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Abstract

This dissertation presents methods for evaluating and mitigating a relatively

unexplored bias topic in recommendation systems, which we refer to as attribute

association bias. Attribute association bias (AAB) can be introduced when lever-

aging latent factor recommendation models due to their ability to entangle model

and implicit attributes into the trained latent space. This type of bias occurs

when entity embeddings showcase significant levels of association with specific

types of explicit or implicit entity attributes, thus having the potential to in-

troduce representative harms for both consumer and provider stakeholders. We

present a novel analysis method framework to help practitioners evaluate their

latent factor recommendation models for AAB. This framework consists of three

main techniques for gaining insight into sensitive AAB in the recommendation la-

tent space: bias direction creation, bias evaluation metrics, and multi-group eval-

uation. Methods within our evaluation framework were inspired by techniques

presented by the natural language processing research community for measuring

gender bias in learned language representations. Additionally, we explore how

this bias can be reinforced and produce feedback loops via retraining. Finally,

we explore possible mitigation techniques for addressing said bias. Primarily, we

demonstrate our methodology with two case studies that evaluate user gender

association bias in latent factor recommendation. With our methods, we uncover
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the existence of user gender association bias and compare the various methods

we propose to help guide practitioners in how best to use our techniques for their

systems. In addition to exploring user gender, we experiment with measuring

user age association bias as a means for evaluating non-binary AAB.
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Fairness & Bias in RecSys: An

Overview
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Chapter 1

Introduction

Recommendation systems are components of algorithms used to serve information

or items to downstream users. These recommendation algorithms are tasked

with a goal of predicting items based on potential optimization goals, such as

relevance, engagement, or revenue. These goals are defined by stakeholders of

the recommendation system, which primarily consist of consumers, providers,

and side-stakeholders. Recommendation systems often consist of information

retrieval and ranking components to create a final product capable of creating

a personalized experience for users of the system, as well as delivering value to

other system stakeholders.

Over time, recommendation systems have proliferated digital platforms people

use every day. Recommendation systems have increased in popularity due to their

ability to leverage algorithms to personalize how information is retrieved for a

user. Unfortunately, the ability to personalize information access can induce

harm to stakeholders of the system [23]. These recommendation-based harms

are produced when an algorithm overly relies on sensitive stakeholder features to

provide content, items, or information recommendations[23]. Recommendation-
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related harms can present themselves in various ways, such as feedback loops,

stereotyping by sensitive features (such as gender or race), and fair allocation of

information [55, 15, 39].

Fairness in recommendation systems is often referred to as multi-stakeholder

fairness due to the various types of people that interact with or are affected

by a recommendation system [22]. Multi-stakeholder fairness consists of three

main types of fairness: consumer fairness, provider fairness and side-stakeholder

fairness [2]. For this dissertation, the focus will be on on provider- and consumer-

fairness-related harms in recommendation systems, specifically those induced in

latent factor recommendation systems.

In the past, many of these recommendation-related harms have been la-

beled under the broad category of fair recommendation or, as referenced above,

multi-stakeholder recommendation fairness. For the case of this dissertation, we

move away from leveraging the term “fair” for evaluation in favor of evaluating

“harms”. The interpretation of fairness is a highly individual and context-specific

undertaking. Given that fairness is a socio-technical term, it is next to impos-

sible to achieve a globally fair system. Fairness is only “achieved” in terms of

practitioner-defined constraints on a system. However, researchers and practi-

tioners continue to share so-called “fair” techniques. Even though these method-

ologies do not guarantee fairness, they do have the potential to reduce harm in

relation to fairness concerns. Based on this thought, we present our work in

terms of reducing fairness-related harms, not achieving optimal fairness. There

have been arguments against focusing on “fairness” due to the idea that achiev-

ing true fairness is impossible, thus making the pursuit foolish. We hope that by

changing the perspective to lowering fairness-related harms over achieving im-

possible quantitative fairness, we are able to reframe the problem and highlight

3



that this area of research wishes to reduce harm to stakeholders.

Latent factor recommendation (LFR) algorithms have become fundamental

to industry recommendation settings [21, 8]. These recommendation algorithms,

such as collaborative filtering and deep learning, provide predictions of engage-

ment and embedded vector representations of users and items. The resulting

trained vector representations can capture entity relationships and characteris-

tics in a condensed dimensional space and allow for comparisons between different

entity vectors in the trained latent semantic space.

It has been demonstrated that user and item attributes can become entan-

gled when leveraging these algorithms, resulting in feature duplication and bias

amplification [97]. This algorithmic outcome can result in lower and less robust

recommendation quality [97]. Research seeking to reduce this type of attribute

disentanglement has become increasingly prevalent and showcases favorable re-

sults when targeting exposure bias attributed to item attributes, popularity, or

user behavior [97, 100, 64, 29, 99, 87]. However, the research primarily focuses

on intrinsic mitigation techniques and increasing recommendation performance

but does not always provide evaluation techniques to understand how the bias

may be captured explicitly or implicitly within the latent space. Attribute dis-

entanglement traditionally requires attributes to be independent and explicitly

used in order to implement disentanglement methods. This common requirement

results in disentanglement evaluation methods failing to address situations where

attributes show interdependence with one another or present themselves implic-

itly in results. This stipulation hinders processes for identifying systematic bias,

such as gender or racial bias, that can be interdependent with other attributes

or be implicitly captured by behavior in the recommendation scenario.

Other research concerning this type of bias in representation learning has
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shown that systematic bias can occur due to the nature of latent factor algo-

rithms, as previously found in research exploring systematic gender bias in natu-

ral language processing (NLP) [41]. NLP research has demonstrated that implicit

or systematic bias found in language embeddings can result in downstream rep-

resentation harms (e.g., translation systems being more likely to generate mas-

culine pronouns when referring to stereotypically-male occupations [75]). NLP

researchers have studied this type of bias by evaluating and mitigating gender

association bias [20, 12, 24]. Even though association bias evaluation has been a

focus in other areas of representation learning, it remains largely unstudied for

recommendation systems [32].

This dissertation presents a framework for evaluating interdependent and/or

systematic bias between recommendation entities. Our framework closes this

research gap by evaluating attribute association bias resulting from LFR algo-

rithms. AAB is present when entity embeddings showcase significant levels of

association with specific types of explicit or implicit entity attributes. For ex-

ample, while users can be explicitly labeled by gender, pieces of content cannot

be gendered. However, due to the potential for attribute entanglement, pieces of

content can show measurable levels of implicit association with a gender attribute.

Our framework is designed to be attribute agnostic, thus the name attribute as-

sociation bias (AAB). We showcase this by demonstrating evaluations of user

gender and age bias. Our focus on user gender bias examines AAB from a bi-

nary approach, while that for user age bias leverages a non-binary perspective.

Leveraging the framework, we demonstrate that this risk can also occur within

the outputs of latent factor recommendation.

Given the popularity of LFR models in industry systems and the use of their

outputs as downstream features in hybrid or multi-component recommendation

5



systems, it is paramount that practitioners understand and can evaluate AAB to

reduce the risk of introducing or reinforcing representation bias in their recom-

mendation systems [8]. Additionally, many of these industry systems leverage hy-

brid recommendation systems which leverage outputs from previous system com-

ponents to further fine tune recommendations for consumption [21]. In the case

of hybrid LFR systems, embedding outputs are used as features in downstream

models. The outputs can also be used in other unrelated modeling scenarios,

such as content moderation or ad targeting. If sensitive attribute bias is encoded

into the vector, it plausibly can be repeated and amplified when said vectors are

used as features in other models. Ignoring this type of bias puts practitioners at

risk of unknowingly amplifying stereotypes and representative harm within their

recommendation systems. For example, [8] described how matrix factorization

algorithms could be combined with “traditional neighborhood-based approaches”

to create a recommendation system for Netflix. This combination consisted of

LFR embeddings ranked based on neighborhood-based algorithms to produce fi-

nal recommendations for consumption [8]. If certain sets of user or item vectors

were closely associated with a sensitive attribute, the resulting AAB could affect

final rankings in the KNN outputs due to groups of vectors forming stereotyped

clusters due to this association bias.

Adversarial learning for fair representations has been proposed as a way to

reduce how representations created by latent factor recommendation algorithms

capture sensitive attributes. However, in previous research, evaluation of re-

ducing this phenomenon primarily leverages standard accuracy or distribution

metrics compared between attribute groups. These types of evaluations help

showcase how mitigation affects recommendation outcomes but fails to relay how

the latent space changes according to the targeted attribute. The AAB metrics
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in our framework attempt to fill this gap in research by providing practition-

ers with the ability to measure how items and users relate to defined sensitive

attributes within the trained latent recommendation space. These metrics and

evaluation methods can serve as an additional tool for researchers wishing to cre-

ate ”fair” representations beyond the ability for adversarial models to predict a

user’s sensitive attribute. This one-sided identification of representation bias fails

to account for the multi-sided nature of recommendation systems where users and

items are often inter-related in entity vector outputs. Understanding AAB is key

to not only increasing robustness to privacy-related attacks, but reducing how

latent factor recommendation algorithms may capture societal bias in its latent

outputs.

Our proposed AAB evaluation framework and mitigation is presented within

a novel system-level frameworks we designed, named ”SIIM”, to showcase the

entire process of tackling the complex task of auditing harms and bias in industrial

systems [13]. “SIIM”, provides essential structure to approaching the ambiguous

problem space of auditing for harms and bias in industrial systems [13]. This

algorithmic auditing framework can be used to explore other types of bias beyond

AAB. The framework can be seen as a ”disaggregated evaluation” framework

where the focus lies on analyzing AI outputs for harm or bias [70, 13, 11]. This

framework consists of four steps: (S)cope, (I)dentify, (I)mplement, and (M)onitor

and flag. The first step, scope, addresses the problem of determining “what” to

analyze. For example, what sensitive attribute should be analyzed in our LFR

model vector output? The second step, identify, focuses on determining the best-

suited methodologies for said analysis based on the scope and outputs of the

system. The third step, implement, represents the time dedicated to conducting

the analysis and determining how to manipulate the data to leverage identified

7



methods. Finally, the fourth step, monitor and flag, answers the vital question

of if significant levels of bias exist within the system. Our dissertation addresses

AAB for the majority of these steps, except for providing practical guidance

for setting baselines is out of the scope of this paper due to the task’s highly

context-specific nature.

To the best of our knowledge, we present one of the first evaluation frameworks

for addressing AAB (as a type of representation bias) with both an industry

and public data case study. Our work provides a practical guide for evaluating

AAB in trained vector embeddings. We introduce recommendation entity-specific

attribute association vector directions, bias metrics, and evaluation techniques

inspired by gender association bias NLP research. Our methods account for

differences between recommendation system and NLP representation embeddings

and are designed to provide flexibility for evaluation of binary attributes beyond

gender bias. Our framework is model and attribute agnostic concerning the type

of LFR algorithm. The methods presented can be used for both binary and

non-binary attribute settings, but shines particularly for binary comparisons.

This dissertation explores AAB by by introducing, implementing and cri-

tiquing our proposed evaluation methods. We also showcase how this type of bias

can become reinforced by observing downstream results of classification models

and changes in bias in simulated repeated recommendation training. Addition-

ally, we implement various bias mitigation techniques to understand how AAB

can be addressed once it has been flagged for mitigation. By exploring both the

evaluation and mitigation stages of addressing bias, we provide greater trans-

parency into measuring and mitigating bias in practice for recommendation rep-

resentations. Evaluation frameworks, such as the one presented in our paper, are

essential to practitioners, allowing them to thoroughly investigate the level of bias
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in their system before experimenting with and completing expensive mitigation

techniques [74]. Even though we do not present novel mitigation methods, our

exploration of the process also provides guidance for types of mitigation that may

work given a practitioners particular scenario. It is important to note that this

dissertation is not an exhaustive exploration of the evaluation and mitigation of

AAB, it merely serves as a novel introduction to this type of bias from both an

academic and practical point of view.

This dissertations contributions include:

• SIIM as a disaggregated evaluation framework for evaluation bias in practice

for recommendation systems

• Definition of AAB within the context of latent factor recommendation al-

gorithms.

• Evaluation methodologies and metrics for analyzing AAB between recom-

mendation entity embeddings.

• Techniques for exploring reinforcing AAB in downstream and subsequent

models.

• Exploration of current mitigation methods for addressing AAB.

• Discussion of limitations of this approach and future directions.

Throughout the dissertation, we leverage language such as stereotypes, bias,

and harm. When referring to bias, we are discussing algorithmic or qualitative

statistically skewed results found in experimental or evaluation settings which can

produce harm [84]. We refer to stereotypes as a “product of biases” often held at

the societal level, which may or may not be supported in experimental settings
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[7]. Stereotyping algorithmic harm occurs when it is produced by algorithmic

bias [84]. This type of harm can be seen as “representative” harm due to it rein-

forcing “the subordination of some groups along the lines of identity” [84]. Our

framework, and presented case study, looks to quantitatively evaluate algorithmic

bias (AAB) which signals potential for reinforcing stereotypes thus resulting in

downstream representative harm. Our evaluation and mitigation of AAB does

not target fairness specifically. Instead, it targets how users and items are rep-

resented within the latent space, which could cause downstream fairness-related

harms. We observe bias as groups of items or users which experience significantly

higher levels of related-ness with a specific sensitive attribute as defined by some

group of entities.
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Chapter 2

Background

As previously described, this dissertation covers a wide breadth of subjects re-

lating to fairness and bias in recommendation systems. In the following sections,

we will briefly introduce concepts that are essential building blocks for the re-

search presented in this dissertation. First, we will introduce the concept of

recommender systems and describe research areas concerning general recommen-

dations, particularly evaluation in recommendations. Second, we will summarize

research concerning fairness and bias in recommendation specific settings. Finally

we will cover the concepts that inspired our research, the evaluation of gender

association bias in NLP research.

2.1 Recommender Systems

A recommender system has been defined as ”software tools and techniques that

provide suggestions for items that are most likely of interest to a particular user”

[73]. These systems are designed to help users make decisions, like what music

to play, clothing to buy, or posts to read [73]. In order to make these decisions,
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the system provides personalized recommendations to the user, normally in the

form of a ranked list of items [73]. The most basic form of a recommendation

system leverages three types of data to create these predictions: users, items

and interactions between the users and items [73]. Users are defined as the

downstream stakeholders of the system who directly interact with the system

predictions to make decisions. Items are the objects that are recommended for

the users. The term “item” can refer to anything that is recommended, such as

podcasts in a music app, drivers in a rideshare app, or physical items for purchase.

The interactions leveraged to train predictions are defined based on the goal of

the recommendation system or what is available for training. Interactions can

be defined as either explicit or implicit feedback from the user with the system.

Explicit feedback most often refers to item ratings given by the user, the three

most popular being numerical, oridinal or binary ratings [73]. Implicit feedback is

not given directly by the user but is inferred based on how the user interacts with

the recommendation system. This type of feedback is often defined by user-item

interactions like clicks, shares, purchases, or other user actions which can help

the system implicitly understand the users preferences for specific items.

In this section, we will provide a short overview of research areas specific to

recommendation systems which are essential to the dissertation. We will focus

on commonly used algorithmic techniques for implementing recommendation sys-

tems. Next, we will introduce latent factor and hybrid recommendation. Latent

factor recommendation can be one (or combinations of) these building-block algo-

rithms to create user- and item-embeddings. Hybrid recommendation also builds

upon these algorithms but in the form of creating recommendation components

of a recommendation system.
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2.1.1 Algorithms

There are a variety of algorithms available for producing recommendations. In

this section, we will cover the four main categories of recommendation algorithms

found in current research literature.

Collaborative filtering

Collaborative filtering is a technique that leverages similarities between users and

content to create recommendations [73]. This technique relies on matrix factor-

ization to learn latent embeddings of the users and items and predict engagement

between the two. The algorithm learns to approximate the product of the user

embedding matrix and item embedding matrix to the given feedback matrix [46].

Minimizing the objective function reflecting the predicted matrix and true feed-

back matrix is often done via stochastic gradient descent, or weighted alternating

least squares [46]. Collaborative filtering has been called “the most mature and

the most commonly implemented” technique for recommendations [73]. How-

ever, it has a variety of limitations, such as problems with scaling and providing

recommendations for cold-start items and users.

Deep Neural Networks

Deep Neural Network recommendation are defined by their ability to learn deep

representations of the content and users in the recommendation environment [96].

The Recommendation System Handbook considers a recommendation algorithm

to be a deep neural network if it leverages a “neural differentiable architecture”

which “optimizes a differentiable objective function using a variant of stochastic

gradient descent” [73]. Types of DNN recommendation algorithms include: mul-
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tilayer perceptron, autoencoder, convolutional neural network, recurrent neural

network, restricted boltzmann machine, neural autoregressive distribution esti-

mation, adversarial networks, attentional models, graph network models, and

deep reinforcement learning [96].

Context aware

Recommender systems are considered context-aware when attributes about the

contextual situation are used to produce final recommendations for the user [6].

Context can either be “representational” or “interactional.” Representational

context is defined by attributes known before the interaction or recommenda-

tion occurs and is static [6]. Interactional context is dynamic and can change

over time depending on the activity of the user [6]. This context can be injected

into the modeling process either pre- or post-filtering [6]. These context-aware

recommender systems commonly leverage multiple algorithms to achieve this goal

[6].

Content based

Content-based filtering techniques leverage the features of the items to create

recommendations based on what the user explicitly likes [61]. These item fea-

tures are domain-specific and must be engineered for the recommendation task

at hand, requiring a fair amount of domain knowledge to label the data correctly

[61]. Unlike collaborative filtering, this technique does not look to similar users to

create predictions [61]. Instead, it leverages the similarity between items to create

the predictions by recommending items most similar to items with which a user

positively interacts [61]. Popular algorithms used to learn the relationships be-

tween items for content-based filtering include vector space models, probabilistic
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models, decision trees, and neural networks [61].

2.1.2 Latent Factor Recommendation

Latent factor recommendation (LFR) algorithms have become fundamental to in-

dustry recommendation settings [21, 8]. These recommendation algorithms, such

as collaborative filtering and deep learning, provide predictions of engagement

and embedded vector representations of users and items. The resulting trained

vector representations can capture entity relationships and characteristics in a

condensed dimensional space and allow for comparisons between different entity

vectors in the trained latent semantic space.

Latent Factor Recommendation algorithms leverage user, item, and interac-

tion data to output entity vectors which can be related to one another in some

n-dimensional space. One can assume that any model leveraged for recommenda-

tions which maps users and items into the same latent space for final predictions

is a latent factor recommendation algorithm. There are a variety of available algo-

rithms for this modeling scenario, but we choose to focus on three seminal deep

algorithms leveraged for latent factor recommendation: Bayesian Personalized

Ranking (BPR), Neural Collaborative Filtering (NCF), and Deep Matric Factor-

ization (DMF). We chose to focus on deep latent factor recommendation due to

its common occurence in industry settings, as showcased with our context-aware

deep LFR industry case study and other industry publications [8].

Deep neural (or just neural) networks have become increasingly popular for

latent factor recommendation due to their ability to substitute the inner product,

leveraged in CF and MF, with a neural architecture. The implementation results

in two sets of embeddings for each entity type (users and items). For our analysis,
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we evaluate both types of vectors, the general matrix factorization model and the

multi layer perceptron model vectors. This differs from DMF, or deep MF which

solely leverages one latent vector for an entity.

2.1.3 Hybrid Recommendation

Hybrid recommendation is not necessarily one specific algorithm, but a method-

ology for building recommendation systems. Hybrid recommenders consist of

multiple recommendation components to provide final recommendations to serve

to a downstream stakeholder. Burke et al. defines hybrid recommender systems

as a modeling system which leverages two or more of the algorithmic methodol-

ogy groups described above to improve upon final recommendation performance.

There are a variety of ways that one can implement a hybrid recommender sys-

tem, in fact, Burke et al. identifies seven different types. In this dissertation, our

exploration focusing on the effects of AAB is most relevant to feature augmenta-

tion and meta-level hybrid recommender systems. Feature augmentation hybrid

recommendation systems involve one recommender component creating features,

most popularly entity embeddings, as an input to a downstream recommenda-

tion component [21]. A meta-level hybrid recommender consists of “production

line”-esque set of multiple model components with predictions being leveraged as

inputs into the subsequent component [21].

These two categories of hybrid recommendation are quite prevalent in in-

dustry systems for producing recommendations at scale. Recommender systems

in industry settings are commonly designed as hybrid recommendation systems

consisting of multiple components to create final predictions [21]. Meta-level hy-

brid recommendation in practice commonly consists of candidate generation and
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ranking components [8]. The candidate generation component acts as a filter

of content, creating a final pool of items to be ranked by the ranking or scoring

component [8]. The candidate generation component leverages a latent factor rec-

ommendation algorithm (such as DNN or collaborative filtering) to create user

and item embeddings; these embeddings are used by downstream components

to further refine the candidate pool via k-nearest neighbors or providing final

rankings with rank-specific algorithms [8].

Recommendation Components

Hybrid recommendation components work together to provide the final recom-

mendations seen by the consumer. These components include generating and

retrieving pools of content., filtering said pools by ranking for high-priority goals

and re-ranking the final lists of content for consumption. It is essential to make

this distinction because different types of components have unique goals for their

outputs. Due to the uniqueness of their goals, they may leverage different algo-

rithms, which in turn require unique evaluation metrics and mitigation techniques

[53, 79, 93, 78].

Academic literature commonly categorizes the goals of these components into

two categories: ranking and rating prediction. These are most often evaluated

regarding relevancy (or accuracy) [81]. Rating prediction focuses on “predicting

the rating value that a user would assign to an item which s/he has not rated yet”

[81]. On the other hand, ranking “is a useful approach when the recommendation

task is, for each user, to pick a small number, say N, of items from among all

available items in the collection” [81]. Regarding system components, content

pool generation often focuses on rating prediction, while ranking and re-ranking

focus on picking n number of items for final consumption by the user.
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2.2 Fairness & Bias in Recommendation

The evaluation of recommendation systems is an integral area pertaining to the

recommender research space. Present research defines a variety of evaluation

dimensions for analyzing ones recommendation system or model. The three main

dimensions of evaluating a recommendation system are relevance, diversity, and

novelty [76]. Relevance measures if the recommendations provide a beneficial

utility to the end consumer of the prediction [76]. For example, a prediction

in a music recommendation system would be considered relevant if it provided

utility to the final consumer. Measuring diversity focuses on evaluating whether

the recommendation results consist of multiple item types [76]. In the case of

music recommendation, one may measure the diversity of genres recommended

to a user in their playlists. Finally, novelty measures the ability of a RecSys

to provide a level of serendipity in predictions by serving unexpected but still

beneficial results to the consumer [76].

More recently, the evaluation of “fairness” has become it’s own evaluation di-

mension [33]. RecSys are often evaluated in terms of multi-stakeholder fairness.

Robin Burke introduced this idea with two definitions: C-fairness and P-fairness

[23]. C-fairness refers to the idea of “consumer” fairness, which evaluates the

fairness of one of the three original dimensions of evaluation in terms of those

who interact with/or consume the final recommendations [23]. In contrast, P-

fairness evaluates this from the perspective of those who provide or create the

content to be recommended for consumption [23]. In later work, Burke and Ab-

dollahpouri defined two new definitions of multi-stakeholder fairness [22]. They

introduced CP-fairness to address the need to evaluate consumer and provider

fairness at the same time [22]. Additionally, they presented the definition of
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side-stakeholder fairness, which evaluates fairness in terms of stakeholders be-

yond consumers or providers [2]. It is important to note that evaluating fairness

within the recommendation system goes beyond evaluating if a bias exists. In-

stead, it evaluates if the outcomes of this bias are “fair” or equally distributed

across individuals or groups of stakeholders.

Understanding how to define and evaluate fairness and bias of recommen-

dation systems has quickly grown into a seminal area of information retrieval

research. Various types of bias related to recommendation systems have been

defined and studied in academic and industry settings. Researchers often target

studying bias relating to harms of allocation, unequal distribution of exposure,

or attention of recommendations within the system [32]. Allocative, or distri-

butional, harms have been studied by evaluating and mitigating biases such as

popularity, exposure, ranking (or pairwise), and gender bias [3, 5, 4, 40, 28, 59, 34].

A recent literature review by Ekstrand et al. notes that representational harms

can also be studied in recommendation systems but focuses on representation in

terms of the provider and how stakeholders view their distribution within the sys-

tem, not their numerical representation as vector outputs of a recommendation

system [32].

There are three overarching methods for mitigating for fairness and bias in

RecSys: pre-processing, in-processing, and post-processing [38]. Pre- and post-

processing mitigation methods tend to be model agnostic, meaning the technique

can be applied in a system regardless of the algorithm (albeit with some restric-

tions depending on the training and final output data). Pre-processing is im-

plemented on the training and test data leveraged to train the recommendation

algorithm [38]. Post-processing techniques mitigate bias after recommendations

have been made [38]. Commonly, post-processing is implemented as a re-ranking
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technique. In-processing mitigation is often a model intrinsic method developed

as a specific algorithm or introduced into the training as a part of the optimization

function, most often as a regularization term [38].

In the following passages, we will present various definitions of fairness or bias

presented in recommendation system research.

2.2.1 Distributional Harms

Abdollahpouri et al. states that popularity bias is present when “popular items

are recommended even more frequently than their popularity would warrant”

and demonstrated the propensity for it to occur in recommendation systems in

various works [3, 3, 5, 4]. Geyik et al.’s audit of ranking on LinkedIn is an example

of evaluating the rank fairness in a recommendation system in production. For

example, [59] evaluated popularity bias to measure the fairness of the distribution

of content binned by original popularity rank.

[60] and [35], evaluated the fairness of distribution of gender in music recom-

mendations. [34] evaluated the distribution of author gender in book recommen-

dations when using different recommendation techniques. [40]’s audit of ranking

on LinkedIn is an example of evaluating the rank fairness in a recommenda-

tion system in production. [25] evaluated how gender affects rank performance

on job sites, such as Indeed and Monster. [28] conducted a large scale audit

on ranking bias for Amazon recommendations. More recently, [32] produced an

extensive literature review to help frame the current environment for recommen-

dation fairness. [32]’s review provides guidance in using exposure and pairwise

fairness within recommendation fairness evaluation frameworks. The review also

notes that there is still a great need for research on developing best practices
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for when and how to leverage recommendation metrics. More detailed informa-

tion on multi-stakeholder, pairwise, and exposure fairness can be found in [32]’s

literature review.

2.2.2 Set Membership Bias

Set membership bias is primarily concerned with the distribution fairness within

the final recommendation set. Top-k and set-based fairness focus on the evalua-

tion of bias in a ranked recommendation set membership[40, 91, 94]. Set-based

fairness is the quantification of representation of protected groups relative to a

comparison distribution[91]. Yang et al. presented three metrics for measuring

set-based fairness: normalized discounted difference, normalized discounted KL

divergence, and normalized discounted ratio[91]. These measures are calculated

by computing, such as proportion difference and KL divergence, at discrete points

within the ranked set, then compound the values with a logarithmic discount[91].

The measurements are discounted to capture the importance of rank[91]. Zehr et

al. built upon this notion with top-k fairness. This version of fairness in ranking

evaluates a set of k candidates in a ranked list for containing a required proportion

of group membership[94]. They defined this notion as ranked group fairness [94].

Geyik et al. presented two metrics for measuring top-k fairness in an industry

setting at LinkedIn[40]. They introduced Skew@k and a cumulative version of

normalized discounted KL divergence. Skew@k calculates the logarithmic ratio of

the proportion of recommendations having a specific attribute among the top-k

ranked results against a corresponding desired proportion of that attribute[40].

Their version of KL divergence reflects the weighted average of Skew@k overall

defined attribute values[40].
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Another version of set membership bias is equity of attention. Individual

equity of attention is an individual fairness metric that evaluates bias in set

membership[17]. This metric aims to evaluate the diversity of content groups

represented in a recommendation set. Unlike top-k or set-based fairness, it does

not compare against a predefined group distribution. Mehrotra et al. presented a

similar metric in a group evaluation setting which they called group fairness[59].

To avoid confusion with the popular definition of group fairness mentioned above,

we refer to Mehrotra et al.’s metric as group equity of attention.

Tsintzou et al. introduced bias disparity in recommendation systems to mea-

sures the relative change in bias value between the training and recommendation

sets for a user[85]. Bias is calculated as the conditional probability of a provider

group being recommended or selected given the user group[85]. This probabil-

ity is calculated with preference ratios, the fraction of chosen or recommended

content from the provider group, compared to the probability of choosing the

provider group at random[85].

2.2.3 Rank Position Bias

Metrics for measuring bias in rank position leverage the idea of pairwise compar-

ison to compare group rank performance[14, 48]. Beutel et al. leverage pairwise

comparisons to create the notion of pairwise fairness[14]. Pairwise fairness con-

sists of three definitions: pairwise fairness, intra-group pairwise fairness, and

inter-group pairwise fairness[14]. Each of these definitions is evaluated with

a version of pairwise accuracy. This metric calculates ”the probability that a

clicked item is ranked above another relevant unclicked item”[14]. Pairwise fair-

ness evaluates pairwise accuracy across groups for equality[14]. Intra-group pair-
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wise fairness is evaluated with intra-group pairwise accuracy, which is calculated

by comparing the clicked item with other relevant unclicked items in the same

group[14]. Inter-group pairwise fairness leverages inter-group pairwise accuracy,

which compares the clicked item with other items not in its group[14]. Beutel et

al. formulated pairwise fairness to enable comparisons of relationships between

different groups when ranked in the same set.

Kuhlman et al. leveraged pairwise comparisons to introduce rank parity.

They leverage the calculation of concordant and discordant pairs to form the ba-

sis of their metrics[48]. The concordant and discordant pairs are determined by

comparing predicted ranks to true rankings for the set[48]. They introduce three

rank parity metrics: rank equality error, rank calibration error, and rank parity

error[48]. Rank equality error was created to capture the notion of equalized

odds for rankings by capturing how often items from one group are incorrectly

ranked higher than another group[48]. Rank calibration error captures the over-

all error made for items in a group. It is based on the classic fairness notion of

calibration[48]. Rank parity error reflects the notion of statistical parity by mea-

suring how often one group is favored over the other regardless of their positions

in the true ranking[48].

2.2.4 Rating Bias

Yao et al. presented the idea of non-parity metrics to calculate fairness in col-

laborative filtering systems[92]. The goal of non-parity metrics was to provide

a way to measure bias without access to ground truth ratings in collaborative

filtering systems[92]. Instead of comparing binary accuracy, their set of non-

parity metrics calculates the difference in predicted values between groups[92].
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Yao et al. introduced four metrics for this type of measurement. Value unfairness

is formulated to measure the difference in signed estimation error between user

groups[92]. Absolute unfairness is similar to value unfairness but measures the

difference in absolute estimation error[92]. Underestimation and overestimation

unfairness measures differences in how predictions underestimate or overestimate

true ratings for users[92].

2.2.5 Exposure Bias

Singh and Joachims presented the idea of evaluating fairness by comparing ex-

posure resulting from rank predictions between groups[77]. Their method of

evaluating exposure fairness requires defining a way to measure the amount of

exposure resulting from a specific rank position. They compute exposure from

the utility (or relevance) and position of the item in a ranked list[77]. Item ex-

posure is summed over all possible items in a group to determine the predicted

exposure of a producer group[77].

2.3 Latent Bias in Natural Language Processing

Our proposed evaluation framework for measuring attribute association bias in

latent factor recommendation model embeddings is inspired by natural language

processing (NLP) methods that attempt to measure binary gender bias in word

embeddings. These methods looked to understand associations between gender-

neutral words (like “scientist” or “nurse”) and words indicative of a specific gender

(like “man” or “woman”). Past work has identified gender biases in pretrained

static word embeddings, contextual word embeddings from large language models,

and embeddings of larger linguistic units like sentences [20, 24, 12, 83, 98, 16, 57,
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52]. Because pretrained word & sentence embeddings are widely used as input for

many NLP models, there is potential for biases in embeddings to be propagated

or amplified in downstream text classification and generation tasks [98, 68].

Pretrained word embeddings are a fundamental input to many natural lan-

guage processing (NLP) tasks. As word embeddings are understood to capture

robust syntactic and semantic meaning, it follows that undesirable social biases

have been found encoded in these linguistic representations [24, 49]. Undesirable

stereotypes and biases have been identified in both static and contextual embed-

dings and at both the word and sentence level of embeddings [20, 12, 98, 83, 52].

This is an important area for research, as Zhao et al. have shown that biases in

embeddings can be surfaced or amplified in downstream tasks.

Despite the non-linear models used to train word embeddings, semantic and

syntactic information can be understood through linear relations (Mikolov, 2013).

The geometric properties of embeddings can be represented through analogies

such as queen : king :: man : ?, where simple linear arithmetic can be used

to complete the analogy with woman. Early research in embedding bias used

these gendered analogies as evidence for undesirable gendered meaning captured

in embeddings [24, 98, 20].

Various methods for evaluation and measurement were introduced to better

understand this bias for natural language processing. In a seminal work by Boluk-

basi et al., the difference vectors of pairs of words that have are definitionally

gendered (such as she-he or woman-man) are used to establish a gender subspace

[20]. This logic for identifying a gender subspace has since been replicated across

a range of NLP embedding contexts and research [36, 16, 82, 56].

Caliskan et al. introduced the Word Embedding Association Test (WEAT) as

a method for evaluating bias in text that was inspired by the Implicit Association
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TEST (IAT) used by psychologists [24] . In the case of gender bias, WEAT uses

cosine similarity to compare a set of target words that are definitionally gender

neutral (such as science) with sets of gendered attribute words (such as male, and

female). Another measure for bias, defined by Ethayarajh et al., is Relational

Inner Product Association (RIPA) [36]. This method uses a relation vector,

which is created through definitionally gendered word sets, and then takes the

inner product between the relation vector and any word vector. RIPA builds

from the work

RIPA and WEAT were designed as methods of quantifying semantic gender

in text. Another approach to identifying gendered meaning in word embeddings

has focused on grammatical gender in languages such as Spanish and French.

Instead of applying PCA to learn a gender direction, linear classifiers such as

Linear Discriminant Analysis (LDA) or Support Vector Classifiers (SVC) have

been used to classify grammatical gender [101, 67]. In this approach, the model

is trained to classify grammatically female and masculine words, such that a

decision hyperplane can be used towards signal disentanglement.

This dissertation looks to these seminal works in gender bias evaluation in nat-

ural language embeddings to formulate novel approaches for recommendations.

The evaluation metrics and methods we introduce for recommendations can be

seen as novel due to the inherent differences between recommendation embed-

dings and language embeddings. One main difference we account for is the fact

that definitionally gendered or stereotyped one-to-one relationships between en-

tities do not exist in recommendations settings. Additionally, item entities often

do not have defined sensitive attributes, meaning that the practitioner may need

to investigate how attribute association bias occurs within their system against

the user entities that define the sensitive attribute within the space.
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Chapter 3

RecSys Auditing Frameworks in

Practice

The methodologies we share in this dissertation are intentionally designed to

support implementation in practice, specifically within broader algorithmic au-

diting frameworks. Broad system-level frameworks provide essential structure

to approaching the ambiguous problem space of auditing for harms and bias in

industrial systems [70, 13]. [70] introduced the seminal auditing framework of

”SMACTR”, standing for ”Scoping, Mapping, Artifact Collection, Testing, and

Reflection.” SMACTR is viewed as a framework for a large-scale audit, explicitly

accounting for ”procedures and documentation, as well as considering system out-

puts” [11]. Our proposed framework of methodologies fall more in line with the

idea of ”disaggregated evaluations,” which is targeted by the framework, SIIM,

introduced in this section. Disaggregated evaluations may also be captured by

the ”Testing” step of SMACTR, where the focus lies on analyzing AI outputs for

harm or bias [70, 13, 11].

Our attribute association evaluation and mitigation methodology framework
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provides practitioners with guidance to analyze attribute association bias sys-

tematically with the SIIM framework presented and discussed below. We do this

by specifically focusing on how to scope the attribute to be measured for bias,

identifying and implementing our methodologies to determine the existence of

bias, and then finally, flagging for significant results and significant changes in

bias after mitigation. The following section and subsections were presented and

published by the author at the conference RecSys in 2022.

3.1 Algorithmic Auditing in Practice

In 2019, EU reports called the development of industry standards 2-4 years

away [37]. Around the same time, Jobin et al. found more than 80 documents

containing ethical principles or guidelines for AI, also pointing to the need for

more implementation guidance rather than principles alone [45]. Raji et al. be-

gan to address this need by introducing SMACTR to provide a framework for a

wider auditing context [71]. Bakalar et al. added to this body of work concerning

responsible AI in practice by presenting insight and guidance into implementing

fairness for binary decisions in industry systems [9]. However, their best practices

may not apply to more complicated workflows such as recommendation systems.

A growing selection of tools has been created to attempt to bridge this gap,

such as Fairness360 and Fairlearn [18]. However, such tools are not always appli-

cable to an auditing team. Many of these tools are generally tailored to classifica-

tion or regression tasks rather than ranking techniques used in standard recom-

mendation settings [74]. This leaves practitioners evaluating recommendations

with the overwhelming tasks of translating, implementing, and standardizing re-

search for evaluating fairness in their systems.

28



Measuring fairness comes with challenges, such as interpretation issues for

non-experts [74], the volume of conflicting fairness metrics [62], and a steep

learning curve for the average practitioner [51]. In addition to these challenges,

as Jacobs and Wallach point out, fairness is essentially a contested construct [44].

Different definitions of fairness should be seen not as only different measurement

operationalizations, but rather as different conceptualizations or perspectives on

values. Determining which algorithmic harms are to be evaluated in a mea-

surement exercise depends on such choices [10]. Helpful end-to-end frameworks

around algorithmic auditing can provide high-level organizational anchoring (e.g.

[71]); however, these frameworks provide little guidance on detailed challenges

that occur when starting to audit a specific product area. Organizations may

have to retrofit a consistent approach across hundreds of existing systems, while

accounting for system-specific nuances, making one-off studies unscaleable. These

challenges lead to a frustrating situation where teams enthusiastically begin au-

diting systems, but the lack of industry standard tooling or guidance halts their

progress.

3.2 SIIM Framework for Auditing in Practice

The framework we introduce, SIIM, consists of four steps: scope, identify, im-

plement, and monitor and flag. The first step, scope, addresses the problem of

determining “what” to analyze. For example, what sensitive attribute should be

analyzed in our LFR model vector output? The second step, identify, focuses on

determining the best-suited methodologies for said analysis based on the scope

and outputs of the system. The third step, implement, represents the time dedi-

cated to conducting the analysis and determining how to manipulate the data to
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leverage identified methods. Finally, the fourth step, monitor and flag, answers

the vital question of if significant levels of bias exist within the system.

This framework was designed at Spotify to address challenges encountered

during a central algorithmic auditing effort, and after specific products have

committed to auditing their products. SIIM is designed to help practitioners

develop organized and strategic audits for evaluating bias and harms in their

recommendation systems. Below, we will introduce the steps of the SIIM frame-

work as well as highlight key challenges practitioners may face when trying to

implement the step in practice. By sharing these challenges, we hope to provide

inspiration for future research directions to lower the barrier to reducing harms

in production-level recommendation systems.

Figure 3.1: The SIIM framework breaks down the auditing process into four
key steps that seek to answer essential questions encountered while auditing a
recommendation system in practice.

3.3 Steps in quantitative evaluations

The SIIM framework can be organized into four distinct steps: scope, identify,

implement, and monitor and flag. We organized our steps into these four groups

based on four targeted questions we needed to answer to conduct our audit:

• Scope: What aspects should be audited (first)?
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• Identify: How can we measure this type of bias effectively?

• Implement: What are the results?

• Monitor and flag: When is mitigation required?

Figure X illustrates the intended steps in order: scope, identify, implement,

and monitor & flag. However, in practice, the journey is non-linear with teams

possibly revisiting steps multiple times through out the process of auditing their

systems. For example, after implementing a specific evaluation or mitigation

method, the practitioner may found that it did not exactly satisfy the scope of

their audit, thus requiring them to revisit the identify step in order to find a

more well-suited method for their specific scenario. In figure Y, we provide a

highlevel overview of possible sub-steps within SIIM. Scope tends to be the most

qualitative step, focused on scoping the audit and defining requirements for imple-

menting fairness or evaluating bias within their system. The next step, Identify,

is where the research begins with teams identifying possible methods for satisfy-

ing the scope of their audit. Once those methods have been identified for testing,

practitioners can Implement the audit. Implementation may include engineering

or sampling the dataset, technically implementing identified methodologies from

research, and testing the methods. This step also includes the first iteration of

the audit. If all goes well and implementation has satisfied the original scope

of the audit, the practitioner can move to the Monitor and flag step, which fo-

cuses on identifying if mitigation is needed, testing and implementing mitigation

stratigies, and finally setting thresholds for future flagging for intervention.

In the sections below, we provide a high-level overview of challenges we en-

countered with each step. (Our presentation will include specific examples of

these challenges that were not included in this proposal due to length constraints.)

31



Figure 3.2: Each step of the SIIM framework consists of sub-steps to address
when auditing one’s recommendation system.

3.3.1 Scope

The first step to evaluating bias is to scope what exactly needs to be measured.

Larger organizations may have provided policies and frameworks of topics of con-

cerns (e.g., legal requirements around data restrictions, societal concerns around

popularity bias, gender and racial equity, etc.), but that does not immediately

translate into exact playbooks that guide where to start and how to scope an eval-

uation; this still requires judgement and agreement on who should be involved in

this judgement. The challenge for practitioners is determining when their scope

is good enough to conduct an initial evaluation, not necessarily if it is optimal.
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Determining and prioritizing focus is especially difficult in a multi-stakeholder

recommendation system; evaluating consumer versus provider fairness are two

separate objectives, which may require different and (or) contrasting approaches

to evaluation. Differing internal and external pressures, as well as practicalities

such as data availability and quality, need planning and prioritization. In addi-

tion to determining focus, practitioners need to understand where in the system,

or rather system of systems, to measure. Industry recommendation systems can

be complex, consisting of building blocks across many teams. Even when a prac-

titioner may know what type of bias needs to be evaluated, it may be difficult to

translate the evaluation techniques company-wide across systems, due to different

algorithms, system design, and available data — at the same time this scoping

can have serious consequences.

3.3.2 Identify

Once the evaluation has been scoped, the practitioner needs to determine how to

measure the targeted bias. Finding the correct measurement technique not only

includes sifting through research, but also testing if the metrics are compatible

with the system(s) tested. Even after testing, we ended up with an extensive

list of possible metrics to evaluate consumer and producer fairness. Filtering this

list was difficult akin to the discussion in [44]. This turned a seemingly simple

task of choosing a metric into a complex debate between alternate constructs of

recommendation fairness [44], while product leaders need concrete and concise

guidance. Choosing metrics wrongly can have grave consequences, but this gap

gives practitioners the sizeable task of narrowing down potential research metrics.

This means that larger organizations with resources to do this investigation have

33



an advantage. In addition to finding the correct metrics, the practitioner is also

often tasked with explaining them to stakeholders that need to be involved for

feedback. Depending on the stakeholder, choosing a complicated fairness metric

could introduce more confusion, reducing motivation in teams who want to show

results. We found that many of the metrics were not intuitive when presented

to an audience with little to no experience with standard recommendation or

ranking fairness metrics. In addition, even for expert audiences, a communica-

tion gap exists. Impactful wins from an organizational algorithmic responsibility

perspective, such as being able to monitor a platform across systems, may not be

top of mind to individual teams motivated to show results for their own system.

3.3.3 Implement

At this step, practitioners are essentially “ready” to begin measuring the targeted

bias. Unfortunately, due to the lack of tooling available for recommendations

and ranking, completing this step requires technical expertise to translate cho-

sen research methods into code for future evaluation. Implementing a technical

translation of the research can be challenging for practitioner teams if they do

not have adequate access to engineering support. Even if they do, calculated rec-

ommendation fairness metrics at scale can be complex because they may require

calculation for each user recommendation set.

Technical implementation also involves making decisions that can appear to be

trivial, but in reality have potential to heavily impact results. In our experience,

choosing comparison distribution and sampling methods can introduce unforeseen

difficulties. For example, it is possible to evaluate different definitions of fairness

depending on how the comparison distribution is defined [40]. Choosing the
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wrong comparison distribution can introduce more bias in itself [88]. Guidance is

necessary to help practitioners design their comparison distributions effectively

without possibly reinforcing the harmful effects of their recommendation system.

Scoping a new sampling strategy incurs similar challenges. The list of alternate

ways to the above approaches makes it easy to get bogged down in analysis of

all possible options, but a team may feel they need to “start somewhere” for

initial analysis to learn and move towards an impactful audit. However, it can

be difficult for practitioners to definitively know that they are headed in the

right direction, and get the space to pivot and return to this step when they

are not. This means that feedback and evaluation moments have to be built

in, requiring buy-in from both central algorithmic responsibility researchers and

involved teams.

3.3.4 Monitor and flag

Developing a method and a metric to monitor is not enough to audit a system

for algorithmic harm. Decisions need to be made of when to act, whom to alert,

and what follow up actions are required across different teams. Determining

thresholds to flag bias for mitigation is another challenging task in our evaluation.

There is a difference between “practical” and “statistical” significance when it

comes to assessing meaningful harm [65]. Statistical significance is influenced by

many decisions (e.g., alpha, one- vs. two-sided test) that are generally designed

to assess whether results occurred due to chance, not whether the results were

meaningful. “Significant” doesn’t mean practical, and “marginally better than

what was before” might not be very impactful.

Determining “practical” and context-driven cut-offs beyond traditional “sta-
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tistical” thresholds requires making difficult decisions about what the company

deems “fair”. Creating these concrete goals and cut-offs, and deciding when to

act, is a substantial undertaking. Given the lack of standards, practitioners may

have to develop their own unique guidelines to develop context-driven thresholds.

This process can be taxing because of the potential to prioritize sub-optimally,

to introduce or ignore bias, or not really “making a difference” (see also [35] for

related examples on creator gender representation in recommendations). Practi-

tioners making these difficult decisions could have potentially large downstream

effects on creators and users, without tools to further investigate their impact.

Assessing the “practical” significance often requires subject matter expertise that

even a trained fairness practitioner often does not have. Without concrete guid-

ance and inter-team agreements and protocols, it is hard for teams to know when

they are required to take action even if their systems are monitored.
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Part II

Auditing Attribute Association

Bias
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Chapter 4

Scope: Research Setting

This dissertation will explore AAB in four different datasets. Three of these

datasets are publicly available with the fourth reflecting proprietary Spotify pod-

cast data. The Spotify dataset was available for research through my employment

and individual industry PhD agreement with Spotify to produce and publish re-

search pertaining to this specific model and its input and output datasets. For all

scenarios, we evaluate AAB in terms of the candidate pool generating component

of a hybrid recommendation system. This is due to our focus on latent factor

recommendation algorithms primarily being used to produce candidate pools, not

final ranked results in a recommendation system.

We chose to explore various types of biases in unrelated datasets to determine

how well our proposed methodologies for evaluating and mitigating AAB func-

tion under differing circumstances. Additionally, these experiments enable us to

observe how different biases may be stronger or weaker under certain conditions,

such as the types of algorithms leveraged or if feedback loops were simulated.

This dissertation examines gender, size, and age bias. Each of these biases have

the ability to create stereotypical experiences and have been examined in both

38



academic and industry settings. Details behind our choice in bias will be dis-

cussed within the scenario specific sections below.

4.1 Spotify Podcast Recommendation

We evaluate user gender AAB regarding podcast genre by implementing our

framework on an industry hybrid recommendation system. We decided to evalu-

ate the first component of the system as the earliest point in which this type of

bias could be introduced into final recommendations. This component is an in-

dustry production-level candidate generation model for podcast recommendation;

it uses an LFR algorithm to create pools of podcast vectors by user to be ranked

for final recommendation lists. More specifically, candidates are generated via a

deep neural network (DNN) recommendation model, a setup commonly used in

industry systems [63, 26]. It mimics matrix factorization collaborative filtering

via a DNN and is trained with candidate sampling and importance weighting to

account for potential popularity bias. Model inputs include user features, pod-

cast ids, and binary labels representing positive or negative implicit feedback.

Final user and podcast (or item) representation embedding vectors are collected

as outputs from the model.

We trained the model with and without using user gender as a feature to

understand the counterfactual effects and potential for implicit bias when trained

without explicit use of the sensitive feature. This also enabled us to explore use

of our framework for creating baselines for mitigation methods, such as removing

sensitive attributes from a model. All analysis and training were conducted offline

due to the sensitivity of mitigating user gender bias in an online industry system.
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4.1.1 Gender Bias in Podcast Preferences

Our case study provides a quantitative deep dive into biased listening behav-

ior previously observed in qualitative academic studies. These studies provided

guidance for grouping our entity vectors to implement our analysis methods; we

decided that exploring user gender AAB would provide a good case study for ex-

perimenting with our framework and contributing novel insight into this area of

research. For example, [19] found listeners of true crime podcasts were predomi-

nately female and showed three specific motivations. [27] found that motivations

for podcast use in young adults did not significantly change across gender but

across genres, signaling a potential change in gender and genre combined. [80]

presented results showing that various demographic parameters, including gender,

drove podcast interests in Latina/o/x young people. However, these stereotypes

have yet to be researched quantitatively via bias evaluation in the context of

recommendation systems. In this case study, we continue investigating the rela-

tionship between gender and genre by analyzing and quantifying potential user

gender bias captured in the trained latent space representation from a recom-

mendation model.

Defining Entity Sets

After deciding to target user gender AAB, we needed to determine how to group

our entities for analysis. We can group male and female users into our attribute-

defining entity sets to target user gender. Nevertheless, we must also determine

how to frame our entity sets to test for user gender bias given the variety of

possible stereotypes associated with user gender. For example, one could frame

the analysis to understand if there is user gender AAB regarding creator gender.
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An Edison report focusing on podcast listening behavior of women found that

women would listen to more podcasts if there were more female hosts within

the podcast space [50]. Another industry study by AT&T found that men were

likelier to listen to podcasts hosted by men [1].

Instead of framing our analysis that way, we chose to target how user gender

may become associated with specific genres of podcasts. We looked to past

research on podcast genre listening behaviors by gender to determine which genres

we should define as test entity groups. In particular, [19] noted that true crime

podcast listeners are more likely to be female than male, and true crime is one

of the most popular genres in female listening [50]. In contrast, sports podcasts

have been found to have a primarily male listenership [42]. When observing

proprietary data concerning gender share in listenership, we confirmed that these

two genres were significantly skewed towards women for true crime and towards

men for sports. Given these findings, we explored gender AAB for podcasts

labeled as true crime or sports.

Our podcast vectors were labeled by predetermined podcast genres. These

genre labels were defined via self-selection from podcast hosts and behind-the-

scenes cataloging of podcasts. Because a podcast can be classified under multiple

genres, we required podcasts labeled as true crime not to be labeled as sports

and vice versa.

Due to past research on binary stereotypes in gender in information retrieval

literature, we chose to approach stereotypes in a binary sense between feminine

and masculine genres [34, 69] In respect to genre categories, we leverage predeter-

mined genre specifications for podcasts. These genres are attributed to podcasts

via self-selection from podcast hosts as well as behind the scenes cataloguing of

podcasts. In all, there are 21 genres available for analysis and podcasts can be
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classified under multiple genres. Given past research, we focus on differences

in bias between true crime and other genres. Additionally, we create groups of

genres based on historical gendered listening: stereotypically male, female, or

neutral. A genre is assigned to a specific gender group if more than 65% of his-

torical listeners are of that gender. At the time of this research, the female genre

group consisted of Health & Fitness, True Crime, and Kids & Family while the

male genre group consisted of Sports, Technology, and Leisure.

4.1.2 Production-level Candidate Pool Generation Eval-

uation

We evaluate user gender AAB regarding podcast genre by implementing our

framework on an industry hybrid recommendation system. We decided to evalu-

ate the first component of the system as the earliest point in which this type of

bias could be introduced into final recommendations. This component is an in-

dustry production-level candidate generation model for podcast recommendation;

it uses an LFR algorithm to create pools of podcast vectors by user to be ranked

for final recommendation lists. More specifically, candidates are generated via a

deep neural network (DNN) recommendation model, a setup commonly used in

industry systems [63, 26]. It mimics matrix factorization collaborative filtering

via a DNN and is trained with candidate sampling and importance weighting to

account for potential popularity bias. Model inputs include user features, pod-

cast ids, and binary labels representing positive or negative implicit feedback.

Final user and podcast (or item) representation embedding vectors are collected

as outputs from the model.

We trained the model with and without using user gender as a feature to
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understand the counterfactual effects and potential for implicit bias when trained

without explicit use of the sensitive feature. This also enabled us to explore use

of our framework for creating baselines for mitigation methods, such as removing

sensitive attributes from a model. All analysis and training were conducted offline

due to the sensitivity of mitigating user gender bias in an online industry system.

4.1.3 Experimentation Settings

We created our evaluation data set by randomly sampling 9,500 female and male

users to create a final set of 19,000 users. Our podcast vector data set comprised

31,181 English podcasts from the DNN recommendation model. We restricted

our analysis of recommendations to users registered in the United States and

podcasts created by English speakers. We chose this subset of data to minimize

the possibility of location and language confounds, which could potentially affect

gender bias measurements due to differences in cultural norms. In the future, it

would be interesting to research how gender stereotypes are found as algorithmic

bias differently in recommendations concerning the location and language of the

users and served content.

Podcast listening has also been shown to demonstrate the potential for gender

bias. For example, [19] found listeners of true crime podcasts were predominately

female and showed three specific motivations. [27] found that motivations did not

significantly change across gender but did change across genres, signaling a po-

tential change in gender and genre combined. [80] presented results showing

that podcast interests in Latina/o/xs young people were driven by various demo-

graphic parameters, including gender. In this paper, we continue investigating

the relationship between user gender and genre by analyzing how user gender in-
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fluences podcast recommendations through the entanglement of user gender and

trained item vector representations. We evaluate user gender bias in terms of

female and male users.

4.2 MovieLens Movie Recommendation

Our setting for experimentation differs from that presented for the Spotify case

study due to there being less constraints on experimentation with the public

datasets. Given this, we investigated our proposed definition of bias with a

popular public dataset to explore if this phenomenon can be present beyond

our original scenario. We leverage the MovieLens dataset, a commonly used

public dataset for recommendation research, as one of our case studies. We

do this by setting non-data specific experimentation scenarios to analyze how

AAB may differ according to the recommendation algorithm leveraged and the

recommendation scenario. In the following subsections, we provide an overview

for these general experimentation settings as well as define dataset specific details.

4.2.1 Gender Bias in Movie Preferences

Similar to podcast listening, gender bias has also been studied regarding movie

preferences. This bias has been studied quantitatively by evaluating gender biased

language in screenplays [72]. Ramakrishna et al. found that romantic and comedy

movies consisted of more feminine language than non-romantic or non-comedy

movies[72]. Additionally, they found that the opposite held true for Action and

Crime movies[72].

Stereotypes define romance, comedy and ”melodramatic” movies as movies

for women. But for men, action and horror are supposed to reign supreme. These
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stereotypes have been confirmed in qualitative studies observing gender prefer-

ence for genres [66]. More recently, less well-known gender stereotypes were con-

firmed qualitatively in a study observing the accuracy of gender stereotypes on

actual movie-genre preferences [89]. Wuhr et al. found that gender stereotypes do

exist, however, they over estimated the actual size in difference between gender

preferences [89]. This study looked at 17 different genres and found that drama

and romance were more preferred by women[89]. Action, adventure, erotic, fan-

tasy, horror, mystery, science fiction, war, and Western were found to be more

preferred by men[89]. Only six genres were considered equally popular amongst

men and women: comedy, animation, crime, heimat, history and thriller[89].

4.2.2 Age Bias in Movie Preferences

Movie genres are often associated with particular age groups. For instance, action

and adventure films are commonly perceived as targeting a younger, predomi-

nantly male audience, while romantic comedies may be seen as more suitable

for older viewers or women. Age was found to be a helpful predictor and ma-

chine learning feature for movie genre preference [86]. In a study of Italian movie

watchers between 18-65 found that younger participants showed more preference,

via regression analysis, for romance, drama, horror, thriller, action and sci-fi [43].

However, this quantitative finding was different from that found by where horror

was preferred more by younger individuals and drama was more preferred by an

older audience [47]. Similar to exploring user gender bias, we will look at user

age bias and how it can be quantified within the latent space.
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4.2.3 Experimentation Settings

We use two samples of data, first, MovieLens-100k which consists of 943 users,

1682 movies, and 100,000 interactions. The other sample is for 1M interactions

with x users, x movies, and 10000029 interactions. The dataset includes gender,

age, occupation and location as user features, as well as, genres for the movies.

For our evaluation, we implement our framework for observing user gender and

user age bias on the movie genres.

When reviewing the results for the public dataset, MovieLens, we will focus

first on observing how AAB manifests itself when leveraging a deep neural net-

work. This allows us to remain slightly more in line with our experimentation

settings defined for the Spotify case study. With the MovieLens dataset, we pro-

vide insight into bias directions and bias metrics based on the algorithms used,

and where appropriate how data sampling can significantly change results. Addi-

tionally, we will provide a review of how AAB differed across the three modeling

scenarios targeting the evaluation of gender bias in the latent recommendation

space.

We leverage the python package RecBole in order to use pre-built and evalu-

ated recommenders for collaborative filtering scenarios. As mentioned before, we

leverage DMF as our model for initial evaluation of AAB across our three cases

studies. We train the data off of the interaction matrix, not the rating matrix.

We leverage the following type of latent factor recommendation models avail-

able in said package: Bayesian Personalized Ranking (BPR), Deep Matrix Fac-

torization (DMF), and Neural Collaborative Filtering (NCF). We chose these

models based on their frequent use in research to examine recommendations for

both explicit and implicit feedback. Additionally, these three models represent
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three different ways of approaching recommendation algorithms, thus allowing us

to explore when our proposed methods can or cannot be used. BPR and DMF

both inherently model relationships between the user and item entities by lever-

aging a final layer calculating the cosine similarity between the user and item.

BPR differs from DMF by implementing methods to model ranking, while DMF

does not take ranking into account. NCF is fundamentally different from both

of these methods because it does not explicitly model relationships via cosine

similarity or the dot product. Additionally, the entity embeddings are defined

earlier in the algorithmic architecture meaning it is farther removed from the final

recommendation prediction. By observing NCF in addition to BPR and DMF,

we are able to evaluate how this algorithmic difference affects the final trained

latent space. We explore the ramifications on this primarily in section X, finding

that our methods are not appropriate for NCF.

For our experiments, we leverage the network and parameters as proposed

and implemented in RecBole via their pre-defined set-ups for each model. These

parameters are set to train up to 300 epochs with potential to stop training after

10 steps. Weights are not decayed after each epoch. Recbole leverages ADAM as

the optimizer with a learning rate of 0.001. The training batch size is set to 2048

records with an evaluation batch size of 4096. The embedding size for all entities

across all possible datasets is 64. The data is split between training, testing, and

validation at 80, 10, and 10 percent.
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Chapter 5

Identify: Methodology

Framework

This chapter focuses on presenting the methodologies we leverage for addressing

AAB in practice. When conducting an audit of AAB, we look to understand

three main attributes of AAB before mitigation. First, we need to understand if

AAB exists within the trained latent space. Second, we must determine the level

of significance of the bias for the given scenario. Finally, we look to examine the

potential for amplification of the bias. These three attributes form the basis of

our AAB evaluation framework, ESA: existence, significance, and amplification.

Evaluating each of these AAB attributes are specific to the implementation

step of the SIIM framework. Our first three sections address implementation

instructions for the ESA framework. Our final section, focuses on implementation

steps required for mitigating AAB. The mitigation section captures the final step

of the SIIM framework, Monitor & flag. This is due to the fact that we need to

implement an evaluation and then flag a model for mitigation.

The first three sections introduce and provide implementation instructions
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for exploring AAB with our ESA framework. In addition to introducing these

methods, we provide guidance for identifying which methods to use during the

evaluation to help practitioners find the correct methods for their specific use

case. The methods we introduce are designed to guide the practitioner from

initial exploration of the AAB to the final determination of which groups should

be targeted for mitigation.

First, we evaluate the existence of AAB by designing and calculating bias di-

rections. Second, we determine the significance of the bias for the scoped scenario

by identifying significant entity groups and calculating bias evaluation metrics for

further analysis. Third, we analyze potential for bias amplification by providing

guidance for evaluating feedback loops and potential reinforcing bias. We intro-

duce these methods in order of the type of analysis the practitioner wishes to

conduct, from initial exploration to targeted measurement for determining miti-

gation needs. Thus, we provide support for evaluating bias across different phases

of analysis while addressing bias and harm within one’s recommendation system.

When evaluating bias amplification, we evaluate feedback loops, where bias

is reinforced over time, with simulations of recommendations. These simulations

mimic a situation where AAB is left unchecked and recommendation models are

retrained on historical data from the potentially biased predictions. We also

look at reinforcing bias via the ability for entity embeddings to relay sensitive

information and bias as features in downstream models. We conduct this study

by leveraging classification models trained on the entity embeddings.

Finally, we present methods for mitigation of AAB in a recommendation set-

ting. We provide an overview of possible approaches and present our final choices

for mitigation. We look at all three possible mitigation steps: pre-processing,

post-processing, and intrinsic.
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5.1 Introducing the ESA Framework

As previously mentioned, we look to understand the existence, significance, and

amplification of the AAB. When first exploring the existence of AAB, we suggest

exploring the significance of scoped attribute bias directions. Finding significant

bias directions in the latent recommendation space may alert practitioners to the

existence of significant levels of AAB. Bias directions provide quantitative means

for determining if a significant relationship exists between the entities and the

attribute. One can leverage these methods to answer the question: “does AAB

exist?”. In addition to bias directions, we showcase how one can visualize the

attribute space. We do not recommend this method as a necessary evaluation

step due to it’s unreliability for useful output across differing data domains.

Figure 5.1: The ESA framework consists of three steps to help practitioners
understand attribute association bias in their systems.

If a clear attribute relationship has been found to exist within the latent space,

one may investigate the problem further by measuring the level of significance of

the bias present. In many cases, the practitioner may not know which group in
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a multi-group setting is experiencing more or less significant AAB. We provide

a series of steps to help remedy this issue. Our next step focuses on identifying

significant groups for further analysis when there are multiple possible groupings

of entities. This step is helpful when distinct binary relationships between groups

have not been defined by the practitioner.

One will also want to conduct level setting for future mitigation and direct

measurement by implementing AAB evaluation metrics to test for significant

levels of AAB and create statistical baselines for evaluating if mitigations are

successful. Practitioners can implement these methods to address the question:

“how strong is the level of AAB in my system?”. Between identifying groups for

analysis and calculating bias metrics, we can determine the significance of the

bias within the system.

Finally, we address the amplification of the bias by evaluating how the AAB

may change over time if left unchecked via recommendation simulation. Addition-

ally, we explore how the latent space can capture systematic bias by leveraging

classification scenarios to evaluate the levels of stereotyping bias captured by the

embeddings. These classification scenarios can be leveraged to understand am-

plification of information if these embeddings are used in downstream models or

recommendation components.

When describing implementation details, we refer to the attribute-defining

entity sets as A and B. Each entity, a ∈ A and b ∈ B, is assigned a binary label

representing the attribute, with the label of set A being one and that of B being

zero, or vice versa. These two entity sets can be considered opposing if their

labeled attribute is mutually exclusive. Entity sets used to test for AAB will be

referred to as E and P . It is assumed that one entity set is hypothesized to show

heavier stereotyping towards one of the opposing attribute entity sets.
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Figure 5.2: The ESA framework consists of specific methodologies to evaluate
attribute association bias to address each of the three framework steps.

5.1.1 Existence: Bias Directions

Calculating Binary Attribute Bias Directions

Calculating attribute bias directions can serve as another method for exploring

the existence of bias in one’s system. These AAB direction vectors represent

how the attribute is distinguished as a vector direction between A and B within

the trained latent space. These vectors can be used for: (a) exploring individual

entities by identifying users or items whose embeddings have high similarity with

a particular AAB vector for further examination; (b) comparing recommendation

systems by using the bias vectors to calculate association bias metrics for each

system; and (c) exploring classification scenarios.

We present three methods for computing AAB direction vectors: centroid dif-

ference, SVC vector direction, and PCA vector direction. Unlike related work in

NLP association bias research (e.g., [20]), the centroid difference and SVC vector

direction calculations do not require practitioners to have distinct representa-

tion embedding pairings between entities in A and B, making them suitable for

recommendation systems and data.
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Centroid Difference The simplest method for computing an attribute’s as-

sociation bias vector is to take the difference between the centroid of A and the

centroid of B (also referred to as attribute vector mapping [54]). This method is

best used for capturing differences in average attribute behavior. The centroid

method is the most readily interpretable of the three due to its simple calcula-

tion and thus serves as a good starting point for exploring the attribute space.

However, it is essential to note that this method tends to be more conservative

in estimating bias due to variance being averaged out in the process. It may not

adequately capture significant nuances in behavior within the space, and other

direction techniques may be required to reflect more complex attribute bias be-

havior.

SVC Vector Direction Our second approach computes the association bias

vector using parameters from a linear support classification (SVC) model trained

to predict the attribute. We draw inspiration for this technique from past NLP

research that trained SVC models to predict grammatical gender in word em-

beddings [67, 101]. The entity vectors and labels in sets A and B are used as

training data for the SVC model. The attribute bias direction is created from the

final attribute layer of the model to capture the subspace representing significant

attribute meaning. The selection and assignment of entities to A and B can

substantially impact the computed bias direction; in our case study, we compare

bias directions computed on random samples of users versus most stereotypically-

gendered ones. This direction methodology is best used to capture more distinct

nuances of attribute bias that may be lost when entity vectors are averaged in

the centroid difference method.
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PCA Vector Direction The final method calculates the bias direction by

using the general methodology introduced by [20], which is based on conducting

principal component analysis (PCA) on parallel attribute pair vectors. The final

attribute bias direction is the first eigenvector of these vectors, capturing the

majority of the variance found describing the group of vector pairs. Similar to the

methods above, two groups of opposing vectors must be defined to create the final

pairing of vectors. However, unlike the two methods above, implementing PCA

for vector direction creation requires distinct attribute pair vectors. This better

enables visualization for transparency, but should only be used if the practitioner

is confident in their entity pairings for defining the attribute. Therefore, this may

not be a good starting point for bias exploration. We show this caveat in our case

study by presenting the downfalls of randomly selecting attribute entity pairs for

creating a PCA vector direction.

Testing for Significance

Unlike testing significance for metrics, testing the significance of a latent direction

requires validating that the direction captures attribute behavior. We aim to de-

termine that the direction is not capturing a random relationship between entity

vectors but a distinct attribute-related relationship. We suggest the following

comparisons for significance testing:

• Cosine similarities between the bias direction and entities in opposing entity

sets A and B: This test determines if the two sets have significantly different

relationships with the bias direction.

• Cosine similarity between the bias direction and entities in A and B ver-

sus the entities’ cosine similarity with a randomly-sampled bias direction
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vector : This test examines if the entity sets have a statistically significant

relationship with the calculated bias direction versus a random direction.

• Cosine similarity of entity vectors from A (or B) with the bias direction and

that of random vectors with the bias direction: This test specifies that the

entity has a significant relationship with the bias direction in comparison to

random entities and the direction, further validating that the relationship

between the entities and computed bias direction is not random.

All three tests must show statistical significance for one to determine that

the bias direction captures a non-random relationship between the two attribute-

defining entity sets and the calculated bias directions. Given the number of

statistical tests conducted, one may wish to leverage a p-value with the Bonferroni

correction or other techniques to account for multiple tests for significance [76].

Calculating Multi-categorical Bias Directions

Exploring latent AAB for a multi-categorical attribute group raises more chal-

lenges during the bias evaluation than that for simple binary attribute scenarios.

From our experimentation, we found that it is best practice to understand the

pairwise binary relationships between groups of one’s attribute to help guide the

analysis. However, if one is concerned with the multi-categorical attribute bias

present in the latent space, we provide a work around framework for exploring

a multi-categorical attribute situation from scratch. For this dissertation, we

propose methods of finding multi-categorical defining directions without need-

ing a non-linear model or deep learning solution. Future iterations of this work

could explore more complicated implementations which have been showcased to

have success in discovering complicated latent directions via adversarial networks
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for GAN models (Discovering Interpretable Latent Space Directions of GANs Be-

yond Binary Attributes). It is important to note that these linear based direction

creation methods will not be able to capture the same level of nuance as a more

complicated direction discovery implementation. These methods may serve well

for flagging some existence of AAB, but future analysis and mitigation may re-

quire more nuanced and complicated implementations to insure that the correct

level of bias is reflected by the surfaced attribute direction.

We present the following two definitions for calculating multi-categorical bias

directions:

• Holistic Attribute Bias

• Singular Group Attribute Bias

Singular Group Attribute bias reflects the same type of bias directions de-

scribed previously, however, these directions have to be made for each group or

in a pairwise fashion. There are two ways one can implement this, one versus

many or one versus one, when creating the direction. In a one versus one sce-

nario, there would be a direction for each group pairing in a pairwise fashion. This

would also be accompanied by pairwise analysis. For one versus many pairings,

the bias directions would be created by setting one entity group to one category

and the other entity group to reflect all other entities.

Holistic Attribute bias investigates the existence of an attribute direction that

captures behavior of all the possible groups within the latent space. One can cap-

ture holistic attribute bias by measuring the variance between the singular group

attribute bias directions (either as one-to-one or one-to-many). The variance

vector can be calculated by taking the first principal component of the singular
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group attribute bias (SGAB) directions. These SGAB directions can be cal-

culated leveraging any of the bias direction methods mentioned above, but the

practitioner may wish to leverage SVC bias directions due to their greater abil-

ity to capture group nuances during training. Additionally, SVC models can be

trained for multi-categorical classification, allowing us to use the train and test

accuracy as another way to evaluate the significance of the directions. If the

SVC model is unable to perform adequately, one can hypothesize that holistic

attribute bias directions may not be the best path forward for AAB evaluation.

In the case of leveraging SVC bias directions, one can train a one-to-one or

one-to-many linear support vector machine model. Next, the first principal com-

ponent can be calculated on the linear coefficient vectors from the SVC model.

This final principal component vector represents the most variance between the

predictive hyperplane of the various groups. When comparing entities with this

final holistic attribute vector, we can assume that entities with high absolute val-

ues of cosine similarity with the vector are more affected by the variance between

these groups. Additionally, groups with opposite levels of cosine similarities can

be classified as groups with highly different behaviors with respect to the holistic

attribute. In the results section, we explore holistic attribute bias directions with

the MovieLens data for user age AAB. We find that holistic bias can be extremely

difficult to capture in this simplistic implementation, particularly for independent

sub-groups. Holistic attribute bias directions may be best used when the groups

reflect scales of one category, such as age or temperature. When confronted with

independent multi-categorical groups, it may be best to calculate the singular

attribute bias directions in a pairwise fashion to understand which groups show

more or less group-specific behaviors within their latent space.
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Testing for significance

Similar to the binary attribute direction, holistic attribute directions require test-

ing for significance as well. However, these directions require extra testing to

ensure that the attribute direction is unique to the targeted attribute, this re-

quires significance testing against other attribute independent defining groups.

We propose replacing the randomly generated binary vector tests with another

series of tests for evaluating the significance of the direction.

It is important to note that not every group will result in significant behaviors

according to the holistic attribute direction. This means that those groups are

not highly associated with the variance defining the holistic attribute. In that

situation, one may wish to reiterate on the direction leveraging only the entities

that are significantly associated with the holistic attribute direction to produce

a more accurate direction for capturing the targeted attribute.

Significance testing for multi-categorical holistic AAB directions should in-

clude:

• Entity cosine similarities between the multi-categorical bias direction versus

an independent attribute bias direction: This test determines the bias direc-

tion is significantly different from another attribute defining bias direction.

An example of this would be comparing the cosine similarities of the entity

vectors with an age bias direction and gender bias direction. Comparing

directions that may be interdependent will result in less accurate results.

In the case that all attributes are heavily correlated, one should test for

significance only leveraging a randomly genderated direction (as described

below).

• Entity cosine similarities between the multi-categorical bias direction versus
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a randomly generated direction: This test examines if the multi-categorical

bias direction captures significant and non-random behavior within the la-

tent space.

• Cosine similarity of group entity vectors with the bias direction and that

of an unrelated attribute bias direction: This test specifies that the entity

has a significant relationship with the bias direction in comparison to it’s

relationship with an unrelated attribute bias direction. This test helps

highlight which groups are showing more or less significant relationships

with the resulting multi-categorical bias direction.

• Cosine similarity of group entity vectors with the bias direction and that of

a randomly generated direction: This test investigates similar significance

behavior as the previous test but targets understanding if specific groups

have non-random relationships with the multi-categorical bias direction.

5.1.2 Significance: Bias Metrics & Multi-Group Evalua-

tion

We propose two metric methods for capturing the significance of AAB culminat-

ing from LFR algorithms. Two NLP techniques inspire these evaluation methods

for evaluating latent gender bias in word embeddings: Word Embedding Associ-

ation Test (WEAT [24]) and Relational Inner Product Association (RIPA [36]).

We chose these methods based on their acceptance within the NLP community

as reliable metrics for measuring bias in vector representations of words [31, 95].

We also address a current problematic limitation of recommendation evalu-

ation presented by academic literature: the lack of guidance surrounding explo-
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ration of multivariate scenarios. In general, algorithmic bias research is done

on binary groups because it is inherently easier to measure biased relationships

between two groups rather than multiple groups. In many cases, the sensitive

attribute is not binary, thus making the methods above not possible for analyz-

ing the bias. This section will also detail possible methodologies for analyzing

bias in a multi-group setting according to the test entity groups. Multi-group or

multi-categorical techniques for the attribute defining group (such as male and

female users for defining gender) are detailed in the bias directions and metrics

sections. For identifying significant test entity groups and relationships, we de-

tail a framework for surfacing specific groups of the test entities for further bias

analysis leveraging bias metrics or classification scenarios.

Entity Binary Attribute Association Metrics & Test

This set of metrics, inspired by WEAT [24], can be used to understand how AAB

manifests in user-user and user-item comparisons by computing vector similar-

ity between entities of interest and members of the two attribute groups defined

previously (A and B). These metrics require two sets of users or items to eval-

uate the AAB (E and P ), where one entity set is hypothesized to show heavier

stereotyping than the other. There are three interrelated metrics: entity attribute

association (EAA), group entity attribute association (GEAA), and differential

entity attribute association (DEAA).

EAA measures the AAB for a single entity ε ∈ {E ∪ P}, calculated as the

difference in mean cosine similarity of ε to attribute entities in A and B. Positive

EAA scores represent a higher association with attribute A while negative scores
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signal higher association with attribute B:

EAA(ε, A,B) =

∑
a∈A cos(ε, a)

|A|
−

∑
b∈B cos(ε, b)

|B|
(5.1)

GEAA is the sum of all entity attribute association scores for a set of entities

(E or P ):

GEAA(E,A,B) =
∑
ε∈E

EAA(ε, A,B) (5.2)

Finally, DEAA acts as the test statistic for permutation testing by measuring

the scale in the difference between the GEAA of E and P . Positive DEAA scores

signal that entities in E show more association with attribute A than entities in

P and vice versa for negative scores:

DEAA(E,P,A,B) = GEAA(E,A,B)−GEAA(P,A,B) (5.3)

We use permutation testing to evaluate if there is a significant difference in

how the test entity sets relate to the attribute entity sets. Additionally, we

adopt the calculation for effect size presented by [24] to evaluate the normalized

separation between EAA distributions of the test entity sets:

GEAA(E,A,B))
|E| − GEAA(P,A,B)

|P |

stddev(EAA(E
⋃
P,A,B))

(5.4)

Recommendation Relational Inner Product Association (R-RIPA)

We also provide a metric, R-RIPA, that is similar to the prior metrics, but param-

eterized by a user-defined attribute bias direction. This provides more flexibility

for the practitioner to use computed AAB vectors based on SVC and PCA, or
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other user-defined attribute directions in general. Additionally, this metric may

be more robust to fluctuations or outliers that can affect metrics heavily reliant

on group averages over entities. Unlike EAA metrics, R-RIPA can be used in a

non-binary fashion by calculating R-RIPA against a multicategorical bias direc-

tion.

We base this metric on RIPA [36], which is calculated with a relation vector

representing the first principal component of the difference between word pairings

in an attribute-defining set. We modify RIPA to require a relation vector ψ that

represents a user-defined attribute bias direction between A and B. R-RIPA for

an entity set E is computed as:

R-RIPA(E,ψ) =

∑
ε∈E cos(ε, ψ)

|E|
(5.5)

The effect size for R-RIPA between entity sets E and P is then:

R-RIPA(E,ψ)−R-RIPA(P, ψ)

stddev{cos(ε, ψ) | E ⋃
P}

(5.6)

Bias Metrics: Testing for Significance Permutation tests can be used to

determine the significance of the AAB evaluation metrics [76, 24]. When evalu-

ating EAA metrics, one can test for the significance of the entity-specific metric,

GEAA, and the entity-difference metric, DEAA. A significant GEAA means a

biased relationship exists between the entity group and the defined attribute.

A significant DEAA represents a significant difference in the level of AAB be-

tween the two entity test sets. For R-RIPA, permutation tests can be used to

determine if the difference between the entity set association attribute bias is

significant. One can test for a significant difference in AAB between entity test
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sets by comparing the two populations’ cosine similarity scores with the bias

direction leveraged when calculating R-RIPA. An alternative method is to calcu-

late R-RIPA for smaller samples of the test entity sets and apply the Wilcoxon

rank-sum test or similar [76].

Surfacing Significant Test Entity Groups from Multiple Groups

Capturing multiple groups accurately via one cumulative metric is inherently

difficult thus the need for group to group analysis to identify significant relation-

ships. Knowing this, a current work around is implementing pairwise metrics,

or divergence metrics, to identify the existence of skew. Unfortunately, the com-

putation of pairwise metrics for a large number of groups quickly becomes an

expensive and slow process. Problems arise for divergence metrics as well due to

the inability to quickly pinpoint which group is causing the skew without binary

comparisons. As a result, guidance for multi-group scenarios still requires binary

group analysis.

We propose a two-step framework for exploring and identifying possible group

attributes to help practitioners quickly target which groups should be further ex-

plored for AAB. Our framework focuses on identifying singular groups showcasing

signs of higher levels of AAB. The first step focuses on preparing the data for eval-

uation, where we frame our problem by defining the groups as “features” which

may potentially cause an effect on a bias direction based metric. The second step

looks to identify “feature” importance when predicting the bias direction based

metric.

Preparing the Data As detailed in the bias metric section, one of the most

important ways to measure AAB is through calculating the cosine similarity
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between the attribute entities or attribute bias direction and the test entities.

The base for the group test statistics are single entity calculations of association

bias. We can leverage these single entity calculations to determine which group

attributes should be used for future binary comparisons when calculating the

DEAA and R-RIPA. These entity calculations will function as our target when

evaluating feature importance and causality.

Exploring Feature Importance We can find the feature importance of test

entity categories by modeling the bias direction based metric against the cate-

gorical features. After training this model, we can look to the categorical feature

importance to guide our evaluation, allowing us to pinpoint which test entity

groups should be audited for AAB. There are a variety of modeling and feature

importance strategies, but in this dissertation, we leverage multiple linear regres-

sion and decision trees to explore multi-categorical feature importance on AAB

metrics. These two models provide insight into the feature importance as well as

the relationship with the bias attribute.

5.1.3 Amplification: Feedback Loops & Classification

The ability for recommendation models to capture and exploit sensitive attributes

is a well known phenomenon. This has lead to the popularity of disentanglement

mitigation and adversarial learning for mitigating bias in the latent space. Even

though these research areas are growing in popularity, many of the papers lack

content concerning the evaluation of the association bias captured in the space.

These papers tend to focus on performance metrics or fairness metrics, but do not

evaluate how the latent space has changed pre- and post- mitigation. With these

steps of evaluation, we look to explore how AAB may change over time if left
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unchecked. Additionally, we explore how the latent space can capture systematic

bias by leveraging classification scenarios to evaluate the levels of stereotyping

bias captured by the embeddings.

Simulating Feedback Loops

Feedback loops and bias have been proven to be influenced by popularity bias

Commonly, the propensity for feedback loops has been observed based on simula-

tion experiments. These types of tests are performed offline when online testing

is unavailable, which is often the case in academic settings, additionally testing

for compounding harm in an online setting may not be responsible when offline

simulation is available. The method we choose for simulations is inspired by

Mansoury et al. where they simulate recommendations by ”iteratively generat-

ing recommendation lists to the users and updating their profile by adding the

selected items from those recommendation lists based on an acceptance probabil-

ity. In addition to modeling the acceptance probability, we also chose randomly

from the final top-k groups of content.

We explore how AAB can change over time if left unchecked or unmitigated.

Our goal is to pinpoint how feedback loops and AAB are interrelated. We do

this by testing if there are significant increases in the bias metrics after a se-

ries of simulations. If there is a significant increase, for our tested scenario, we

can confirm that over time feedback loops are created through reinforcement of

stereotypes entanglement. Each simulation consists of a training iteration of the

recommendation model.

It is important to note that each iteration created a new model, and there

was no warm start training between iterations. We simulated recommendations

for five iterations. We created the new set of interactions by calculating the top
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10 potential movie recommendations and then narrowing the pool to five movies

with an acceptance probability based on the rank of the prediction. We modeled

the acceptance probability based on the equation from Abdollapouri et al. Each

subsequent retraining was for 50 epochs. We chose to reduce the number of

epochs based on the first model having the best epoch at 35. In addition to

analyzing differences in the bias directions, we analyzed changes in bias metrics

for our highlighted stereotypical groupings of genres. Differences were analyzed

between the original entity vectors and the final simulation (round five) entity

vectors. Our goal was to determine if, left unchecked, user gender AAB would

increase significantly over time. The following sections will reflect the results for

one of the three recommendation algorithms. Finally, we will compare results to

determine if specific algorithms pose more risk to developing potentially harmful

feedback loops over time.

Our work differs from previous feedback loop simulations focusing on popular-

ity bias because we wish to observe how sensitive semantic attributes strengthen,

weaken, or remain static in the latent space over time. Showcasing that AAB can

compound if left unchecked supports the hypothesis that recommendations are

capable of deeply influencing our everyday interactions with content. Previous

work has showed that diversity decreases with feedback loops, but we wish to ob-

serve how stereotypical experiences may increase for a user, potentially creating

harmful situations such as radicalization and rabbit holing.

We implement this type of evaluation only for the MovieLens dataset since

this work was out of scope for the proprietary podcast audit.

Testing for Significance When testing changes in a feedback loop, we found

that it’s important to not only test changes in the group statistics, but the indi-
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vidual statistics as well. In some cases, nuanced changes in the individual entity

vectors may become lost in the aggregate metric calculations, resulting in looking

over key insights in how the latent space changes over time. In order to account

for this, we not only test changes in the aggregate bias metrics, we also test

for differences in the individual bias metrics as well. As noted in section, the

aggregate bias metrics reflect individual calculations, EAA for DEAA, and the

cosine similarity between the entity and bias vector for R-RIPA. We test changes

between the iterations by calculating the Kolmogorov-Smirnov test. We test for

a null hypothesis specific to the ”sign” of the attribute direction. For example,

if ”female” entities are reflected with a negative direction than we test for if the

simulated entity individual metrics are less than the original entity individual

metrics.

Exploring Reinforcing Bias with Classification Models

Past NLP research has used classification models to show how heavily word em-

beddings capture bias and demonstrate possible downstream effects, particularly

along the lines of binary gender [41, 12]. This implementation builds upon that

research by evaluating entity embeddings for systematic bias and their risk for

introducing bias in downstream models. We conduct this by leveraging the en-

tity embeddings for various classification scenarios where entity embeddings are

leveraged as the training features. We propose training a classifier on user or

item embeddings and their target attribute, meaning the model is trained on

entity sets A and B and their associated attribute labels. This classifier can then

be leveraged to explore how attribute bias and stereotypes are captured within

the trained latent space, e.g., by comparing predictions of new entities not in A

and B. This method is especially advantageous when assessing the potential for
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amplifying representation harm when using item or user embeddings in models

downstream from the original recommendation system.

We leverage three classification scenarios when evaluating potential for rein-

forcing bias between the datasets. These scenarios were framed to understand

the ability for item entity vectors to convey sensitive attributes as features in

downstream models. First, we look at attribute bias by item group. This looks

to understand if attribute bias changes in relation to the attribute percentage

historically interacting with a specific item group. Next, we model the user’s at-

tribute from their item interaction history. This scenario explores the ability for

item history to convey a sensitive attribute, which could create privacy concerns

depending on the attribute leveraged. Finally, we predict the attribute of the

items and observe if there are certain genres that are classified more often as one

attribute group versus the other.

It is important to note that we test how results change across simulations for

only the MovieLens dataset since temporal evaluation was out of scope for the

proprietary podcast audit.

Testing for Significance Analyzing the results of classification scenarios should

account for how the scenario was scoped and the goal of the bias evaluation. For

example, suppose a practitioner is analyzing the potential for AAB in a down-

stream model that uses learned item embeddings from a recommendation sys-

tem. In that case, they should first measure overall accuracy to determine if the

embeddings relay the attribute correctly. If the practitioner is also concerned

with unfair levels of AAB across items in specific stereotype groups, one could

leverage classification fairness metrics to compare performance across specified

groups, such as demographic parity or equalized odds [58]. We refer to [58] for

68



an overview of classification fairness or bias metrics in such scenarios. Differences

in metrics should be tested with widely accepted statistical testing methods for

classification models, such as a t-test [30].

5.2 Mitigating AAB

Given AAB is being defined and presented by this dissertation, there is a lack

of research directly targeting the mitigation of this specific type of bias. Even

though this research may not exist, we can look to NLP research on association

bias and recommendation research concerning disentangling bias from the latent

space. In this chapter, we explore possible mitigation methods and choose meth-

ods for future implementation. We provide distinct reasons for these choices to

showcase how one can distinguish between methods in practice. It is important

to note that mitigation was not formally conducted for the Spotify Podcast Rec-

ommendation case study due to the specific goals for the proprietary project.

However, our choice to remove user gender from training could be seen as a pre-

processing mitigation technique. Results of this pre-processing mitigation are

captured along with overall metric results in chapter six since the decision to

remove gender was made primarily to understand the effect of gender on AAB

in the recommendation model. Mitigation methods presented in the following

sections are framed according to their implementation on the MovieLens dataset.

5.2.1 Pre-Processing Mitigation

We experiment with pre-processing in two separate ways for our use cases. First,

for the podcast case study, we remove gender as a user feature during the training

of the model. We chose to implement this simple method since it was implemented
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in an industry setting. Within this setting, we were testing the effects of imple-

menting a new company policy requiring the removal of sensitive features during

the training of our models. The case study we evaluate presents the implications

of following that policy.

For the MovieLens case study, we chose to resample the data given the heavy

skew towards male users in the original training data. In these cases of attribute

skew, it is common to resample data to achieve a more balanced training dis-

tribution (CITE). There are a variety of ways one can sample data for training,

we chose to focus on the more simplistic techniques of over or under sampling

the data for model training. We conducted both over and under sampling to ac-

count for the potential of losing recommendation quality when not leveraging the

entirity of the dataset. When oversampling, we randomly sampled interactions

from female users and added these sampled interactions to the training dataset

to create a balanced number of interactions across male and female users. The

undersampled dataset was created by randomly removing male user interactions

from the training dataset to achieve balance. The oversampled dataset consisted

of 1507538 interactions and the undersampled dataset contained 492880 interac-

tions. These datasets were used to train a BPR recommendation model with the

same parameters as the original recommendation model.

5.2.2 Post-Processing Mitigation

Hard debiasing (Olukbasi) requires a way to identify ”neutral” entities and entity

pairings. This requirement is difficult to achieve in a RecSys environment due to

the inherent ”neutrality” of item entities and subjective nature of defining entity

pairings to capture a group attribute (unless counterfactual training is available
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within the system). Additionally, the entities leveraged to define the attribute

may not have a true ”neutral” grouping. For example, what is considered a

”neutral” age for a user? Practically, there may not be a quantifiable answer to

that question. In order to answer that question, one would have to define what

”neutral” means in accordance to the entities and attribute they are evaluating

within their system. Creating this subjective definition poses a risk of introducing

more bias in the evaluation and mitigation. In order to avoid falling into the trap

of quantifying a subjective definition, we look to for inspiration in mitigation

methods that do not require these types of distinct pairings or neutral definitions,

or at least do not rely heavily on them to complete the mitigation.

In particular, we look to work presented by Ravfogel and Dev which look

to remove or disentangle trained neural representations of potentially harmful

concepts and attribute associations. In comparison to other works, their proposed

methods do not heavily rely on word pairings and are more easily adapted to other

domains beyond NLP and word embeddings. In this dissertation, we explore

leveraging these methods for reducing binary AAB in recommendation entity

embeddings. We found that the two most popular use cases for this in NLP

research was iterative nullspace projection and orthogonal subspace correction

and rectification (OSCaR).

OSCaR requires two entity based directions to unbias the latent space vectors.

In the case for recommendation systems, this would translate to needing a spe-

cific user and item bias direction relating to the sensitive attribute, such as male

versus female and true crime versus sports. By requiring this second direction, it

places another binary direction requirement on the mitigation which would make

it more computationally expensive when one of the entity groupings is not binary

(such as genre) or if the comparison entity groups are not known. For example,
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with our movie recommendation case study, this type of mitigation would need

to be implemented multiple times to account for the various relationships such

as the genre directions romance to action or children’s to action. We chose to

explore iterative nullspace projection instead of pursuing OSCaR based methods

for recommendation bias mitigation. We came to this decision since that method

focuses on removing the stereotype based on the defining entity (such as user to

gender or user to age), not the specific relationship between two entity directions.

This specification makes the method more flexible to recommendation mitigation

goals that may transcend specific user to item defined stereotypes. In the follow-

ing subsection, we will describe iterative null space projection and how we use

this mitigation method for the MovieLens case study.

Iterative null space projection mitigation consists of repeated training of linear

classifiers to predict the sensitive attribute for futural removal from the latent

space. This method achieves this by projecting the entity vectors onto the final

nullspace of these iteratively trained linear classifiers. By leveraging SVC models

(as used for finding our bias directions), we can leverage this method to remove

the linear separation and dependence between the AAB direction and the entity

vectors. We approach this in two ways, first by removing only the originally

created AAB direction and second by implementing this iteratively to account

for the ability for future classifiers being capable of capturing linear separation

for our binary sensitive attribute. We assess the success of these methods based

on two goals of removing AAB while minimally affecting the original end task

of producing accurate recommendations. We test this by comparing original

attribute association and accuracy metric results with the post-mitigation results

for statistically significant differences.
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5.2.3 Intrinsic Mitigation

We explore the use of adversarial machine learning as a potential approach in mit-

igating AAB in latent factor recommendation algorithms. Adversarial recommen-

dation has primarily been leveraged to create robust recommendation systems by

increasing the security to algorithmic attacks and, more recently, generative rec-

ommendations. Another less explored application has been leveraging adversarial

components to increase the privacy of stakeholders within the recommendation

system. As we show in section Y, one can leverage recommendation lists to pre-

dict sensitive features of consumers within the recommendation system. This

ability creates privacy risks for owner’s of the recommendation systems which

could potentially lead to legal ramifications (SOURCE ALGO BOOK). Beigi et

al introduced the idea of Recommendation with Attribute Protection, which ”si-

multaneously recommends relevant items and counters private-attribute inference

attacks”. They alter the BPR algorithm to include an adversarial component to

decrease the ability for an attacker to learn sensitive information from a con-

sumer’s recommendation lists. This adversarial component is fed a concatenated

vector of the user and item entity vectors to predict the user’s sensitive attribute

information. It is trained by maximizing the loss of this component, resulting in

obscuring sensitive attribute information from the latent entity vectors.

Given this training goal, adversarial recommendation for obscuring private

attributes would be a good candidate for mitigating AAB since it should theoret-

ically remove stereotyped relationships within the trained latent space. We test

it’s ability to mitigate AAB by adding an adversarial component to our original

BPR algorithm which looks to predict the gender of the user from the concate-

nated user and item entity vectors. We test the success of the method similar
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to the post-processing mitigation by testing bias and performance metrics for

significant difference.
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Chapter 6

Implement: Existence

This chapter marks the implementation of the first step of the ESA framework,

which looks to understand the existence of AAB within the trained latent recom-

mendation space. We leverage the bias direction methods previously presented

to explore AAB in our two case studies. For the Spotify podcast recommenda-

tion case study, we determine the significance of the user gender bias direction

calculated from our sample of male and female podcast listeners. We observe

two different possible bias directions for the MovieLens movie recommendation

case study. The first bias direction targets the significance of binary user gender.

Our second implementation explores our ability to leverage presented methods

for identifying significant multi-categorical bias directions. We explore this by

creating a bias direction for user age.

6.1 Spotify Podcast Recommendation

This section presents results from implementing our framework and flagging the

existence or change in bias when removing user gender as a feature. The goal of
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this evaluation was to test whether our methodologies were successful in capturing

and understanding user gender AAB from our case study’s model. We do not

explore our methods for identifying significant groups in a multi-group scenario

due to our distinct choice to target the relationship between true crime and sports

podcasts in relation to user gender.

Before calculating bias directions and metrics, we visualized our embeddings.

Figures 6.1 & 6.2 show these latent space visualizations of user and podcast

embeddings with and without user gender as a model feature respectively. In

both cases, our first principal component had a high cosine similarity to the

centroid difference (0.89 and 0.91, with gender and without gender as a feature,

respectively). We observed both user clusters and podcast clusters emerge along

the first principal component for the embeddings trained with and without user

gender as a feature. When we projected the entity embeddings trained without

gender, we observed a similar pattern of clustering as in the case of podcasts

trained with gender.

Both the user and podcast embeddings trained without gender have flipped

directionality for the gender direction due to being trained separately from the

with-gender embeddings. However, we observe the same relationship of gendered

clustering for users along the first principal component in both contexts. Our

projections demonstrate that user and podcast embeddings trained without a

gender vector still have latent gendered meanings encoded. In the case of pod-

casts, we observe a weaker separation along this axis, although it is still possible

that feature clusters could be derived.
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Figure 6.1: Projection of user embeddings along the first and second PCA com-
ponents of the 400 most biased users trained with gender (left). Podcasts trained
in the same embedding space also show clusters along the same principal compo-
nents (right).

Figure 6.2: Projection of user embeddings along the first and second PCA com-
ponents of the 400 most biased users trained without gender (left). Podcasts
trained in the same embedding space also show clusters along the same principal
components (right).

6.1.1 Bias Directions

When testing the resulting bias directions for significance, we found that all pos-

sible direction methods, except for the PCA bias direction, resulted in significant

results for our three recommended statistical tests. With the Bonferroni cor-

rection, statistical tests were considered significant if p ¡ 0.0033. Beyond the

PCA direction, bias directions were significant regardless of if user gender was

or was not an explicit attribute used during model training. However, numeric

test statistics were greater for our statistical tests when user gender was present
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during training.

We found that the PCA direction created from random pairings between

male and female user vectors failed the test comparing the cosine similarities

between the entity and bias direction versus that of random vectors and the bias

direction. Since the other two tests were significant, this pointed to the bias

direction capturing a significant difference between the attribute entity groups

and a significant direction in the space but not a significant relationship between

the entity attribute and the bias direction. This result means that the bias

direction should not be used for further analysis of gender AAB in the space,

since it could easily capture other attribute behavior within the latent space

and thus result in inaccurate observations of AAB. It is essential to statistically

test one’s bias directions since acting on inaccurate results could inadvertently

introduce more harm instead of lowering harm in subsequent mitigation.

In addition to our proposed flagging methodology, we evaluated the SVC

direction based on its model’s test accuracy. We split our data into training

and test data on an 80-20 split; the results are in Table 6.1. Our first iteration

SVC model trained on a random subset of users achieved 99.3% test accuracy

in our with-gender user vectors and 82.2% test accuracy in our non-gender user

vectors. Our mixed-method Centroid-SVC direction (CSVC-1) trained on the

200 “most biased” users achieved 96.0% with-gender test accuracy and 73.6%

non-gender test accuracy. The other mixed-method CSVC direction (CSVC-2)

trained on the 2500 “most biased” users according to the centroid difference

gender direction (CD) achieved 96.4% with-gender test accuracy and 81.5% non-

gender test accuracy. In order to maintain consistency between test accuracies,

we evaluated using the same test set across all trained SVC models.

The significant decrease in test accuracy for CSVC-2 could be attributed to
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SVC Accuracy
SVC Training Data Train Test

SVC
WG 0.992 0.993
NG 0.829 0.829

CSVC-1
WG 1.0 0.960
NG 0.959 0.736

CSVC-2
WG 1.0 0.964
NG 0.943 0.815

Table 6.1: Training and test accuracy of three SVC models used to create bias
directions: trained on all users (SVC), the 400 most biased users (CSVC-1), and
the 5000 most biased users (CSVC-2). User “bias” was calculated from the cosine
similarity with the centroid direction. Accuracy is shown for when user gender
was leveraged during training (WG) and then removed as a simple mitigation
technique (NG).

multiple factors, such as a reduction in training data, overfitting to training data,

or a reduction in gender explainability for all users via the CD. The difference

between with-gender and non-gender test accuracy for CSVC-1 is particularly

interesting since we intentionally trained the with-gender and non-gender models

on the same users. The reduced ability of these 200 users to accurately predict

gender when embeddings are not explicitly trained with user gender as a feature

signals that the explicit use of this feature does strengthen the significance of

gender in user embeddings within the trained latent space. The perfect training

accuracy achieved by training our SVC models on the “most” biased users, as

found by calculating the cosine similarity with the centroid vector, one can see

that the gender centroids do accurately capture gender associations. Additionally,

the difference in training and test accuracy for these two models signals that the

more stereotypically “gender biased” the user is, the more easily they can be

linearly separated by an SVC model. The decrease in training and test accuracy

when removing gender as a model attribute shows a reduction, but not complete

erasure, in gender attribute association in the latent space.
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Finally, the reduced accuracy of the CSVC-1 model with no gender may signal

that the resulting bias direction may not be best for calculating bias metrics or

analyzing AAB. It would be more prudent to leverage bias directions with high

levels of significance via testing and high levels of accuracy (when using SVC to

create the bias direction).

We calculated the cosine similarity between each possible direction vector to

compare the resulting bias directions. The cosine similarities between the differ-

ent gender directions reflected in with-gender and non-gender embeddings can be

found in Table 6.2. Our comparisons signaled high levels of similarity between

all calculated gender directions except for the PCA bias direction. As previously

noted, this direction was created by randomly pairing female and male users, find-

ing the difference in their vector directions, and then finding the first eigenvector

of their vector differences. Given that this direction is the only one with a low

level of cosine similarity, carefully choosing pairs when leveraging this method

is essential. We found that randomly pairing users to create a difference vector

based on their attribute resulted in our bias direction not accurately capturing

potential AAB. The PCA bias direction method should solely be used if the prac-

titioner is confident in their entity pairing methodology to reflect the targeted

attribute.

Table 6.2 also shows that the cosine similarity between bias directions from the

different methods varied significantly. Even though each direction was significant,

this difference demonstrates that each relationship captured is slightly different

according to the method used. Additionally, we noticed that these fluctuations

decreased when user gender was removed as a model feature. This decrease was

expected since user gender was no longer used as a model feature. Additionally, it

showcased that the bias directions were capable of relaying implicit, or potentially
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Bias
Direction

CSVC-1 CSVC-2 CD PCA
WG NG WG NG WG NG WG NG

SVC
WG 0.71 - 0.75 - 0.79 - 0.03 -
NG 0.40 - 0.88 - 0.89 - 0.03

CSVC-1
WG 0.99 - 0.98 - 0.08 -
NG 0.53 - 0.38 - 0.11

CSVC-2
WG 0.99 - 0.06 -
NG 0.89 - 0.01

CD
WG 0.03 -
NG 0.06

Table 6.2: Cosine similarity for gender direction vectors created through the
following methods: SVC model trained on random sample of 12,000 users (SVC),
SVC model trained on 400 most “biased” users (CSVC-1), SVC model trained
on 5000 most “biased” users (CSVC-2), centroid difference (CD), and PCA first
eigenvector of the difference between 1000 randomly generated male-female vector
pairs (PCA). Similarities were calculated for gender direction vectors created from
embeddings trained with gender (WG) and without gender (NG).

systematic, bias in the latent space. Given the fluctuations found, we believe it

would be responsible for practitioners to explore and test multiple bias directions

during analysis to enable more nuanced viewpoints of AAB.

6.2 MovieLens Movie Recommendation

In this section, we will present results from our evaluation of the existence of

AAB in the MovieLens 100k and 1M datasets. First, we calculate and evaluate

bias directions for six modeling scenarios, BPR, DMF, and NCF trained on the

100k and 1M MovieLens sample. We conduct bias direction evaluation for both

binary user gender and multi-categorical user age. It is important to note that

we only continue the audit with binary user gender given our primary focus on

binary attribute association bias.
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MovieLens100k

Recall MRR NDCG Hit Precision

BPR 0.2085 0.3893 0.2302 0.7402 0.1583

DMF 0.2435 0.4488 0.2210 0.7466 0.1947

NCF 0.2176 0.3787 0.2245 0.7508 0.1532

MovieLens1M

BPR 0.1464 0.377 0.2052 0.7267 0.1608

DMF 0.1399 0.3610 0.1943 0.7075 0.1516

NCF 0.1300 0.3439 0.183 0.6919 0.1473

Table 6.3: Here you will find the performance metrics for the three algorithms
trained on the MovieLens 100K and 1M sample datasets. All metrics reflect
performance for the first 10 recommendations per user.

6.2.1 Bias Directions

In this section, we will review results when calculating and evaluating bias di-

rections created for the MovieLens dataset. We focus on the calculation of bias

directions for binary user gender and multi-categorical user age.

Binary User Gender

When evaluating the bias directions for male versus female users in the MovieLens

dataset, we found that sample size and algorithm did significantly change bias

directions being calculated. BPR and DMF both result in significant gender

SVC bias directions. BPR, DMF, and NCF MF embeddings result in significant

centroid bias directions. NCF MLP embeddings are the only group not resulting

in a significant bias direction when trained on the 1M sample.

We found NCF results to be different from our other two algorithms, which

can be attributed to the architecture of the algorithm. Unlike BPR and DMF,

there is no interaction between users and items coded into the algorithm. BPR

and DMF model user-to-item similarity in the algorithm by including a final co-
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sine similarity (or dot product) layer. NCF models interactions via concatenation

and element-wise multiplication across embeddings. MLP embeddings contribute

to the final prediction via concatenation instead of a dot product or similarity

function, as used in BPR, DMF, and the MF layers. Leveraging concatenation

would lower the tie between the user and item entities due to optimizing em-

beddings for the sum of the entities instead of the product of the entities. MF

embeddings can capture more of a bias direction compared to MLP embeddings

due to the number of abstraction layers between the vectors and the final pre-

diction. This is shown by MLP embeddings from the NCF model being the least

accurately separated by its calculated user gender bias direction.

Additionally, the strength of these bias directions increases as the models

are trained on more data, which could be due to the imbalance in the datasets

between male and female users. When reviewing the bias directions, we find sig-

nificant directions based on user gender when trained on the 1M dataset for the

algorithms BPR, DMF, and the MF component of NCF. Additionally, BPR re-

sults in significant directions for the 100k and 1M datasets, allowing us to compare

how bias and affected groups differ based on the sample used during training. We

can observe that BPR and DMF experience significant bias directions for both

the centroid and SVC direction for the 1M dataset but not the 100k dataset.

We focus on the 1M dataset given this difference for our future analysis sections.

However, in the spirit of experimentation, we explore all significant scenarios to

showcase how analysis may differ across datasets and algorithms. Additionally,

we continue to explore NCF for the 1M dataset to showcase how AAB may func-

tion when it is not significant. This decision is purely to provide more insight into

the bias behavior, but for practice, we recommend not proceeding with analysis

if the bias directions are not significant.
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We can leverage the test statistics to understand better how the male and

female user vectors relate to one another and their subsequent bias direction. For

example, the DMF embeddings show that female users show more significance

when testing against a random direction and random vectors against a bias direc-

tion. This signals that female users are more strongly related to the calculated

bias direction and each other within the latent space. In the case where gender

is more significant in one scenario but not the other, such as that for BPR male

users from the 100k set for the centroid direction, it signals that the bias direction

strongly captures their behavior. However, the male vector behavior may not be

as strongly related. We found that this behavior was accompanied by male users

showing lower cosine similarity with the bias direction and the sample distribu-

tion being smaller in standard deviation. This behavior could mean that the bias

direction does not strongly capture female behavior but that female users show

unique behavior concerning the entire population of user entities.

One can also observe how well the bias direction functions by exploring how

it separates users. We analyzed the proportion by gender of the 100 most biased

users in both directions for our modeling scenarios. If the bias direction func-

tioned well, it should accurately classify more biased users by gender. As shown

in Table 6.4 and 6.5, we find that our results mimic our findings when testing for

significance. For example, the Centroid direction for the 100k sample resulted

in the worst classification results of female users, thus not accurately capturing

gender in the latent space.

Interestingly, separation for BPR and DMF were the most similar for the

1M sample, signaling that these models, which inherently model the similarity

between users and items, may capture similar levels of bias within their respective

trained latent spaces. This extra step in analysis helps confirm that our proposed
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significance tests are sufficient in finding significant AAB vectors.
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Multi-Categorical User Age

We explore multi-categorical attribute association directions for user age. When

calculating age, we experimented with two grouping strategies: three modified age

groups and original age categories. Original age categories consisted of seven age

groups: under 18, 18-24, 25-34, 35-44, 45-49, 50-55, and over 56, thus resulting

in seven categorical hyperplanes for calculating the first principle component.

The second strategy grouped users into under 18, 18-49, and over 50. Given the

results on binary attribute association directions, we only run this analysis on

the MovieLens 1M dataset.

We found a noticeable trend when calculating the cosine similarity with the

final age bias direction for the second strategy, with younger groups being more

positively associated with the bias direction and a more negative cosine similarity

for older groups of users. The average cosine similarity became negative for all

groups after 35-44. This behavior could mark a binary split between ”young”

and ”old” users. Interestingly, we notice variation between the ”young” and

”old” groups. This trend also holds for the first scenario. However, we find a

wider gap between the groups under 18 and 18-24, signaling that the 18-24 group

does experience higher levels of age bias than other groups.

When testing the significance of the results for the BPR model, we found

that the first scenario passed all significance tests. The second scenario also

resulted in significance for the holistic significance tests. However, we found

that not all results were significant when testing by group. The age group for

18-25 and over was found to not be significant, with a p-value of 0.016, when

comparing differences in the cosine similarity between that of users and the age

direction versus the previously calculated gender direction. All other groups had
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significant differences in their cosine similarities with the age direction versus that

with a random or gender direction. Since the first scenario resulted in statistical

significance for all groups, we recommend moving forward with that bias direction

instead of the binned age bias direction.

The DMF model did not result in the same significance levels, with both

the first and second scenarios resulting in non-significance at the group level.

Testing the first scenario resulted in non-significant tests for two user groups 50-

55 and 56 and over, when comparing the age and gender bias direction. When

testing against the random direction, the user groups representing ages between

45 to 56 and over were found not to be significantly different. For the second

scenario, the binned age bias direction does not result in significantly different

cosine similarities against the gender bias direction for the age group 50-55 and

56 and over. However, it does result in statistical significance across all user

groups when tested against cosine similarities with the randomly generated bias

direction.

One can leverage these statistical testing results to understand if the grouping

strategies accurately reflect age bias within the latent space for every age group.

Patterns in the testing results can signal when and how a different grouping

strategy could be leveraged to achieve ultimate results. For example, with the

DMF model, our results are insignificant for age groups over 45. After binning,

only age groups over 50 have no significance. Based on this, one could reconfigure

the binning to reflect these results by leveraging the groups under 18, 18-25, 35-

55, and 56 and over. Another option could be to create groups under 18, 18-25,

35-45 and 45 and over. In the case of no patterns in significance, it may be best

practice to leverage pairwise binary bias direction creation instead of attempting

to find the optimal grouping for a holistic bias direction.
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For the NCF MF embedding results, we find that our scenarios result in even

less statistical significance, which is to be expected given the algorithmic differ-

ences. Results are insignificant against the randomly generated bias direction at

the group level for age groups 35-55. Results are not significant at the holistic

level when compared with the gender direction. For the second binned scenario,

results are insignificant against the randomly generated direction for under 18 to

35 and 50-55. Additionally, the second scenario does not achieve significance for

the group holistic test against the gender bias direction. Unlike the binary gender

bias direction, NCF MLP embeddings result in more significant tests than the

MF embeddings when results are compared against a randomly generated bias

direction. For the first scenario, only the user group 56 and over is found not

to be significantly different from the random direction. In the first scenario, age

direction does not result in significance at a holistic level and all user group lev-

els from the user gender direction. The second scenario results in all significant

tests against the random bias direction and the holistic comparison against the

gender bias direction. However, it does not showcase significance from the gender

direction at the group level, with only the two age groups representing ages 25-50

showcasing significant tests.

Given these results, the only direction that passed significance tests allowing

for further evaluation was the first scenario for the BPR model. Unlike previous

work with binary bias directions, exploring multi-categorical bias directions is

not the focus of this dissertation. Thus, we do not investigate non-significant

bias directions for bias metrics in future sections. Future iterations of this work

could explore this type of AAB direction in more depth, but that is out of scope

for this work.
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BPR DMF
NCF

MF MLP

Under 18 0.2040 -0.1259 0.1452 -0.0101

18-24 0.2298 -0.1381 0.1731 -0.0225

25-34 0.0933 -0.0684 0.0401 -0.0262

35-44 -0.0304 0.0045 -0.0840 -0.0162

45-49 -0.0748 0.0333 -0.1281 -0.0085

50-55 -0.1028 0.0580 -0.1598 0.0010

Over 55 -0.1262 0.0726 -0.1742 0.0182

Table 6.6: Cosine similarity with the multi-group SVC bias direction for age
created from the binned ages of under 18, 18-49, and over 50. One can see that
there is visible opposing relationships between younger and older age groups.

NCF

BPR DMF MF MLP

Under 18 0.0784 -0.1245 0.1451 0.0254

18-24 -0.0570 -0.1175 0.0001 -0.0005

25-34 -0.0835 -0.0536 -0.0411 -0.0061

35-44 -0.0464 0.0098 0.0136 -0.0007

45-49 -0.0477 0.0382 0.0330 0.0006

50-55 -0.0563 0.0601 0.0243 -0.0015

Over 55 -0.0452 0.0793 0.0312 0.0082

Table 6.7: Cosine similarity with the multi-group SVC bias direction for age
created from the unbinned ages originally reported in the data. One can see
that unlike results for the binned age direction, only the DMF model resulted
in noticeable behavior showcasing opposing relationships between younger and
older age groups with the resulting bias direction.
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Chapter 7

Implement: Significance

In this chapter, we will demonstrate how to identify significant attribute associa-

tion bias concerning relationships between the attribute defining entity sets and

test entity sets. We will showcase our methods for the two case studies: Spotify

podcast recommendation and MovieLens movie recommendation. For Spotify

podcast recommendation, we will focus on bias metrics. We do not showcase

implementation of our other proposed methods for the Spotify case study since

those implementations were out of scope for the original project. All methods

will be demonstrated for the MovieLens movie recommendation case study.

7.1 Spotify Podcast Recommendation

In the previous chapter, we demonstrated the significance of the user gender

bias direction between male and female podcast listeners. Now we will showcase

results when calculating bias metrics to understand the relationship between user

gender and two genres of podcasts: True Crime and Sports.
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7.1.1 Bias Amplification Metrics

EAA, GEAA, and DEAA Our results using this set of metrics signaled that

our test entity sets of true crime and sports podcast vectors showed significant

association attribute bias with their respective user gender. We found that pod-

cast embeddings trained with and without gender resulted in a significant DEAA

score of 612.27 and 480.59, respectively. The calibration effect for with and with-

out gender DEAA was 1.81 and 1.78. The normalization of the calibration effect

showcases that the AAB remains highly significant when accounting for the EAA

distributions.

EAA metrics successfully flagged a significant change in AAB levels when

removing gender. However, significant levels of bias remained. When accounting

for the separate GEAA for sports and true crime podcasts, we found that the final

DEAA score could be contributed primarily to sports podcasts versus true crime

podcasts. When trained with gender, sports podcasts GEAA was -521.34, which

was reduced to -406.59 when trained without gender. This decrease of 22% was

greater than the 18.6% decrease for the true crime podcast test metric. True crime

GEAA was originally 90.93 when trained with gender and reduced to 73.98 after

the mitigation. This discrepancy reflects that sports podcasts have significantly

higher AAB and are heavily associated with the male attribute-defining entity set

of vectors. This difference also highlights that this simple mitigation method does

not equally address gender AAB across groups. Observing the different levels of

EAA metrics allow a practitioner to pinpoint which group is more or less affected

by the mitigation.

R-RIPA We find that R-RIPA also successfully relays AAB; results are in

Table 7.1. R-RIPA results show fluctuations across the bias directions used,
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indicating the importance of selecting a bias direction. In particular, our R-

RIPA results using the PCA bias direction support our earlier suspicion that the

bias direction did not accurately capture the user gender AAB direction. We

see this because the R-RIPA significantly differs between the two podcast entity

groups, but the R-RIPA maintains the same negative direction for both groups.

All our R-RIPA results were statistically significant, with p ¡ 0.05. Our R-RIPA

metrics were significantly higher than R-RIPA calculated via permutations across

all podcasts.

When comparing the R-RIPA across bias directions, a couple of results stand

out. First, after removing gender, the SVC R-RIPA for true crime podcasts

increased, signifying an increase in AAB for true crime podcasts with female users.

However, this result is not present for R-RIPA created with the bias directions

CSVC-1, CSVC-2, and CD. This difference signals that user gender AAB may

have a more nuanced relationship with individual female users that is not fully

captured by centroid-based directions. Additionally, we find that true crime

podcasts do not experience as significant of a decrease as sports podcasts for R-

RIPA calculated with the bias directions CSVC-1, CSVC-2, and CD. This result

could signify that removing user gender reduced AAB more heavily for sports

podcasts with high levels of AAB as captured by a centroid-related direction.

Metric Comparison Unlike the EAA metrics, R-RIPA is at risk of more fluc-

tuation in results depending on the bias direction selected for calculation. As a

result, we recommend that practitioners compute R-RIPA only with bias direc-

tions that more accurately represent the attribute behavior in the latent space.

For example, when leveraging bias directions other than that of SVC (trained

on a randomly sampled user set), there is a significant increase in AAB signaled
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by R-RIPA. This peculiarity could be seen as those bias directions over-reporting

bias or SVC under-reporting bias. Additionally, R-RIPA computed with the SVC

bias direction is at risk of becoming less accurate as the trained SVC becomes

less accurate. It is essential to account for this possibility by implementing per-

mutation testing to determine the significance of R-RIPA results if there is less

confidence in the bias direction. In such cases, it may be more prudent to apply

the EAA bias metrics instead.
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7.2 MovieLens Movie Recommendation

After evaluating the significance of the bias directions, shown in the previous

chapter, we flag genres for bias metric evaluation. We do this for the significant

modeling scenarios BPR 1M, BPR 100K, and DMF 1M. Finally, we calculate and

evaluate bias metrics for the two modeling scenarios with the most significant

attribute association bias, BPR and DMF trained on the 1M MovieLens dataset.

7.2.1 Flagging Groups

For the analysis in this section, it is essential to note that negative EAA values

reflect relationships with the female gender, and positive EAA values signal as-

sociation with the male gender. We ran this analysis against all significant bias

directions: BPR 100K SVC, BPR 1M SVC, BPR 1M Centroid, DMF 1M SVC,

and DMF 1M Centroid. For these analyses, we set the target prediction value as

the cosine similarity between the item and the significant direction (i.e., the in-

dividual direction R-RIPA). We find that algorithms showcase unique behaviors

in how AAB relates to specific movie genres. We discuss both the final results

and differences found below.

We do not report on NCF results due to the fact that algorithmically, the

embeddings are NOT modeled into the same space until they are concatenated

for final predictions. This holds true for the upcoming bias metric result section as

well. We found that analyzing the entity embeddings separately did result in some

levels of significance, but due to the embeddings being in separate spaces, these

results are spurious and can be attributed to overall similarity between entity

group behaviors. Leveraging these methods on entity embeddings in different

latent spaces is not considered good practice and could lead to erroneous results.
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While calculating the pairwise metrics, we found that genres on average

showed some significant difference between each other in regards to their metric

differences. Due to this, it may be prudent to test for significance by comparing

the differences across the pairwise genres, thus allowing the practitioner to pin-

point which pairings are more or less biased towards different attributes. When

looking for AAB, one can look for opposing biases between entity attributes or

at biases of singular entity attributes. In order for biases to be opposing, the two

calculated entity bias metrics must have opposing signs. In order to determine if

there are specific groups that show more bias, one should test their test statistic

against both the absolute value test statistic of all pairwise combinations and

then against those with opposing bias. This allows one to observe if the bias is

different across attributes and if it is more opposing.

Additionally, there may be scenarios where all categorical entity attributes

exhibit significant levels of AAB based on permutation testing. In that case, one

can deem the attribute to be strongly embedded into the latent space. Issues arise

if certain categories exhibit significantly more bias, thus leading to certain stake-

holders experiencing more representation harm in terms of serving stereotyped

content.

If the categories are not mutually exclusive then one can look to the categorical

analysis performed to compare groups of attributes together. For example, if

romance, children’s, and musical genres were found to be significant towards

female users and action, western, and sci-fi to male users, one could calculate the

metrics between those two groups of genres.

Given the overhead attributed with pairwise comparisons, we recommend

exploring test entity attribute bias informed by qualitative studies and biases

recommended for analysis by experts within the area. If that is not available,
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one may wish to conduct the analysis framework described above. One benefit to

conducting these proposed evaluation steps is that it may uncover lesser known

stereotypes or behaviors within the unique recommendation modeling scenario.

Our analysis in these sections lead to the following key takeaways:

Decision Trees result in more accuracy The results across analysis types,

linear regression and decision trees, remain relatively stable for our modeling

scenarios. However, the decision trees showed higher levels of accuracy than our

linear regression analysis. Given this, we look to the final decision tree results for

calculating our AAB metrics. In particular, we find Action, Romance, Children’s,

Sci-Fi, Drama, War, Western, and Crime to all be significant predictors across

the various modeling scenarios, thus we leverage those groupings for our analysis

of each scenario.

Qualitative studies versus quantitative results Studying genre preference

by gender has been studied via qualitative studies to understand the differences

between perceived gender stereotypes and the actual differences in preference

across gender. A previous study found that perceived stereotypes for female

film genres were animation, comedy, drama, heimat, and romance. Alternatively,

they found that male perceived genres included action, adventure, erotic, fantasy,

history, horror, science fiction, thriller, war and western. Out of the seventeen

genres studied, only two were classified as gender neutral: crime and mystery.

When comparing with actual gender preferences, only drama and romance genres

were found to be significantly preferred by women. Actual genre preferences for

male participants in the study were action, adventure, erotic, fantasy, horror,

mystery, science fiction, war, and western. [90]. These studies provide helpful
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context for analyzing our results. For example, the qualitative study found that

crime was gender neutral, but in our analysis it was one of the top predictors for

male AAB scores. Beyond that difference, our quantitative findings were generally

in line with the qualitative findings. In fact, the quantitative results reflected

the perceived stereotypes more frequently than the actual stereotypes observed.

Comparisons between results of our evaluation versus the qualitative studies can

be found in Table 6.13. This table best showcases the lack of stereotyped attribute

association bias in the NCF modeling scenario. It does not result in significant

stereotyped AAB, which is due to how items and users are not embedded into

the same space (as well as abstractions between final results and embeddings).

Even though stereotyped AAB is not present, one can deduce the clustering of

certain movie genres, such as the male versus female grouped genres for the NCF

MF embeddings.

Modeling scenarios showcase unique AAB behaviors If one looks at the

heat maps of the four modeling scenarios, one could observe that the correlations

between the groups have a relationship with the strength of bias direction found

in each scenario and how it relates to the various genre groups. For example, the

strongest bias direction was found for BPR trained on the one million movielens

dataset, we can see how the genres relate more strongly to the calculated cosine

similarity with said SVC bias direction. The heatmap shows that one of the least

correlated genres is between genres with contrasting gender stereotypes such as

action and romance, or sci-fi and drama. The strongest negative correlation

is between comedy and drama, but this is a well known difference in movie

classifications, which is not necessarily linked to gender specific preferences.
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Binary User Gender

In the following passages, we will cover the results when flagging groups for future

evaluation of binary user gender attribute association bias. We cover the results

for significant bias directions and provide insight into how NCF is not appropriate

for future evaluation steps.

BPR 1M The linear SVC model achieves higher accuracy with a larger sample

size. Additionally, we find the flagged groups to differ with more group features

showing similar test statistics. For example, Sci-fi, War, and Western have test

statistics between 12 and 14. While for female-associated features, the Musical

group gains similar importance to Children’s movies. However, Action and Ro-

mance remain the strongest features for determining a male versus female SVC

individual R-RIPA score. The group of important attributes changes when ob-

serving the results from the decision tree, with Action, Romance, Sci-Fi, Drama,

Crime, and War being the most important attributes for the decision tree with

an accuracy of 0.89. The leaves of the decision tree regressor further confirm

this behavior. However, it differs from the 100k sample, with Romance being the

most important differentiator in the path of the decision tree. These differences

in results highlight the importance of evaluating AAB when the training dataset

changes.

We see a difference in behavior when comparing the analysis results for the

Centroid versus SVC-based R-RIPA as the target prediction value. The accuracy

of both the linear regression and decision tree increase significantly. The R2 value

for predicting centroid R-RIPA is 0.60, while that for SVC R-RIPA is 0.425. The

accuracy for the centroid R-RIPA decision tree is 0.97, while the SVC R-RIPA is

0.88. A change in feature importance also accompanies this difference in accuracy.
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For the Centroid R-RIPA, we find Action, Drama, Sci-Fi, Romance, and Horror

to be the most important group variables for the decision tree. For the SVC

R-RIPA, we see that Action, Crime, Horror, Sci-Fi, and Western contribute to a

more male prediction. Romance, Children’s, Drama, and Musical contribute to

a more female prediction in both models. We can see that group relationships

differ as well with the heatmaps. For example, in the Centroid R-RIPA there

is a stronger relationship between the Romance and Comedy feature than in

the SVC R-RIPA analysis. The Centroid R-RIPA analysis also shows stronger

positive relationships across more genre features.

BPR 100k The linear regression performance for the 100k dataset for BPR is

much lower than its SVC 1M sample counterpart, at 0.233 vs. 0.40. Even though

accuracy is not a goal of the exploratory analysis, this discrepancy raises concern

that the linear regression may not accurately capture the feature relationships.

This finding is further confirmed when looking at the decision tree performance,

0.77. Even though accuracy is low, we see similar results with Action and Sci-Fi,

resulting in a more male prediction. Unlike the 1M sample, Animation is shown

to be more important as a predictor. This result is accompanied by Horror, War,

and Western being found to be insignificant. In general, the test statistics for the

100k linear regression variables are lower than that of the 1M sample analysis.

When comparing the analysis results of the decision tree, more differences

arise. For example, Romance is no longer among the top five most important

variables. Instead, the decision tree results mimic that of the Centroid R-RIPA

decision tree for the 1M sample, with Drama being the second most important

feature within the decision tree. The Children’s genre feature also takes Sci-Fi’s

place as the third most important feature in the model.
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DMF 1M Compared to the BPR models, Action and Sci-Fi remain essential.

However, the Western genre shows a more significant relationship with the cal-

culated individual SVC R-RIPA (as stereotypically male). In fact, in the linear

regression results, it is found to have a higher test score than that of the Sci-Fi

feature. We also see a unique shift in variable importance for the decision tree

results, with the top five most important variables being Sci-Fi, Western, Action,

War, and Romance. Unlike the BPR results, only one of these five is a more

female predictor since Drama is no longer within the top five most important

variables. Drama loses significance in two of the three classical methods for ob-

serving feature importance. Interestingly, when looking at the collinearity of the

features, we find an increase in correlation between the groups and the output

SVC R-RIPA, with strong collinearity between Sci-Fi, Action, and Adventure,

and on the opposite spectrum, Musical, Animation and Children’s movies. There

is also a stronger collinearity between Romance and Comedy than in the BPR

SVC results, which is only reflected in the BPR Centroid results.

The DMF Centroid R-RIPA analysis functions differently than the previously

discussed scenarios. The decision tree accuracy is high at 0.97, but the top five

genre variables are Action, Sci-fi, Drama, Comedy, and thriller. The collinearity

heatmap also reflects more extreme relationships between variables, such as the

highly positive collinearity between Children’s and Animation, or the more nega-

tive relationship between Action and Drama. This difference showcases that the

DMF model may exploit different latent relationships than the BPR algorithm.

Even though the decision tree results show more differences, the linear regres-

sion results remain vaguely similar, with the top three male predictors being

Action, Western, and Horror and more female scores being Romance, Musical,

and Children’s.
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7.2.2 Bias Metrics

In this portion of the results overview, we will observe the SVC R-RIPA and EAA

metric results across the two modeling scenarios, BPR and DMF trained on the

1M MovieLens dataset, between the flagged male genres of action, scifi, war,

western and crime and the female genres romance, children’s, and drama. We

continued the audit with these two modeling scenarios given the significance of

their bias directions and results when flagging for significant group relationships.

In total, this creates 15 comparisons for each modeling scenario. When fil-

tering the movies for calculation, we needed to account for the fact that these

genres were not mutually exclusive. We did this by grouping movies based on

them being of a specified genre and not being categorized in any of the oppos-

ing gender genres. We tested the metrics for significance testing via permutation

testing with a p-value of 0.00067 (leverages the Bonferroni correction for 15 tests).

Additionally, we calculated the effect size of the genre comparison to understand

the magnitude of the difference between the male and female genre being tested.

Finally, we calculated the metrics for movies in any of the flagged male genre

against movies in any of the flagged female genres. This comparison enables

us to observe a broader interaction between male and female genres as well as

account for movies that may be categorized in multiple genres.

For this analysis, we primarily look at calculated metrics for bias directions

found to be significant. When we review the results we speak to both significance

and effect size, we leverage effect size to compare significant pairings to determine

where AAB for user gender is the strongest.

The R-RIPA scores for BPR and DMF show that there are significant biases

between flagged female and male genres with female and male users. In BPR 1M,
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we find that the pairings with the strongest effect size is that between war and

romance, 2.2911, and western and romance, 2.2589. This result differs from the

flagged groups highlighted for BPR, showcasing that it is important to account

for stereotypes that may not be flagged by quantitative analysis, but qualitative

analysis such as user research studies as well. It is important to note that these

results were calculated for movies that are not classified as any of the opposing

gender’s categories. When this restraint is lifted, we find that results do change,

pointing to the importance of genre interaction within the latent space. Future

work for in depth analysis of this phenomenon would require creation of bias

directions or metrics for multi-category scenarios, which is currently out of scope

for this work.

We do not report on both EAA and centroid R-RIPA effect because the results

are redundant. This is due to the both metrics capturing similar relationships, ex-

cept they are calculated in different ways, thus the base distribution comparisons

are more or less of the same magnitude.

Centroid R-RIPA

Out of the two modeling scenarios, we find BPR to result in higher levels of

Centroid R-RIPA as shown by the greater differential between male and female

stereotyped genres. Action and Romance have the highest Centroid R-RIPA for

the BPR model with 0.330 and -0.3225, respectively. In the DMF model, Sci-Fi

shows the most AAB towards male users than Action. Overall, male stereotyped

genres result in higher Centroid R-RIPA across both modeling scenarios.
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BPR DMF

R-RIPA
GEAA

R-RIPA
GEAA

Centroid SVC Centroid SVC

Action 0.3300 0.1677 31.7846 0.1606 0.0488 10.2351

Sci-Fi 0.3222 0.1601 20.3402 0.1798 0.0418 7.5111

War 0.2732 0.2421 4.0550 0.1078 0.0553 1.0584

Western 0.2107 0.2164 2.9001 0.0983 0.0738 0.8951

Crime 0.1763 0.0928 5.2797 0.0605 -0.0067 1.1989

Romance -0.3225 -0.1879 -34.3704 -0.1495 -0.1613 -10.5441

Drama -0.1703 -0.0712 -56.8799 -0.0585 -0.0994 -12.9407

Children’s -0.1168 -0.0867 -6.9995 -0.0753 -0.0617 -2.9834

Table 7.2: This table reflects results for R-RIPA when calculated with the Cen-
troid and SVC user gender bias direction and the GEAA for the MovieLens BPR
and DMF recommendations created from the 1M sample dataset.

SVC R-RIPA

SVC R-RIPA results are completely different from the Centroid R-RIPA. We find

the scale of the results to be smaller, which is reflected in the metric effect tables

as well. Similar to Centroid R-RIPA, BPR shows higher levels of AAB across

all genres. We find a lessening in AAB for Action and Romance. Additionally,

we find that for DMF Crime no longer results in significant AAB. According to

SVC R-RIPA, War and Western movies are the most male stereotyped movie

genres, not action and Sci-Fi. This difference could be due to the linear SVC

model resulting in more nuanced results which is lost when leveraging a more

aggregative metric such as Centroid R-RIPS or EAA.

EAA

We find EAA metrics to showcase slightly different results from that of R-RIPA,

particularly SVC R-RIPA. Action and Sci-Fi result in the highest EAA across
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BPR DMF

SVC Centroid SVC Centroid

Action

Romance 1.6738 1.8119 1.3484 1.5346

Children’s 1.5704 1.7549 1.6088 1.5939

Drama 1.4386 1.8409 1.0751 1.6384

Romance 1.6675 1.8619 1.0254 1.2829

Children’s 1.3371 1.4488 1.1996 1.3255Crime

Drama 1.1345 1.6752 0.5551 1.1798

Sci-Fi

Romance 1.6953 1.8469 1.2746 1.5663

Children’s 1.5373 1.7103 1.4882 1.5944

Drama 1.4554 1.9483 1.0083 1.8073

Romance 2.2911 2.2912 1.3543 1.5331

Children’s 1.9599 1.8351 1.7253 1.6654War

Drama 2.0553 2.1624 1.1467 1.6286

Western

Romance 2.2589 2.2450 1.4400 1.5164

Children’s 1.9175 1.9175 1.7886 1.7205

Drama 1.9206 1.9312 1.3101 1.5682

Table 7.3: This table reflects results for the R-RIPA effect when calculated with
the Centroid and SVC user gender bias direction for the MovieLens BPR and
DMF recommendations created from the 1M sample dataset.

both BPR and DMF models. The difference we find is the highest EAA towards

female users is Drama. As previously stated, EAA reflects the aggregation of

individual entity-to-entity cosine similarities. This difference between EAA and

R-RIPA may signal that a higher number of female users show association with

the Drama genre. We also see a lessening in reflected bias for War and Western

movies. This paired with R-RIPA results could signal that a smaller group of

male users could be driving those results.
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Figure 7.1: OLS regression results when predicting Centroid R-RIPA leverag-
ing genres as features for the MovieLens BPR model trained on the 1M sample
dataset.
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Figure 7.2: OLS regression results when predicting Centroid R-RIPA leverag-
ing genres as features for the MovieLens BPR model trained on the 1M sample
dataset.
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Figure 7.3: OLS regression results when predicting SVC R-RIPA leveraging gen-
res as features for the MovieLens BPR model trained on the 1M sample dataset.

110



Figure 7.4: Tree variable importance when predicting Centroid R-RIPA leverag-
ing genres as features for the MovieLens BPR model trained on the 1M sample
dataset.
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Figure 7.5: Tree variable importance when predicting SVC R-RIPA leveraging
genres as features for the MovieLens BPR model trained on the 1M sample
dataset.
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Figure 7.6: Collinearity heatmap when predicting Centroid R-RIPA leveraging
genres as features for the MovieLens BPR model trained on the 1M sample
dataset.
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Figure 7.7: Collinearity heatmap when predicting SVC R-RIPA leveraging genres
as features for the MovieLens BPR model trained on the 1M sample dataset.
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Figure 7.8: Tree variable importance when predicting SVC R-RIPA leveraging
genres as features for the MovieLens BPR model trained on the 100k sample
dataset.
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Figure 7.9: Collinearity heatmap when predicting SVC R-RIPA leveraging genres
as features for the MovieLens DMF model trained on the 1M sample dataset.
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Chapter 8

Implement: Amplification

In this final implementation chapter, we present our methods concerning the last

step in the ESA framework: Amplification. We conduct this step for both case

studies, but similar to previous chapters, our implementation for the Spotify case

study is more limited than that of the MovieLens case study. We explore classifi-

cation scenarios for both case studies. Feedback loop simulation is only explored

for the MovieLens movie recommendation case study. For the feedback loop

simulation, given the stable bias levels for each recommendation algorithm, we

simulated feedback loops and examined embeddings for BPR and DMF trained on

the 1M MovieLens dataset. By doing so, we can observe if specific algorithms are

at a higher risk for amplifying bias and creating feedback loops for stereotypical

recommendations over time.

8.1 Feedback Loops in Movie Recommendation

As previously noted, we evaluate the behavior of AAB over time with simulations

of how recommendations would change if AAB is left unchecked. We do so by
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simulating recommendations from BPR and DMF trained on the 1M MovieLens

dataset. We run simulations five times and each training dataset is created by

introducing previously recommended items into the new training datasets based

on an acceptance probability function of (rewrite in math terms) e to the negative

alpha multiplied by the rank.

8.1.1 Deep Matrix Factorization

The most notable difference when comparing bias directions between the original

and final simulation entity vectors is the change in significance for the centroid

bias direction. Originally the centroid bias direction was not found to be sig-

nificant due to the lack of significance between male vectors and the centroid

direction versus a randomly generated direction. However, after five simulation

iterations, the average cosine similarity with the centroid direction increases sig-

nificantly resulting in a more significant centroid bias direction. This is also

demonstrated by the more equal distribution of cosine similarity between male

and female users and the significant centroid bias direction resulting from the

simulations. Even though, we find that average cosine similarity for female users

and the bias directions become less pronounced, we see a drastic increase in aver-

age cosine similarity for male users and the centroid bias direction. This results

in a wider distance between male and female users according to the bias direction.

We observe a similar change in sign for the male average cosine similarity with

the SVC bias direction, resulting in male users having an opposite direction in

comparison to female users according to the SVC bias direction. We found that

male cosine similarities with the male direction of the vector increased signifi-

cantly for both the SVC and centroid bias direction. Alternatively, female cosine
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Male Avg CS Female Avg CS Difference

1 5 1 5 1 5

BPR
SVC 0.0638 0.0676 -0.1178 -0.1037 0.1816 0.1713

Centroid 0.1145 0.1209 -0.1552 -0.1557 0.1687 0.2766

SVC -0.0392 0.0274 -0.1525 -0.0902 0.1133 0.1176
DMF

Centroid 0.0070 0.0997 -0.1714 -0.0937 0.1784 0.1934

Table 8.1: This table showcases how cosine similarity between male and female
users with the centroid and SVC bias direction change over simulations. Results
are shown for the BPR and DMF model trained on the 1M MovieLens sample
dataset.

similarities with both bias directions decreased significantly (meaning they be-

came less similar to the female direction of the vector).

When comparing the first iteration to final iteration AAB metrics one can

observe that stereotypically male genres experienced higher levels of bias after

the feedback simulations. The genres Action, Sci-Fi, and War all experienced

higher bias metrics for the final iteration. Between the different bias metrics,

SVC R-RIPA resulted in the most significant changes across genres. Additionally,

these changes were more drastic than those seen in Centroid R-RIPA and GEAA,

which could be the result of SVC R-RIPA’s capability to capture more nuances

in behavior.

We can see that Centroid R-RIPA and GEAA both show Action and Drama

experiencing significant results. GEAA also shows a significant increase in AAB

for Children’s movies towards female users. For stereotypically male genres,

GEAA resulted in the highest delta between iterations. Unlike Centroid R-RIPA,

GEAA reflects the aggregated difference of average cosine similarities between the

individual entity vectors and each of the attribute entity vectors. This difference

results in GEAA being more susceptible to highly biased outliers, which given

results, may occur more often for male users and genres than that for female
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users and genres.

The reduced robustness to outliers of GEAA is further demonstrated by the

results of testing changes in the individual EAA bias metric distributions. These

tests show that not every large GEAA delta is accompanied by a significant

change in the EAA distribution. For example, GEAA deltas for War and Crime

movies are the highest (0.2358 and 0.2773), but are not accompanied by signifi-

cant test results. In these cases, one can assume that the increase or decrease is

driven by outliers, not a population shift of bias.

The distinct increase for all stereotypically male genres point to the DMF

algorithm reinforcing and strengthening the latent relationship between Action,

Sci-Fi, and War movie vectors and male user vectors. It is important to note the

imbalance within the original dataset between male and female users could be

one of the underlying drivers in the higher deltas of bias for male genres due to

the simulation creating more male interaction user instances with each simulation

iteration.

8.1.2 Bayesian Personalized Ranking

Unlike the DMF algorithm, iterations of BPR recommendations do not result in

a strong shift in the bias direction. The first and final iterations of bias directions

remain significant, but do not result in sign changes like that of the DMF male

average cosine similarity with the SVC bias direction. This lack of change could

signal that the BPR algorithm is more resistant to reinforcing bias over time,

resulting in potentially harmful feedback loops. We can see a slight increase in

the average male and female cosine similarity with the centroid vector, but after

testing the distributions, we found the shift to not be significant. When testing
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the individual entity distributions and accounting for the Bonferroni correction,

none of the changes in the cosine similarity distributions for both user genders

were found to be significant. It is important to note, that unlike DMF, the orig-

inal difference in cosine similarity between male and female users demonstrates

opposite directions between genders and the calculated bias directions

Similar to significance results for the bias directions, individual bias metric

significance tests resulted in finding that increase or decreases in the aggregate

bias metrics were not accompanied by significant changes in the individual bias

metric distributions. This result signals that these changes in aggregate metrics

were the result of specific entities experience a higher or lower than usual change

in their AAB with user gender.

Even though no significant changers occurred, it is interesting that the ma-

jority of genres experienced an increase in metrics. Action, Sci-Fi, and War SVC

R-RIPA were the only genres to show signs of a decrease in bias. Since the

metrics Centroid R-RIPA and GEAA both resulted in positive increases without

significant results, one can hypothesize that certain outliers experienced higher

levels of bias in comparison to the majority of users. This behavior could signal

certain users being more at risk for reinforcing bias than others, which can have

particularly harmful effects according to the content that is being served to the

user.

8.2 Classification for Reinforcing Bias

In the following sections, we will showcase how classification can be leveraged to

evaluate AAB and systematic bias in recommendation embeddings. We leverage

three classification scenarios for evaluating AAB in Spotify podcast and Movie-
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BPR DMF

1 5 ∆ 1 5 ∆

SVC R-RIPA

Action 0.1677 0.1582 -0.0566 0.0489 0.0589 0.2045**

Sci-Fi 0.1602 0.1526 -0.0474 0.0418 0.0481 0.1507**

War 0.2421 0.2412 0.0037 0.0553 0.1023 0.8499**

Western 0.2164 0.2078 0.0397 0.0738 0.1195 0.6192**

Crime 0.0928 0.0902 -0.0280 -0.0067 0.0049 1.7313

Romance -0.1879 -0.1902 0.0122 -0.1613 -0.1412 -0.1246

Drama -0.0713 -0.0737 0.0336 -0.0617 -0.0743 0.2042**

Children’s -0.0867 -0.1003 0.1569 -0.0994 -0.0696 -0.2998**

Centroid R-RIPA

Action 0.3300 0.3545 0.0742 0.1606 0.1765 0.0990**

Sci-Fi 0.3222 0.3517 0.0916 0.1798 0.1984 0.1034

War 0.2732 0.2782 0.0179 0.1078 0.1229 0.1401

Western 0.2108 0.2220 0.0531 0.0983 0.0949 0.0346

Crime 0.1763 0.1914 0.0856 0.0605 0.0711 0.1752

Romance -0.3226 -0.3399 0.0536 -0.1496 -0.1370 -0.0842

Drama -0.1703 -0.1856 0.0898 -0.0585 -0.0474 -0.1897**

Children’s -0.1168 -0.1403 0.2012 -0.0753 -0.0851 0.1301

GEAA

Action 31.78 34.99 0.1010 10.23 12.18 0.1906**

Sci-Fi 20.34 22.76 0.1189 7.51 8.98 0.1957

War 4.06 4.23 0.0419 1.06 1.31 0.2358

Western 2.90 3.13 0.0793 0.89 0.94 0.0561

Crime 5.28 5.88 0.1136 1.19 1.52 0.2773

Romance -34.37 -37.13 0.0803 -10.54 -10.47 -0.0066

Drama -56.88 -63.55 0.1172 -12.94 -11.35 -0.1228**

Children’s -6.99 -8.61 0.2317 -2.98 -3.65 0.2248**

Table 8.2: This table showcases how bias metrics change over simulations. Sig-
nificant changes are marked with **. Results are shown for the BPR and DMF
model trained on the 1M MovieLens sample dataset.
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Lens movie recommendation embeddings. The first scenario targets understand-

ing how embeddings may relay gendered engagement with items by evaluating

if item embeddings are accurately classfied as male or female in comparison to

their gendered engagement patterns. The second scenario looks at gender bias

by genre and if more stereotypically gendered genres also result in stereotyped

classification results. The third, and final, scenario observes if user engagement

history can be used to predict the gender of the user. This final scenario is par-

ticularly important due to privacy concerns if gender can be determined from

engagement history.

For the Spotify Podcast Recommendation case study, we observe changes in

classification results for when gender is used and not used during model training.

When analyzing the MovieLens case study, we evaluate changes in results between

the original model and the final fifth simulated recommendation embeddings.

Similar to the previous section on feedback loops, we only observe changes for

the BPR and DMF model.

8.2.1 Spotify Podcast Recommendation

The classification scenarios we designed allowed us to observe if podcast embed-

dings used as downstream features resulted in either accurate predictions of user

gender engagement or stereotyped predictions of podcasts labeled for our entity

test sets. For each scenario, we evaluated results for podcasts trained with and

without user gender as a feature to understand implicit user gender bias in the

latent space and how explicit use of the feature amplifies said bias. We used the

same SVC classification models trained on user vectors to create gender directions

for our analysis: SVC, CSVC-1, and CSVC-2.

123



Gendered Podcast Listening

We analyzed whether these predictions aligned with actual podcast listenership

gender percentages. We did this by observing how our SVC models labeled

podcasts as “male” and “female”. We compared these predictions against the

podcasts’ male and female listenership percentage. In 8.3, we see the pattern

that as podcasts have increasing percentages of male or female listenership, the

podcasts are more likely to be classified as “male” or “female” podcasts. For

example, with the SVC model trained on user embeddings with user gender, we

see that when podcasts are in the 50% decile, they are classified as “female”

70.8% of the time, but when female listenership grows to over 70%, podcasts are

labeled as “female” over 95% of the time. This classification scenario allows us to

see that as engagement becomes more gendered, the podcast entity embeddings

become more associated with a specific gender as well.

Interestingly, predictions correlating with female podcast listening became

more accurate when the model was not trained with gender. However, this result

did not hold for male podcast listening. When the model was trained without

gender, the predictions became significantly less accurate when labeling a podcast

with higher male engagement as male. Given this change in result, we hypothe-

sized that the semantic embedding of user gender might not precisely represent

the female and male binary relationship for podcast vectors but that of male and

not male. Understanding how this relationship is embedded into the space would

require more in-depth testing with non-binary data, which is out of the scope of

this paper but could be an interesting development to explore in future research.

We found that this classification scenario showcased how podcast entity vec-

tors can capture user gender AAB based on the increase in accuracy in predictions
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as the percentage of listener gender rose. Additionally, the results showed that

podcast embeddings associated with male listening experienced a sharper increase

in accuracy as the male listener percentage increased. This finding is helpful dur-

ing evaluation because it flags a difference in behavior within the latent space for

podcast embeddings more related to stereotypical male listening.
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Gender Bias by Genre

Finally, we examine if gender stereotyped genres are more or less likely to be

associated with misclassifications of gender if gender is used as a feature or not.

This association is evaluated by observing the predicted labels of the sports or

true crime podcasts. Results are in Table 8.4.

We found that results for true crime and sports podcasts from SVC and

CSVC-2 remained relatively stable when gender was and was not used as a feature

during training. When testing for significance, we found that both models did

not experience a significant change, with p-values of 0.007 and 0.264, respectively.

However, we found this untrue when testing CSVC-1, which was trained on the

200 “most gender-biased” users. Predictions from CSVC-1 showed a significant

change in the precision of predicting true crime podcasts as female, with the

metric reducing from 0.80 to 0.49. This drop means more sports podcasts were

classified as “female” instead of “male.” One can speculate that this reflects

AAB for sports podcasts concerning the 200 “most gender-biased” users to have

been significantly reduced when removing user gender from the training process.

This behavior is also reflected in the significant drop in recall for sports podcasts

regarding the CSVC-1 model. In contrast, true crime podcasts experience a slight

uptick in the recall, with an increase of 0.81 to 0.84 for CSVC-1 and SVC and

CSVC-2 results.

These results show an imbalanced effect of the chosen mitigation method to

remove user gender from training. This assumption is further supported when

testing for significance between the genre groups of model performance. When

gender was used during training, model performance for predicting the stereo-

typed gender for a podcast was significantly different for all three classification
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Podcast Genre
Sport True Crime

Precision

B
ia
s
D
ir
ec
ti
on

M
o
d
el

SVC
WG 0.96 0.74
NG 0.97 0.74

CSVC-1
WG 0.94 0.80
NG 0.94 0.49

CSVC-2
WG 0.95 0.80
NG 0.95 0.79

Recall

SVC
WG 0.91 0.87
NG 0.91 0.89

CSVC-1
WG 0.94 0.81
NG 0.74 0.84

CSVC-2
WG 0.94 0.83
NG 0.93 0.84

F1-Score

SVC
WG 0.93 0.80
NG 0.94 0.81

CSVC-1
WG 0.94 0.81
NG 0.83 0.62

CSVC-2
WG 0.94 0.82
NG 0.94 0.81

Table 8.4: Classification performance scores when classifying sport podcasts as
“male” or true crime podcasts as “female” when leveraging SVC models used to
create bias directions. Acronym descriptions can be found in §6.1.
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models. If gender was removed during training, we found that the difference in

performance was no longer significant for the SVC model. This difference was not

due to the lessening of bias when predicting the gender of a podcast but instead

from the classification model predicting more true crime podcasts as “female.”

User Gender from Podcast Listening History

We designed this scenario to capture the ability of item embeddings to relay

sensitive information about users in downstream models. If item embeddings can

be used to predict the user-sensitive attribute, as well as the user embedding

itself, it can be assumed that the sensitive attribute is entangled within the item

embedding.

We found the overall change in test accuracy to be small when leveraging

podcast vectors trained with and without access to gender as a feature. Classifi-

cation test accuracy for with-gender podcast vectors was 0.832, while non-gender

podcast vectors achieved a test accuracy of 0.829. When breaking down results

by gender, we found the change in test accuracy to be more pronounced. When

gender was included as a feature, 17.9% of female users were classified as male.

This percentage reduced to 11.3% when vectors were trained without access to

gender. Alternatively, misclassification for male users increased to 23.7% when

the model was trained without gender versus 15.7% when trained with user gender

as a feature. To better understand the vectors resulting in misclassification, we

evaluated the cosine similarity of these vectors against the female, male, female

podcast-listening, and male podcast-listening centroids. We found that misclas-

sified podcast vectors showed higher cosine similarity with the opposite gender

and gendered listening centroids.
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8.2.2 MovieLens Movie Recommendation

We leveraged similar classification scenarios to that designed for Spotify Podcast

Recommendation. However, instead of validating against multiple SVC gender

directions, we validated against our two modeling scenarios BPR and DMF.

Gendered Movie Watching

In this section, we explore how gender label predictions of movies correspond

with gendered listening patterns. Before describing results, it is important to

note data modifications we conducted to account for the inherent imbalance in

data collected by users according to gender. We calculate the gender percentage

of watching for the movies with interactions from randomly sampled 1500 female

users and 1500 male users. Additionally, we observe results in relation to the

number of interactions for the movie by conducting analysis for all movies, movies

with under 50 interactions, and movies with over 50 interactions. This grouping

allows us to understand how latent gender bias may relate to the popularity of

the movie.

We found that the ”popularity” (where we define popularity as the number

of times a movie is interacted with in the interaction dataset) and our feedback

simulation to significantly change our results in predicting the gender labels for

movies. Even in the original DMF embeddings, popularity plays a key position

in how the individual movies experience user gender AAB. Table X shows that

movies with less than 50 interactions with higher proportions of female listening

are not classified ”accurately”, while movies with more than 50 interactions are

much more likely to be increasingly classified as female according to their female

listening proportion. This shows that for the DMF algorithm, if a movie is
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DMF

1 5

# of Interactions # of Interactions

All i < 50 i > 50 All i < 50 i > 50

% Predicted Female

F
em

al
e
E
n
g.

% 50 0.1235 0.0036 0.2075 0.3184 0.0912 0.4759

60 0.2960 0.0206 0.5588 0.4726 0.1701 0.7500

70 0.3209 0.1212 0.6349 0.4382 0.1616 0.8730

80 0.3000 0.0555 0.9231 0.4000 0.1666 1.0000

90 0.0103 0.0103 - 0.0103 0.0103 -

% Predicted Male

M
al
e
E
n
g.

%

50 0.9731 0.9928 0.9633 0.8846 0.9391 0.8586

60 0.9973 0.9962 0.9978 0.9514 0.9584 0.9474

70 1.0000 1.0000 1.0000 0.9858 0.9946 0.9788

80 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

90 1.0000 1.0000 - 0.9937 0.9937 -

Table 8.5: This table showcases, for the DMF MovieLens 1M recommendations,
how percentage of movies predicted as female versus male change according to
their gender engagement percentages and number of interactions. Please note
that Eng. is short for Engagement.
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more popular and experiences a higher female proportion of users, it is more

likely to experience bias towards female users within the recommendation system.

These prediction rates are shown to increase after our feedback loop simulation.

Our results show that movie embeddings with higher rates of female interactions

experience a reinforcing of the bias, with the female prediction rates increasing

after five rounds of feedback simulation.

Interestingly, we see the opposite to be true for ”male” movies. Even though

in both versions of embeddings the male predictions are more ”accurate”, we can

see a decrease in the percentage of movies predicted as male (primarily with male

interaction rates between 50 and 70%). This lessening could be attributed to the

increase of female ”interactions” being captured during training, thus causing an

inherent shift in the recommendation training set towards female interactions.

This shift may also be a driving factor in the increase in female prediction rates

for movies with high female interaction rates, causing both a slight balancing

effect for ”male” movies and reinforcing effect for ”female” movies.

In comparison to DMF results, BPR prediction rates for ”female” movies is

greater across all movies (regradless of popularity) and simulation version. How-

ever, we can see that the results between simulation versions are more stable with

prediction rates slightly improving or decreasing for gender proportion groups.

We find that the change in rates is correlated with the number of movies within

the gender proportion group, with larger groups experiencing a larger increase

in reinforcement of user gender bias. The opposite holds true for ”male” movies

with larger groups experiencing greater dips in prediction rates of male labels.

Similar to female movies, male movie BPR embeddings are more stable between

feedback loop simulations, experiencing less significant drops than their DMF

counterparts. There also seems to be a less drastic difference for results between
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BPR

1 5

# of Interactions # of Interactions

All i < 50 i > 50 All i < 50 i > 50

% Predicted Female

F
em

al
e
E
n
g.

% 50 0.3943 0.3248 0.4430 0.4434 0.3759 0.4911

60 0.7487 0.5927 0.9019 0.7661 0.6340 0.8921

70 0.8765 0.7979 1.0000 0.8827 0.8081 1.0000

80 0.8000 0.7222 1.0000 0.7800 0.6944 1.0000

90 0.4639 0.4639 - 0.3917 0.3917 -

% Predicted Male

M
al
e
E
n
g.

%

50 0.8822 0.7956 0.9249 0.8543 0.7634 0.8970

60 0.9730 0.9396 0.9915 0.9676 0.9245 0.9915

70 0.9858 0.9677 1.0000 0.9905 0.9784 1.0000

80 0.9813 0.9734 1.0000 0.9875 0.9823 1.0000

90 0.9625 0.9625 - 0.9562 0.9562 -

Table 8.6: This table showcases, for the BPR MovieLens 1M recommendations,
how percentage of movies predicted as female versus male change according to
their gender engagement percentages and number of interactions. Please note
that Eng. is short for Engagement.
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Predicted Female Predicted Male

1 5 1 5

BPR

Male Genres 0.0408 0.0356 0.9591 0.9643

Female Genres 0.3561 0.3912 0.6438 0.6087

Neutral Genres 0.2128 0.2307 0.7871 0.7692

DMF

Male Genres 0.1280 0.2601 0.8719 0.7398

Female Genres 0.0146 0.0597 0.9853 0.9402

Neutral Genres 0.0847 0.1536 0.9152 0.8463

Table 8.7: This table showcases how different genres of movies are predicted as
male or female with respect to the number of simulations and algorithm.

male and female movies for BPR embeddings than DMF embeddings.

Gendered Genres

We found that stereotypically female genres where overwhelmingly more likely to

be predicted as female than stereotypically male or neutral genres. In table X,

we show case the breakdowns between stereotypically male, female, and neutral

genres and how they are predicted between the DMF and BPR models. The

original embeddings result in BPR showcasing the strongest signs of user gender

bias in the female genre movie embeddings. When simulating the feedback loops,

we find that DMF experiences the largest drift with all genres resulting in higher

rates of female classification, with the largest change for female genre movies.

Unlike DMF, BPR shows signs of distancing between male genres and female

genres given the higher rates in stereotypical predictions for both male and female

genres after running recommendation simulations.
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DMF BPR

All Users Sampled All Users Sampled

1

Predicted as Female

0.0345 0.0684 0.0602 0.0778

5

0.0778 0.4558 0.0614 0.4774

Table 8.8: This table showcases how users are predicted as female based off of
their listening history versus the number of simulations, algorithm, and when
male users are undersampled when training the bias direction.

Gendered User History

This portion of analysis highlighted the importance of attribute sampling when

creating directions, as well as for training in general. We found that female

predictions were surprisingly low for user’s centroid watching history. Given the

analysis in previous sections, we knew that there were significant levels of AAB

in accordance with movie genre gender stereotypes, but those findings were not

inline with the results we discovered when predicting gender off of user history.

Only 66 users were predicted as female based off of their listening history for

the DMF SVC model. After further investigation, we found that the our SVC

direction and model was overindexing on male users, causing female users to be

less accurately represented by the direction we found. If we undersample male

users when training the SVC model, we find that the number of female predictions

raises significantly.

Table 8.8 shows that this behavior is true for both DMF and BPR algo-

rithms, the extreme increase when accounting for sampling supports the notion

that overtime, algorithms are at risk of reinforcing bias within the latent space.

This finding raises concerns with our original training methodology leveraging

the entire dataset instead of training on equal groups of female and male users.
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We investigate how this changes AAB in our mitigation section as a compari-

son to more advanced mitigation techniques such as adversarial recommendation

learning. These results also may point to the discrepancy in performance between

female and male stereotyped genres in the previous two sections. Given this was

found in the third and final training scenario, revisiting results with under- or

over-sampled training data was out of scope for this dissertation. Re-conducting

this analysis to observe these differences could be a potential future direction of

research.
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Chapter 9

Monitor & Flag: Mitigating AAB

In review of results from our evaluation section, we found that both BPR and

DMF models showcased significant levels of user gender AAB both via bias metric

results and when exploring classification for exploring bias. For this dissertation,

we chose to leverage bias metric results to flag where to implement mitigation

methods. However, one could leverage classification results in practice as well.

We chose to focus on bias metric results because they highlighted a clear front

runner for mitigation with the BPR algorithm showcasing the highest levels of

AAB when trained on the 1M MovieLens dataset. Given this, and to avoid

over-extending the length of this dissertation, we chose to explore mitigation

methods only for this recommendation scenario. Future work could explore how

mitigation methods perform across different algorithms, but that is out of scope

for this dissertation.
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9.1 Resampling Training Data

We explored both over- and under- sampling the training data to balance the

dataset between male and female users. When undersampling, we found that the

performance of the model suffered from loss of information. This was seen from

results in our performance metrics, which were significantly less than both the

original model and the other mitigated performance metrics. The opposite was

true when oversampling the data. By oversampling female user interactions, the

model achieved the highest performance scores for MRR, hit, and precision at 10.

The other performance metrics, recall and NDCG at 10 were the second highest

in comparison to the other model iterations.

Bias direction results remain significant for both the SVC and centroid bias

direction. Additionally, we find that bias metric results worsen stereotypically

female genre categories for both the under and over sampled training iterations.

Stereotypically male genres bias metrics primarily lessen in severity, which is to be

expected as these relationships should be reflected less strongly in the training

data. Overall, the stereotyped results remain significant with both sampling

iterations. However, given the increase in performance metrics oversampling

female user data could be seen as beneficial from a performance perspective.

This case study could benefit from a multi-step mitigation to optimize for both

performance and reducing AAB.

9.2 Iterative Nullspace Projection

From our results, we found that this mitigation method did well at targeting

SVC RRIPA results but did not result in the same level of reduction for EAA
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results. This finding is relatively intuitive since the mitigation method focuses on

removing reliance on the bias direction directly and assumes that bias direction

adequately captures the attribute within the latent space. Since EAA results

did not experience the same reduction, one can assume that the original bias

direction does not fully explain how gender AAB exists between entity vectors.

We found that this mitigation method may be best used when the practitioner is

highly confident in the bias direction they are mitigating against. EAA metrics

having less of an effect from the mitigation may not necessarily be a bad result

since it is important to retain the entity relationships within the space. If the

historical data leveraged for recommendations is stereotypically biased, it may be

difficult to completely eradicate those relationships without potentially exploring

two-way relationship mitigation (like Oscar).

However, mitigating for specific two-way relationships (as mentioned previ-

ously) may fail to account for non-binary relationships with stereotypical behav-

ior within the latent space. Our goal is to lower AAB across all possible binary

relationships between genre and gender, which is satisfied to some extent with it-

erative nullspace projection. Unfortunately, this mitigation does not target EAA

metrics, which would most likely be better targeted with a mitigation method

like OsCAR if only one two-way relationship is being targeted. For our mitigation

goals, more complicated methods to disentangle gender AAB would be necessary

which will be explored in the next section with intrinsic adversarial mitigation

methods.

We observe how AAB directions change when mitigated via linear projection

on to the SVC or Centroid direction and iterative null projection with 200 or 1000

rounds. The most drastic change when calculating SVC R-RIPA results from

projecting onto the centroid bias direction. This scenario results in the lowest
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SVC train and test accuracy when predicting gender, with a training accuracy of

0.7204 and training accuracy of 0.7171. It also results in both the centroid and

SVC gender bias direction not being statistically significant within the latent

space. Average cosine similarity for male users with the trained SVC direction

was -0.3428 and for females, -0.3478. Average cosine similarity for male users

with the centroid direction was -0.4042 and for females, -0.4106. This renders

the bias direction useless for measuring AAB metrics, as showcased by the final

results and lack of significant differences between genres.

We look at changes for SVC and Centroid R-RIPA and EAA metrics after

mitigating via these four post-processing mitigation methods. We find that out

of the four implementations, linear projection on to the Centroid bias direction

results in the most noticeable change in the R-RIPA metrics. It is the only

method that results in distinct sign changes in the genre bias metrics, with Sci-

Fi and War becoming more ”female” and all ”female” genres becoming more

”male”. At first, one may think that all genres have become more male, but

when you compare against the negative cosine similarities of the users with these

unsignificant bias directions, it may be more conducive of a fundamental change

in the latent relationships themselves with user and item entity vectors becoming

less entangled within the space. Additionally, since the bias directions are no

longer significant, the bias metrics should be seen as not significant as well. One

can see that this does not occur when projecting onto the SVC direction. This

method results in less drastic changes across the various genres and maintains

some level of the stereotypical associations between genres and gender. Iterative

Null Projection is found to be much more fruitful than basic linear projection.

However, we can see that mitigation gains taper with an increase in iterative

rounds.
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If we compare against the performance of the new mitigated vectors, in addi-

tion to achieving non-significant bias directions and metrics, projecting onto the

centroid bias direction also results in high levels of performance. The best per-

formance between these methods is projecting once onto the SVC bias direction,

but as we can see in tables x and y, it does not achieve the same reduction in

AAB and retains significant bias directions. Iterative Null Projection results in

similar levels of performance to one another, but a noticeable drop from one-time

projection mitigation. We find that the linear projection mitigation method also

raises performance metrics from the original baseline, showcasing that reinforc-

ing stereotypes via AAB in the latent space may decrease user experience. But

given the fact that SVC linear projection achieves the highest performance but

not the largest decrease in AAB signals that retaining some level of AAB could

be beneficial, thus allowing to mimic some levels of stereotypical user behaviors

while allowing for more diversity in the recommendations which has been proven

to increase the success of recommendations.

9.3 Adversarial Recommendation for BPR

In comparison to iterative nullspace projection, we found adversarial recommen-

dation with attribute protection (RAP) to better mitigate a wider range of AAB

metrics. However, we found that performance metrics were significantly dimin-

ished from original levels and in comparison to simple one step null projection

onto the centroid or SVC bias direction. This trade-off is a known problem within

the bias mitigation research space, and determining the correct level of trade-off

is beyond the scope of this dissertation.

A particularly interesting result was found in our bias direction results. The
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user entity vectors from the adversarial RAP resulted in complete linear sep-

aration between male and female users (as shown in table X). This resulted

in a more statistically significant bias direction according to gender. Contrast-

ingly, with the more significant bias direction, most bias attribute association

metrics significantly decreased, meaning specific item groups were less stereotyp-

ically associated with specific user genders. Even though bias levels dropped,

stereotypical differences still remained. Given the recommendations reflect real

user behavior, eradicating stereotypes from predictions may not be realistic and

could even be seen as detrimental for users who do have more stereotypical en-

gagement patterns. The results from adversarial mitigation shows that one can

reduce AAB to less harmful levels while maintaining performance, thus making

this method a potential starting point for mitigating this category of recommen-

dation system bias. Future work could include exploring why the adversarial

component strengthens the linear separation between users by gender and how

iterations of inputs into the adversarial component affect AAB metrics. Addition-

ally, one could experiment with implementing multiple components of mitigation

in attempt to address multiple bias metrics while maintaining higher levels of

performance.

When comparing with post-processing techniques, adversarial mitigation pri-

marily achieved the best mitigation results for stereotypically female genres. Un-

like null projection methods, adversarial mitigation was able to achieve favorable

results for both SVC and Centroid R-RIPA, showcasing that this method is more

flexible to addressing multiple AAB metrics. However, as shown in table X, this

does not hold true for EAA results, where we see EAA increasing for stereotypi-

cally male genres. Unlike R-RIPA, EAA is reflective of all possible relationships

between each attribute and test entity. If we take into account the fact that
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Recall MRR NDCG Hit Precision

Under 0.0914 0.1413 0.0838 0.3307 0.0529
Over 0.1604 0.4794 0.2878 0.8098 0.2441

Linear
Projection

SVC 0.1900 0.4910 0.2925 0.7937 0.2270
Centroid 0.1788 0.4757 0.2760 0.7722 0.2123
n=200 0.1282 0.3563 0.1891 0.6806 0.1473Iterative Null

Projection n=1000 0.1242 0.3490 0.1901 0.6632 0.1516
Adversarial BPR 0.1462 0.3667 0.2000 0.7248 0.1573

BPR 0.1464 0.3770 0.2052 0.7267 0.1608

Table 9.1: Performance metrics against the mitigation method leveraged. We
can see that the performance metrics increase when we mitigate for user gender
bias by oversampling female users during training and for both simple linear
projection mitigation implementations. The abbreviation Under reflects under
sampling male users. The abbreviation Over reflects over sampling female users.

the data is skewed towards male users, one could hypothesize that this result is

indicative of adversarial mitigation forcing all movie entities to be more ”male”.

This behavior would be beneficial to the adversarial algorithm because it would

inherently make it more difficult to predict the gender of a user and item pairing.

Table X shows that performance metrics are relatively unchanged between the

adversarial and original BPR model, which could indicate that even though there

are changes in AAB metrics, stereotypes in the final results may be unchanged.
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BPR
Under-sample
Male Users

Over-sample
Female Users

Adversarial BPR

SVC R-RIPA
Action 0.1677 0.1682 0.1446 0.1159
Sci-Fi 0.1601 0.1363 0.1583 0.0969
War 0.2421 0.1626 0.1532 0.1902

Western 0.2164 0.1482 0.1117 0.1513
Crime 0.0928 0.0795 0.0494 0.0641

Romance -0.1879 -0.2016 -0.2059 -0.0764
Children’s -0.0867 -0.1208 -0.1204 -0.0162
Drama -0.0712 -0.1227 -0.1680 -0.0157

Centroid R-RIPA
Action 0.3300 0.3750 0.3000 0.2161
Sci-Fi 0.3222 0.3668 0.3076 0.2097
War 0.2732 0.2716 0.2348 0.1902

Western 0.2107 0.2224 0.1785 0.1513
Crime 0.1763 0.1749 0.1375 0.1265

Romance -0.3225 -0.3404 -0.2887 -0.1520
Children’s -0.1168 -0.1356 -0.1135 -0.0397
Drama -0.1703 -0.2213 -0.1969 -0.0555

GEAA
Action 31.78 35.56 28.56 39.11
Sci-Fi 20.34 23.41 19.19 24.88
War 4.05 4.09 3.44 6.93

Western 2.90 2.99 2.43 5.31
Crime 5.27 5.22 4.07 7.12

Romance -34.37 -36.26 -30.41 -30.44
Children’s -6.99 -8.24 -6.72 -4.47
Drama -56.87 -72.48 -65.02 -34.87

Table 9.2: Bias metrics reflected against the mitigation methods: over sampling
female users, under sampling male users, and Adversarial BPR.
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BPR
Linear

Projection
Iterative Null
Projection

SVC Centroid n=200 n=1000

SVC R-RIPA
Action 0.1677 0.1400 0.0069 0.0596 0.0499
Sci-Fi 0.1601 0.1439 -0.0214 0.0565 0.0462
War 0.2421 0.1160 -0.0079 0.0907 0.0718

Western 0.2164 0.1040 0.0042 0.0742 0.0676
Crime 0.0928 0.0994 0.0694 0.0298 0.0279

Romance -0.1879 -0.1834 0.0210 -0.0680 -0.0556
Children’s -0.0867 -0.0707 0.0782 -0.0297 -0.0249
Drama -0.0712 -0.0767 0.1557 -0.0273 -0.0210

Centroid R-RIPA
Action 0.3300 0.2991 0.0329 0.3302 0.3420
Sci-Fi 0.3222 0.2957 0.0960 0.2743 0.4106
War 0.2732 0.1160 -0.0151 0.2822 0.3259

Western 0.2107 0.0945 0.0042 0.2617 0.1755
Crime 0.1763 0.0994 0.0411 0.0261 0.1897

Romance -0.3225 -0.1834 0.0444 -0.2857 -0.3041
Children’s -0.1168 -0.0795 0.1262 -0.0534 -0.2199
Drama -0.1703 -0.0767 0.1557 -0.0227 -0.1409

GEAA
Action 31.78 21.87 0.07 28.30 37.30
Sci-Fi 20.34 14.17 0.15 15.46 39.36
War 4.05 1.79 -0.01 3.73 5.47

Western 2.90 0.98 0.01 3.21 2.73
Crime 5.27 3.59 0.03 3.96 6.43

Romance -34.37 22.09 0.11 -27.17 -36.71
Children’s -6.99 -3.62 0.18 -2.85 -14.92
Drama -56.87 -41.69 1.08 -38.69 -53.29

Table 9.3: Bias metrics reflected against the mitigation methods: SVC Linear
Projection, Centroid Linear Projection, 200 rounds of Iterative Null Projection,
and 1000 rounds of Iterative Null Projection.
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Part III

Conclusion
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Chapter 10

Conclusion

In this dissertation, we introduce a variety of frameworks and methods to aid

practioners and academics in the auditing and evaluation of attribute association

bias (AAB) in their recommendation systems. We lay the scene by proposing

a wider framework for disaggregated audits of recommendation systems in prac-

tice. This framework, SIIM, provides a framework for our analysis methods of

AAB. Following the introduction of SIIM, we propose the definition of AAB and

present the novel ESA framework to evaluate AAB in practice. The ESA frame-

work consists of three steps which look to understand the existence, significance,

and amplification of attribute association bias. For each step of the ESA frame-

work, we provide various methods to complete the corresponding step in practice.

In the first step, we explore how to understand the existence of the attribute in

the latent space as defined by the attribute defining entity steps. We do this

by calculating attribute bias directions. The second step looks to evaluate the

significance of relationships between non-attribute defining entities in the test

sets and the bias directions, as well as the attribute association bias direction

in the space. Finally, we explore the amplification of the attribute association
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bias by evaluating feedback loops and classification scenarios concerning how the

bias may change over time and manifest within non-attribute related entity vec-

tors. After implementing the ESA framework, we explore mitigation methods for

AAB leveraging adversarial recommendation techniques. In order to implement

these proposed methods and frameworks, we leverage two datasets, a proprietary

dataset from Spotify for podcast recommendations and MovieLens.

Our framework provides a clear path in uncovering potentially harmful stereo-

typed relationships resulting from AAB resulting from an LFR model. In show-

casing our techniques, we found that our proposed methodologies successfully

measured and flagged AAB. Additionally, we uncovered clear advantages and

disadvantages for our proposed methods to help practitioners choose the appro-

priate techniques for their scoped evaluations. In the following sections, we would

like to address and discuss case study specific results, limitations to our research,

and potential future directions.

10.1 Gender in Latent Factor Recommendation

Throughout this dissertation, user gender was the main sensitive attribute driv-

ing our research in AAB in latent factor recommendation models. Thus, it is only

fitting that we discuss our findings on the effects of user gender on recommenda-

tions. Our findings support the idea that systematic bias occurs as AAB in LFR

outputs, which leads us to a more challenging question: when is it appropriate to

mitigate for systematic bias? In some cases, like in our case studies, stereotyped

behavior is common and could even be seen as beneficial for providing useful

recommendations to users. If the existence of implicit AAB actually improves

user experience, how should one reduce the risk of representative harms?
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In the case of user gender bias, the harm lies in the model potentially re-

inforcing stereotypes by driving users towards gendered listening habits. It is

possible to monitor levels of AAB overtime in order to flag increasing bias in the

latent space. But when are levels of reinforcement considered harmful? Both the

research and practitioner community would benefit from more exploration of how

to approach setting baselines for managing representative harms in recommen-

dations.

10.1.1 Mitigating Gender AAB

[41] suggested the capability for user gender bias to be systematic bias embedded

within the latent space, thus making it difficult for simple mitigation techniques

to address the core issue at hand. Their study demonstrated ”a systematic bias

found in the embeddings, which is independent of the gender direction” [41].

Given this independence, debiasing methods grounded in removing the gender

direction were found to be ”superficial” fixes. Systematic bias in our case study,

similar in nature to that found in word embeddings, would result in AAB re-

maining significant even when user gender is not leveraged as a model feature.

In mitigating user gender AAB with similar methods of null space projection, we

found the same to be true for LFR algorithms. Removing gender completely from

the trained latent space is next to impossible, and this removal could actually

incur harmful performance results for users as well.

In context-aware podcast recommendation, we found that removing user gen-

der as a feature resulted in a statistically significant decrease in levels of AAB,

however, significant implicit AAB remained. This finding was true for our movie

recommendation case study for all three mitigation methods. Like [41] ’s results,
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our case study observations suggest that gender stereotypes can become implic-

itly embedded in the representations of both users and items, as supported by

the persistence of this bias when gender is not explicitly used as a feature and

when non-context aware recommendation models are mitigated. The presence

of implicit AAB signals the potential for systematic gender bias when leveraging

latent factor recommendation models, or potentially recommendation algorithms

in general, when users historically show stereotyped patterns. This finding was

not surprising given previous research detailing the highly gendered nature of

podcast listening and movie watching[19, 27, 80]. Our findings leveraging our

framework demonstrate that, similar to [41], known systematic bias can be found

and quantified in recommendations. Given this, it is essential for practitioners to

audit for AAB when systematic bias is a known factor in their recommendation

scenario, such as podcast or movie recommendations.

Additionally, we find that mitigating gender AAB in our BPR model for movie

recommendation did not completely remove the bias. When a method did reduce

bias more, we found that performance experienced more adverse effects. This

result further supports the fact that mitigating bias and maintaining performance

is a trade-off that needs to be addressed in practice. Defining trade-offs and

thresholds is a subjective and difficult process which is most often project specific.

There is little guidance in how best to approach this common problem and could

be an impactful area for future research.

Even though standard performance metrics were negatively impacted, other

evaluation metrics such as those addressing diversity and novelty may improve

when reducing bias. Future work could include exploring how reducing stereo-

typing bias, such as AAB, leads to more diverse and positive experiences for

recommendation stakeholders.
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10.2 Binary versus Multi-categorical Metrics

In this dissertation, we proposed evaluation approaches for both binary and multi-

categorical group situations. While exploring and creating these methods, we

found that the intense need, expressed in both academic and industry settings, for

a holistic multi-categorical metric may not result in as much impact as expected.

It is extremely difficult to capture the nuances of multi-categorical relationships

and behaviors in one holistic metric due to the inherent masking of results that

comes with aggregated metrics (simple examples being, mean and median). This

challenge becomes even more noticeable as the number of groups increase, as

a result, even with a holistic metric, pairwise and binary comparisons may be

necessary to make informed decisions regarding bias evaluation and mitigation.

Our multi-categorical bias direction method proved helpful for leveled cate-

gorical groups (such as temperature and heat). However, leveraging our simple

method may be unfruitful for capturing holistic behaviors of non-scale related

categories (such as occupation and race). One could look to explore the creation

of a holistic bias direction for those types of groups, but the methods would be

significantly more complicated, difficult to understand, and most likely challeng-

ing to implement in practice. This creates the question of do we actually need one

all-encompassing metric, or is it sufficient to settle for pairwise techniques when

group-specific exploration will be required anyways? Additionally, is it truly good

practice to leverage information masking aggregate metrics when they can lead

to missing group-specific harmful bias?

A holistic aggregate bias metric may be helpful in theory, but one needs to be

aware that this area of research has the potential to affect people’s livelihoods. Is

it worth it to risk missing harm in favor of reducing the computational overhead
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of pairwise comparisons? This trade-off could benefit from closer investigation to

help inform researchers and practitioners when a holistic aggregate bias metric is

truly beneficial to their workflow.

10.3 Limitations & Future Work

Our most noticeable limitation when implementing these techniques was the lack

of distinct and well-labeled user and item pairings for metric calculation, a com-

mon occurrence in recommendation settings. We demonstrated methods to over-

come this limitation, but this work could be further refined in the future to avoid

possibly introducing more bias into the evaluation via practitioner-defined entity

pairing techniques. In the future, specific to the podcast recommendation case

study, we plan to explore counterfactual user vectors according to gender to cre-

ate distinct pairs. Counterfactual user pairings would isolate the feature within

the latent space and potentially reduce attributing spurious relationships between

users solely to gender differences. It is important to note that this workaround

is only available for models trained with entity attributes. This limitation would

remain when evaluating the implicit or systematic bias of an LFR algorithm.

10.3.1 Practical Limitations

Despite the proliferation of work focusing on algorithmic auditing, we’ve encoun-

tered numerous challenges in evaluating bias in practice. A lack of standards

and guidance leaves practitioners with significant challenges, which go beyond

tooling not always being suitable [74] and beyond conceptual tensions in dif-

ferent definitions of fairness [44]. The challenges we encountered in practice are

likely shared across many organizations, particularly as internal audits become
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more common. Practitioners may be responsible for developing playbooks of

instructions to audit and monitor systems, and would benefit from sharing chal-

lenges and lessons learned. We hope that by sharing our own challenges with the

community, we can uncover shared obstacles and work collaboratively between

industry and academia to ensure best practices for tackling the complex task of

evaluating recommendation systems.

Addressing Bias Thresholds It is important to note that determining these

thresholds is inherently challenging due to the gap between “practical” and “sta-

tistical” for assessing algorithmic impact [13]. Statistical significance is influenced

by many decisions (e.g., alpha, one- vs. two-sided test) that are generally designed

to assess whether results occurred due to chance, not whether the results were

meaningful [13]. “Significant” does not mean practical, and “marginally better

than before” might not be very impactful [13]. In the case of mitigation research,

determining these types of thresholds would require researchers to make more

definitive statements of what is or is not fair. Making these decisions is difficult

due to the lack of standards in the space and the need for subject matter expertise

to understand the nuances of fairness within the studied domain. However, by

not researching or making these difficult decisions, this responsibility falls upon

industry practitioners, leaving them at risk of making sub-optimal decisions lead-

ing to potentially harmful downstream effects on providers and consumers. There

is an incredible opportunity to increase the impact of this type of mitigation work

by researching best practices in approaching the complex subject of thresholds

for fairness.
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10.3.2 Embedding Functions

As shown in section X observing Bias Directions, understanding how the entities

are embedded into the space is paramount to leveraging this evaluation framework

correctly. Out of the three algorithms we observed, NCF was the one framework

that did not leverage an embedding function allowing for the model to embed

the user and item entities into the same space. We demonstrated how that led to

confusing results when testing for significance against the other two algorithms

(which is to be expected). If the algorithm results in embeddings, it is not

guaranteed that it embeds users and items into the same space. Our evaluation

framework only works for latent factor recommendation algorithms that result in

one user-item embedding space, such as BPR and DMF.

10.4 Concluding Remarks

The success of our methodologies in uncovering AAB highlights the importance of

understanding how stereotypical relationships can become embedded into trained

recommendation latent spaces. For example, our ability to predict user gender

from podcast vectors demonstrates how leveraging these vectors as attributes in

downstream models can introduce implicit user gender bias in subsequent out-

puts, even if owners of downstream models intentionally remove user gender as a

training feature. The ability for listening history to predict user gender showcases

that user gender bias is embedded within the podcast vectors, meaning their use

can inherently introduce gender bias into other modeling systems. Understanding

this type of representation bias becomes increasingly crucial in industry recom-

mendation systems where embeddings are used across models owned by different

teams.
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For example, if a team audits and mitigates its model for user gender bias but

leverages said podcast vectors as a feature, any unrelated models leveraging said

feature could be unknowingly reintroduced to user gender bias. If AAB is left

unchecked in hybrid recommendation scenarios, teams are at risk of amplifying

systematic representation harms resulting from providing stereotyped recommen-

dations for stakeholders. Similar to findings by [12], our results support the notion

that capturing and understanding the behavior of gender bias in more implicitly

biased recommendation vector embeddings is a complicated and nuanced task,

requiring further analysis beyond our results showcased in this paper. We hope

our evaluation framework serves as a building block for future research addressing

representative harms and AAB in recommendation systems.
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