapter. 

Diabetic retinopathy is a common eye complication in diabetes patients.1 

Angiogenesis was found in the development of diabetic retinopathy, which leads to 

loss of vision and eventually blindness.2 Despite the symptoms themselves being 

unlethal, the harmfulness is obvious and lifelong without available treatment to 

reverse or cure. Given the estimation that 9.60 million diabetic retinopathy cases 

were found among 36.32 million diabetes patients in the United States in 2021, 

there is an urge to better understand the development of this disease and to provide 

precautious treatment.3 To better study the growth of blood vessels in retina, mice 
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were sacrificed when the blood vessel network in retina was still under 

development to capture the profile on the retinal surface.4 

 

 

Figure 3-1 Development of mice retinal vasculature 

Fruttiger, M. Angiogenesis 2007, 10 (2), 77-88. 

 

Breast cancer is the second most common cancer among women in the United 

States with nearly a quarter million new cases in 2020.5 Metastasis can take place 

through blood vessels and lymphatic vessels in breast cancer patients, which 

increases the severeness of breast cancer.6 There have been multiple different types 

of breast cancer. For example, triple-negative breast cancer (TNBC) is a type of 

breast cancer where the cancer cells do not have estrogen receptors, progesterone 

receptors, or overexpressed HER2 protein, and invasive ductal carcinoma is the 
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type of breast cancer which begins in the duct region and then spreads into other 

parts of the breast tissue.7 Despite the diverse characteristics of different kinds of 

breast cancer, their specific chemical profile has not been thoroughly investigated 

yet.  

Spheroid is a three-dimensional cell culture model which mimics the in vivo status 

of cells in patient bodies under in vitro culture conditions.8 Compared with 

traditional cell cultures which spread over a plane and become homogenous across 

the surface, the spheroid has 3D scaffolds that are highly similar with in vivo tumors, 

providing cell heterogeneity induced due to the radial variation, thus can serve as a 

better in vitro model for cancer studies including tumor development and drug 

exposure.9 

 

3.3. Methods 

3.3.1. Retina sample treatment 

Retina was carefully taken from eyeball harvested from mice right after sacrifice 

under a microscope and then immersed in 1x PBS to prevent possible morphology 

change due to dehydration. Cut was made onto the curved retinal surface to expand 

onto a flat surface formed by hydroxypropyl methylcellulose (HPMC) prior to cryo-

sectioning.10 Slides were taken for fluorescence imaging to locate the exact location 

of the transparent blood vessel cells under growth without blood cells. This was a 
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collaborative project with Pengchun Yu group in Oklahoma Medical Research 

Foundation and all mice protocols were approved by the relevant Institutional 

Animal Care and Use Committee. 

 

3.3.2. Breast sample treatment 

Breast tissue was obtained with surgical biopsy from patients followed by 

immediate storage in formalin solution for 24 hours for fixation purpose. The fixed 

tissue was taken from the fixative and rinsed with PBS, then embedded in HPMC 

for cryo-sectioning. All protocols were approved by OUHSC Institutional Review 

Board. 

 

3.3.3. Spheroid sample treatment 

Cancer cell spheroids were cultured using an established protocol in Yang group.10 

An adhesive human colorectal cancer cell line, HCT-116 was used. Cells were 

cultured in McCoy’s 5A culture media with 10% FBS and 1% Pen Strep, incubated 

in 5% CO2 and 37 °C in an incubator for growth prior to spheroid seeding. For co-

culture spheroid samples, irinotecan (IR)-resistant HCT-116 cell line was 

developed by culturing wild type HCT 116 cells in irinotecan-rich culture medium. 

For differentiation, IR-resistant cell line was labeled with GFP (Green Fluorescence 
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Protein).  Before seeding, the container for cancer cell spheroid formation must be 

specially treated to prevent cells from attaching to the container wall instead of each 

other. U-shape 96 well plates were selected and coated with gel formed from 1.7% 

agarose dissolved in basal medium. The first part of the seeding process was same 

as regular passaging of cells, including rinsing with PBS, trypsinization at 0.25% 

concentration, and trypsin deactivation with complete culture media. Next, a sip of 

the homogenized cell suspension was sampled and placed onto a hemacytometer to 

calculate the density of cells in the suspension. Each well of the 96-well plate was 

seeded with a total of about 10,000 – 12,000 cells with 200 µL complete cell growth 

medium, with 1:1 ratio between wild type cell line and IR-resistant cell line when 

seeding co-cultured spheroids. Medium was replaced every two days for spheroid 

formation and growth prior to harvesting. Harvested spheroids were first rinsed in 

PBS and then fixed with different fixatives of different choices, including formalin 

and glutaraldehyde, followed by embedding in 10% HPMC for cryo-sectioning at 

-20 °C. 

 

3.4. Results and discussion 

3.4.1. Retina sample results 

Although mass spectrometry imaging has been conducted on retina samples in a 

perpendicular direction before, scanning in a parallel direction has not been 
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performed. As the blood vessels develop on the topmost layer of the retinal surface 

only, the result is extremely sensitive to the orientation of the sectioning process. 

As validation with other methods were not available due to the thickness of the 

region of interest in retinal surface, this project was discontinued. 

 

3.4.2. Breast sample results 

The major component of the breast tissue sample obtained was adipose, which was 

extremely soft. Unlike other common tissue samples for MSI studies that could be 

sectioned at -20 °C, breast tissue sample was not solidified as expected, thus cryo-

section could not be performed as shapeshift was brought to the tissue when the 

touched by the blade. To increase the mechanical strength of the breast tissue, two 

methods were adopted including decreasing the cryo-section temperature and 

increasing the thickness of sectioning. Despite the increased mechanical strength 

of the breast tissue after the parameters were tuned, neither method could grant 

satisfactory sectioning condition individually. After the cryo-sectioning 

temperature reached -35 °C and the thickness of slides was increased to 40 µm, 

breast section was able to be made by the microtome blade. However, when the 

breast section was attached to a room temperature microscope slide, part of the 

tissue melted immediately under room temperature as the figure shows below. 
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Figure 3-2 Microscopy image of breast tissue section mounted on a 

microscope slide 

 

Although part of the tissue remained intact as required, most of the tissue underwent 

shapeshift and delocalized, creating an uneven surface which was not compatible 

with MSI. The fusion of fat significantly damaged the original morphology of 

sectioned tissue. To explore the possibility of handling the situation, two methods 
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were adopted. First, as the breast tissue was not melted on the cryo-stat blade, 

attempts were made to keep both the tissue and the microscope slide at low 

temperature to prevent thawing. However, the tissue was unable to attach firmly 

due to the lack of temperature difference. As the rise in temperature could not be 

avoided due to the ambient environment of imaging experiments, another method 

was adopted by using absorbent TLC plate instead of regular glass slides. 

 

Figure 3-3 Microscope image of breast tissue section on a TLC plate 
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As shown in the microscope image above, the TLC plate solved the melting 

problem caused by the adipose tissue in the breast sample. However, absorbent 

material of the TLC plate brought new concern for MSI analysis. First, the 

smoothness of the TLC plate surface was not guaranteed, whereas height is one of 

the most sensitive parameters in MSI experiments. Change in the sampling height 

could result in an intensity drop or even absence of signal when the change was too 

obvious. Second, the solid particles coated on the TLC plate could be released into 

the air and be absorbed by the vacuum of mass spectrometers, which might 

potentially deal severe damage to the MS instrument. Third, the strong binding 

affinity of breast tissue towards the absorbent plate is much stronger than a regular 

glass slide, thus the performance of liquid-extraction based methods should be 

limited. With all the concerns above, the project was not continued. 

 

3.4.3. Spheroid sample results 

Co-culture spheroid was successfully grown and harvested with a similar protocol 

as mono-culture spheroid with the modification of seeding. Collected spheroids 

were successfully sectioned with desired thickness under regular conditions at -

20 °C. To distinguish two types of HCT cells forming the co-culture spheroid, GFP-

labeled HCT-116 cell line was adopted with differentiation between two cell lines 

using fluorescence. However, the fluorescence quickly quenched after collected 



54 

 

spheroids underwent cryo-section, which took them over 60 minutes out of their 

native growth environment on average before the fluorescence microscopy 

measurement. Fluorescence signal was found to be significantly decreased, thus 

unable to be used as a criterion for the differentiation between two cell lines. To 

keep the activity of the GFP expressed by one of the cell lines, fixation attempts 

were made using formaldehyde and glutaraldehyde. The fixation successfully 

enhanced the fluorescence intensity of the spheroid sections, with an estimated 

increase in signal of over 300%. Although fluorescence from GFP was reserved 

after fixation, irreversible morphology change was observed at the same time.  
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Figure 3-4 Bright field microscopy image of an unfixed spheroid section 

 

This was an unfixed co-culture spheroid seeded with GFP labeled, IR resistant 

HCT-116 cell line and wild type HCT-116 cell line. 
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Figure 3-5 Fluorescence microscopy image of the same section 

 

Section was from the same unfixed co-culture spheroid seeded with GFP labeled, 

IR resistant HCT-116 cell line and wild type HCT-116 cell line. The image was 

taken with 2 seconds as exposure and 6.80x as gain. 
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Figure 3-5 Bright field microscopy image of a fixed co-culture spheroid 

section 

 

The spheroid was seeded with GFP labeled, IR resistant HCT-116 cell line and wild 

type HCT-116 cell line. 
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Figure 3-6 Fluorescence microscopy image of the same section 

 

The image was taken from the same section of fixed co-culture spheroid seeded 

with GFP labeled, IR resistant HCT-116 cell line and wild type HCT-116 cell line. 

The image was taken with 1 second as exposure and 4.00x as gain. 

 

Although the overall structure of fixed spheroids was not observed to change 

drastically before sectioning under the microscope, the morphology of each 
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individual cross section was found to be significantly changed with shrunk cells 

and cavity regions inside the spheroid. We believed that the integrity of the scaffold 

of the spheroids not observed to be changed was due to stacking of multiple layers 

of cells. When the cavity region overlapped with cells from another layer, the 

overall 3D looks of the spheroid seemed intact despite microcavities inside due to 

fixation. The comparison with fixed heart tissue sections validated our hypothesis.   

 

Figure 3-7 Bright field microscopy image of tissue from fixed heart 
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The shrinkage on the edge of the heart tissue was observed in other tissues as well, 

not only for spheroids. However, the change in the morphology was not obvious 

due to the low penetration of fixative on intact heart organ with larger size, but 

more significant for cancer cell spheroids that were smaller in size with gaps in 

between the cells forming the spheroids. Shapeshift due to fixation has also been 

reported in other literatures.11 Compared with other MSI samples where the overall 

morphology was not significantly different despite fixation, other strategies for 

differentiating sources of cells in the co-cultured spheroids must be found. 

 

3.5. Conclusion 

For the samples mentioned above, different difficulties were met during the sample 

preparation process due to small sample size, unideal mechanical properties, or 

damage to the sample morphology, therefore the original plans of corresponding 

projects were paused.  
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Chapter 4 Study of Chemical Profile change of Trypanosoma cruzi 

Infected Heart after Fixation and Staining Using Single-Probe 

Mass Spectrometry 

 

This is a collaborative project with Dr. Laura-Isobel McCall’s group at the 

University of Oklahoma/San Diego State University. Trypanosoma cruzi infection, 

harvest and fixation of mice heart was conducted by Dr. McCall’s group. The 

follow-up of this project has been performed by Dan Chen using DESI imaging 

with a manuscript under preparation. 

 

4.1. Abstract 

Chagas disease is a disease caused by the parasite Trypanosoma cruzi (T. cruzi), 

with possible cardiac and gastrointestinal complications during its chronic phase 

lasting lifelong.1 Heart failure and cardiac arrest can occur as lethal danger to the 

patients with other lifelong risks if not treated properly. It has been estimated that 

8 million people in the America region are having Chagas Disease.2 

Fixation and staining are two commonly used methods for sample processing both 

adopted to study Chagas disease due to the parasitic residence, but their 
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compatibility with mass spectrometry (MS) is yet to be studied for a variety of 

reasons.3, 4 Single-probe mass spectrometry was adopted to study the chemical 

profile change with and without fixation and/or staining treatment, in order to 

provide detail picture on how research could be performed with such sample 

treatment with minimum interference with mass spectrometry. 

 

4.2. Introduction 

Due to the wide compatibility and high sensitivity of mass spectrometry, MS has 

been broadly adopted in clinical and pharmaceutical applications for biomarker 

discovery, disease pathogenesis, and drug metabolism and pharmacokinetics.5-8 

Compared with vacuum-based MS methods which require more complicated 

sample preparation steps, ambient-based MS methods are gaining popularity for the 

simplified sample preparation steps thus possibility of analyzing biological samples 

at their native state.9 Fixation and staining are two commonly used methods for 

sample processing.3 For patient samples or infectious pathogens, fixation is a 

necessary step due to safety concerns. In the field of biological studies, staining is 

a popular technique for specific, intuitive spatial mapping of species of interest with 

the assistance from antibody, dyes, or fluorescence probes.3, 10, 11 However, the 

compatibility between mass spectrometry and these methods was not studied and 

reported in detail in previous studies for a variety of reasons, especially when 
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unfixed patient samples were not available due to safety or degradation concerns. 

In this chapter, the effect of fixation and staining is studied. 

 

4.3. Methods 

4.3.1. Single-probe fabrication 

The Single-probe was fabricated following the protocol established in previous 

publications.12 Briefly summarized, the probe consisted of three parts including a 

dual bore quartz tip and two capillaries. The dual bore quartz tip was pulled from 

dual bore quartz tubing (O.D. 500 µm; I.D. 127 µm) with a laser puller. Two 

capillaries (O.D. 105 µm; I.D. 40 µm) were inserted into the two bores and fixed 

with UV glue. The assembled probe was fixed on a piece of glass slide for easier 

handling by epoxy glue. 

 

4.3.2. Tissue fixation 

Chemical fixation with glutaraldehyde was conducted on mice hearts provided by 

McCall group at University of Oklahoma.13 Hearts taken from healthy mice were 

first pumped with 1x PBS to remove blood inside, and then immersed in 

glutaraldehyde solution for 15 minutes, followed by rinsing with 1x PBS. 
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4.3.3. Cryo-section 

Fixed and unfixed heart samples were stored in -80 freezer prior to further 

processing. Embedding material was selected as 10% (m/v) Hydroxypropyl 

methylcellulose (HPMC) water solution for MS compatibility. The whole frozen 

hearts were taken out from the original container and completely immersed in room 

temperature embedding material for orientation adjustment. The mold containing 

immersed heart and embedding material was placed in dry ice for solidifying. The 

hardened material was sectioned into slices of 16 micrometer thickness and 

mounted onto microscope glass slides. 

 

4.3.4. Staining 

The staining protocol was adopted from previous publications.14 To briefly 

summarize, the microscope slides were soaked with 0.2 mM MgCl2 in 1x PBS for 

5 minutes for rehydration, then incubated with 2mM MgCl2, 4mM potassium 

ferricyanide, 4mM potassium ferrocyanide and X-gal at 2mg/ML in 1x PBS for 16-

18 hours at 37 degrees Celsius. The stained sample was rinsed by 1x PBS after 

incubation to remove excess X-gal. For validation of the staining protocol, slides 

holding infected heart mice sections were included in every batch. All stained slides 

underwent fixation before staining. 
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4.3.5. Mass spectrometry 

The Single-probe was held by a robotic arm to prevent vibration and slippery. 

Samples were placed and fixed onto an XYZ-translational stage controlled by 

LabView software and monitored with a digital microscope for precise location 

adjustment during the spot sampling and MSI process. Sampling solvent (e.g. 

85%/15% methanol : water (v/v)) was provided continuously with a flow rate as 

0.2 microliter per minute using a syringe pump. MS spectra was acquired using a 

Thermo LTQ Orbitrap XL mass spectrometer and LTQTune software. 

 

4.4. Results and discussion 

4.4.1. Microscopy and staining 

Slides were examined under a microscope to verify the effectiveness of the staining 

process. As shown in the figures (Fig. 4-1, Fig. 4-2), blue spots indicating the 

residence of Trypanosoma cruzi on heart tissues only showed up on stained slides 

for infected mice, but not on stained slides for uninfected mice or unstained slides 

for infected mice, which validated the staining method for parasitic residence 

mapping.  
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Figure 4-1 Tissue section of infected mice heart after X-gal staining 
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Figure 4-2 Zoomed view of the infected heart tissue section showing the 

stained parasitic spots 

 

4.4.2. Mass spectrometry imaging 

For feasibility study, mass spectrometry imaging was performed on infected, fixed 

heart tissue for investigation. Due to the lack of landscape structures in the 

myocardium region, only a rough comparison was made to locate the scanned 

region (Fig. 4-3). 
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Figure 4-3 Microscope image of scanned myocardium tissue 

 

From the collected MSI data, ion images for the corresponding region were 

constructed. Among all ion images, different patterns were observed with examples 

shown in Fig. 4-4. The ion image generated with total ion current (TIC) showed the 

boundary of the heart tissue, indicating that MSI could be a useful method for heart 

tissue studies. The detection of m/z 782.56 (tentatively labeled as PC(36:4) through 

database search), which was commonly observed in Single-probe SCMS studies 

for mammalian cells, also validated the feasibility of MSI method. Special features 

were found for other ions, with m/z 590.32 (tentatively labeled as LPC(22:6) 

through database search) and m/z 431.96 (no matches in current database within 10 

ppm) as two examples. 
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Figure 4-4 Ion images of fixed, infected mice heart tissue with tentative labels 

In order to make connections between observed MSI features and parasitic infection 

spot of the mice heart, pre-MSI X-gal staining was purposed. 
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4.4.3. Investigation on pre-MSI staining 

As the size of parasitic spots were observed to be similar or even smaller than the 

thickness of tissue sections, using adjacent slides for result comparison can lead to 

misinterpretation of data because the parasitic spots may only exist on one of the 

adjacent slides. In this case, the strategy to stain on the same tissue section must be 

applied. However, due to the possible delocalization of parasites on the tissue after 

our liquid extraction-based Single-probe MSI method, we tested the feasibility of 

pre-MSI staining to study the heart tissue. 

To reduce the intrinsic biological variance among samples and batch effect due to 

shifted experimental conditions, consecutive slides from the same healthy heart was 

selected and treated differently on the same day for comparison (Table 4-1). 

 

Table 4-1 Experimental setup for spot analysis of different treatment on mice 

myocardium tissues 
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MS data was collected from 10 spots on each heart in the myocardium region. The 

spectra obtained from six different groups was compared using analysis of variance 

(ANOVA) and principal component analysis (PCA). 
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Figure 4-5 ANOVA result examples 

From the ANOVA result (Fig. 4-5), untreated groups 1, 2, 3 were highly consistent 

with each other. However, different patterns for different ions were found among 

treated groups. For instance, abundances of m/z 781.39 and m/z 441.29 were 

simultaneously decreased and increased in group 4, 5, 6 compared with group 1, 2, 

3, respectively, indicating that the abundance of those species might be sensitive to 

ambient environment exposure during the MS analysis process on the first day prior 

to any treatment. Significant differences were also found between group 4 and 

group 5 (e.g., m/z 351.21), showing that chemical species in the staining solution 

could possibly alter the chemical profile.  
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Figure 4-6 3D PCA result 

Another perspective of view was obtained from PCA, which is a linear 

dimensionality reduction tool to study the global variance among high-dimensional 

observations. According to the 3D PCA result, stained group (cyan) was found to 

be well separated from other groups, indicating significant changes on the overall 

chemical profile of stained tissue.  

The X-gal staining process has created a drastic change in the chemical profile of 

uninfected mice heart tissues detected with Single-probe MS method. The result 

suggested that using the same tissue section for MS analysis after staining operation 

could potentially lead to biased results. Although one of the popular strategies in 

MSI studies was using the adjacent section for comparison instead of the original 
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section, the method should not be applied to studies when the adjacent section of 

tissue is anticipated to have different morphology from the original section. 

 

4.5. Conclusion 

Unlike other studies where adjacent sections can be selected for comparison 

between results from different methods, the small spot size at several micrometers 

of parasitic residence blocks the possibility of using the same strategy. Although 

Single-probe MS results indicated that staining should not be performed before 

actual MS measurement, post-MS staining can still be performed for non-

destructive MS sampling methods. This work has been carried on by Dan Chen 

using DESI imaging, which is a commercialized method with higher robustness. 
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Chapter 5 MassLite: An Integrated Python Platform for Single 

Cell Mass Spectrometry Metabolomics Data Pretreatment with 

Graphical User Interface and Advanced Peak Alignment Method 

 

Part of the MS data for platform testing and troubleshooting was acquired by 

Zongkai Peng, Yunpeng Lan, Tra Nguyen, Shakya Wije Munige and Deepti Bhusal. 

The development of the platform was solely done by me with one manuscript under 

preparation. 

 

5.1. Abstract 

Mass spectrometry (MS) has been one of the most widely used tools for 

bioanalytical analysis due to its high sensitivity, capability of quantitative analysis, 

and compatibility with biomolecules. Among various MS techniques, single cell 

mass spectrometry (SCMS) is an advanced approach to molecular analysis of 

cellular contents in individual cells. In tandem with the creation of novel 

experimental techniques, the development of new SCMS data analysis tools is 

equally important. As most published software packages are not specifically 

designed to be compatible with improvised single cell sampling process, their 



79 

 

applicability on SCMS data is generally limited. Hereby we introduce a Python 

platform, MassLite, specifically designed for fast inhomogeneous SCMS 

metabolomics data pretreatment, with a peak alignment method that avoids binning 

in order to better process MS data obtained from high resolution mass 

spectrometers. The platform is made user-friendly with graphical user interface 

(GUI) and exports data in the forms of each individual cell for further analysis. 

 

5.2. Introduction 

Mass spectrometry (MS) has been playing an increasingly important role in the 

field of chemistry and bioanalysis since the invention of electrospray ionization 

(ESI)1 and matrix-assisted laser desorption/ionization (MALDI)2. Assisted with 

improved sensitivity, resolution, and throughout of mass spectrometers3 as well as 

advancement of computing power from hardware and software algorithm, MS has 

been broadly adopted in applications such as proteomics4, metabolomics5, 

biomarker discovery6, and drug discovery.7  

Among various experimental methods, liquid chromatography–MS (LC–MS) has 

especially been widely-applied, which excels in the separation and quantification 

of complex mixtures and biological samples.8 However, due to the obligatory 

sample preparation, some critical information, such as spatial distribution of 

molecular species in tissues and cell heterogeneity, is inevitably lost from LC-MS 
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measurements. To overcome disadvantages of traditional LC-MS techniques, novel 

MS methods have been developed. Among them, MS imaging (MSI) is capable of 

offering insights into the spatial distribution of compounds in tissues, providing 

knowledge in histopathology and drug distribution.9-11 In addition, single cell MS 

(SCMS) has recently gained increasingly more popularity due to its capability of 

reaching subcellular resolution and performing cell heterogeneity analysis.12 

Compared with traditional bulk analysis, SCMS reveals the chemical profiles of 

individual cells, providing unique understanding of complicated cell activities 

controlled by numerous intracellular and extracellular factors. 

With the application of newly developed mass spectrometers possessing higher 

mass resolution, faster scan rate, and better sensitivity, the size of MS data has 

significantly increased in modern bioanalysis. Particularly, accurate mass 

measurements provide crucial information for molecular identification in 

metabolomics studies. Numerous software packages have been designed to pretreat 

the experiment data (i.e., peak picking, peak alignment, and intensity normalization) 

and extract essential information from data acquired from traditional LC-MS (e.g., 

MZmine13-15 and XCMS16, 17) and novel MSI (e.g., Cardinal18 and Metaspace19) 

experiments. In fact, some of these tools have been utilized to analyze certain types 

of SCMS data such as single cell proteomics, which require LC separation prior to 

MS analysis, and MALDI-based single cell metabolomics, which were acquired 

using strategies similar to MALDI techniques.20-22  However, very few attempts 
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have been made to handle data acquired from ambient SCMS metabolomics.23-26 

Unlike most well-established LC-MS and MSI experiments, which are generally 

conducted using programmed, pre-loaded sampling and data acquisition process, 

most ambient SCMS metabolomics studies of live cells are commonly associated 

with improvised single cell sampling and segmented signal due to experimental 

conditions and operations, causing incompatibility with existing data processing 

tools that were designed for LC-MS and MSI.27, 28 As any separation can potentially 

induce sample loss and dilution, in the SCMS studies of small molecules (e.g., 

metabolites), analyte separation is generally not included. Analysis of dense peaks 

heavily relies on the accurate mass detection from the spectra. Therefore, retaining 

all the valuable information obtained from high resolution mass spectra is a crucial 

need for SCMS metabolomics data pre-processing.  

Among all data-processing steps (e.g., peak picking, peak alignment, intensity 

normalization), peak alignment is the step compensating for the slight m/z value 

variation of peaks from the same substance, so-called mass shift. The step of peak 

alignment corrects the mass shift and determines the actual m/z values of the peaks 

for further advanced analysis (e.g., multivariate analysis, data visualization, 

structure identification). Without alignment, signal from the same substance can be 

mistakenly split into multiple peaks, while a poor alignment might merge ions from 

different substance into same peaks, leading to a misinterpretation of MS data. 

Additional dimensions brought by improper peak alignment not only alter the 
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output of advanced data analysis methods, but also significantly increase the cost 

for further processing. To date, binning is the most widely used method for peak 

alignment. Briefly, for the convenience of data analysis, the entire range of the 

mass-to-charge ratio (m/z) of a mass spectrum is divided into a large number of 

equidistant small chunks, e.g. 0.1 Da, through a histogram-based method usually 

referred to as “binning”.29, 30 Although binning can significantly reduce the 

computational cost, this method possesses multiple intrinsic drawbacks.30-32 First, 

the outcome of data processing is influenced by the parameters of bins, including 

bin width and bin position. Peaks could be artificially merged, split, or shifted due 

to unideal bin parameters, resulting in a loss of information. Second, using linear 

equidistant bins can lead to unequal mass error (i.e., ppm) of MS measurement. For 

example, as a commonly used bin width, 0.01 Da mass difference corresponds to 

100 ppm at 100 Da, but 5 ppm at 2,000 Da. Third, binning cannot take full 

advantage of the capability of the high resolution of modern mass spectrometers. 

Although high resolution mass spectrometers can be used to provide accurate 

measurements (i.e., m/z values) of numerous ions, their molecular information, 

particularly for small molecules, such as metabolites, in complex samples cannot 

be efficiently extracted due to these above artifacts. 

In this study, we introduce MassLite, a user-friendly, Python-based platform with 

graphical user interface (GUI) specifically designed for SCMS data pre-treatment. 

Compared with the existing SCMS metabolomics analysis tools, this new software 
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package possesses multiple advantages. First, this platform is robust to handle 

SCMS data acquired from intermittent acquisition processes, in which ion signals 

from individual cells are sequentially segmented. Second, MassLite can take full 

advantage of high-resolution mass spectrometer for detection of peaks with high 

mass accuracy. Third, automatic cell region selection is used to replace the existing 

labor-intensive manual process to increase processing throughput. Fourth, 

algorithm of peak alignment and background removal have been improved to be 

specifically compatible with SCMS metabolomics data. Last, the computational 

cost was significantly reduced with our purposed dynamic grouping method. 

Although the capability of this tool was demonstrated using the data generated from 

the Single-probe SCMS method, data produced from other SCMS techniques and 

platforms can be also processed with MassLite to increase the efficiency for data 

pretreatment with adjustment in the parameters for modification.23  

 

5.3. Method 

5.3.1. SCMS Experiment  

Single cell mass spectrometry data was acquired with a method previously 

established by our group.33, 34 To briefly summarize, the Single-probe, a miniatured 

sampling device with a tip size around 10 micrometers, was used to sample 

individual single cells under a microscope. In this study, a human colorectal 
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carcinoma cell line (HCT-116) and a cervical cancer cell line (HeLa) were used as 

models to generate Single-probe SCMS data for platform development. Cell 

content was extracted at the tip of the Single-probe via liquid junction, then 

delivered into a Thermo LTQ Orbitrap XL mass spectrometer with the inline nano-

ESI emitter on the Single-Probe.  

 

5.3.2. Data pretreatment  

Data obtained from the experiment must undergo pretreatment for automation in 

further advanced analysis. The data pretreatment includes format conversion, 

algebraic transformation, void scan selection, cell scan selection, peak alignment, 

background peak removal and data exportation (Fig. 5-1).  
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Figure 5-1 Schematic data processing workflow using MassLite 

 

Except for the format conversion, which can be conducted using other existing tolls, 

the rest of the steps were all completed in MassLite. After data was imported into 

our platform, an additional algebraic transformation was first performed to use 

relative mass difference to describe difference among peaks instead of original 

linear difference. Next, a void scan filter was applied to distinguish intermittent 

scans during the data acquisition process. Then, the filtered scans were grouped by 

cells based upon the extracted ion chromatogram of selected cell markers. 
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Afterwards, peak alignment was performed with dynamic grouping to correct the 

mass shift of peaks. Last, background peaks can be selected to be removed along 

with other filters before exportation for further advanced analysis.  

 

5.3.2.1. Data import 

To make our platform compatible with SCMS metabolomics studies conducted 

with all types of mass spectrometers, the algorithm in MassLite was designed on 

basis of a universal MS data format, mzML.35 For Single-probe SCMS data tested 

here, the original file generated from the Thermo Orbitrap LTQ XL mass 

spectrometer in .raw format, which was converted into the widely-used .mzML 

format using MSConvert. After format conversion, the data was read by our Python 

platform using pymzML package to extract the m/z values and intensities of the 

peaks. Peak picking was first conducted to obtain centroid peaks for each MS scan 

prior to further processing.  

 

5.3.2.2. Algebraic transformation 

As most MS studies utilize mass accuracy or mass measurement error (i.e., the 

difference between an individual measurement and the true value) in the unit of 

ppm, relative mass difference is a more stable and straightforward way to describe 



87 

 

the difference between two m/z values. In order to perform simpler peak matching 

during the pretreatment process, we performed a scaled, dynamic logarithmic 

transformation to intuitively describe the relative mass difference in the unit of ppm. 

In addition, this algorithm reflects mass accuracy with respect to m/z values, 

minimizing the influence of mass range on pick picking. 
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By reorganizing the formula, we have  
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Taking logarithmic transformation on both sides, we have  
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When two peaks are close enough to each other, ∆𝑝𝑝𝑚 is close to 0. Given that 

lim
𝑥→0

ln⁡(1 + 𝑥) = 𝑥  according to Taylor expansion, we have the following 

representation: 

∆𝑝𝑝𝑚
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𝑚
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2
 (Eq. 5) 

Thus, when transformation 𝑓 (
𝑚

𝑧
) = ln (

𝑚
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) × 106 was applied on two neighboring 

peaks, we have 
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] × 106 = ∆𝑝𝑝𝑚 (Eq. 6) 

Pairwise Euclidean distance between transformed m/z values can reflect the relative 

mass difference of the original m/z values in the unit of ppm, enabling fast 

processing and peak matching in the subsequent steps. In practical applications, to 

prevent non-negative values from being included in the calculations, a linear shift 

was included according to the lower limit of the mass range being detected.  

 

5.3.2.3. Void scan removal 

A typical ambient SCMS metabolomics dataset consists of informative scans (i.e., 

signals of cell analytes with coexisting solvent background and culture media) and 

void scans (i.e., scans containing only signals of instrument noise without 

identifiable species from cell analyte, solvent background, or culture media). The 
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void scans are usually inevitably included in data acquisition processes, mostly due 

to necessary operations during experiments such as relocation of the sampling or 

ionization device during the single cell isolation process. To automatically identify 

the void scans within the file, K-means, an unsupervised clustering method, was 

used to analyze intensity histogram of MS spectra for each scan. Because the 

intensity histogram reflects the general profiles of detected ions, significant 

changes of global pattern are expected between informative and void scan signal. 

For the actual K-means input, options of Uniform Manifold Approximation and 

Projection (UMAP) and logarithmic scaling are provided for transformation of the 

intensity histogram to enhance the discrimination between void scans and other 

scans. TIC (total ion current) of the clusters generated by the unsupervised K-means 

method can be visualized in the GUI for inspection, and clusters matching the 

definition of void scans can be dropped to reduce workload for the subsequent 

processes.  

 

5.3.2.4. Cell and background region selection 

To further increase the throughput of SCMS data processing, we developed an 

algorithm to automatically differentiate scans representing single cells from those 

from background such as solvent or cell culture media. First, a chromatogram was 

generated based upon the intensity of cell markers selected by users. For example, 



90 

 

m/z at 782.58 and 760.56 are commonly detected in cells, and they were selected 

as default indicators of single cell detection (i.e., marker signals). Second, an initial 

Gaussian smoothing was performed for extracted ion chromatogram (EIC) to avoid 

unideal splits for signals from each single cell due to signal fluctuation during the 

data acquisition process. Third, scans of cells and background were defined. After 

the local maxima and minima were primarily found, a finer global search resistant 

to signal fluctuation across the whole chromatogram was conducted. A stricter 

intensity requirement for peak search within maxima found in the previous search 

was applied to account for possible peak splitting issue due to signal fluctuation in 

the EIC. In the current study, the regions containing marker signals ≥20% of the 

local maxima were defined as cell regions, whereas region containing marker 

signals <5% of the local maxima were regarded as background regions unless 

otherwise defined.  

 

5.3.2.5. Peak alignment with dynamic grouping 

Due to multiple factors (e.g., the intrinsic performance of instrument and 

fluctuation of ion signals and instrument conditions), mass shift generally occurs 

during MS analysis.36-38 Because accurate m/z values provide important 

information for molecular identification, mass shift is a critical error in high 

resolution MS studies, in which multiple ions with similar m/z values can be 
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simultaneously detected. Inappropriate handling of mass shift may result in artifacts 

such as peak splitting, loss of peaks, or inaccurate m/z assignment. To compensate 

for the mass shift across different scans, peak alignment must be performed. For 

the ease of processing and precise m/z value description, centroiding on all peaks 

was performed, keeping only one m/z value of peak center and one intensity value 

for each peak. All centroid peaks along with their transformed m/z values from all 

imported scans were included for peak alignment. Hierarchical clustering was 

performed for observed peaks to find internal matching among themselves. The 

desired mass shift tolerance was set as the cluster size for hierarchical clustering so 

that coverage for each aligned peak does not exceed the threshold. Thus, the mass 

accuracy of peak alignment was guaranteed. With the algebraic transformation 

performed in earlier steps, simple one-dimensional Euclidean distance can be 

redeemed as the relative mass difference between the m/z values of different peaks. 

To reduce the cost of pairwise distance calculation in the hierarchical clustering 

process, a “divide and conquer” strategy, so-called “dynamic grouping”, has been 

applied to split the data in chunks, eliminating unnecessary comparison of peaks 

from different data chunks which accounted for most of the cost from direct 

comparison (Fig. 5-2). To address potential peak splitting issues due to this strategy, 

a boundary checker was included to validate the relationship between two closest 

peaks in adjacent chunks. This binning-free method can maintain higher mass 

resolution from the original data. 
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Figure 5-2 Schematic mechanism of dynamic grouping 

 

5.3.2.6. Background removal 

During ambient SCMS measurement, particularly for live cell analysis, interfering 

ions from impurities in solvent or species in cell culture media are generally 

detected along with cellular contents. To eliminate artifacts in analysis, interfering 

ions should be treated as background and excluded. Thus, aligned peaks with their 

highest intensities in one of the background scan regions, which could be 

determined automatically in the cell scan selection step, were regarded as the 

background substance and subsequentially filtered from the data. Compared with 

the traditional binning method for background removal, the algorithm does not 

require prior knowledge of the cell systems, and has the ability to distinguish peaks 

from background substances and cell analytes with highly similar m/z values to 

them.  
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5.4. Result and discussion 

5.4.1. Graphical user interface 

 

Figure 5-3 MassLite graphical user interface 

 

The graphical user interface (GUI) was built using tkinter package in Python with 

functions run by packages, including numpy, scipy, matplotlib, and pandas. In our 

current design, the GUI has 6 major parts, including data read-in, void scan filter, 

cell sorting, peak alignment, exportation filter, and debugging modules (Fig. 5-3).  
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5.4.2. Parameter optimization for void scan filter  

Because the global spectral features of the void scans are significantly different 

from those of informative scans containing analytes from cells or solvent 

background, the clustering was based on the intensity histogram, which mainly 

describes the overall structure of the whole MS spectrum. Different parameters for 

the generation of the intensity histogram were tested, along with two different 

techniques (e.g., logarithmic scaling, UMAP dimensionality reduction) aiming at 

enhancement of discrimination between void scans and other scans.  

In our experience of handling SCMS metabolomics data of mammalian cells 

acquired using the Single-Probe SCMS techniques, lipid signals were significantly 

increased when cellular contents were extracted and detected, especially in the 

range of m/z 700-800 Da.33, 39 On the other hand, ionization of cell analytes caused 

the suppression of the base peak in background scan, usually in the range of m/z 

350-550 Da. This trend is also expected in studies using other SCMS platforms. To 

guarantee the features in the MS spectra, which are induced by the two major 

sources of signals mentioned above, can be captured in the intensity histogram, we 

tested both 50-Da and 100-Da intervals for histogram generation of MS1 data in 

the mass range of m/z 50-2000 Da. Smaller intervals for the histogram can maintain 

more details in the spectra structure, but also led to oversized machine learning 

input, thus deviating from our purpose for quick detection. On the other hand, larger 
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intervals could possibly fail to capture the changes in the spectra features if the 

increase and decrease of ion intensity occur within the same interval.  

To perform clustering for efficient identification of void scans, different strategies 

to enhance discrimination between void scans and other scans have been applied. 

Based upon previous observations in Single-probe SCMS data, void scans usually 

contain lower signal intensities compared with other informative scans, so 

logarithmic scaling could be a quick, feasible strategy to isolate void scans with 

such property. Original intensity can more intuitively reflect the instant condition 

when the scan took place, while logarithmic transformations significantly reduce 

the difference of signal intensities and enhance the detection of low intensity ions. 

However, for experiments where decreased intensities for void scans are not 

observed, dimensionality reduction tools provide alternative options. UMAP, a 

powerful technique with relatively low computational cost compared with other 

nonlinear dimensionality reduction methods, has been adopted as an example and 

tested. The effect of logarithmic scaling and dimensionality reduction using UMAP 

were tested both individually and jointly.  

Although data is not labelled beforehand for unsupervised clustering, certain 

criteria must be defined to match the goal of quickly identifying void scans through 

clustering. Given that the variance between scans of the same type of signal can 

hardly be estimated due to the heterogeneity among individual cells, the total 
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number of clusters would be a more practical parameter to guide the process 

compared with cluster variation. Based upon previous Single-probe SCMS 

observations, the possible major sources of each individual scan are cell analytes, 

solvent background, and cell culture media. With possible subpopulations existing 

within each type, a total number of cluster n≥3 (i.e., 3, 4, 5) would be a reasonable 

blind guess universal for different SCMS experiments.  

 

Figure 5-4 Examples of void scan filter parameter testing 
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We used a total of 24 combinations of different parameters mentioned above to test 

the same dataset (part of the results shown in Fig. 5-4). Different intervals for 

histogram generation seemed to be the least sensitive parameter because either 100 

or 50 Da interval over m/z 100 – 2000 range provided enough features for the K-

means clustering.  

When untransformed data was used as the K-means input, the difference between 

void scans and low intensity scans was much less significant compared with signal 

fluctuation among high intensity scans in the untransformed intensity histogram, 

leading to insufficient discrimination between void scans and other types of scans 

in the clustering result. To address this issue, logarithmic and UMAP 

transformation were utilized to enhance the separation of scans with low intensities. 

Logarithmic scaling was adopted for void scans, which possess considerably lower 

ion signals compared with other informative scans. Alternatively, nonlinear 

dimensionality reduction can catch the similarity between each group of scans thus 

differentiate between void scans and other scans, and therefore UMAP was adopted 

as an example of nonlinear dimensionality reduction to treat the data. Both 

logarithmic and UMAP transformation provided satisfactory clustering output for 

the purpose of identifying void scans when working individually, with slight 

differences in the unimportant clusters that were not considered to be void. In 

contrast, satisfactory performance was not achieved using untransformed data, 

which contain low intensities of informative scans and void scans in the same 
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cluster. Although both transformations provide better classification outcomes than 

non-transformed data when working individually, simultaneously implementing 

both logarithmic scaling and UMAP tends to lead to undesired result, with 

unbalanced group sizes when the number of clusters n>3. To effectively sort out 

void scans, either logarithmic or UMAP transformation is thus adequate without 

causing artificial split and demanding substantial computing power. 

 

5.4.3. Alignment result 

To investigate the quality of our peak alignment algorithm, the alignment output of 

a 2176 scan dataset from MassLite was compared with those obtained from 

mspalign function in Matlab, which is a common programming language, as well 

as Geena 2 and MZmine 3, which are two widely used data processing platforms. 

Compared with mspalign function, MassLite produced peaks with diverse 

distribution and clearer background (Fig. 5-5). Equidistant aligned peaks are 

common artifacts due to the binning step in histogram-based methods, which 

cannot reflect the true nature of original MS spectra. Additional computational cost, 

which was induced by relatively high noise through the whole m/z axis, in further 

analysis was also found in the alignment result using mspalign. 
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Figure 5-5 Comparison between mspalign and MassLite result 

 

As for Geena 2, this online platform could not handle the whole dataset collected 

from 16 cells, which consist of 2176 scans with 5 ppm mass shift tolerance, likely 

due to the large size of the data. Alternatively, a truncated version of 4 cells from 

the first 830 scans at default 0.1 Da mass shift tolerance was submitted and 

processed by Geena 2. Both MZmine 3 and MassLite handled the original 2176 

scan dataset. To investigate the mass accuracy maintained by each platform, all 

aligned peaks were re-ordered in ascending order and the relative mass difference 

between adjacent peaks were calculated using our algebraic transformation. The 

relative mass difference between adjacent peaks can reflect the ability of data 

processing platforms on resolving peaks with similar m/z values. For an intuitive 
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view, a histogram showing the distribution of relative mass differences between 

adjacent peaks was generated (Fig. 5-6, 5-7, 5-8). 

 

Figure 5-6 Histogram showing relative mass differences distribution of 

aligned peaks by MassLite, Geena 2, and MZmine 3 
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Figure 5-7 Zoomed view of the histogram comparing MassLite, Geena 2, and 

MZmine 3 
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Figure 5-8 Zoomed view of the histogram at high resolution range (below 20 

ppm) 

 

From the histogram and its zoomed views, MassLite was able to differentiate more 

signals that were 5-10 ppm apart from each other, which showed its capability of 

aligning peaks from MS spectra at a higher resolution compared to two popular 

tools in the MS field. In fact, the 5-ppm cut-off was used in the current study, 

whereas users can determine the suitable values according to the specific studies. 
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Lower cut-off values can be potentially used to treat MS data acquired using mass 

spectrometers with higher resolving power. 

 

5.4.4. Computational cost 

Computational cost, including both CPU time and memory usage, for peak 

alignment was discussed for conditions with and without dynamic grouping. The 

computational cost depends on both the total number of scans and the total number 

of peaks in each scan. Because of the variance of the molecular composition in each 

particular scan, the number of peaks in each scan is subject to change y, thus the 

total number of peaks is positively correlated with number of scans but in a non-

linear fashion. Among all data pretreatment steps, peak alignment without binning 

is the most expensive part due to the pairwise distance calculation and distance 

matrix update during hierarchical clustering. Regular pairwise comparison between 

peaks requires computational cost to the second power of total peaks detected. 

Although binning can reduce the index of power to one by replacing pairwise 

comparison among observed peaks with direct comparison between observed peaks 

and preset bins, the loss of mass accuracy during alignment step limited its 

applicability on SCMS metabolomics data, thus we purposed a dynamic grouping 

method (Fig. 5-2). Dynamic grouping reduces the computational cost for peak 

alignment with a similar ‘divide and conquer’ strategy. When the whole dataset was 
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divided into multiple chunks, the number of unnecessary comparisons between 

peaks was largely reduced. Particularly, comparisons between peaks from different 

chunks were eliminated, which could theoretically reduce the cost by second power 

to the number of chunks. To overcome the potential peak splitting issue due to the 

boundaries of the chunks, we implemented an automatic check at the boundary of 

adjacent neighboring chunks to merge artificially split peaks due to the chunk 

division, which slightly increased the cost by the first power to the number of 

chunks. As the actual cost reduction of dynamic binning depended on both dataset 

size, total number of peaks, total number of scans and number of chunks, we tested 

datasets with a small (16.2 MB imzML file, Table 5-1) and a large (2.83 GB imzML 

file, Table 5-2) sizes, finding that the time cost for peak alignment with dynamic 

grouping has been reduced to 1/3 and 1/10 at their ideal group sizes for grouping 

compared with direct pairwise comparison, respectively. In addition to time cost, 

memory usage is another major concern because storing all pairwise distances for 

millions of peaks, which lead to trillions of distances, can occupy several TB of 

memory, potentially resulting in breakdown of the algorithm. Dynamic grouping 

significantly reduced both CPU time and memory usage while providing reasonable 

results, allowing for customizable studies using a local computer. The method can 

be potentially improved when multiple cores are available for parallel processing. 
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Table 5-1 Time cost for peak alignment* 

Group size using 2 x n 3 x n 10 x n Without 

Grouping 

Alignment cost (sec.) 3.17 3.13 4.53 9.21 

Normalized cost 34% 34% 49% 100% 

*Data size is 16.2 MB. 

n: the group size, which is given in the unit of number of total scans in the file. 

 

Table 5-2 Time cost for peak alignment* 

Group size 1.5 x n 2 x n 3 x n Without 

Grouping 

Alignment cost (h) 5.4 7.1 10.4 >48 

Normalized cost 11% 15% 22% 100% 

*Data size is 2.83 GB. 

n: the group size, which is given in the unit of number of total scans in the file. 
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5.5. Conclusion 

In this paper we have introduced a Python-based platform for mass spectrometry 

data pretreatment, specifically designed for SCMS. Compared with previously 

established methods designed for LC-MS, MassLite enhances the mass resolution 

of detected peaks, can be run at ease with our graphical user interface, and provides 

real-time feedback from the output on a local computer. Especially for untargeted 

single-cell metabolomics without chromatographic separation, our method can 

prevent low-intensity peaks from being filtered, thus increasing the possibility of 

finding uncommonly seen substances among MS data. As all results were 

maintained in the application prior to exportation, the trade-off between ‘keeping 

more low-abundance signal’ and ‘removing more noise’ can be tuned by users 

easily with local GUI. Although the algorithm has only been applied to MS data 

collected from Thermo Orbitraps, we are optimistic about its applicability on MS 

data collected from other types of instruments. 
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Chapter 6 Advanced Mass Spectrometry Data Analysis Methods 

for Information Mining and Visualization 

 

This is ongoing work collaborating with past and current group members from Dr. 

Zhibo Yang lab including Dr. Xiang Tian, Zongkai Peng, Yunpeng Lan, Tra 

Nguyen, Dan Chen, Amit Singh, Shakya Wije Munige, and Deepti Bhusal for data 

acquisition. The image fusion part, where I was involved, was included in a 

previous publication on multimodal imaging of amyloid plaques (Tian, X.; Xie, B.; 

Zou, Z.; Jiao, Y.; Lin, L.-E.; Chen, C.-L.; Hsu, C.-C.; Peng, J.; Yang, Z. Multimodal 

Imaging of Amyloid Plaques: Fusion of the Single-Probe Mass Spectrometry Image 

and Fluorescence Microscopy Image. Analytical Chemistry 2019, 91 (20), 12882-

12889.). The other parts were also included in a book chapter previously published 

with me as one of the co-1st authors (Tian, X.; Zou, Z.; Yang, Z. Extract 

Metabolomic Information from Mass Spectrometry Images Using Advanced Data 

Analysis. Methods Mol Biol 2022, 2437, 253-272.). In-house scripts were improved 

or prepared by me to handle SCMS or MSI data during collaboration. 
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6.1. Abstract 

As MS is becoming one of the most powerful tools for bioanalytical analysis, more 

possibilities in mining MS data have been explored with new strategies from other 

fields of science to dig deeper into the insight of collected data. Connections have 

been made in order to convert the numbers from m/z values and intensities into data 

which shows clear biological or physical meanings. In this chapter, attempts with 

state-of-art data analysis methods applied on MS data are discussed in detail.1 

 

6.2. Introduction 

Mass spectra usually contains thousands of peaks as digitized signals, while the 

target for data analysis is the biological picture or physical meaning behind the 

numbers.2 Therefore, finding useful information such as correlations among the 

observed spectral features or between spectral features and chemical substances is 

an important step for using mass spectrometry to answer biological questions. 

Traditional methods including PCA or Pearson Correlation are still widely adopted 

in recent studies, but there is an urge in the development and application of more 

advanced methods to better handle MS data with larger size and more complicated 

structure.3, 4  

One of the major advantages of mass spectrometry against antibody-based methods 

would be its capability of untargeted analysis when hundreds of substances can be 
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extracted, ionized and analyzed at the same time.5 However, the richness of 

information also leads to the dramatic increase in the number of dimensions 

included in the MS data and in the difficulty in finding information or pattern of 

interest. Therefore, dimensionality reduction is a commonly adopted strategy for 

MS data mining.2 One of the most well-known techniques is Principal Component 

Analysis (PCA), which projects the original observations into the linear 

combination of a set of orthogonal principal components ordered by decreasing 

contribution towards the variance among original data.3 Although PCA has 

advantages such as simplicity of implementation and can be run either with or 

without supervision, the applicability is limited by its linear nature.6 To enhance 

the performance of dimensionality reduction, non-linear methods have been 

established and come into use, including t-distributed Stochastic Neighbor 

Embedding (t-SNE) in 20087 and Uniform Manifold Approximation and Projection 

(UMAP) in 20188. The reduced data is more effective for clustering and 

classification by zooming into specific features. 

Clustering and classification are two important tasks for mass spectrometry 

methods with spatial resolution. For MSI and SCMS experiments, similarity and 

dissimilarity among the signal from pixels or cells can lead to the discovery of 

important patterns and biological understandings. The simplest classification could 

be a fixed threshold value for binary classification, while for certain purposes a 

classification could be highly complicated with machine learning algorithms that 
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evolve with the given training set and can hardly be straightforwardly described 

with one single criterion composed with definite mathematical equations.9, 10 

Clustering and classification are commonly discussed at the same time because 

their common goal of finding certain groups among the whole set of data. The 

difference is that classification process is generally supervised, with the mandatory 

correct labels provided in the training set for the model to match and learn, while 

the clustering process do not have reference labels for the algorithm to learn from, 

thus setting it focus at finding the intrinsic difference between individual data points. 

There can also be a compromise between the two categories, with the strategy 

known as ‘semi-supervised learning’ to tune the learning accuracy.11 Each 

algorithm has its own strengths and weaknesses with no universal solution for all 

sets of data, all depending on the specific need of the user and shape of data. Cluster 

Large Applications (CLARA)12, Density-Based Spatial Clustering of Applications 

with Noise (DBSCAN)13, and K-means14 are typical unsupervised clustering 

algorithms, while Random Forest (RF)15, Support Vector Machine (SVM)16, and 

Neural Network (NN)17 are commonly used supervised methods. 

As a powerful analytical tool to study biological samples, mass spectrometry is 

commonly accompanied with other techniques providing information from other 

aspects, such as H&E staining or fluorescence microscopy.18, 19 While different 

methods could have their advantages and specific targets, combination of 

information can inspire more understanding on the correlation between different 
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substances. When it comes to mass spectrometry imaging, the spatial resolution is 

generally limited by the size of each individual pixel, depending on the sampling 

technique and is typically at micrometer level. Whereas for microscopy images, the 

resolution is limited to the wavelength of the light, thus having much higher 

resolution but without chemical information. Image fusion of the two results can be 

performed to enhance the resolution of ion images or even to extrapolate the ion 

images and to predict the chemical profile of unscanned area.20 

 

6.3. Methods 

Raw data collected from mass spectrometers were converted into mzML and 

imzML format with ProteoWizard and imzMLConverter. Converted mzML and 

imzML files were imported into Python with pymzml and pyimzml packages. Data 

was read in forms of list, Numpy arrays, and Pandas data frames for storage, 

processing, and exportation. Signal was handled with Numpy and Scipy operations 

prior to dimensionality reduction, clustering and classification, and image fusion. 

For certain methods, data was performed in other programming languages 

including Matlab and R instead of Python. For dimensionality reduction, PCA was 

run with sklearn.decomposition.PCA package in Python, t-SNE was run with t-

SNE package in R, UMAP was run with umap package in Python. Image fusion 

was performed with the standalone application.20  
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6.4. Results and discussion 

The performance of advanced data analysis methods can be significantly influenced 

by the quality of data preprocessing steps, especially noise filtering and peak 

alignment. First of all, when the pre-processed data is oversized with unfiltered 

noise or misaligned peaks, the size of the data becomes much larger than expected, 

thus dramatically the cost for advanced methods is dramatically increased, even 

finally leading to the failure of the algorithm. Secondly, noise and misaligned peaks 

could severely impact the conclusion by bringing outliers of the model, or even 

draw biased conclusions when the amount of outlier is more than enough to create 

a change in the pattern of observed features. The image fusion performed was able 

to improve the resolution of the generated ion images towards a higher limit via 

comparison with the microscopy image. 

 

6.5. Conclusion 

Without proper annotations or validation with other methods, information gained 

from mass spectrometry data cannot directly provide answers to important and 

meaning biological questions. Advanced data analysis methods have significantly 

improved the efficiency of data mining in the massive amount of information from 

millions of MS peaks. With the combination of multiple tools, working pipelines 



117 

 

consists of data pretreatment, advanced data analysis, and database search can 

smoothly connect the patterns found in the MS data with related biological 

information. 
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