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A graph in which every edge is labeled positive or negative is called a signed graph. We

determine the number of ways to sign the edges of the McGee graph with exactly two negative

edges up to switching isomorphism. We characterize signed graphs that are both sign-symmetric

and have a frustration index of 1. We prove some results about which signed graphs on complete

multipartite graphs have frustration indices 2 and 3. In the final part, we derive the relationship

between the frustration index and the number of parts in a sign-symmetric signed graph on complete
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CHAPTER I

INTRODUCTION

1.1 History of Graph Theory and Signed Graphs

It is possible to pinpoint the beginning of graph theory to 1736 when mathematician Leonhard

Euler found an answer to the Königsberg bridge puzzle [8]. The Königsberg Bridge Problem was

an old conundrum that involved trying to find a way over each of the seven bridges that span a

branched river that flows by an island without using them more than once. Such a way does not

exist, according to Euler. His proof proved the first theorem in graph theory; however, it only made

passing mention of the actual configuration of the bridges. Additionally, since the 1950s, signed

graphs have been explored. Harary initially mentioned them in his structural balance theory, a

generalization of Heider’s thesis (Heider, 1946) from sociology [1].

1.2 Graphs

One of the most vibrant areas of combinatorics is graph theory. It is a trustworthy source for

graph theory[ [11] and [14]]. A graph can accurately represent any set of items having a binary

relationship, and the theory of graphs directs one’s analysis of the problem. Officially, a graph

G is a triple consisting of a vertex set V(G), an edge set E(G), and a relation that associates with

each edge two vertices called its endpoints [29]. Although a graph appears to have a simple idea,

complicated analysis methods have been developed for them. Numerous studies have been done

1



on hundreds, if not thousands, of different graph invariants. According to a compilation, there are

various ”nice” graphs. Graphs have been examined from a variety of perspectives and orientations.

When the value of an invariant is known, structural queries are often used to probe the existence

of substructures.

1.2.1 Some Types of Graph

There are many types of graphs, and in this section, we will discuss some of them:

• Null Graph: Graphs containing zero or more vertices but no edges are called null graphs.

• Trivial Graph: The trivial graph has just one vertex and no edges.

• Undirected Graph: Undirected graphs contain edges without a direction.

• Directed Graph: In a directed graph, each edge has a direction assigned to it, and edges
connect the vertices.

• Connected Graph: If a path connects any two of a graph’s vertices, the graph is said to be
connected.

• Disconnected Graph: If there is no path connecting at least two of the graph’s vertices, the
graph is said to be disconnected.

• Simple graph: A simple graph is a graph having no loops or no multiple edges. In a simple
graph with n vertices, every vertex’s degree is at most n -1.

1.3 Signed graphs

In many aspects of our lives now, signed graphs are crucial. For instance, one can describe

and examine the geometry of subsets of the classical root systems in mathematics [34]. Both

topological graph theory and group theory contain them. Signed graphs have been employed

in social psychology [16]. The signed graph is also helpful today in network science and other

domains. Thus, a signed graph is a graph with each edge receiving either a positive or negative

sign [32]. Let us give a quick and essential example of a signed graph for friendship. This can be

2



represented by a signed graph, where vertices are the people, a positive edge signifies that the two

corresponding people like each other, and a negative edge hates each other.

1.4 Background material

This section provides the essential definitions that this dissertation requires. Additionally, if a

definition is needed within any chapter of this dissertation, it will be included in that same chapter.

The majority of the definition is standard.

Definition 1.4.1. A cycle is a path that begins and ends at the same vertex, and the length of a

cycle is the number of edges it contains and is denoted by 𝐶𝑛. Moreover, a cycle in Σ is said to

be positive if the product of signs on its edges is +1 and negative otherwise. 𝐶+
𝑛 or 𝐶−

𝑛 denotes it

based on the product of signs on its edges.

Definition 1.4.2. A graph that can be obtained from G by deleting some of its vertices is called an

induced subgraph of G [27].

v1

v2

v4

v1

v2

v4

v3

Figure 1.1

A graph and an induced subgraph
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Figure 1.1 shows the graph 𝐺 with four vertices and its induced subgraph by deleting vertex 𝑣3

Definition 1.4.3. We denote the signed graph by Σ = (𝐺, 𝜎) where 𝐺 is the underlying graph and

𝜎 is the signature of Σ.

Definition 1.4.4. The negation of signed graph Σ is the same underlying graph with all signs

reversed. We denote it by −Σ = (𝐺,−𝜎)

+

+

+

v1 v2

v3v4

− +

−

−

−

v2

v3v4

v1

Figure 1.2

A signed graph Σ and its negation −Σ

Figure 1.2 shows a signed graph Σ and its negation −Σ by taking reversed of Σ.

Definition 1.4.5. A signed graph is balanced if all its cycles have a positive sign product.

4



v1

v2

v3

v4v5

v1

v2

v3

v4v5
Figure 1.3

A balanced and unbalanced signed graph

Figure 1.3 shows the first signed graph is balanced because it contains positive cycles, and the

second signed graph is not balanced.

Theorem 1.4.1. ([15] Harary) A signed graph Σ is balanced if and only if there is a bipartition of

its vertex set, V = 𝑋 ∪ 𝑌 , such that every positive edge is induced by X or Y while every negative

edge has one endpoint in X and one in Y. Also, if and only if for any two vertices v,w, every path

between them has the same sign.

Definition 1.4.6. The frustration index is the minimum number of edges to be deleted in a signed

graph to get a balanced signed graph. We denote the frustration index of a signed graph by ℓ(Σ).

Definition 1.4.7. The frustration number is the minimum number of vertices to be deleted in a

signed graph to get a balanced signed graph. We denote the frustration number of a signed graph

by ℓ0(Σ).

5



v1

v2

v3

v4v5
Figure 1.4

Unbalanced signed graph

It is clear to us the above-signed graph is not balanced, so we need to delete two negative

edges because we have two negative disjoint triangles. Hence ℓ(Σ) = 2. Similarly, we have two

negative disjoint triangles for the frustration number, so ℓ0(Σ) = 2. However, it is unnecessary to

be ℓ(Σ) = ℓ0(Σ).

Theorem 1.4.2. [26] For every signed subcubic graph Σ, ℓ0(Σ) = ℓ(Σ).

Lemma 1.4.1. [5] The frustration index of a signed graph is invariant under switching.

Lemma 1.4.2. min|𝐸−(Σ𝑖) | = ℓ(Σ) where 𝑖 ∈ {1, ..., 𝑘}.

Proof. (⇒)

Let ℓ(Σ) ≤ 𝑚𝑖𝑛|𝐸−(Σ𝑖) | =⇒ ℓ(Σ) ≤ |𝐸−(Σ𝑖) |. Σ𝑖 has |𝐸−(Σ𝑖) | negative edges. Deleting

those edges gives a balanced signed graph. Hence ℓ(Σ𝑖) ≤ |𝐸−(Σ𝑖) |. But ℓ(Σ) = ℓ(Σ𝑖)

(⇐)

min|𝐸−(Σ𝑖) | ≤ ℓ(Σ) = ℓ. The frustration index of Σ is ℓ. This means we can find edges

{𝑒1, ..., 𝑒ℓ} so that Σ − {𝑒1, ..., 𝑒ℓ} is balanced. Now we can switch Σ − {𝑒1, ..., 𝑒ℓ} to be all

6



positive. Now put back edges {𝑒1, ..., 𝑒ℓ}. They all have to be negative. Otherwise, the frustration

index of Σ will be less than ℓ. We know for some 𝑖, |𝐸−(Σ𝑖) | = ℓ. ■

Definition 1.4.8. Switching at a vertex 𝑣 reverses the sign of edges incident on 𝑣.

Definition 1.4.9. Two signed graphs are called switching isomorphic if one is isomorphic to a

switching equivalent of the other. We denote it by Σ1 � Σ2.

Theorem 1.4.3. [35] Let Σ and Σ′ be two signed graphs with the same underlying graph Γ. Then

𝐶+(Σ) = 𝐶+(Σ′) if and only if Σ′ is obtained by switching Σ. In particular, Σ is balanced if and

only if it switches to the all-positive signed graph +Γ.

Lemma 1.4.3. [36] Switching does not change the sign of any circle.

Definition 1.4.10. A signed graph is said to be sign-symmetric if it is switching isomorphic to its

negation. We denote it by Σ � −Σ.

Lemma 1.4.4. Every signed graph is an induced subgraph of a sign-symmetric signed graph.

Proof. Let Σ′ be a signed graph. Let Σ′ = Σ ∪ −Σ. Now, Σ′ is sign-symmetric and Σ is an induced

subgraph of Σ′ . ■

1.5 Organization of the dissertation

Chapter two demonstrates how many different ways to sign the McGee graph with exactly two

negative edges. We did this by counting the odd negative cycles. We also identified the McGee

signed graph with two negative edges sign-symmetric. In Chapter Three, we examine different

kinds of signed graphs with ℓ = 1, including Wheel signed graphs, Heawood signed graphs, and
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others, to identify which are sign-symmetric. Additionally, we obtain a theorem for the signed

graph of the Broken Wheel. In Chapter Four, we proved four theorems for the complete 𝑘-partite

signed graphs with ℓ = 1 and ℓ = 2, which are sing-symmetric. Additionally, we obtain a theorem

for 𝑘 ≥ 5 with ℓ = 1 𝑎𝑛𝑑 ℓ = 2. In Chapter Five, we study the complete 𝑘-partite signed graphs

with ℓ = 3, where 3 ≤k≤ 6, and determine the sign-symmetric. In Chapter Six, we study the

relationship between 𝑘-partite and the frustration index for negating the complete 𝑘-partite signed

graphs, and we get a theorem for the given lower bound. Also, we study the relationship between

𝑘 parts, 𝑛 vertices, and frustration index ℓ. Moreover, we also propose several conjectures.
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CHAPTER II

MCGEE SIGNED GRAPH

2.1 Introduction

In this chapter, we study how signs can be assigned to the precisely two negative edges of

the McGee graph and analyze the resulting signed graphs. Along the way, we will determine

whether McGee-signed graphs are sign-symmetric. The McGee graph shown in Figure 2.1 has

many incarnations. It is a symmetric graph and illustrates several aspects of signed graph theory.

The McGee graph is a famous cubic symmetric graph on 24 vertices and 36 edges and is a (3,7)

cage. This means it is the smallest 3-regular in which the shortest cycle has length 7 [17].
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Figure 2.1

The McGee graph
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2.2 Signings on the McGee graph with two negative edges

Signed graphs are frequently seen in mathematics, biology, chemistry, social networks, and In

several other fields( [19], [20], [21] and [12]). Modeling social interaction with the help of this

tool is quite helpful. It is a great source of a signed graph( [31] and [9]). Zaslavsky, Vaidyanathan,

Deepak Sehrawat, Bikash Bhattacharjya recently conducted a thorough analysis of the different

signed graphs, respectively Petersen signed graphs, Heawood signed graph, and Signed Complete

Graphs on Six Vertices( [33], [24] and [22]). In this section, On the McGee graph, how many

signings have exactly two negative edges? To put it another way, the question is how many different

ways to sign the two negative edges of the McGee graph, where two signatures are distinct if they

are not switching isomorphic.

Theorem 2.2.1. [33] There are exactly six signed Petersen graphs up to switching isomorphism.

Theorem 2.2.2. [24] There are exactly seven signed Heawood graphs up to switching isomorphism.

They are +𝐻, 𝐻1, 𝐻2,1, 𝐻2,2, 𝐻3,1, 𝐻3,2 and 𝐻4.

Theorem 2.2.3. [22] There are exactly 16 different signatures on 𝐾6 up to switching isomorphism.

Theorem 2.2.4. There are fifteen ways to sign the McGee graph up to switching isomorphism

with exactly 2-negative edges. They are Σ1, Σ2, Σ3, Σ4, Σ5, Σ6, Σ7, Σ8, Σ9, Σ10, Σ11, Σ23, Σ24,

Σ25 and Σ26.

The fifteen signed graphs are shown in Figure 2.2. Black lines represent positive edges; dashed

lines represent negative edges.
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Figure 2.2

The fifteen switching isomorphism types of signed McGee graphs with ℓ = 2
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Figure 2.2 (continued)
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2.3 Proof of the Main Results

Proof. Let edge 1-2 be a negative edge and 1-24 and 1-8 to be positive edges. Now, take another

edge to be negative, and any two edges connected to this one be a positive edge. Then, we get 31

cases with two negative edges. Now, Assume the number of negative m-cycles of a signed graph Σ

is denoted by |𝐶−
𝑛 |. Now, the table shows the number of negative 7-cycles and 8-cycles in 31 cases.

Also, we put groups based on the total number of negative 7-cycles and 8-cycles.

Table 2.1

Number of negative 7-cycles and 8-cycles from Σ1 𝑡𝑜 Σ31

𝐶− \Σ Σ1 Σ2 Σ3 Σ4 Σ5 Σ6 Σ7 Σ8 Σ9 Σ10 Σ11 Σ12 Σ13 Σ14 Σ15 Σ16
𝐶−

7 (1−2) 5 6 6 5 4 5 6 6 5 5 6 5 5 6 6 5
𝐶−

7 5 6 6 5 4 5 6 6 5 5 6 5 5 6 6 5
Total 𝐶−

7 10 12 12 10 8 10 12 12 10 10 12 10 10 12 12 10
𝐶−

8 (1−2) 5 6 7 7 6 6 6 7 8 7 6 7 8 7 6 6
𝐶−

8 5 6 7 7 6 6 6 7 8 7 6 7 8 7 6 6
Total 𝐶−

8 10 12 14 14 12 12 12 14 16 14 12 14 16 14 12 12
Groups 1 4 6 5 2 3 4 6 7 5 4 5 7 6 4 3

𝐶− \Σ Σ17 Σ18 Σ19 Σ20 Σ21 Σ22 Σ23 Σ24 Σ25 Σ26 Σ27 Σ28 Σ29 Σ30 Σ31
𝐶−

7 (1−2) 4 5 6 6 5 4 5 6 5 5 5 6 4 5 5
𝐶−

7 4 5 6 6 5 6 5 6 7 5 7 6 6 5 5
Total 𝐶−

7 8 10 12 12 10 10 10 12 12 10 12 12 10 10 10
𝐶−

8 (1−2) 6 7 7 6 5 7 7 7 8 7 8 7 7 7 7
𝐶−

8 6 7 7 6 5 3 7 7 4 7 4 7 3 7 7
Total 𝐶−

8 12 14 14 12 10 10 14 14 12 14 12 14 10 14 14
Groups 2 5 6 4 1 1 5 6 4 5 4 6 1 5 5
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Now, we take group 1 with Σ1, Σ21, Σ22, and Σ29. We get:

• In Σ1 by switching and relabeling, we get Σ1 is switching isomorphic to Σ29.

• In Σ21 by switching and relabeling, we get Σ21 is switching isomorphic to Σ1.

• In Σ22 by switching and relabeling, we get Σ22 is switching isomorphic to Σ29.

Thus Σ1 is switcing isomorphic to Σ21,Σ22 and Σ29. Now, we take group 2, which has Σ5 and Σ17.

We get:

• In Σ5 by switching and relabeling, we get Σ5 is switching isomorphic to Σ17.

Thus Σ5 is switching isomorphic to Σ17. Now, we take group 3 with Σ6 and Σ16. We get:

• In Σ6 by switching and relabeling, we get Σ6 is switching isomorphic to Σ16.

Thus Σ6 is switching isomorphic to Σ16. Now, we take group 4 which have Σ2, Σ7 Σ11 , Σ15, Σ20,

Σ25 and Σ27. We get:

• In Σ2 by switching and relabeling, we get Σ2 is switching isomorphic to Σ20.

• In Σ7 by switching and relabeling, we get Σ7 is switching isomorphic to Σ15.

• In Σ11 by switching and relabeling, we get Σ11 is not switching isomorphic to any Σ.

• In Σ25 by switching and relabeling, we get Σ25 is switching isomorphic to Σ27.

Thus Σ2 is switching isomorphic to Σ20,Σ7 is switching isomorphic to Σ15 and Σ25 is switching

isomorphic to Σ27.Now, we take group 5 which have Σ4, Σ10 Σ12 ,Σ18, Σ23, Σ26, Σ30 and Σ31. We

get:

• In Σ4 by switching and relabeling, we get Σ4 is switching isomorphic to Σ18.

• In Σ10 by switching and relabeling, we get Σ10 is switching isomorphic to Σ12.

• In Σ23 by switching and relabeling, we get Σ23 is switching isomorphic to Σ31.

• In Σ26 by switching and relabeling, we get Σ26 is switching isomorphic to Σ30.
14



Thus Σ4 is switching isomorphic to Σ18,Σ10 is switching isomorphic to Σ12, Σ23 is switching

isomorphic to Σ31 and Σ26 is switching isomorphic to Σ30 .Now, we take group 6 which has Σ3, Σ8

Σ14 ,Σ19, Σ24 and Σ28. We get:

• In Σ3 by switching and relabeling, we get Σ3 is switching isomorphic to Σ19.

• In Σ8 by switching and relabeling, we get Σ8 is switching isomorphic to Σ14.

• In Σ24 by switching and relabeling, we get Σ24 is switching isomorphic to Σ28.

Thus Σ3 is switching isomorphic to Σ19,Σ8 is switching isomorphic to Σ14 and Σ24 is switching

isomorphic to Σ28. Now, we take group 7, which has Σ9 and Σ13. We get:

• In Σ9 by switching and relabeling, we get Σ9 is switching isomorphic to Σ13.

Thus Σ9 is switching isomorphic to Σ13. Now, we need to find the number of negative 9-cycles and

10-cycles for groups 4,5 and 6.
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Table 2.2

Number of negative 9-cycles and 10-cycles for groups 4, 5, and 6

𝐶− \Σ Σ2 � Σ20 Σ7 � Σ15 Σ11 Σ25 � Σ27 Σ4 � Σ18 Σ10 � Σ12
𝐶−

9 (1−2) 3 3 4 3 4 4
𝐶−

9 3 3 4 2 4 4
Total 𝐶−

9 6 6 8 5 8 8
𝐶−

10 (1−2) 13 12 10 10 11 11
𝐶−

10 13 10 10 12 9 9
Total 𝐶−

10 26 22 20 22 20 20
Groups 4 4 4 4 5 5

𝐶− \Σ Σ23 � Σ31 Σ26 � Σ30 Σ3 � Σ19 Σ8 � Σ14 Σ24 � Σ28
𝐶−

9 (1−2) 4 4 3 3 2
𝐶−

9 4 4 3 3 2
Total 𝐶−

9 8 8 6 6 4
𝐶−

10 (1−2) 11 11 11 10 12
𝐶−

10 11 11 9 10 12
Total 𝐶−

10 22 22 20 20 24
Groups 5 5 6 6 6

In group 4, no one is switching isomorphic to another. Therefore, there are four ways to sign

McGee’s graph up to switching isomorphism. Similarly, in group 6, no one is switching isomorphic

to another. Therefore, there are three ways to sign McGee’s graph up to switching isomorphism.

Now, we need to find the number of negative 11-cycles for group 5.
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Table 2.3

Number of negative 11-cycles for group 5

𝐶− \Σ Σ4 � Σ18 Σ10 � Σ12 Σ23 � Σ31 Σ26 � Σ30
𝐶−

11 (1−2) 13 13 13 15
𝐶−

11 17 17 13 15
Total 𝐶−

11 20 20 26 30
Groups 5 5 5 5

Table 2.3 shows two ways to sign the McGee graph up to switching isomorphism, which is

Σ23 � Σ31 and Σ26 � Σ30. Now, we need to find the number of negative 12-cycles for Σ4 � Σ18

and Σ10 � Σ12.

Table 2.4

Number of negative 12-cycles for Σ4 � Σ18 and Σ10 � Σ12

𝐶− \Σ Σ4 � Σ18 Σ10 � Σ12
𝐶−

12 (1−2) 38 37
𝐶−

12 42 40
Total 𝐶−

12 80 77
Groups 5 5

From the table 2.4, we can see Σ4 � Σ18 and Σ10 � Σ12 are not switching isomorphism. Therefore,

there are two ways to sign McGee’s graph up to switching isomorphism. The number of negative

cycles leads us to conclude that the fifteen signed graphs shown in Figure 2.2 are pairwise non-

switching-isomorphic. The theorem’s proof is complete at this point. ■

2.4 The McGee Signed Graphs that are Sign-Symmetric with Frustration index = 2

Theorem 2.4.1. There is no McGee signed graph that is sign-symmetric with ℓ = 2.
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Proof. It is easily to see ℓ(Σ𝑖) = 2, where i=1,2,...,31. Now, by taking the negation of ℓ(Σ𝑖). We

get that:

The following are three edge-disjoint negative circles in −Σ𝑖.

• In −Σ1: 1-24-12-13-14-7-8 , 2-3-15-16-17-18-19 and 22-5-4-11-10-9-21.

• In −Σ2: 1-24-12-13-14-7-8 , 10-17-16-15-3-4-11 and 5-6-18-19-20-21-22.

• In −Σ3: 1-24-12-13-14-7-8 , 10-17-18-19-20-21-9 and 16-23-22-5-4-3-15.

• In −Σ4: 1-24-12-13-14-7-8 , 10-17-16-15-3-4-11 and 5-6-18-19-20-21-22.

• In −Σ5: 1-24-12-11-10-9-8 , 16-23-22-5-4-3-15 and 18-6-7-14-13-20-19.

• In −Σ6: 1-24-12-13-14-7-8 , 16-23-22-5-4-3-15 and 9-21-20-19-18-17-10.

• In −Σ7: 1-24-12-13-14-7-8 , 10-17-16-15-3-4-11 and 5-6-18-19-20-21-22.

• In −Σ8: 1-24-12-13-14-7-8 , 9-21-20-19-18-17-10 and 16-23-22-5-4-3-15.

• In −Σ9: 1-24-12-13-14-7-8 , 16-23-22-5-4-3-15 and 9-21-20-19-18-17-10.

• In −Σ10: 24-23-16-17-10-11-12 , 7-14-13-20-21-9-8 and 2-9-18-6-5-4-3.

• In −Σ23: 1-24-12-13-14-7-8 , 2-3-4-5-6-18-19 and 10-17-16-23-22-21-9.

• In −Σ24: 1-24-12-13-14-7-8 , 2-19-18-6-5-4-3 and 16-23-22-21-9-10-17.

• In −Σ25: 1-24-12-13-14-7-8 , 9-10-17-18-19-20-21 and 23-16-15-3-4-5-22.

• In −Σ26: 24-23-16-17-10-11-12 , 15-14-13-20-19-2-3 and 2-19-18-6-5-4-3.

The following are two edge-disjoint negative circles in −Σ11.

• In −Σ11: 1-24-12-11-10-9-8 and 6-7-14-15-16-17-18.

Since ℓ(Σ11) = ℓ(−Σ11) = 2, we switching (−Σ11) to check if it is switching isomorphism to (Σ11).

After switching, we find two disjoint negative 𝐶−
7 , 3-4-5-6-7-14-15 and 21-22-23-24-1-8-9. Now

we need to delete one edge form 𝐶−
7 to check if the signed graph is balanced or not, and we have

49 cases:
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1. If we delete edges 3-4 and 21-22, then the signed graph is not balanced because it contains
𝐶−

7 , which is 1-24-12-11-10-9-8.

2. If we delete edges 3-4 and 22-23, then the signed graph is not balanced because it contains
𝐶−

7 , which is 1-24-12-11-10-9-8.

3. If we delete edges 3-4 and 23-24, then the signed graph is not balanced because it contains
𝐶−

7 , which is 1-24-12-11-10-9-8.

4. If we delete edges 3-4 and 24-1, then the signed graph is not balanced because it contains
𝐶−

7 , which is 6-18-17-10-9-8-7.

5. If we delete edges 3-4 and 1-8, then the signed graph is not balanced because it contains 𝐶−
7 ,

which is 6-18-17-10-9-8-7.

6. If we delete edges 3-4 and 8-9, then the signed graph is not balanced because it contains 𝐶−
7 ,

which is 6-5-22-21-20-19-18.

7. If we delete edges 3-4 and 9-21, then the signed graph is not balanced because it contains
𝐶−

7 , which is 6-18-17-10-9-8-7.

8. If we delete edges 4-5 and 21-22, then the signed graph is not balanced because it contains
𝐶−

7 , which is 6-18-17-16-15-14-7.

9. If we delete edges 4-5 and 22-23, then the signed graph is not balanced because it contains
𝐶−

7 , which is 6-18-17-16-15-14-7.

10. If we delete edges 4-5 and 23-24, then the signed graph is not balanced because it contains
𝐶−

7 , which is 6-18-17-16-15-14-7.

11. If we delete edges 4-5 and 24-1, then the signed graph is not balanced because it contains
𝐶−

7 , which is 21-20-13-12-11-10-9.

12. If we delete edges 4-5 and 1-8, then the signed graph is not balanced because it contains 𝐶−
7 ,

which is 21-20-13-12-11-10-9.

13. If we delete edges 4-5 and 8-9, then the signed graph is not balanced because it contains 𝐶−
7 ,

which is 6-18-17-16-15-14-7.

14. If we delete edges 4-5 and 9-21, then the signed graph is not balanced because it contains
𝐶−

7 , which is 5-18-19-20-21-22.

15. If we delete edges 5-6 and 21-22, then the signed graph is not balanced because it contains
𝐶−

7 , which is 2-3-15-16-17-18-19.

16. If we delete edges 5-6 and 22-23, then the signed graph is not balanced because it contains
𝐶−

7 , which is 6-18-17-16-15-14-7.
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17. If we delete edges 5-6 and 23-24, then the signed graph is not balanced because it contains
𝐶−

7 , which is 2-3-15-16-17-18-19.

18. If we delete edges 5-6 and 24-1, then the signed graph is not balanced because it contains
𝐶−

7 , which is 6-18-17-16-15-14-7.

19. If we delete edges 5-6 and 1-8, then the signed graph is not balanced because it contains 𝐶−
7 ,

which is 2-3-15-16-17-18-19.

20. If we delete edges 5-6 and 8-9, then the signed graph is not balanced because it contains 𝐶−
7 ,

which is 6-18-17-16-15-14-7.

21. If we delete edges 5-6 and 9-21, then the signed graph is not balanced because it contains
𝐶−

7 , which is 2-3-15-16-17-18-19.

22. If we delete edges 6-7 and 21-22, then the signed graph is not balanced because it contains
𝐶−

7 , which is 1-24-12-11-10-9-8.

23. If we delete edges 6-7 and 22-23, then the signed graph is not balanced because it contains
𝐶−

7 , which is 2-3-15-16-17-18-19.

24. If we delete edges 6-7 and 23-24, then the signed graph is not balanced because it contains
𝐶−

7 , which is 1-24-12-11-10-9-8.

25. If we delete edges 6-7 and 24-1, then the signed graph is not balanced because it contains
𝐶−

7 , which is 2-3-15-16-17-18-19.

26. If we delete edges 6-7 and 1-8, then the signed graph is not balanced because it contains 𝐶−
7 ,

which is 5-6-18-19-20-21-22.

27. If we delete edges 6-7 and 8-9, then the signed graph is not balanced because it contains 𝐶−
7 ,

which is 2-3-15-16-17-18-19.

28. If we delete edges 6-7 and 9-21, then the signed graph is not balanced because it contains
𝐶−

7 , which is 6-18-19-2-3-4-5.

29. If we delete edges 7-14 and 21-22, then the signed graph is not balanced because it contains
𝐶−

7 , which is 1-24-12-11-10-9-8.

30. If we delete edges 7-14 and 22-23, then the signed graph is not balanced because it contains
𝐶−

7 , which is 1-24-12-11-10-9-8.

31. If we delete edges 7-14 and 23-24, then the signed graph is not balanced because it contains
𝐶−

7 , which is 1-24-12-11-10-9-8.

32. If we delete edges 7-14 and 24-1, then the signed graph is not balanced because it contains
𝐶−

7 , which is 2-3-15-16-17-18-19.
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33. If we delete edges 7-14 and 1-8, then the signed graph is not balanced because it contains
𝐶−

7 , which is 2-3-15-16-17-18-19.

34. If we delete edges 7-14 and 8-9, then the signed graph is not balanced because it contains
𝐶−

7 , which is 2-3-15-16-17-18-19.

35. If we delete edges 7-14 and 9-21, then the signed graph is not balanced because it contains
𝐶−

7 , which is 2-3-15-16-17-18-19.

36. If we delete edges 14-15 and 21-22, then the signed graph is not balanced because it contains
𝐶−

7 , which is 1-24-12-11-10-9-8.

37. If we delete edges 14-15 and 22-23, then the signed graph is not balanced because it contains
𝐶−

7 , which is 1-24-12-11-10-9-8.

38. If we delete edges 14-15 and 23-24, then the signed graph is not balanced because it contains
𝐶−

7 , which is 1-24-12-11-10-9-8.

39. If we delete edges 14-15 and 24-1, then the signed graph is not balanced because it contains
𝐶−

7 , which is 2-3-15-16-17-18-19.

40. If we delete edges 14-15 and 1-8, then the signed graph is not balanced because it contains
𝐶−

7 , which is 2-3-15-16-17-18-19.

41. If we delete edges 14-15 and 8-9, then the signed graph is not balanced because it contains
𝐶−

7 , which is 2-3-15-16-17-18-19.

42. If we delete edges 14-15 and 9-21, then the signed graph is not balanced because it contains
𝐶−

7 , which is 2-3-15-16-17-18-19.

43. If we delete edges 15-3 and 21-22, then the signed graph is not balanced because it contains
𝐶−

7 , which is 1-24-12-11-10-9-8.

44. If we delete edges 15-3 and 22-23, then the signed graph is not balanced because it contains
𝐶−

7 , which is 1-24-12-11-10-9-8.

45. If we delete edges 15-3 and 23-24, then the signed graph is not balanced because it contains
𝐶−

7 , which is 1-24-12-11-10-9-8.

46. If we delete edges 15-3 and 24-1, then the signed graph is not balanced because it contains
𝐶−

7 , which is 6-7-14-15-16-17.

47. If we delete edges 15-3 and 1-8, then the signed graph is not balanced because it contains
𝐶−

7 , which is 2-3-4-5-6-18-19.

48. If we delete edges 15-3 and 8-9, then the signed graph is not balanced because it contains
𝐶−

7 , which is 2-3-4-5-6-18-19.
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49. If we delete edges 15-3 and 9-21, then the signed graph is not balanced because it contains
𝐶−

7 , which is 2-3-4-5-6-18-19.

Hence, the frustration index of the signed graph that is obtained by switching the negation of

Σ11 ≥ 3, we get that Σ11 ≇ −Σ11.

Table 2.5

Frustration index of Σ𝑖 and −Σ𝑖
ℓ \Σ Σ1 Σ2 Σ3 Σ4 Σ5 Σ6 Σ7 Σ8
ℓ(Σ) 2 2 2 2 2 2 2 2
ℓ(−Σ) ≥ 3 ≥ 3 ≥ 3 ≥ 3 ≥ 3 ≥ 3 ≥ 3 ≥ 3

ℓ \Σ Σ9 Σ10 Σ11 Σ23 Σ24 Σ25 Σ26
ℓ(Σ) 2 2 2 2 2 2 2
ℓ(−Σ) ≥ 3 ≥ 3 ≥ 3 ≥ 3 ≥ 3 ≥ 3 ≥ 3

■
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Figure 2.3

Σ11 signed graph, a negation of Σ11 signed graph, and the signed graph obtains by switching the
negation of Σ11

23



CHAPTER III

WHICH SIGNED GRAPHS ARE SIGN-SYMMETRIC WITH ℓ = 1?

In this chapter, we will study signed graphs that are sign-symmetric with frustration index=1

(ℓ = 1).

3.1 Introduction

A particular type of signed graph known as a sign-symmetric signed graph displays symmetry

in the sign of the edges. Numerous studies have been conducted in various domains on this

characteristic, which has significant consequences for the construction and behavior of these

graphs [4]. In [13], gives new constructions of non-bipartite sign-symmetric signed graphs, and

we will study different types of signed graphs and obtain a theorem for the signed graph of the

Broken Wheel [30], which is a sign-symmetric signed graph.

Corollary 3.1.1. A signed graph containing an odd number of triangles cannot be sign-symmetric [7].

Lemma 3.1.1. A necessary condition for a signed graph Σ to be sign-symmetric is

𝐶−
3 (Σ) = 𝐶

+
3 (Σ).
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3.2 Wheel Signed Graphs that are Sign-Symmetric

Definition 3.2.1. A wheel graph is a graph formed by connecting a single universal vertex to all

vertices of a cycle.

Observation 1. A signed graph on𝑊4 with ℓ=1 is sign-symmetric.

2

1

4

3

1

4

3 2

Figure 3.1

A signed graph on𝑊4 and its negation with ℓ = 1

Lemma 3.2.1. A signed graph on𝑊2𝑛+1 where 𝑛 = 2 with ℓ = 1 and all external edges are positive,

and it contains a hub connected respectively by one negative edge with an odd vertex, one positive

edge with an even vertex and one positive edge with an odd vertex. Then, a signed graph on𝑊2𝑛+1

where 𝑛 = 2 is sign-symmetric with ℓ = 1.
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23
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1

23
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5

Figure 3.2

A signed graph on𝑊2𝑛+1 where 𝑛 = 2 with three adjacent respectively internal edges, one
negative and two positives, and its negation with ℓ = 1

Theorem 3.2.1. A signed graph on 𝑊2𝑛+1 where 𝑛 ≥ 2 with ℓ = 1 and all external edges are

positive, and it contains a hub connected respectively by one negative edge with an odd vertex, one

positive edge with an even vertex and one positive edge with an odd vertex. Then, a signed graph

on𝑊2𝑛+1 where 𝑛 ≥ 2 is sign-symmetric with ℓ = 1.

2n+ 1

1

2

34

2n− 1

2n

2n+ 1

1

2

34

2n− 1

2n

Figure 3.3

A signed graph on𝑊2𝑛+1 where 𝑛 ≥ 2 with three adjacent respectively internal edges, one
negative and two positives, and its negation with ℓ = 1

Proof. Let V = {1, 2, . . . , 2𝑛, 2𝑛 + 1} be vertices of a signed graph. Assume all external edges 2n

are positive, with three adjacent respectively internal edges, one negative with an odd vertex and

two positive edges, one with an even vertex and one with an odd vertex. Taking the negation of the

signed graph, the external edges 2n are negative, and there are three adjacent respectively internal
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edges, one positive with an odd vertex and two negative edges, one with an even vertex and one

with an odd vertex. We get the originally signed graph by switching to an even external vertex and

relabeling all the vertices. ■

Observation 2. A signed graph on𝑊5 with ℓ = 1 is sign-symmetric.

1

2

3

4 5

1

2

3

4 5

Figure 3.4

A signed graph on𝑊5 and its negation with ℓ = 1

Lemma 3.2.2. A signed graph on𝑊2𝑛+1 where 𝑛 = 3 with ℓ = 1 and all external edges are positive,

and it contains a hub connected respectively by a positive edge with even vertex, one negative edge

and one positive edge with odd vertices, and by one positive edge with even vertex. Then, a signed

graph on𝑊2𝑛+1 where 𝑛 = 3 is sign-symmetric with ℓ = 1.

27



4

1

2

35

6

7

4

1

2

35

6

7

Figure 3.5

A signed graph on𝑊2𝑛+1 where 𝑛 = 3 with a hub connected respectively by a positive edge with
even vertex, one negative edge and one positive edge with odd vertices, and by one positive edge

with even vertex and its negation with ℓ = 1

Theorem 3.2.2. A signed graph on 𝑊2𝑛+1 where 𝑛 ≥ 3 with ℓ = 1 and all external edges are

positive, and it contains a hub connected respectively by a positive edge with even vertex, one

negative edge and one positive edge with odd vertices, and by one positive edge with even vertex.

Then, a signed graph on𝑊2𝑛+1 where 𝑛 ≥ 3 is sign-symmetric with ℓ = 1.
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Figure 3.6

A signed graph on𝑊2𝑛+1 where 𝑛 ≥ 3 with a hub connected respectively by a positive edge with
even vertex, one negative edge and one positive edge with odd vertices, and by one positive edge

with even vertex and its negation with ℓ = 1

Proof. Let V = {1, 2, . . . , 2𝑛, 2𝑛 + 1} be vertices of a signed graph , 𝑛 ≥ 3. Assume all external

edges 2n are positive, and the hub is connected respectively by a positive edge with an even vertex,

one negative edge and one positive edge with odd vertices, and by one positive edge with an even

vertex. Taking the negation of the signed graph, the outer edges 2n are negative. Also, three

internal edges are negative, two with an even vertex and one with an odd vertex, and one positive

internal edge with an odd vertex. Switching to the even external vertex and relabeling all the

vertices results in the originally signed graph. ■

Definition 3.2.2. A broken wheel is a wheel that obtains by deleting some internal edges.

Lemma 3.2.3. A signed graph on 𝑊2𝑛+1 where 𝑛 = 3, with ℓ = 1 and all external edges are

positive, and it contains a hub connected by a positive edge with all even vertices and with only

two respectively odd vertices by one negative edge and one positive edge. Then, a signed graph on

𝑊2𝑛+1 with ℓ = 1 where 𝑛 = 3 is sign-symmetric.
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Figure 3.7

A signed graph on a broken wheel𝑊7 and its negation with ℓ = 1

Theorem 3.2.3. A signed graph on 𝑊2𝑛+1 where 𝑛 ≥ 3 with ℓ = 1 and all external edges are

positive, and it contains a hub connected by a positive edge with all even vertices and with only two

respectively odd vertices by one negative and one positive edge. Then, a signed graph on 𝑊2𝑛+1

with ℓ = 1 where 𝑛 ≥ 3 is sign-symmetric.
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Figure 3.8

A signed graph on a Broken wheel and its negation with ℓ = 1

Proof. Let V = {1, 2, . . . , 2𝑛, 2𝑛 + 1} be vertices of a signed graph , 𝑛 ≥ 3. Assume all external

edges 2n are positive, and the hub connects by positive edges with the even vertices and with only

two respectively odd vertices by one negative and one positive edge. The negation of the signed

graph results in the outer edges 2n beginning negative. Also, their internal edges are negative with

an even vertex, one with an odd vertex, and one positive with an odd vertex. Switching to an even

external vertex and relabeling results in the originally signed graph. ■

3.3 Cycle Graphs that are Sign-Symmetric

Observation 3. A signed graph on 𝐶2𝑛 where 𝑛 ≥ 2 with ℓ = 1 is sign-symmetric.
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Figure 3.9

A signed graph on 𝐶2𝑛 and its negation with ℓ = 1

Lemma 3.3.1. A signed graph on 𝐶2𝑛 where 𝑛 = 3, with ℓ = 1 and all external edges are positive,

and one vertex connects to all non-adjacent vertices respectively by two positive edges with an even

vertex and one with an odd vertex and one negative edge with odd vertex. Then, a signed graph on

𝐶2𝑛 where 𝑛 = 3 is sign-symmetric with ℓ = 1.
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Figure 3.10

A signed graph on 𝐶2𝑛 where 𝑛 = 3 with one vertex connects to all non-adjacent vertices and its
negation with ℓ = 1

Theorem 3.3.1. A signed graph on 𝐶2𝑛 where 𝑛 ≥ 3 with ℓ = 1 and all external edges are positive,

and one vertex connects to all non-adjacent by a negative edge with an odd vertex, positive edges

with even vertices, and by a positive edge with vertex 2n-1. Then, a signed graph on 𝐶2𝑛 where

𝑛 ≥ 3 is sign-symmetric with ℓ = 1.
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Figure 3.11

A signed graph on 𝐶2𝑛 where 𝑛 ≥ 3 with one vertex connects to all non-adjacent vertices and its
negation with ℓ = 1

Proof. Let Σ be a signed graph on 𝐶2𝑛 where 𝑛 ≥ 3 withℓ(Σ) = 1. Taking the negation of Σ,

results in ℓ(−Σ) = 1. Switching all even vertices results in all edges becoming positive except

one negative edge incident to an odd vertex. Relabeling the vertices produces a signed graph 𝐶2𝑛

where 𝑛 ≥ 3, with ℓ = 1, is a sign-symmetric. ■

3.4 Complete Signed Graphs that are Sign-Symmetric

Definition 3.4.1. A complete graph is a graph in which an edge connects each pair of graph

vertices.

Observation 4. A signed graph on 𝐾4 with ℓ = 1 is sign-symmetric.
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𝐾4 signed graph and its negation with ℓ = 1

3.5 Famous Signed Graphs that are Sign-Symmetric

This section discusses some famously signed graphs that are sign-symmetric with ℓ = 1. Ac-

cording to [25], there is one way to put one negative edge in a Heawood graph, and according to

[6], there is one way to put one negative edge in the Petersen graph.

Lemma 3.5.1. A Heawood signed graph with ℓ = 1 is sign-symmetric.
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Figure 3.13

A Heawood signed graph and its negation with ℓ = 1
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Proof. Let Σ be a signed graph on a Heawood graph with ℓ(Σ) = 1. Taking the negation of Σ

results in all the edges becoming negative except one edge from vertex 1 to vertex 6, which becomes

positive. Since the Heawood graph does not contain any odd cycles (bipartite), we now get the

originally signed graph by switching all even vertices or odd vertices. Therefore, a Heawood signed

graph with ℓ = 1 is a sign-symmetric. ■

Lemma 3.5.2. A Petersen signed graph with ℓ = 1 is not sign-symmetric.
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Figure 3.14

The Petersen signed graph and its negation with ℓ = 1

Proof. Let Σ be a signed graph on a Petersen graph with ℓ(Σ) = 1. By taking the negation of Σ, we

get −Σ, which is not a balanced signed graph with at least two negative disjoint circles{1, 2, 3, 8, 6}

and {5, 10, 7, 9, 4}. Hence ℓ(−Σ) ≥ 2 and since ℓ(Σ) ≠ ℓ(−Σ). Therefore, a Petersen signed graph

is not sign-symmetric. ■

Lemma 3.5.3. A McGee signed graph with ℓ = 1 is not sign-symmetric.
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Figure 3.15

McGee signed graph and its negation with ℓ = 1

Proof. Let Σ be a signed graph on a McGee graph with ℓ(Σ) = 1. Now, by taking the negation

of Σ we get ℓ(−Σ) ≥ 2 and since ℓ(Σ) ≠ ℓ(−Σ). Therefore, a McGee signed graph is not

sign-symmetric with ℓ = 1. ■

Lemma 3.5.4. A prism signed graph with ℓ = 1 is sign-symmetric if and only if n is even.
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Figure 3.16

A Prism signed graph and its negation with ℓ = 1

Proof. (⇒)

Let Σ be a signed graph on a prism graph with ℓ(Σ) = 1. Taking the negation of Σ results in all

the edges becoming negative except one edge that becomes positive. Switching the even vertices

in the outer and switching the odd vertices in the internal produces the originally signed graph.

Therefore, A prism-signed graph with ℓ = 1 is a sign-symmetric where n is even.

(⇐)

Assume Σ is sign-symmetric since ℓ(Σ) = ℓ(−Σ) = 1. We claim n is even. Now, let n is odd.

Then, we get ℓ(Σ) = 1 but ℓ(−Σ) 1, which contradicts n is even. Therefore, A prism signed graph

with ℓ = 1 is a sign-symmetric where n is even. ■
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Table 3.1

Table of Sign-Symmetric and Not Sign-Symmetric of Signed Graphs with ℓ = 1

List of which Signed Graphs that are Sign-Symmetric with ℓ = 1
Sign-Symmetric Not Sign-Symmetric
𝐶2𝑛 𝐶2𝑛+1
𝐾4 𝐾3 , 𝐾5, ...
𝑊4,𝑊5 𝑊6,𝑊7, ...
𝑊2𝑛+1 with one negative edge and
one positive from respectively
odd vertices connect with the hub

𝑊2𝑛 with one negative edge and
one positive from respectively
odd vertices connect with the hub

𝐶2𝑛 with one vertex connected to
all non-adjacent even vertices by
positive edges and only two odd
vertices by one negative edge and
one positive

𝐶2𝑛+1 with one vertex connected
to all non-adjacent even vertices
by positive edges and only two
odd vertices by one negative edge
and one positive

Heawood signed graph Petersen signed graph
Prism signed graph McGee signed graph
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CHAPTER IV

COMPLETE 𝑘-PARTITE SIGNED GRAPHS WITH ℓ = 1 AND ℓ = 2

4.1 Introduction

A complete k-partite sign-symmetric signed graph is a special case of a sign-symmetric signed

graph. It has several interesting properties, including a high degree of symmetry and a well-

defined spectral structure. The complete k-partite graph has been studied in various mathematics

and computer science areas, including coding theory, graph theory, and optimization [10]. In [13],

it gives new constructions of non-bipartite sign-symmetric signed graphs. If 𝑘=2, it is called a

complete bipartite signed graph and a trivially sign-symmetric signed graph. In this chapter, we

will study the complete 𝑘-partite signed graphs and characterize the complete 𝑘-partite signed

graphs where 𝑘 ≥ 3 that are sign-symmetric with ℓ=1 and ℓ=2, and the results from this chapter

have been submitted for publication [2].

4.2 Complete 𝑘-Partite Signed Graphs with ℓ = 1

Definition 4.2.1. A 𝑘-partite graph in which every two vertices from different partition classes

are adjacent is called complete; the complete 𝑘-partite graphs for all k together are the complete

multipartite graphs. The complete 𝑘-partite graph is denoted by 𝐾𝑛1,...,𝑛𝑘 ; if 𝑛1 = ... = 𝑛𝑘 = 𝑠,

we abbreviate this to 𝐾 𝑘𝑠 . Thus, 𝐾 𝑘𝑠 is the complete 𝑘-partite graph in which every partition class

contains exactly s vertices [11].
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Lemma 4.2.1. A necessary condition for a signed graph Σ to be sign-symmetric is

𝐶−
3 (Σ) = 1

2 𝐶
+
3 (Σ).

Lemma 4.2.2. A signed graph on 𝐾1,1,1 is not sign-symmetric with ℓ =1.

B

C

A B

C

A

Figure 4.1

A signed graph on 𝐾1,1,1 and its negation with ℓ = 1

Proof. We see Σ is not a balanced signed graph and ℓ(Σ) = 1. Now, by taking the negation of Σ,

we get −Σ, a balanced signed graph, and ℓ(Σ) = 0. Since ℓ(Σ) ≠ ℓ(−Σ), a signed graph on 𝐾1,1,1

is not sign-symmetric with ℓ =1. ■

Lemma 4.2.3. A signed graph on 𝐾1,𝑛2=ℓ,𝑛3 with ℓ is not sign-symmetric if negative edges between

parts A and B.

Proof. We see Σ is not a balanced signed graph and ℓ(Σ) = 1. Now, by taking the negation of Σ

we get −Σ, which is a balanced signed graph, and ℓ(−Σ) = 0 since ℓ(Σ) ≠ ℓ(−Σ). Therefore, a

signed graph on 𝐾1,𝑛2=ℓ,𝑛3 is not sign-symmetric with ℓ. ■

Lemma 4.2.4. A signed graph on 𝐾1,3,3 with ℓ = 1 is not sign-symmetric.
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Proof. We see Σ is not a balanced signed graph and ℓ(Σ) = 1. Now, by counting the number of

triangles [𝐶3] in the underlying graph for 𝐾1,3,3 we get 𝜏(𝐾3,3,3) =9. Since the number of𝐶+
3 ≠ 𝐶−

3 ,

a signed graph on 𝐾1,3,3 with one negative edge is not sign-symmetric. ■

Lemma 4.2.5. A signed graph on 𝐾2,3,3 with ℓ=1 is not sign-symmetric.

Proof. We see Σ is not a balanced signed graph and ℓ(Σ) = 1. Now, by taking the negation of Σ

we get −Σ, which is not a balanced signed graph, and ℓ(−Σ) > 2 since ℓ(Σ) ≠ ℓ(−Σ). Therefore,

a signed graph on 𝐾2,3,3 is not sign-symmetric with ℓ=1. ■

Lemma 4.2.6. A signed graph on 𝐾3,3,3 with ℓ=1 is not sign-symmetric.

Proof. We see Σ is not a balanced signed graph and ℓ(Σ) = 1. Now, by counting the number

of triangles [𝐶3] in the underlying graph for 𝐾3,3,3 we get 𝜏(𝐾3,3,3) =27. Since the number of

𝐶+
3 ≠ 𝐶−

3 , a signed graph on 𝐾3,3,3 with one negative edge is not sign-symmetric. ■

Lemma 4.2.7. A signed graph on 𝐾4,4,4 with ℓ=1 is not sign-symmetric.

Proof. Let Σ be a signed graph on 𝐾4,4,4 with ℓ(Σ) = 1. It is easy to see that −Σ has at least three

vertex-disjoint negative circles. Hence ℓ(−Σ) ≥ 3. We conclude that Σ is not sign-symmetric. ■

Lemma 4.2.8. If 𝑘 = 3 and 𝑛1 ≥ 2, then a signed graph on 𝐾𝑛1,𝑛2,𝑛3 with ℓ=1 is not sign-symmetric.

Proof. Assume we have k = 3 parts. Parts A, B, and C contain at least two vertices. We connect

parts A to B with one negative and three positive edges. Also, we connect parts C to A and B by

positive edges. Now, by taking the negation of the signed graph, all edges become negative except

one edge from A to B, which becomes positive. Now, we get ℓ(Σ) = 1 but ℓ(−Σ) > 2. Therefore,

the signed graph on 𝐾𝑛1,𝑛2,𝑛3 where 𝑛1 ≥ 2 is not sign-symmetric with ℓ=1. ■
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Lemma 4.2.9. If 𝑘 = 3 and 𝑛2 ≥ 3, then a signed graph on 𝐾1,𝑛2,𝑛3 with ℓ=1 is not sign-symmetric.

Proof. Assume we have k = 3 parts. Part A contains one vertex, and B and C contain at least three

vertices. We connect parts A to B with one negative and two positive edges. Also, we connect

parts C to A and B by positive edges. Now, by taking the negation of the signed graph, all edges

become negative except one edge from A to B, which becomes positive. Now, we get ℓ(Σ) = 1 but

ℓ(−Σ) > 2. Therefore, the signed graph on 𝐾1,𝑛2,𝑛3 where 𝑛2 ≥ 3 is not sign-symmetric. ■

Theorem 4.2.1. A signed graph on 𝐾𝑛1,𝑛2,𝑛3 with ℓ = 1, is sign-symmetric if and only if

1. 𝑛1 = 1 𝑎𝑛𝑑 𝑛2 = 2.

A B

C

Figure 4.2

A sign-symmetric signed graph on 𝐾1,2,𝑛3≥2 with ℓ = 1

Proof. (⇒)

Assume we have three parts. A contains one vertex, B contains two vertices, and C contains

at least two vertices. First, connect parts A to B with one negative and one positive edge. Also,
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connect parts C to A and B by positive edges. Next, by taking the negation of the signed graph, all

edges become negative except one edge from A to B, which becomes positive. Then, switching all

vertices on C, the signed graph becomes sign-symmetric.

(⇐)

Assume Σ is a sign-symmetric signed graph. Since ℓ(Σ) = ℓ(−Σ) = 1, we claim 𝑛2 = 2

and suppose 𝑛2 > 2. Then, 𝑛2 𝑎𝑛𝑑 𝑛3 ≥ 3 so {𝑎, 𝑏2, 𝑐2} 𝑎𝑛𝑑 {𝑎, 𝑏3, 𝑐3} are negative triangles.

Therefore, ℓ(−Σ) > 1, which contradicts 𝑛2 = 2. We can see the theorem is verified.

■

Lemma 4.2.10. If 𝑘 = 4 and 𝑛4 > 1, then 𝐾𝑛1,𝑛2,𝑛3,𝑛4 with ℓ=1 is not sign-symmetric.

Proof. Assume Σ is a sign-symmetric signed graph. Since ℓ(Σ) = ℓ(−Σ) = 1, we claim 𝑛4 > 1

and suppose 𝑛4 ≥ 2. Now, by counting the number of triangles [𝐶3] in the underlying graph for

𝐾1,1,1,2 we get 𝜏(𝐾1,1,1,2) =7. Since the number of 𝐶+
3 ≠ 𝐶−

3 , a signed graph on 𝐾1,1,1,2 with one

negative edge is not sign-symmetric. Now, take 𝑛4 = 3. Then, 𝑛4 ≥ 3 so {𝑏, 𝑐, 𝑑1} 𝑎𝑛𝑑 {𝑎, 𝑐, 𝑑2}

are negative triangles. Therefore, we get ℓ(−Σ) = 2, a signed graph on 𝐾𝑛1,𝑛2,𝑛3,𝑛4>1 with ℓ=1 is not

sign-symmetric. ■

Theorem 4.2.2. A signed graph on 𝐾𝑛1,𝑛2,𝑛3,𝑛4 with ℓ=1 is sign-symmetric if and only if

1. 𝑛1 = 𝑛2 = 𝑛3 = 𝑛4 = 1.
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A sign-symmetric signed graph on 𝐾1,1,1,1 with ℓ = 1

Proof. (⇒)

Assume we have four parts, A, B, C, and D containing one vertex. Now, connect any two parts

by one negative edge and the other by positive edges. Now, by taking the negation of the signed

graph, all edges become negative except one edge between two parts is positive. Switching all

vertices containing negative edges shows that all edges are positive except one. Now, by relabeling,

the signed graph becomes sign-symmetric.

(⇐)

Assume Σ is a sign-symmetric signed graph and since ℓ(Σ) = ℓ(−Σ) = 1. We claim 𝑛4 = 1

and suppose 𝑛4 > 1. Then, 𝑛4 ≥ 2 so {𝑎, 𝑏, 𝑑2} 𝑎𝑛𝑑 {𝑎, 𝑐, 𝑑1} are negative triangles. Therefore,

we get ℓ(−Σ) > 1, which contradicts 𝑛4 = 1. ■

Lemma 4.2.11. A signed graph on 𝐾1,1,1,1,1 with ℓ=1 is not sign-symmetric.
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A

B

C

DE

Figure 4.4

A signed graph on 𝐾1,1,1,1,1 with ℓ=1

Proof. Assume Σ is a sign-symmetric signed graph and since ℓ(Σ) = ℓ(−Σ) = 1. We claim 𝑛5 = 1

and suppose 𝑛5 > 1. Then, 𝑛5 ≥ 2 so {𝑎, 𝑑, 𝑒1} 𝑎𝑛𝑑 {𝑏, 𝑐, 𝑒2} are negative triangles. Therefore,

we get ℓ(−Σ) > 1, which contradicts 𝑛5 = 1. Now, if 𝑛5 = 1 , then {𝑏, 𝑐, 𝑒} 𝑎𝑛𝑑 {𝑐, 𝑑, 𝑎} are

negative triangles. Hence ℓ(−Σ) > 1. Therefore, we conclude that a signed graph on 𝐾1,1,1,1,1 is

not sign-symmetric with ℓ=1. ■

4.3 Complete 𝑘-Partite Signed Graphs with ℓ = 2

Lemma 4.3.1. A signed graph on 𝐾1,2,2 with ℓ = 2 is not sign-symmetric if two negative edges are

between vertices from part C to B and A or from part B to A and C.

46



A B

C

A B

C

Figure 4.5

A signed graph on 𝐾1,2,2 and its negation with ℓ = 2

Proof. It is clear from the figure 4.5 the number of disjoint𝐶−
3 of 𝐾1,2,2 equals 2. Now by counting

the number of disjoint 𝐶−
3 for the negation of 𝐾1,2,2, equal 1. Therefore, a signed graph on 𝐾1,2,2

with ℓ = 2 is not sign-symmetric. ■

Theorem 4.3.1. A signed graph on 𝐾𝑛1,𝑛2,𝑛3 is sign-symmetric with ℓ=2 if and only if :

1. 𝑛1 = 1, 𝑛2 = 2 𝑎𝑛𝑑 𝑛3 ≥ 2

2. 𝑛1 = 1, 𝑛2 = 3 𝑎𝑛𝑑 𝑛3 = 4

3. 𝑛1 = 1, 𝑛2 = 4 𝑎𝑛𝑑 𝑛3 ≥ 4

4. 𝑛1 = 𝑛2 = 2 𝑎𝑛𝑑 𝑛3 ≥ 2
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A B

C

Figure 4.6

A sign-symmetric signed graph on 𝐾1,2,𝑛3≥2 with ℓ = 2

A B

C

Figure 4.7

A sign-symmetric signed graph on 𝐾1,3,4 with ℓ = 2
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A B

C

Figure 4.8

A sign-symmetric signed graph on 𝐾1,4,𝑛3≥4 with ℓ = 2

A B

C

Figure 4.9

A sign-symmetric signed graph on 𝐾2,2,𝑛3≥2 with ℓ = 2
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Proof. (⇒)

It is simple to verify that all signed graphs displayed above in Figures 4.6 to 4.9 are sign-

symmetric.

(⇐)

Assume Σ is a sign-symmetric signed graph since ℓ(Σ) = ℓ(−Σ) = 2. We claim 𝑛1 ≤ 2 and

suppose 𝑛1 > 2. Then, 𝑛1, 𝑛2 𝑎𝑛𝑑 𝑛3 ≥ 3 so {𝑎1, 𝑏2, 𝑐1}, {𝑎2, 𝑏3, 𝑐2} 𝑎𝑛𝑑 {𝑎3, 𝑏1, 𝑐3} are negative

triangles. Therefore, we get ℓ(−Σ) > 2, which contradicts 𝑛1 ≤ 2.

Now we have two cases:

Case (1) if 𝑛1 = 1. We claim 2 ≤ 𝑛2 ≤ 4. Now let 𝑛2 ≥ 4. Then, 𝑛2 𝑎𝑛𝑑 𝑛3 ≥ 5, so

{𝑎, 𝑏3, 𝑐1}, {𝑎, 𝑏4, 𝑐2} 𝑎𝑛𝑑 {𝑎, 𝑏5, 𝑐3} are negative triangles. Therefore, we get ℓ(−Σ) > 2, which

contradicts 2 ≤ 𝑛2 ≤ 4. We can see 1 and 3 verified.

If 𝑛1 = 1 𝑎𝑛𝑑 𝑛2 = 3 . We claim 𝑛3 = 4 and assume that 𝑛3 > 4. Then, 𝑛3 ≥ 5, so we have two

cases:

(1) If 𝑛3 is an odd number. Then, by counting the number of triangles [𝐶3] in the underlying

graph for 𝐾1,3,𝑛3 we get 𝜏(𝐾1,3,𝑛3) = odd number. Since the number of 𝐶+
3 ≠ 𝐶−

3 , a signed graph

on 𝐾1,3,𝑛3 with one negative edge is not sign-symmetric.

(2) If 𝑛3 an even number and 𝑛3 > 4. Then, 𝑛3 ≥ 6, we have two cases:

Case 1:

If 2 negative edges between parts A and B, then we get ℓ(Σ) = 2 but ℓ(−Σ) = 1.

If 2 negative edges between parts A and C, then we get ℓ(Σ) = 2 but ℓ(−Σ) = 3.

If 2 negative edges between parts B and C, then we get ℓ(Σ) = 2 but ℓ(−Σ) = 3.

Case 2:
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If one negative edge between parts A and B and one negative edge between parts A and C, then we

get ℓ(Σ) = 2 but ℓ(−Σ) = 3.

If one negative edge between parts A and B and one negative edge between parts B and C, then we

get ℓ(Σ) = ℓ(−Σ) = 2, but after switching ℓ(−Σ) we get Σ ≇ −Σ.

If one negative edge between parts A and C and one negative edge between parts B and C, then we

get ℓ(Σ) = 2 but ℓ(−Σ) = 3.

Therefore, a signed graph on 𝐾1,3,𝑛3≥6 is not sign-symmetric with ℓ = 2. We can see 2 from the

theorem is verified.

Case (2) if 𝑛1 = 2. We claim 𝑛2 = 2. Now assume that 𝑛2 > 2. Then, 𝑛2 𝑎𝑛𝑑 𝑛3 ≥ 3, so

{𝑎1, 𝑏2, 𝑐1}, {𝑎2, 𝑏2, 𝑐2} 𝑎𝑛𝑑 {𝑎1, 𝑏3, 𝑐3} are negative triangles. Therefore, we get ℓ(−Σ) > 2,

which contradicts 𝑛2 = 2. We proved 4 from the theorem. ■

Lemma 4.3.2. If two negative edges incident on one vertex and contain an odd cycle, then a signed

graph on 𝐾1,1,2,2 is not-sign-symmetric.

51



A C

D

B

Figure 4.10

A signed graph on 𝐾1,1,2,2 with 2 negative edges incident on one vertex adjacent to two different
partitions

Proof. We can see ℓ(Σ) = 2, but when we take the negation of the signed graph, we get ℓ(−Σ) > 2.

Therefore, a signed graph on 𝐾1,1,2,2 with two negative edges incident on one vertex containing an

odd cycle is not sign-symmetric with ℓ = 2. ■
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Lemma 4.3.3. If two negative edges from two vertices in the same partition adjacent to two different

partitions, then a signed graph on 𝐾1,1,2,2 is not-sign-symmetric.

A

B

C

D

Figure 4.11

A signed graph on 𝐾1,1,2,2 with 2 negative edges incident on two different vertices in the same
partition adjacent to two different partitions

Proof. We can see ℓ(Σ) = 2 but ℓ(−Σ) ≥ 3. Therefore, a signed graph on 𝐾1,1,2,2 with two

negative edges from two vertices in the same partition adjacent to two different partitions is not

sign-symmetric with ℓ = 2. ■

Theorem 4.3.2. A signed graph on 𝐾𝑛1,𝑛2,𝑛3,𝑛4 is sign-symmetric with ℓ = 2 if and only if 𝑛1 = 𝑛2 =

1 𝑎𝑛𝑑 𝑛3 = 𝑛4 = 2.
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A

B

C

D

Figure 4.12

A sign-symmetric signed graph on 𝐾1,1,2,2 with ℓ = 2

Proof. (⇒)

Assume we have 4 parts. A, B, C, and D. Parts A and B contain one vertex, and parts C and

D contain two vertices. Now, connect the part containing one vertex to the part containing two

vertices, one of them by positive edges and the other by negative edges, or both by one positive

edge and one negative edge. Also, connect all other vertices by positive edges. Now, by taking the

negation of the signed graph, all edges become negative except the part that contains one vertex

to the part that contains two vertices, one of them by positive edges and the other one by negative

edges, or both of them by one positive edge and one negative edge. Now, by switching the vertices

containing a maximum number of negative edges. Then, by relabeling, the signed graph 𝐾1,1,2,2

becomes sign-symmetric with ℓ = 2.

(⇐)

Assume Σ is sign-symmetric since ℓ(Σ) = ℓ(−Σ) = 2. We claim 𝑛1 = 1 and suppose 𝑛1 > 1.

Then, 𝑛1, 𝑛2, 𝑛3 𝑎𝑛𝑑 𝑛4 ≥ 2 so {𝑏1, 𝑐1, 𝑑1} {𝑏2, 𝑐2, 𝑑2} 𝑎𝑛𝑑 {𝑎2, 𝑏1, 𝑑2} are negative triangles.
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Therefore, we get ℓ(−Σ) > 2, a contradiction. Hence 𝑛1 = 1. Now, we claim 𝑛2 = 1. Suppose

𝑛2 > 1. Then, 𝑛2, 𝑛3 𝑎𝑛𝑑 𝑛4 ≥ 2 so {𝑎1, 𝑏2, 𝑑2}, {𝑎1, 𝑏2, 𝑐1} 𝑎𝑛𝑑 {𝑏1, 𝑐1, 𝑑1} are negative

triangles. Therefore, we get ℓ(−Σ) > 2, a contradiction. Hence 𝑛2 = 1. Now also, we claim

𝑛3 = 2. Suppose 𝑛3 > 2. Then, 𝑛3 and 𝑛4 ≥ 3 so {𝑎, 𝑐1, 𝑑1} {𝑎, 𝑐2, 𝑑2} 𝑎𝑛𝑑 {𝑎, 𝑏, 𝑐2} are negative

triangles. Therefore, we get ℓ(−Σ) > 2, a contradiction. Hence 𝑛3 = 2. Now, we claim 𝑛4 = 2.

Suppose 𝑛4 > 2. Then, 𝑛4 ≥ 3 so {𝑎, 𝑏, 𝑐2} {𝑎, 𝑏, 𝑑2} 𝑎𝑛𝑑 {𝑎, 𝑐2, 𝑑3} are negative triangles.

Therefore, we get ℓ(−Σ) > 2, a contradiction. Hence 𝑛4 = 2. We conclude that a signed graph on

𝐾1,1,2,2 with ℓ = 2 is sign-symmetric. ■

Lemma 4.3.4. A signed graph on 𝐾5 has two ways to be signed with two negative edges.

v1 v3

v4v5

v2

v1

v2

v3

v4v5

Figure 4.13

A signed graph on 𝐾5 with two negative edges

Lemma 4.3.5. A signed graph on 𝐾1,1,1,1,1 is not sign-symmetric with ℓ = 2.

Proof. There are two cases:

Case 1): If two negative edges are adjacent on one vertex.

We see ℓ(Σ) = ℓ(−Σ) = 2, but if we switch the negation of 𝐾1,1,1,1,1. We get two negative edges

not adjacent to one vertex. Therefore, this case is not sign-symmetric.
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Case 2): If two negative edges are not adjacent on one vertex.

Similar argument, we see ℓ(Σ) = ℓ(−Σ) = 2, but if we switch the negation, we get two negative

edges adjacent to one vertex. Therefore, this case is not sign-symmetric.

(Other proof): if two negative edges are adjacent on one vertex.

By counting the number of triangles [𝐶3] in the underlying graph for 𝐾1,1,1,1,1, we get that

𝜏(𝐾1,1,1,1,1) =𝑛1𝑛2𝑛3 + 𝑛1𝑛2𝑛4 + 𝑛1𝑛2𝑛5 + 𝑛1𝑛3𝑛4 + 𝑛1𝑛4𝑛5 + 𝑛2𝑛3𝑛4 + 𝑛2𝑛3𝑛5+

𝑛3𝑛4𝑛5 + 𝑛4𝑛5𝑛2 + 𝑛5𝑛3𝑛1 = 10

Next, we are counting the number of 𝐶+
3 = {1, 4, 3}, {1, 2, 5}, {2, 5, 3}, {2, 5, 4}, {3, 5, 4}

𝑎𝑛𝑑 {4, 2, 3} = 6. Then, we are counting the number of 𝐶−
3 = {1, 5, 4}, {1, 4, 2}, {1, 3, 5}

𝑎𝑛𝑑 {1, 2, 3} = 4. Since the number of 𝐶+
3 ≠ 𝐶−

3 . Therefore, a signed graph on 𝐾1,1,1,1,1 with two

negative edges adjacent on one vertex is not sign-symmetric.

(Other proof): if two negative edges are not adjacent on one vertex.

By counting the number of triangles [𝐶3] in the underlying graph for 𝐾1,1,1,1,1, we get that,

𝜏(𝐾1,1,1,1,1) = 10. Next, we are counting the number of 𝐶+
3 = {1, 2, 5}, {1, 2, 3}, {1, 3, 4} 𝑎𝑛𝑑

{1,4,5} = 4. Then, we are counting the number of 𝐶−
3 ={1, 3, 5}, {1, 2, 4}, {2, 5, 3}, {2, 3, 4},

{2,5,4} and {3,5,4} = 6. Since the number of 𝐶+
3 ≠ 𝐶−

3 . Therefore, a signed graph on 𝐾1,1,1,1,1

with two negative edges not adjacent on one vertex is not sign-symmetric. ■
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Observation 5. We can see the number of 𝐶+
3 in Σ in case 1 is equal to the number of 𝐶−

3 in −Σ

in case 2, which means Σ in case 1 and −Σ in case 2 is switching isomorphism. Also, we can see

the number of 𝐶−
3 in −Σ in case 1 is equal to the number of 𝐶+

3 in Σ in case 2, which means −Σ in

case 1 and Σ in case 2 is switching isomorphism for each other.

Theorem 4.3.3. A signed graph on 𝐾𝑛1,𝑛2,...,𝑛𝑘 , if 𝑘 ≥ 5 with ℓ = 2 is not sign-symmetric.

Proof. Assume Σ has at least five parts and has at least one vertex in each part. By using the

previous proof of lemma 4.3.5, we get that the small piece of a signed graph is not sign-symmetric.

Therefore, a signed graph on 𝐾𝑛1,𝑛2,...,𝑛𝑘 , if 𝑘 ≥ 5 with ℓ = 2 is not sign-symmetric. ■
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CHAPTER V

COMPLETE 𝑘-PARTITE SIGNED GRAPHS WITH ℓ = 3

5.1 Introduction

The complete 𝑘-partite signed graphs that are sign-symmetric with ℓ = 1 and ℓ = 2 were

described in Chapter 4, and we will continue to describe the complete 𝑘-partite signed graphs that

are sign-symmetric with ℓ = 3 in this chapter.

5.2 Complete 𝑘-Partite Signed Graphs where 𝑘 = 3

Lemma 5.2.1. Suppose a sign-symmetric signed graph exists on 𝐾𝑛1,𝑛2,𝑛3 with ℓ = 3. Then,

𝑛1𝑛2 ≤ 6

Proof. Let Σ be a sign-symmetric signed graph on 𝐾𝑛1,𝑛2,𝑛3 . By convention 𝑛1 ≤ 𝑛2 ≤ 𝑛3. The

number of triangles in 𝐾𝑛1,𝑛2,𝑛3 is 𝑛1𝑛2𝑛3. Let 𝐶+
3 and 𝐶−

3 denote the number of positive and

negative triangles, respectively. We have

𝐶+
3 (Σ) + 𝐶

−
3 (Σ) = 𝑛1𝑛2𝑛3 (5.1)

𝐶+
3 (−Σ) + 𝐶

−
3 (−Σ) = 𝑛1𝑛2𝑛3 (5.2)
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since Σ is sign-symmetric, 𝐶+
3 (Σ) = 𝐶+

3 (−Σ) and 𝐶−
3 (Σ) = 𝐶−

3 (−Σ). Also, 𝐶+
3 (Σ) = 𝐶−

3 (−Σ) and

𝐶−
3 (Σ) = 𝐶+

3 (−Σ).

𝐶−
3 (Σ) ≥

1
2
𝑛1𝑛2𝑛3 (5.3)

Let 𝑒1, 𝑒2, 𝑒3 be three negative edges. Also, let us count the number of negative triangles containing

𝑒1, 𝑒2, 𝑒3. The number of negative triangles containing 𝑒𝑖 is at most 𝑛3 for 𝑖 = 1, 2, 3.

𝐶−
3 (Σ) ≤ 𝑛3 + 𝑛3 + 𝑛3 (5.4)

Then, we get:

1
2
𝑛1𝑛2 ≤ 𝐶−

3 (Σ) ≤ 3 (5.5)

This completes the proof of the lemma. ■

Theorem 5.2.1. There exists a sign-symmetric signed graph on 𝐾𝑛1,𝑛2,𝑛3 with ℓ = 3 if and only if:

1. 𝑛1 = 1, 𝑛2 = 3 𝑎𝑛𝑑 𝑛3 = 4.

2. 𝑛1 = 1, 𝑛2 = 3 𝑎𝑛𝑑 𝑛3 = 6

3. 𝑛1 = 1, 𝑛2 = 4 𝑎𝑛𝑑 𝑛3 ≥ 4.

4. 𝑛1 = 1, 𝑛2 = 5 𝑎𝑛𝑑 𝑛3 = 6.

5. 𝑛1 = 1 𝑛2 = 6 𝑎𝑛𝑑 𝑛3 ≥ 6.

6. 𝑛1 = 𝑛2 = 2 𝑎𝑛𝑑 𝑛3 ≥ 2.

7. 𝑛1 = 2, 𝑛2 = 3 𝑎𝑛𝑑 𝑛3 ≥ 3.
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A B

C

Figure 5.1

A sign-symmetric signed graph on 𝐾1,3,4 with ℓ = 3

A B

C

Figure 5.2

A sign-symmetric signed graph on 𝐾1,3,6 with ℓ = 3

A B

C

Figure 5.3

A sign-symmetric signed graph on 𝐾1,4,𝑛3≥4 with ℓ = 3
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A B

C

Figure 5.4

A sign-symmetric signed graph on 𝐾1,5,6 with ℓ = 3

A B

C

Figure 5.5

A sign-symmetric signed graph on 𝐾1,6,𝑛3≥6 with ℓ = 3

A B

C

Figure 5.6

A sign-symmetric signed graph on 𝐾2,2,𝑛3≥2 with ℓ = 3
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A B

C

Figure 5.7

A sign-symmetric signed graph on 𝐾2,3,𝑛3≥3 with ℓ = 3

Proof. (⇒)

It is easily checked that all signed graphs shown above in Figures (1 to 7) are sign-symmetric.

(⇐)

Assume Σ is a sign-symmetric signed graph. Since ℓ(Σ) = ℓ(−Σ) = 3 we claim 1 ≤ 𝑛1 ≤ 2.

Suppose 𝑛1 > 2. Then, 𝑛1, 𝑛2 𝑎𝑛𝑑 𝑛3 ≥ 3 so by using previous lemma

=⇒ 3 ≥ 1
2 𝑛1𝑛2

=⇒ 3 ≥ 1
2 3 · 3

=⇒ 3 ≥ 4.5

Therefore, we get a contradiction, hence 𝑛1 ≤ 2.

Now we have two cases:

Case 1): Let 𝑛1 = 1. We claim 𝑛2 ≤ 6. Then, by using the previous lemma

=⇒ 3 ≥ 1
2 (𝑛1 · 𝑛2)

we get:

=⇒ 3 ≥ 1
2 (1 · 𝑛2)
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=⇒ 6 ≥ 𝑛2

Hence 𝑛2 ≤ 6. We can see 3 and 5 from the theorem are verified.

There are four cases:

1) 𝑛1 = 1 𝑎𝑛𝑑 𝑛2 = 1. We claim 𝑛3 = 1. Now assume that 𝑛3 > 1. Then, 𝑛3 ≥ 2 so {𝑎, 𝑏, 𝑐1}

is a negative triangle. Therefore, we get ℓ(−Σ) < 3, which contradicts ℓ(Σ) = ℓ(−Σ)=3, hence a

signed graph on 𝐾1,1,2 is not sign-symmetric. Now, if 𝑛3 = 1, then a signed graph on 𝐾1,1,1 with

ℓ = 3 does not balance, but the negation of 𝐾1,1,1 is balance. Therefore, we get ℓ(−Σ) = 0, which

contradicts ℓ(Σ) = ℓ(−Σ) = 3, hence if 𝑛1 = 𝑛2 = 𝑛3 = 1 is is not sign-symmetric with ℓ = 3.

2) 𝑛1 = 1 𝑎𝑛𝑑 𝑛2 = 2. We claim 𝑛3 = 2. Now assume that 𝑛3 > 2. Then, 𝑛3 ≥ 3 so

{𝑎, 𝑏1, 𝑐1} 𝑎𝑛𝑑 {𝑎, 𝑏2, 𝑐3} are negative triangles. Therefore, we get ℓ(−Σ) < 3, which contradicts

ℓ(Σ) = ℓ(−Σ) = 3, hence a signed graph on 𝐾1,2,3 is not sign-symmetric with ℓ = 3. Now, if

𝑛3 = 2, so {𝑎, 𝑏1, 𝑐1} is a negative triangle. Therefore, we get ℓ(−Σ) = 1, which contradicts

ℓ(Σ) = ℓ(−Σ) = 3, hence if 𝑛1 = 1 𝑎𝑛𝑑 𝑛2 = 𝑛3 = 2 is is not sign-symmetric with ℓ = 3.

3) 𝑛1 = 1 𝑎𝑛𝑑 𝑛2 = 3. We have two cases:

(1) If 𝑛3 is an odd number. Then, by counting the number of triangles [𝐶3] in the underlying

graph for 𝐾1,3,𝑛3 we get 𝜏(𝐾1,3,𝑛3) = odd number. Since the number of 𝐶+
3 ≠ 𝐶−

3 , a signed graph

on 𝐾1,3,𝑛3 with ℓ = 3 is not sign-symmetric.

(2) If 𝑛3 is an even number and 𝑛3 > 6. Then, 𝑛3 ≥ 8, we have there cases:

Case (1):

If 3 negative edges between parts A and B, then we get ℓ(Σ) = 3 but ℓ(−Σ) = 0.

If 3 negative edges between parts A and C, then we get ℓ(Σ) = ℓ(−Σ) = 3, but after switching −Σ,

we get 𝐶−
3 ≠ 𝐶+

3 so Σ ≇ −Σ.
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If 3 negative edges between parts B and C, then we get ℓ(Σ) = ℓ(−Σ) = 3, but after switching −Σ,

we get 𝐶−
3 ≠ 𝐶+

3 so Σ ≇ −Σ.

Case (2):

If two negative edges between parts A and B and one negative edge between parts A and C, then

we get ℓ(Σ) = 3 but ℓ(−Σ) = 2.

If two negative edges between parts A and B and one negative edge between parts B and C, then

we get ℓ(Σ) = 3 but ℓ(−Σ) = 1.

If two negative edges between parts A and C and one negative edge between parts A and B, then

we get ℓ(Σ) = ℓ(−Σ) = 3, but after switching −Σ, we get 𝐶−
3 ≠ 𝐶+

3 so Σ ≇ −Σ.

If two negative edges between parts A and C and one negative edge between parts B and C, then

we get ℓ(Σ) = ℓ(−Σ) = 3, but after switching −Σ, we get 𝐶−
3 ≠ 𝐶+

3 so Σ ≇ −Σ.

If there are two negative edges between parts B and C and one negative edge between parts A and

B, then we get ℓ(Σ) = 3 but ℓ(−Σ) = 2.

If there are two negative edges between parts B and C and one negative edge between parts A and

C, then we get ℓ(Σ) = ℓ(−Σ) = 3, but after switching −Σ, we get 𝐶−
3 ≠ 𝐶+

3 so Σ ≇ −Σ.

Case (3):

If one negative edge between parts A and B, one negative edge between parts B and C, and one

negative edge between C and A, then we get ℓ(Σ) = ℓ(−Σ) = 3 but after switching −Σ, we get

𝐶−
3 ≠ 𝐶+

3 so Σ ≇ −Σ.

Therefore, a signed graph on 𝐾1,3,𝑛3>6 is not sign-symmetric with ℓ = 3. We can see 1 and 2 from

the theorem are verified.

4) If 𝑛1 = 1 𝑎𝑛𝑑 𝑛2 = 5. We have two cases:
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(1) If 𝑛3 is an odd number. Then, by counting the number of triangles [𝐶3] in the underlying

graph for 𝐾1,5,𝑛3 , we get 𝜏(𝐾1,5,𝑛3) = odd number. Since the number of 𝐶+
3 ≠ 𝐶−

3 , a signed graph

on 𝐾1,5,𝑛3 with three negative edges is not sign-symmetric.

(2) If 𝑛3 an even number and 𝑛3 > 6. Then, 𝑛3 ≥ 8, we have there cases:

Case (1):

If there are 3 negative edges between parts A and B, then we get ℓ(Σ) = 3 but ℓ(−Σ) = 2.

If there are 3 negative edges between parts A and C, then we get ℓ(Σ) = 3 but ℓ(−Σ) > 3.

If there are 3 negative edges between parts B and C, then we get ℓ(Σ) = 3 but ℓ(−Σ) = 5.

Case (2):

If there are two negative edges between parts A and B and one negative edge between parts A and

C, then we get ℓ(Σ) = 3 but ℓ(−Σ) = 4.

If there are two negative edges between parts A and B and one negative edge between parts B and

C, then we get ℓ(Σ) = ℓ(−Σ) = 3, but after switching −Σ, we get 𝐶−
3 ≠ 𝐶+

3 so Σ ≇ −Σ.

If there are two negative edges between parts A and C and one negative edge between parts A and

B, then we get ℓ(Σ) = 3 but ℓ(−Σ) = 4.

If there are two negative edges between parts A and C and one negative edge between parts B and

C, then we get ℓ(Σ) = 3 but ℓ(−Σ) > 3.

If there are two negative edges between parts B and C and one negative edge between parts A and

B, then we get ℓ(Σ) = 3 but ℓ(−Σ) > 3.

If there are two negative edges between parts B and C and one negative edge between parts A and

C, then we get ℓ(Σ) = ℓ(−Σ) = 3, but after switching −Σ, we get 𝐶−
3 ≠ 𝐶+

3 so Σ ≇ −Σ.

Case (3):
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If one negative edge between parts A and B, one negative edge between parts B and C, and one

negative edge between C and A, we get ℓ(Σ) = 3 but ℓ(−Σ) = 4. Therefore, a signed graph on

𝐾1,5,𝑛3>6 is not sign-symmetric with ℓ = 3. We can see 4 from the theorem is verified.

Case 2) : Let 𝑛1 = 2. We claim 𝑛2 ≤ 3. Then, by using the previous lemma

=⇒ 3 ≥ 1
2 (𝑛1 · 𝑛2)

we get:

=⇒ 3 ≥ 1
2 (2 · 𝑛2)

=⇒ 3 ≥ 𝑛2.

Therefore, we get 𝑛2 ≤ 3. We can see (6) and (7) from the theorem is verified. ■

5.3 Complete 𝑘-Partite Signed Graphs where 𝑘 = 4

Lemma 5.3.1. We use the following formula to count the number of triangles in the underlying

graph for 𝐾𝑛1,𝑛2,𝑛3,𝑛4 .

𝜏(𝐾𝑛1,𝑛2,𝑛3,𝑛4) = 𝑛1𝑛2𝑛3 + 𝑛1𝑛2𝑛4 + 𝑛1𝑛3𝑛4 + 𝑛2𝑛3𝑛4

Lemma 5.3.2. Assume there is a signed graph on 𝐾𝑛1,𝑛2,𝑛3,𝑛4 with ℓ = 3 that is sign-symmetric.

Then,

3(𝑛3 + 𝑛4) ≥
1
2
𝜏(𝐾𝑛1,𝑛2,𝑛3,𝑛4)

Theorem 5.3.1. There exists a sign-symmetric signed graph on 𝐾𝑛1,𝑛2,𝑛3,𝑛4 with ℓ = 3 if and only

if:

1. 𝑛1 = 𝑛2 = 1 𝑎𝑛𝑑 𝑛3 = 𝑛4 = 2

2. 𝑛1 = 𝑛2 = 1 , 𝑛3 = 2 𝑎𝑛𝑑 𝑛4 = 4
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3. 𝑛1 = 𝑛2 = 1 𝑎𝑛𝑑 𝑛3 = 𝑛4 = 3

4. 𝑛1 = 1 𝑎𝑛𝑑 𝑛2 = 𝑛3 = 𝑛4 = 2

A

B

C

D

Figure 5.8

A sign-symmetric signed graph on 𝐾1,1,2,2 with ℓ = 3
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A

B

C

D

Figure 5.9

A sign-symmetric signed graph on 𝐾1,1,2,4 with ℓ = 3

A

B

C

D

Figure 5.10

A sign-symmetric signed graph on 𝐾1,1,3,3 with ℓ = 3
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A

B

C

D

Figure 5.11

A sign-symmetric signed graph on 𝐾1,2,2,2 with ℓ = 3

Proof. (⇒)

Verifying that every signed graph shown in Figures 8 through 11 above is a sign-symmetric

signed graph is simple.

(⇐)

Assume Σ is sign-symmetric signed graph since ℓ(Σ) = ℓ(−Σ) = 3. We claim 𝑛1 = 1. Suppose

𝑛1 > 1. Then, 𝑛1, 𝑛2, 𝑛3 and 𝑛4 ≥ 2 so by using the previous lemma, we get

3(𝑛3 + 𝑛4) ≥ 1
2 𝜏(𝐾𝑛1,𝑛2,𝑛3,𝑛4)

=⇒ 3(2 + 2) ≥ 1
2 (2 · 2 · 2 + 2 · 2 · 2 + 2 · 2 · 2 + 2 · 2 · 2)

=⇒ 12 ≥ 1
2 (32)

Therefore, we get a contradiction, hence 𝑛1 = 1.

Now, we claim 𝑛2 ≤ 2 and suppose 𝑛2 > 2. Then, 𝑛2, 𝑛3 𝑎𝑛𝑑 𝑛4 ≥ 3 so by using the previous

lemma, we get
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3(𝑛3 + 𝑛4) ≥ 1
2 (𝑛1 · 𝑛2 · 𝑛3 + 𝑛1 · 𝑛2 · 𝑛4 + 𝑛1 · 𝑛3 · 𝑛4 + 𝑛2 · 𝑛3 · 𝑛4)

=⇒ 3(3 + 3) ≥ 1
2 (1 · 3 · 3 + 1 · 3 · 3 + 1 · 3 · 3 + 3 · 3 · 3)

=⇒ 18 ≥ 1
2 (54).

Therefore, we get a contradiction, hence 𝑛2 ≤ 2.

Now we have two cases:

Case 1) If 𝑛1 = 1 𝑎𝑛𝑑 𝑛2 = 1. Now by using the formula

(6𝑛4 + 𝑛3 + 4) ≥ (𝑛4 + 2𝑛3 · 𝑛4) (5.6)

Then, by taking 𝑛3 = 4, we get that

=⇒ (6𝑛4 + 4 + 4) ≥ 9𝑛4

=⇒ 8 ≥ 3𝑛4

=⇒ 𝑛4 ≤ 3. Hence 𝑛3 ≤ 3.

Now If 𝑛1 = 1 𝑎𝑛𝑑 𝑛2 = 1 we have three cases:

Case(1): 𝑛1 = 1 , 𝑛2 = 1 𝑎𝑛𝑑 𝑛3 = 1 we have three cases:

(1) If 𝑛4=1, then, by counting the number of triangles [𝐶3] in the underlying graph for 𝐾1,1,1,1 ,

we get 𝜏(𝐾1,1,1,1) = 4. Since the number of 𝐶+
3 + 𝐶−

3 = 4, a signed graph on 𝐾1,1,1,1 with ℓ = 3 is

not sign-symmetric.

(2) If 𝑛4=2 is an even number. Then, by counting the number of triangles [𝐶3] in the underlying

graph for 𝐾1,1,1,2 , we get 𝜏(𝐾1,1,1,2) = 7. Since the number of 𝐶+
3 ≠ 𝐶−

3 , a signed graph on 𝐾1,1,1,2

with ℓ = 3 is not sign-symmetric.

(3) If 𝑛4=3 and by using the previous lemma,
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3(𝑛3 + 𝑛4) ≥ 1
2 (𝑛1 · 𝑛2 · 𝑛3 + 𝑛1 · 𝑛2 · 𝑛4 + 𝑛1 · 𝑛3 · 𝑛4 + 𝑛2 · 𝑛3 · 𝑛4). Since

3(1 + 3) ≥ 1
2 (10).

Now, we have four cases:

(1) If there are two negative edges between parts D and C and one negative edge between parts

D and A, then we get ℓ(Σ) = 3 but ℓ(−Σ) = 2.

(2) If there is one negative edge between parts D and A, one negative edge between parts D and

B, and one negative edge between D and C, then we get ℓ(Σ) = ℓ(−Σ) = 3 but after switching −Σ,

we get 𝐶−
3 ≠ 𝐶+

3 so Σ ≇ −Σ.

(3) If there is one negative edge between parts C and B, one negative edge between parts C and

D, and one negative edge between D and A, then we get ℓ(Σ) = 3, but ℓ(−Σ) = 2.

(4) If there is one negative edge between parts C and A, one negative edge between parts C and

B, and one negative edge between C and D, then we get ℓ(Σ) = 3, but ℓ(−Σ) = 2. Therefore, a

signed graph on 𝐾1,1,1,3 is not sign-symmetric with ℓ = 3.

Case(2): 𝑛1 = 1 , 𝑛2 = 1 𝑎𝑛𝑑 𝑛3 = 2 we have two cases:

(1) If 𝑛4 is an odd number. Then, by counting the number of triangles [𝐶3] in the underlying

graph for 𝐾1,1,2,𝑛4 , we get 𝜏(𝐾1,1,2,𝑛4) = odd number. Since the number of 𝐶+
3 ≠ 𝐶−

3 , a signed

graph on 𝐾1,1,2,𝑛4 where 𝑛4 is an odd number with ℓ = 3 is not sign-symmetric.

(2) If 𝑛3 is an even number and 𝑛4 > 4. Then, 𝑛3 ≥ 6, so by using the previous lemma, we get

3(𝑛3 + 𝑛4) ≥ 1
2 (𝑛1 · 𝑛2 · 𝑛3 + 𝑛1 · 𝑛2 · 𝑛4 + 𝑛1 · 𝑛3 · 𝑛4 + 𝑛2 · 𝑛3 · 𝑛4). Since

3(2 + 6) ≥ 1
2 (32) this mean three negative edges between parts 𝐶 𝑎𝑛𝑑 𝐷, so we get ℓ(−Σ) > 3,

therefore a signed graph on 𝐾1,1,2,6 is not sign-symmetric with ℓ = 3. Hence a signed graph on
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𝐾1,1,2,2 and 𝐾1,1,2,4 are sign-symmetric with ℓ = 3. We proved (1) and (2) from the theorem.

Case(3): 𝑛1 = 1 , 𝑛2 = 1 𝑎𝑛𝑑 𝑛3 = 3 and by using equation number 5.6:

(6𝑛4 + 𝑛3 + 4) ≥ (𝑛4 + 2𝑛3 · 𝑛4)

and by substitute 𝑛3 = 3, we get that,

(6𝑛4 + 3 + 4) ≥ (𝑛4 + 2 · 3 · 𝑛4)

then, after solving the equation, we obtain

7 ≥ 𝑛4

Now, we have two cases:

(1) If 𝑛4 = 3 is an odd number, we claim 𝑛4 = 3 and suppose 𝑛4 > 3. Then, 𝑛4 ≥ 5, so by using

the previous lemma, we get that

3(𝑛3 + 𝑛4) ≥ 1
2 (𝑛1 · 𝑛2 · 𝑛3 + 𝑛1 · 𝑛2 · 𝑛4 + 𝑛1 · 𝑛3 · 𝑛4 + 𝑛2 · 𝑛3 · 𝑛4). Since

3(3 + 5) ≥ 1
2 (38) this mean three negative edges between parts 𝐶 𝑎𝑛𝑑 𝐷, so we get ℓ(−Σ) > 3,

therefore a signed graph on 𝐾1,1,3,5 is not sign-symmetric with ℓ = 3.

(2) If 𝑛4 is an even number. Then, by counting the number of triangles [𝐶3] in the underlying

graph for 𝐾1,1,3,𝑛4 , we get 𝜏(𝐾1,1,3,𝑛4) is an odd number. Since the number of 𝐶+
3 ≠ 𝐶−

3 , a signed

graph on 𝐾1,1,3,𝑛4 with ℓ = 3 is not sign-symmetric. Hence a signed graph on 𝐾1,1,3,3 is sign-

symmetric with ℓ = 3. We proved (3) from the theorem.
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Case 2) if 𝑛1 = 1 and 𝑛2 = 2 we claim 𝑛3 = 2 and suppose 𝑛3 > 2. Now by taking 𝑛3 = 3 and by

using the formula

(𝑛3 + 𝑛4) + (𝑛3 + 𝑛4) + (𝑛4 + 2) ≥ 1
2
(2 · 𝑛3 + 2 · 𝑛4 + 𝑛3 · 𝑛4 + 2 · 𝑛3 · 𝑛4) (5.7)

Then, by taking 𝑛3 = 3 we get that,

12 + 6𝑛4 + 4 ≥ 6 + 𝑛4 + 9𝑛4

By resolving the aforementioned equation, we obtain that

10 ≥ 4𝑛4 =⇒ 2.5 ≥ 𝑛4 =⇒ 𝑛3 < 3

Therefore, we get a contradiction, hence 𝑛3 = 2.

Now If 𝑛1 = 1 𝑎𝑛𝑑 𝑛2 = 𝑛3 = 2 and by using equation 5.7 to find 𝑛4,

(𝑛3 + 𝑛4) + (𝑛3 + 𝑛4) + (𝑛4 + 2) ≥ 1
2
(2 · 𝑛3 + 2 · 𝑛4 + 𝑛3 · 𝑛4 + 2 · 𝑛3 · 𝑛4)

Next, we obtain that by substituting 𝑛3 = 2,

(2 + 𝑛4) + (2 + 𝑛4) + (𝑛4 + 2) ≥ 1
2
(2 · 2 + 2 · 𝑛4 + 2 · 𝑛4 + 2 · 2 · 𝑛4)
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After solving the equation above for 𝑛4, we can see that,

12 + 6𝑛4 ≥ 4 + 8𝑛4 =⇒ 8 ≥ 2𝑛4 =⇒ 4 ≥ 𝑛4

We claim 𝑛4 = 2 and suppose 𝑛4 > 2. Then, 𝑛4 ≥ 3 so by using the previous lemma, we get

3(𝑛3 + 𝑛4) ≥ 1
2 (𝑛1 · 𝑛2 · 𝑛3 + 𝑛1 · 𝑛2 · 𝑛4 + 𝑛1 · 𝑛3 · 𝑛4 + 𝑛2 · 𝑛3 · 𝑛4)

=⇒ 3(2 + 3) ≥ 1
2 (1 · 2 · 2 + 1 · 2 · 3 + 1 · 2 · 3 + 2 · 2 · 3)

=⇒ 15 ≥ 1
2 (28). This means three negative edges between parts 𝐴, 𝐵 𝑎𝑛𝑑 𝐶, so we have four

cases:

(1) If there are two negative edges between parts A and B and one negative edge between parts

A and C, then we get ℓ(Σ) = 3 but ℓ(−Σ) ≥ 4.

(2) If there are two negative edges between parts A and B and one negative edge between parts

B and C, then we get ℓ(Σ) = 3 but ℓ(−Σ) ≥ 4.

(3) If there is one negative edge between parts A and B, one negative edge between parts B and

C, and one negative edge between A and C, then we get ℓ(Σ) = 3, but ℓ(−Σ) ≥ 4.

(4) If there is one negative edge between parts A and B and two negative edges between parts

B and C, then we get ℓ(Σ) = 3 but ℓ(−Σ) ≥ 4.

Therefore, a signed graph on 𝐾1,2,2,3 with ℓ = 3 is not sign-symmetric. Hence a signed graph on

𝐾1,2,2,2 with ℓ = 3 is sign-symmetric. We proved (4) from the theorem. ■

74



5.4 Complete 𝑘-Partite Signed Graphs where 𝑘 = 5

Lemma 5.4.1. The following formula is used to determine how many triangles are present in the

underlying graph given 𝐾𝑛1,𝑛2,𝑛3,𝑛4,𝑛5

𝜏(𝐾𝑛1,𝑛2,𝑛3,𝑛4,𝑛5) =𝑛1𝑛2𝑛3 + 𝑛1𝑛2𝑛4 + 𝑛1𝑛2𝑛5 + 𝑛1𝑛3𝑛4 + 𝑛1𝑛3𝑛5 + 𝑛1𝑛4𝑛5+

𝑛2𝑛3𝑛4 + 𝑛2𝑛3𝑛5 + 𝑛2𝑛4𝑛5 + 𝑛3𝑛4𝑛5

Lemma 5.4.2. Consider a signed graph on 𝐾𝑛1,𝑛2,𝑛3,𝑛4,𝑛5 with ℓ = 3 that is sign-symmetric. Then,

3(𝑛3 + 𝑛4 + 𝑛5) ≥
1
2
𝜏(𝐾𝑛1,𝑛2,𝑛3,𝑛4,𝑛5)

Theorem 5.4.1. There exists a sign-symmetric signed graph on 𝐾𝑛1,𝑛2,𝑛3,𝑛4,𝑛5 with ℓ = 3 if and only

if:

1. 𝑛1 = 𝑛2 = 𝑛3 = 𝑛4 = 1 and 𝑛5 ≥ 1.
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B

C

D

E

Figure 5.12

A sign-symmetric signed graph on 𝐾1,1,1,1,𝑛5≥1 with ℓ = 3

Proof. (⇒)

It is evident that the aforementioned signed graph is sign-symmetric.

(⇐)

Assume Σ is sign-symmetric signed graph since ℓ(Σ) = ℓ(−Σ) = 3. We claim 𝑛1 = 1. Suppose

𝑛1 > 1. Then, 𝑛1, 𝑛2, 𝑛3, 𝑛4 𝑎𝑛𝑑 𝑛5 ≥ 2 so by using previous lemma we get,

3(𝑛3 + 𝑛4 + 𝑛5) ≥ 1
2 𝜏(𝐾𝑛1,𝑛2,𝑛3,𝑛4,𝑛5)

=⇒ 3(2 + 2 + 2) ≥ 1
2 (80)

=⇒ 18 ≥ 40

Therefore, we get a contradiction, hence 𝑛1 = 1.

Now we claim 𝑛2 = 1. Suppose 𝑛2 > 1. Then, 𝑛2, 𝑛3, 𝑛4 𝑎𝑛𝑑 𝑛5 ≥ 2 so by using the previous

lemma, we get,

3(𝑛3 + 𝑛4 + 𝑛5) ≥ 1
2 𝜏(𝐾𝑛1,𝑛2,𝑛3,𝑛4,𝑛5)

=⇒ 3(2 + 2 + 2) ≥ 1
2 (56)
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=⇒ 18 ≥ 28

Therefore, we get a contradiction, hence 𝑛2 = 1.

Now we claim 𝑛3 = 1. Suppose 𝑛3 > 1. Then, 𝑛3, 𝑛4 𝑎𝑛𝑑 𝑛5 ≥ 2 so by using the previous

lemma, we get,

3(𝑛3 + 𝑛4 + 𝑛5) ≥ 1
2 𝜏(𝐾𝑛1,𝑛2,𝑛3,𝑛4,𝑛5)

=⇒ 3(2 + 2 + 2) ≥ 1
2 (38)

=⇒ 18 ≥ 19

Therefore, we get a contradiction, hence 𝑛3 = 1.

Now we claim 1 ≤ 𝑛4 ≤ 2. Suppose 𝑛4 > 2. Then, 𝑛4 𝑎𝑛𝑑 𝑛5 ≥ 3 so by using the previous

lemma, we get,

3(𝑛3 + 𝑛4 + 𝑛5) ≥ 1
2 𝜏(𝐾𝑛1,𝑛2,𝑛3,𝑛4,𝑛5)

=⇒ 3(1 + 3 + 3) ≥ 1
2 (46)

=⇒ 21 ≥ 23

Therefore, we get a contradiction, hence 1 ≤ 𝑛4 ≤ 2. We have two cases.

Case 1) if 𝑛4 = 1, a signed graph on 𝐾1,1,1,1,𝑛5 with ℓ = 3 is sign-symmetric. We proved the

theorem.

Case 2) if 𝑛4 = 2, we claim 2 ≤ 𝑛5 ≤ 3. Suppose 𝑛5 > 3. Then, 𝑛5 ≥ 4 so by using the

previous lemma, we get,

3(𝑛3 + 𝑛4 + 𝑛5) ≥ 1
2 𝜏(𝐾𝑛1,𝑛2,𝑛3,𝑛4,𝑛5)

=⇒ 3(1 + 2 + 4) ≥ 1
2 (43)

=⇒ 21 ≥ 21.5

Therefore, we get a contradiction, hence 2 ≤ 𝑛5 ≤ 3. We have two cases:
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(1) Now If 𝑛1 = 𝑛2 = 𝑛3 = 1 and 𝑛4 = 𝑛5 = 2, so by counting the number of triangles [𝐶3] for

𝐾𝑛1,𝑛2,𝑛3,𝑛4,𝑛5 , we get 𝜏(𝐾1,1,1,2,2)=25. Since the number of 𝐶+
3 ≠ 𝐶−

3 , a signed graph on 𝐾1,1,1,2,2

with three negative edges is not sign-symmetric.

(2) Now If 𝑛1 = 𝑛2 = 𝑛3 = 1, 𝑛4 = 2 𝑎𝑛𝑑 𝑛5 = 3. Then, by using the previous lemma.

3(𝑛3 + 𝑛4 + 𝑛5) ≥ 1
2 𝜏(𝐾𝑛1,𝑛2,𝑛3,𝑛4,𝑛5)

=⇒ 3(1 + 2 + 3) ≥ 1
2 𝜏(𝐾1,1,1,2,3)

=⇒ 18 ≥ 1
2 (34). This means three negative edges between parts A, B, and C, so we get ℓ(−Σ) > 3;

hence (𝐾1,1,1,2,3) is not sign-symmetric. Therefore, a signed graph on 𝐾1,1,1,2,𝑛5 with ℓ = 3 is not

sign-symmetric. ■

5.5 Complete 𝑘-Partite Signed Graphs where 𝑘 = 6

Lemma 5.5.1. We use the following formula to count the number of triangles in the underlying

graph for 𝐾𝑛1,𝑛2,𝑛3,𝑛4,𝑛5,𝑛6 as shown below

𝜏(𝐾𝑛1,𝑛2,𝑛3,𝑛4,𝑛5,𝑛6) =𝑛1𝑛2𝑛3 + 𝑛1𝑛2𝑛4 + 𝑛1𝑛2𝑛5 + 𝑛1𝑛2𝑛6 + 𝑛1𝑛3𝑛4 + 𝑛1𝑛3𝑛5 + 𝑛1𝑛3𝑛6+

𝑛1𝑛4𝑛5 + 𝑛1𝑛4𝑛6 + 𝑛2𝑛3𝑛4 + 𝑛2𝑛3𝑛5 + 𝑛2𝑛3𝑛6 + 𝑛2𝑛4𝑛5 + 𝑛2𝑛4𝑛6+

𝑛2𝑛5𝑛6 + 𝑛3𝑛4𝑛5 + 𝑛3𝑛4𝑛6 + 𝑛4𝑛5𝑛6 + 𝑛5𝑛6𝑛1 + 𝑛5𝑛6𝑛3

Lemma 5.5.2. Consider a signed graph on 𝐾𝑛1,𝑛2,𝑛3,𝑛4,𝑛5,𝑛6 with ℓ = 3 that is sign-symmetric. Then,

3(𝑛3 + 𝑛4 + 𝑛5 + 𝑛6) ≥
1
2
(𝜏(𝐾𝑛1,𝑛2,𝑛3,𝑛4,𝑛5,𝑛6))
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Theorem 5.5.1. There exists a sign-symmetric signed graph on 𝐾𝑛1,𝑛2,𝑛3,𝑛4,𝑛5,𝑛6 with ℓ = 3 if and

only if:

1. 𝑛1 = 𝑛2 = 𝑛3 = 𝑛4 = 𝑛5 = 𝑛6 = 1.

A

B

C

D

E

F

Figure 5.13

A sign-symmetric signed graph on 𝐾1,1,1,1,1,1 with ℓ = 3

Proof. (⇒)

It is easy to check the aforementioned signed graph is sing-symmetric

(⇐)

Assume Σ is sign-symmetric signed graph since ℓ(Σ) = ℓ(−Σ) = 3. We claim 𝑛1 = 1. Suppose

𝑛1 > 1. Then, 𝑛1, 𝑛2, 𝑛3, 𝑛4, 𝑛5 𝑎𝑛𝑑 𝑛6 ≥ 2 so by using previous lemma we get,

3(𝑛3 + 𝑛4 + 𝑛5 + 𝑛6) ≥ 1
2 𝜏(𝐾𝑛1,𝑛2,𝑛3,𝑛4,𝑛5,𝑛6)

=⇒ 3(2 + 2 + 2 + 2) ≥ 1
2 (160)

=⇒ 24 ≥ 80

Therefore, we get a contradiction, hence 𝑛1 = 1. Next, we claim 𝑛2 = 1. Suppose 𝑛2 > 1. Then,
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𝑛2, 𝑛3, 𝑛4, 𝑛5 and 𝑛6 ≥ 2 so by using previous lemma we get,

3(𝑛3 + 𝑛4 + 𝑛5 + 𝑛6) ≥ 1
2 𝜏(𝐾𝑛1,𝑛2,𝑛3,𝑛4,𝑛5,𝑛6)

=⇒ 3(2 + 2 + 2 + 2) ≥ 1
2 (120)

=⇒ 24 ≥ 60

The result is a contradiction, hence 𝑛2 = 1. Afterward, we claim 𝑛3 = 1. Suppose 𝑛3 > 1. Then,

𝑛3, 𝑛4, 𝑛5 𝑎𝑛𝑑 𝑛6 ≥ 2 so by using previous lemma we get,

3(𝑛3 + 𝑛4 + 𝑛5 + 𝑛6) ≥ 1
2 𝜏(𝐾𝑛1,𝑛2,𝑛3,𝑛4,𝑛5,𝑛6)

=⇒ 3(2 + 2 + 2 + 2) ≥ 1
2 (88)

=⇒ 24 ≥ 44

As a result, we obtain a contradiction, leading to 𝑛3 = 1. Then, we claim 𝑛4 = 1. Suppose 𝑛4 > 1.

Then, 𝑛4, 𝑛5 𝑎𝑛𝑑 𝑛6 ≥ 2 so by applying the previous lemma, we get

3(𝑛3 + 𝑛4 + 𝑛5 + 𝑛6) ≥ 1
2 𝜏(𝐾𝑛1,𝑛2,𝑛3,𝑛4,𝑛5,𝑛6)

=⇒ 3(1 + 2 + 2 + 2) ≥ 1
2 (63)

=⇒ 21 ≥ 31.5

A contradiction is produced as a result, which leads to 𝑛4 = 1.

After that, we claim 𝑛5 = 1. Suppose 𝑛5 > 1. Then, 𝑛5 𝑎𝑛𝑑 𝑛6 ≥ 2 hence, by using the previous

lemma, we have

3(𝑛3 + 𝑛4 + 𝑛5 + 𝑛6) ≥ 1
2 𝜏(𝐾𝑛1,𝑛2,𝑛3,𝑛4,𝑛5,𝑛6)

=⇒ 3(1 + 1 + 2 + 2) ≥ 1
2 (44)

=⇒ 18 ≥ 22

As a result, there is a contradiction, which results in 𝑛5 = 1. Finally, we claim 𝑛6 = 1. Suppose

𝑛6 > 1. Then, 𝑛6 ≥ 2 as a result, by applying the previous lemma, we have
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3(𝑛3 + 𝑛4 + 𝑛5 + 𝑛6) ≥ 1
2 𝜏(𝐾𝑛1,𝑛2,𝑛3,𝑛4,𝑛5,𝑛6)

=⇒ 3(1 + 1 + 1 + 2) ≥ 1
2 (30)

=⇒ 15 ≥ 15

This means three negative edges between parts 𝐴, 𝐵 𝑎𝑛𝑑 𝐶, so we get ℓ(−Σ) > 3, hence (𝐾1,1,1,1,1,2)

is not sign-symmetric. Therefore, a signed graph on 𝐾1,1,1,1,1,1 with ℓ = 3 is sign-symmetric. ■

5.6 Complete 𝑘-Partite Signed Graphs where 𝑘 ≥ 7

Lemma 5.6.1. The number of triangles in the underlying graph for 𝐾𝑛1,𝑛2,𝑛3,𝑛4,𝑛5,𝑛6,𝑛7 is calculated

using the following formula.

𝜏(𝐾𝑛1,𝑛2,𝑛3,𝑛4,𝑛5,𝑛6,𝑛7) =𝑛1𝑛2𝑛3 + 𝑛1𝑛2𝑛4 + 𝑛1𝑛2𝑛5 + 𝑛1𝑛2𝑛6 + 𝑛1𝑛2𝑛7 + 𝑛1𝑛3𝑛4 + 𝑛1𝑛3𝑛5+

𝑛1𝑛3𝑛6 + 𝑛1𝑛3𝑛7 + 𝑛1𝑛4𝑛5 + 𝑛1𝑛4𝑛6 + 𝑛1𝑛4𝑛7 + 𝑛1𝑛5𝑛6 + 𝑛1𝑛5𝑛7+

𝑛1𝑛6𝑛7 + 𝑛2𝑛3𝑛4 + 𝑛2𝑛3𝑛5 + 𝑛2𝑛3𝑛6 + 𝑛2𝑛3𝑛7 + 𝑛2𝑛4𝑛5 + 𝑛2𝑛4𝑛6+

𝑛2𝑛4𝑛7 + 𝑛2𝑛5𝑛6 + 𝑛2𝑛5𝑛7 + 𝑛2𝑛6𝑛7 + 𝑛3𝑛4𝑛5 + 𝑛3𝑛4𝑛6 + 𝑛3𝑛4𝑛7+

𝑛3𝑛5𝑛6 + 𝑛3𝑛5𝑛7 + 𝑛3𝑛6𝑛7 + 𝑛4𝑛5𝑛6 + 𝑛4𝑛5𝑛7 + 𝑛4𝑛6𝑛7 + 𝑛5𝑛6𝑛7

Lemma 5.6.2. Consider a signed graph on 𝐾𝑛1,𝑛2,𝑛3,𝑛4,𝑛5,𝑛6,𝑛7 with ℓ = 3 that is sign-symmetric.

Then,

3(𝑛3 + 𝑛4 + 𝑛5 + 𝑛6 + 𝑛7) ≥
1
2
𝜏(𝐾𝑛1,𝑛2,𝑛3,𝑛4,𝑛5,𝑛6,𝑛7)

Theorem 5.6.1. A signed graph on 𝐾1,1,1,1,1,1,1 with ℓ = 3 is not sign-symmetric.
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Proof. Assume Σ is sign-symmetric signed graph since ℓ(Σ) = ℓ(−Σ) = 3. Then, by using the

previous lemma, we have

3(𝑛3 + 𝑛4 + 𝑛5 + 𝑛6 + 𝑛7) ≥ 1
2 𝜏(𝐾𝑛1,𝑛2,𝑛3,𝑛4,𝑛5,𝑛6,𝑛7)

=⇒ 3(1 + 1 + 1 + 1 + 1) ≥ 1
2 (35)

=⇒ 15 ≥ 17.5

Therefore, we get a signed graph on 𝐾1,1,1,1,1,1,1 with ℓ = 3 is not sign-symmetric. ■
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CHAPTER VI

NUMBER OF PARTS AND FRUSTRATION INDEX IN A SIGN-SYMMETRIC SIGNED

COMPLETE MULTIPARTITE GRAPH

6.1 Introduction

In this chapter, we will study the relationship between 𝑘 parts of the complete 𝑘-partite signed

graphs and the frustration index of signed graphs ℓ. Also, we will study the relationship between 𝑘

parts, 𝑛 vertices, and frustration index ℓ. In [23], the authors mention that the maximum frustration

index of numerous families of signed graphs, including the complete graph 𝐾𝑛 with n vertices,

has upper bounds provided by the authors in [28]. According to them, the frustration index of a

complete signed graph is

ℓ(𝐾𝑛, 𝜎) ≤ ⌊ (𝑛 − 1)2

4
⌋ (6.1)

and it was proved in [18], and the results from this chapter have been submitted for publication [3].

6.2 Relationship Between 𝑘 Parts and Frustration Index ℓ

Theorem 6.2.1. Let Σ be a sign-symmetric signed graph on a complete 𝑘-partite graph. Then,

𝑘 − 2
√
𝑘 + 1 ≤ ℓ(Σ) (6.2)

Table 6.1 shows the relationship between 𝑘 parts and frustration index ℓ.
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Table 6.1

List of Number of parts 𝑘 and Frustration Index ℓ

𝑘 𝑘 − 2
√
𝑘 + 1 ℓ𝑚𝑖𝑛

1 0 0
2 0 0
3 0.535 1
4 1 1
5 1.527 3
6 2.1 3
7 2.7 -
8 3.34 -

Proof. Let Σ be a sign-symmetric complete 𝑘-partite signed graph

ℓ(𝐾𝑛, 𝜎) = ℓ

Now by taking the negation of the complete 𝑘-partite signed graph and using 6.1 and by substituting

n by k - ℓ into the equation 6.1, we get that

ℓ(−𝐾𝑛, 𝜎) ≤ ⌊ (𝑘 − ℓ − 1)2

4
⌋

Now, since 𝑘 ≤ ℓ, then, we get

(𝑘 − ℓ − 1)2

4
≤ ℓ
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By taking the square root of both sides, we see that

(𝑘 − ℓ − 1)
2

≤
√
ℓ

Consequently, by multiplying both sides by 2, we have that

(𝑘 − ℓ − 1) ≤ 2
√
ℓ

Then, move the 𝑘 to the left side and put the constant and all the variable terms on the right side

𝑘 ≤ 2
√
ℓ + ℓ + 1

Now, by completing the square, we obtain that

𝑘 ≤ (1 +
√
ℓ)2

Next, taking square root on both sides

√
𝑘 ≤ 1 +

√
ℓ

Then, we obtain that by subtracting -1 from both sides of the equation

√
𝑘 − 1 ≤

√
ℓ
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Finally, square both sides of the equation, we get that

𝑘 − 2
√
𝑘 + 1 ≤ ℓ

Thus, this completes the proof of theorem 6.2.1. ■

Conjecture 6.2.2. k ≤ ℓ(Σ) if 𝑘 ≥ 7.

6.3 Relationship Between 𝑘 Parts, 𝑛 Vertices and Frustration Index ℓ

Theorem 6.3.1. Let Σ be a sign-symmetric signed graph on a complete 𝑘-partite graph (𝑘 ≥ 3)

such that all parts have the same number of vertices. Then,

ℓ ≥ 1
54

𝑛2 (6.3)

Proof. Let Σ be a sign-symmetric complete 𝑘-partite signed graph and let 𝑡+ be a number of

positive triangles and 𝑡− be a number of negative triangles. Then, 𝑡− ≤ ℓ𝑛. Now, by using the

formula where all parts have the same size of vertices,

𝑡+ + 𝑡− ≥
(
𝑘

3

) (
𝑛

𝑘

)3

Since Σ is a sign-symmetric complete 𝑘-partite signed graph 𝑡+ = 𝑡−. Now, since 𝑡− ≤ ℓ𝑛 and by

substitution in the above formal, we get that

ℓ𝑛 + ℓ𝑛 ≥
(
𝑘

3

) (
𝑛

𝑘

)3
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By simplifying the left side, we get

2 ℓ𝑛 ≥
(
𝑘

3

) (
𝑛

𝑘

)3

Now, by simplifying the right side

2 ℓ𝑛 ≥ 𝑘 (𝑘 − 1) (𝑘 − 2)
6

𝑛3

𝑘3

Then, we get by deleting one 𝑘 from the numerator and one from the denominator that

2 ℓ𝑛 ≥ (𝑘 − 1) (𝑘 − 2)
6

𝑛3

𝑘2

Now, by dividing both sides by 2𝑛, we obtain

ℓ ≥ (𝑘 − 1) (𝑘 − 2)
12

𝑛2

𝑘2

Then, we get by simplifying the right side that

ℓ ≥ 1
12

(1 − 1
𝑘
) (1 − 2

𝑘
) 𝑛2

Hence, 𝑘 ≥ 3 since complete 𝑘-partite signed graph

ℓ ≥ 1
54

𝑛2
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As a result, the proof of the theorem is complete. ■

Corollary 6.3.1. Let Σ be a sign-symmetric signed graph on a complete multipartite graph with

all parts equal, then ℓ(Σ) ≥ |𝑉 (Σ) |.
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CHAPTER VII

FUTURE WORK

In this chapter, we mention some open problems that arise from this dissertation:

1. Give a complete characterization of signed-symmetric signed graphs with frustration num-
ber 1.

2. Give a complete characterization of sign-symmetric signed graphs with frustration index 3.

3. Give a characterization of signed graphs that are both sign-symmetric and projective-planar.

4. What is the relationship between the frustration index and frustration number in sign-
symmetric signed graphs?

5. What is the complexity status of recognizing a sign-symmetric signed graph?
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