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tRNA genes are highly transcribed and perform one of the most fundamental cellular 

functions. Although a universal pattern observed across all three domains of life is that highly 

transcribed genes tend to evolve slowly, tRNA genes have been shown previously to evolve 

rapidly. This rapid sequence evolution could result from relaxed selection, increased mutation 

rate, or a combination of both. Here, we use mutation-accumulation line sequencing data to show 

that tRNA genes accumulate more mutations than other gene types. Our results indicate that this 

elevated mutation rate is a consequence of both elevated transcription-associated mutagenesis 

and a lack of transcription-coupled repair in tRNA genes. We also identify the gene MSH2 as 

being involved in transcription-coupled repair. 
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CHAPTER I 

INVESTIGATING THE IMPACT OF TRANSCRIPTION ON MUTATION RATES 

Introduction 

Mutations are at the very core of evolution. They provide the raw material for genetic 

diversity within a species and can allow individuals to adapt to new or changing environments. 

Mutations primarily occur when DNA is replicated due to misincorporations by the DNA 

polymerases (Clausen et al., 2013; Nick McElhinny et al., 2010) or when chemical damage 

occurs on one or both strands of the DNA (Marnett, 2000). However, DNA damage can also 

occur outside of replication and many parameters affect the rate at which such damage occurs. 

The production of mutations, regardless of means, is referred to as mutagenesis. One particular 

type of mutagenesis, transcription-associated mutagenesis (TAM), occurs during the process of 

transcription (Jinks-Robertson & Bhagwat, 2014). During transcription, double-stranded DNA 

molecules are unwound into single-stranded DNA (ssDNA). This ssDNA is vulnerable to 

mutagens in the cell and may accumulate chemical damage leading to an increased mutation rate 

(Ramiro et al., 2003). Therefore, it is expected that the likelihood of sustaining mutations 

increases with transcription level. Highly expressed genes are typically evolving under stronger 

purifying selection (Duret & Mouchiroud, 2000; Hastings, 1996; Pál et al., 2001), so it is 

expected that mutations in these genes tend to be more deleterious and selection should reduce 

mutation rate in these genes if possible (Xiong et al., 2017). 
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In this context, tRNA genes present a paradox, in that they are both highly transcribed 

(Lucas et al., 2023; Nagai et al., 2021) and evolve rapidly. This rapid evolution is likely caused 

by relaxed selection, higher mutation rate, or a combination of both. A previous study (Thornlow 

et al., 2018) has come to the conclusion that tRNA genes experience a substantial increase in 

mutations through increased TAM but undergo purifying selection. This study, however, only 

looked at long-term patterns of evolution between species, thus failing to consider cellular 

mechanisms, such as transcription-coupled repair (TCR), that may contribute to the rapid 

evolution of tRNA genes compared to other gene types. 

Transcription-coupled repair (TCR) is a cellular process of mutation rate reduction 

present in eukaryotes. It allows for repair of damaged sites in the DNA during the process of 

transcription (Spivak, 2016). TCR relies on the RNA polymerase to detect damage in the 

template strand and signal for repair at the damaged site (Spivak, 2016). Despite the importance 

of TCR to transcriptional fidelity, we still don’t have a full understanding of this mechanism, 

including the list of genes which are involved with the process, either directly or indirectly. 

While some genes are known to be involved in TCR (e.g., CSB (Bradsher et al., 2002), XAB2 

(Nakatsu et al., 2000), and UVR-A, B, C, and D (Mellon & Champe, 1996)), there is still a level 

of uncertainty as to whether or not certain genes are involved in the process. One such gene is 

MSH2, which has previously been demonstrated (van Oosten et al., 2005) to be involved in the 

global genomic repair (GGR) process, but its potential role in TCR is still unclear (Sweder et al., 

1996). Further study of the genes involved in TCR would aid in elucidating the specifics of how 

the mechanism functions as well as give insight as to why the mechanism does not repair every 

mutation it comes across. 
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As TCR is a highly effective, but not perfect, mechanism, it is difficult to discern whether 

TCR fully compensates (and even possibly offsets) the impact of TAM, possibly leading to 

reduced mutation rate in highly transcribed genes, or if TAM overwhelms TCR, leading to 

higher mutation rates in highly transcribed genes. Answering this question has proven to be 

difficult, as different studies have reached opposite conclusions (X. Chen & Zhang, 2014; Zhu et 

al., 2014a, 2014b), but the current consensus is that the effect of TAM is almost entirely offset 

by TCR, leaving only a weak positive correlation between expression level and mutation rate in 

protein-coding genes (Zhu et al., 2014a). However, not all genes benefit from TCR. Eukaryotic 

tRNA genes are of particular importance due to their lack of a TCR mechanism despite being 

transcribed at record high levels. Indeed, tRNA genes are transcribed by RNA polymerase III 

(RNAPIII) while TCR has been demonstrated to be associated with RNAPII (the polymerase 

which transcribes protein-coding genes) (Adebali et al., 2017; Hu et al., 2016; Sancar, 2016) and 

is suspected to be also active with rRNA-transcribing RNAPI (Bradsher et al., 2002; Daniel et 

al., 2018). Due to this lack of a TCR mechanism in tRNA genes combined with their extreme 

transcription levels, we predict that tRNA genes should have a higher mutation rate than protein-

coding genes in eukaryotes. 

A major challenge in testing this hypothesis is to obtain reliable estimates of mutation 

rates for both types of genes. Indeed, most studies of mutation rates rely on sequencing end-

products of mutation accumulation experiments and typically result in the detection of a few 

hundred to a few thousand mutations at most (Liu & Zhang, 2019, 2021; Sharp et al., 2018; Zhu 

et al., 2014a). This issue is also true of experiments that rely on trio sequencing, which is the 

gold-standard method for measuring mutation rates in humans (the 1000 Genomes Project, 

2011). Because tRNA genes make up a small proportion of the genome, the chance of detecting 
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mutations in these genes is fairly low, reducing the statistical power of any comparison of 

mutation rate between tRNA genes and protein-coding genes. For example, with the 84 

mutations found in a trio sequencing experiment by the 1000 Genomes Project (the 1000 

Genomes Project, 2011), only 0.001% of those mutations (0.001 mutations) are expected to be 

found in tRNA genes with a uniform mutation rate across the entire genome (tRNA genes make 

up only 51,783 of 3,298,430,730 base pairs (~0.001%) in the human genome). As such, we 

would have no statistical power to detect even a 10-100X increase in mutation rate. While the 

fraction of the genome occupied by tRNA genes increases in species with more compact 

genomes, it remains a small fraction of the total genome size. For example, in S. cerevisiae, 

tRNA-coding genes only make up 23,778 of the 12,157,105 base pairs, or ~0.2% of the genome. 

However, this may be just enough to allow for detection of an increased mutation rate, provided 

there are several hundred mutations to consider from mutation accumulation (MA) line studies. 

To investigate the cause of rapid evolution in tRNA genes, we gathered data from several 

previously published MA line studies to compare the mutation rate and spectrum of tRNA genes 

to that of the rest of the genome. Analysis of the data gained from these MA line studies provides 

insight into the roles of both TAM and TCR in the rapid accumulation of mutations in tRNA 

genes as compared to other highly transcribed genes, furthering our current understanding of the 

accelerated evolution of tRNA genes. Additionally, we provide evidence for the involvement of 

MSH2 in TCR in eukaryotes as well as evidence indicating the presence of strand-specific 

mutations and mutation repair biases. 
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Results 

tRNA Genes in S. cerevisiae Have an Elevated Mutation Rate 

To investigate the impact of transcription-coupled repair (TCR) on mutation rates, we 

first analyzed the mutation rate of tRNA genes in the yeast S. cerevisiae. tRNA genes make the 

bulk of the genes transcribed by the RNA Polymerase III (RNAPIII), the only nuclear RNA 

polymerase with no known TCR mediation activity (Yang et al., 2019). tRNA genes represent 

about 0.2% of the total genome size of S. cerevisiae. While this is only a small fraction of the 

genome, it is still an order of magnitude more than the fraction of the genome occupied by tRNA 

genes in other model eukaryotes with large mutation accumulation datasets available (for 

example, tRNA genes make up only 0.016% of the entire genome in Drosophila melanogaster). 

Based on these numbers, and assuming a uniform mutation rate along the genome, we would 

expect to observe, on average, one mutation in tRNA genes for every 500 mutations reported in 

mutation accumulation line experiments in S. cerevisiae. With a few thousand mutations reported 

across several mutation accumulation (MA) line studies, large differences in mutation rates 

between tRNA genes and the rest of the genome might be detectable in S. cerevisiae. 

We re-analyzed data from three independent MA line studies (Liu & Zhang, 2019; Sharp 

et al., 2018; Zhu et al., 2014a) and used the frequency of mutations observed outside of tRNA 

genes to compute the expected number of mutations inside tRNA genes, assuming a constant 

mutation rate across the entire genome. In all three datasets, we found that mutations inside 

tRNA genes are >5-times more frequent than in the rest of the genome. This excess of mutations 

inside tRNA genes is highly significant (Figure 1A, p = 1.15 × 10-10) in all three datasets, 

revealing that tRNA genes experience a higher mutation rate than the rest of the genome in the 
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yeast S. cerevisiae. This heightened mutation rate in tRNA genes is likely due to a combined 

effect of transcription-associated mutagenesis (TAM) and lack of TCR. 

However, tRNA genes are known to have a higher GC content than the rest of the 

genome (average GC content 52% for tRNA genes vs. 38% for the rest of the genome in S. 

cerevisiae). Additionally, guanine:cytosine (GC) pairs have been found to mutate at a higher 

frequency than adenine:thymine (AT) pairs (Zhu et al., 2014a). Therefore, we investigated the 

possibility that the elevated mutation rate seen in tRNA genes could be explained by a higher GC 

content than the rest of the genome. To correct for this potential bias, we computed the mutation 

rate at GC and AT pairs independently and applied these rates to GC and AT pairs inside tRNA 

genes. This correction for GC content made very little difference to the comparison of mutation 

rates between tRNA genes and the rest of genomes (Appendix, Table 2), indicating that the 

elevated mutation rate of tRNA genes is not explained by their biased nucleotide composition. 

 

Figure 1 Mutation rates across S. cerevisiae and S. pombe by gene type. 

A) Mutation rates compared by gene type in S. cerevisiae. tRNA genes show a ~7.4-fold increase 

in mutation rate when compared to protein-coding genes and intergenic regions. B) Mutation 

rates compared by gene type in S. pombe. tRNA genes show a ~17.7-fold increase in mutation 

rate when compared to protein-coding genes and intergenic regions. 
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Other Eukaryotic Species Also Show Elevated Mutation Rate for tRNA Genes 

Several other eukaryotic species were also considered to determine whether or not the 

elevated mutation rate seen in S. cerevisiae was a trend seen across eukaryotes. Of the species 

considered, only S. pombe had sufficient data from previous MA line experiments for analysis. It 

is important to note that, while S. cerevisiae and S. pombe belong to the same phylum, their 

divergence time is estimated to be about half a billion years (Kumar et al., 2022) and their 

genome structures are highly divergent as illustrated by the many introns present in S. pombe 

(Wood et al., 2002). Therefore, any pattern present in both yeast species would have a good 

chance of being present in other eukaryotes as well.  

In S. pombe, after correction for GC content, we found that mutations inside tRNA genes 

are >14-times more frequent than in the rest of the genome (Figure 1B, p = 7.45 × 10-10). This 

excess of mutations in tRNA genes combined with that found in tRNA genes in S. cerevisiae 

indicates that the elevated mutation rate seen in tRNA genes in these species is not species-

specific, but rather is a trend seen across eukaryotes. To further support this, we analyzed several 

other eukaryotic species with mutation accumulation lines derived estimates of mutation rate (see 

Appendix, Table 3). However, the relatively small number of mutations reported in each one of 

these species, combined with the extremely small fraction of their genome occupied by tRNA 

genes implies that the expected number of mutations observed in tRNA genes would still be 

typically less than one, even with a mutation rate 5-times higher for tRNA genes. These small 

numbers prevent us from having any statistical support for each species individually. However, 

we note that the mutation rate is higher in tRNA genes for all the species considered (Appendix, 

Table 3), suggesting that the trend observed in yeast extends to multicellular eukaryotes. 
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Introducing a Control 

tRNA genes show a heightened mutation rate compared to the rest of the genome. 

However, as tRNA genes are, on average, much more highly expressed than the rest of the 

genome (Lucas et al., 2023; Nagai et al., 2021), it is unclear whether this difference is due more 

so to their lack of transcription-coupled repair (TCR) or excess of transcription-associated 

mutagenesis (TAM). If the effects of TCR were to be removed, it would be possible to tell how 

much of the difference in tRNA gene mutation rate is contributed by each. We accomplished this 

by analyzing a dataset from Liu & Zhang (Liu & Zhang, 2021) in which the gene MSH2 was 

knocked out in S. cerevisiae before performing mutation accumulation lines followed by genome 

sequencing. MSH2 is believed to be involved in TCR, although this is still debated (Sweder et 

al., 1996; van Oosten et al., 2005). When analyzing this dataset, we found that tRNA genes had a 

mutation rate only ~2 times higher than that of the rest of genome (Figure 2, p = 3.44 × 10-9), 

compared to the ~5 times increase previously observed in wild-type S. cerevisiae. This result 

strongly suggests that MSH2 is indeed involved in TCR and that lack of TCR is a major reason 

why tRNA genes have an elevated mutation rate. 
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Figure 2 Mutation rates across S. cerevisiae with msh2 knockout by gene type. 

tRNA genes show a ~2-fold increase in mutation rate when compared to protein-coding genes and 

intergenic regions. 

 

Effect of Expression Level on Mutation Rate 

Removing the action of TCR might help us quantify the impact of TAM on the 

mutational input. Indeed, previous studies that aimed at detecting the effect of TAM on mutation 

rate relied on comparisons of mutation rates for bins of genes of increasing expression level. 

However, this strategy failed to reveal any large increase in mutation rate associated with 

elevated expression level and the impact of transcription on mutation has remained difficult to 

quantify (X. Chen & Zhang, 2014; Zhang et al., 2018; Zhu et al., 2014b). The most likely 

explanation for this difficulty is that the increased DNA damage caused by TAM in highly 

expressed genes is almost entirely compensated by the action of TCR. 

With TCR activity mostly abolished, the msh2-KO MA line dataset represents a unique 

opportunity to directly measure the impact of transcription on DNA damage. To determine the 

relationship between expression level and mutation rate in the msh2-knockout datasets, we split 

both protein-coding genes and tRNA genes by expression level as determined by a previous 

study (Pelechano et al., 2010). We found that the mutation rate increases with increased 
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expression level in protein-coding genes (Figure 3, p = 7.59 × 10-5), revealing the impact of 

TAM which was previously hidden by TCR. It is notable that there is no similar difference 

between highly and lowly expressed tRNA genes. However, it is exceptionally difficult to get 

reliable estimates of tRNA expression (Lucas et al., 2023; Nagai et al., 2021). Additionally, 

tRNA genes have extremely high expression levels compared to protein-coding genes (Lucas et 

al., 2023; Nagai et al., 2021). It is possible that the impact of TAM does not increase linearly 

with expression level, so that the impact of TAM might reach an asymptote at extremely high 

levels of expression. 

 

Figure 3 Mutation rate across S. cerevisiae with msh2 knockout by gene type and gene 

expression level. 

tRNA genes, regardless of expression level, show a higher mutation rate than protein-coding 

genes and intergenic regions. There is no significant difference in mutation rate between highly 

and lowly expressed tRNA genes. Protein-coding genes show a positive correlation between 

expression level and mutation rate. 
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Mutation spectra of prokaryotes 

While the msh2-knockout dataset is highly informative about the effects of TAM, it is 

entirely possible that the activity of TCR was not completely abolished by the msh2 knock out. 

There is already a natural environment in which there is no gene-specific effect of TCR: bacteria. 

While tRNA genes in prokaryotes are still much more highly expressed than protein-coding 

genes (Lucas et al., 2023; Nagai et al., 2021), there is only one RNA polymerase in prokaryotes, 

and therefore no gene-specific TCR mechanism like that of eukaryotes. 

To investigate the impact of TAM on mutation rates in prokaryotes, we analyzed the 

mutation rate of tRNA genes in the bacterium E. coli. We re-analyzed data from three 

independent MA line studies (Foster et al., 2015, 2018; Zhang et al., 2018) and computed the 

mutation rates of tRNA genes and the rest of the genome, as we did previously in yeast. In all 

three datasets, we found mutations in tRNA genes to be >1.5-times more frequent than in the rest 

of the genome. The excess of mutations in tRNA genes was highly significant (Figure 4, p = 3.04 

× 10-12) in all three datasets, indicating that, much like eukaryotes, tRNA genes experience a 

higher mutation rate than the rest of the genome in E. coli. However, because no gene-specific 

TCR mechanism exists in E. coli, this difference has to be explained by another mechanism, 

most likely the elevated amount of TAM caused by the high expression levels of tRNA genes. 

We split E. coli tRNA genes into two bins according to their expression level and found that the 

elevated mutation rate was specific to the highly expressed ones, with lowly expressed tRNA 

genes having a mutation rate barely above that of protein-coding genes (Figure 5, p = 2.97 × 10-

12). Therefore, it appears that the elevated mutation rate of tRNA genes in E. coli is caused 

exclusively by their high expression level.  
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Figure 4 Mutation rates across E. coli by gene type. 

tRNA genes show a ~2.3-fold increase in mutation rate when compared to protein-coding genes 

and intergenic regions. 

 

 

Figure 5 Mutation rate across E. coli by gene type and gene expression level. 

tRNA genes, regardless of expression level, show a higher mutation rate than protein-coding 

genes and intergenic regions. Additionally, highly expressed tRNA genes have a significantly 

higher mutation rate than lowly expressed tRNA genes. Protein-coding genes show no 

correlation between expression level and mutation rate. 
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Biases in Type of Repair Targeted by TCR 

To determine whether TCR is more effective at repairing certain mutations than others, 

we ascertained the full mutation spectrum of S. cerevisiae in tRNA genes compared to that of 

protein-coding genes. Mutation rates were computed for each of the 12 possible base-

substitutions and were polarized relative to the “coding” strand (i.e., the non-template strand for 

tRNA genes). Four types of base-substitutions were especially common in tRNA genes: G-to-T, 

C-to-A, C-to-T, and A-to-G (Figure 6). We found that the two most common types of point 

mutations in tRNA genes are the complementary G-to-T and C-to-A base-substitutions (Figure 

6). This points to a mutational process that can be started and repaired on both strands with the 

same probability. However, the next two most common types of mutations appear to be strand-

specific. Indeed, C-to-T mutations are more frequent than their complementary G-to-A, and A-

to-G is also more frequent than its complementary T-to-C. This pattern suggests the presence of 

strand-specific damage or repair in tRNA genes. 

In the S. cerevisiae msh2 knockout dataset, all mutations showed an elevation of mutation 

rate compared to the non-knockout datasets regardless of gene type (Appendix, Figure 8). It is 

particularly noteworthy that, while tRNA mutation rates seem to go up significantly, mutation 

rates in protein-coding genes appear to increase at a much higher rate. The increase in tRNA 

mutation rates can be explained by the involvement of MSH2 in global genomic repair (GGR) 

while the greater increase in protein-coding mutation rates can be explained both by involvement 

of MSH2 in GGR and by involvement of MSH2 in TCR. 
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Figure 6 Mutation spectrum of S. cerevisiae by gene type. 

tRNA genes overall show a heightened mutation rate for most mutation types in S. cerevisiae as 

compared to protein-coding genes. tRNA genes show particularly elevated mutation rates for A-

to-G, C-to-A, C-to-T, and G-to-T mutations. 

In E. coli, every mutation occurred at a significantly higher rate in tRNA genes than in 

protein-coding genes, with the exception of G-to-A. Contrary to S. cerevisiae, where only a 

subset of the 12 possible base-substitutions have an elevated mutation rate, the fact that almost 

all types of base-substitutions increase in the same proportion in E. coli tRNA genes suggests 

that the process responsible for this increase is not biased towards either strand. 
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Figure 7 Mutation spectrum of E. coli by gene type. 

For all but one mutation type (G-to-A), tRNA genes show a heightened mutation rate as 

compared to protein-coding genes.  

Discussion 

In this study, we have used publicly available mutation accumulation (MA) lines 

sequencing data to directly compare mutation rate of tRNA genes to that protein-coding genes. 

Our results show that tRNA genes have mutation rates about one magnitude higher than the rest 

of the genome in yeast. A previous study, relying on divergence and polymorphism data in 

humans and mice concluded that tRNA genes experience elevated mutation rates despite being 

under strong purifying selection (Thornlow et al., 2018). While Thornlow et al. attributed this 

elevated mutation rate to higher levels of transcription-associated mutagenesis (TAM), our 

analysis shows that lack of transcription-coupled repair is the main reason for elevated mutation 

rate of tRNA genes. Indeed, when MSH2 is knocked-out, the difference in mutation rate between 

tRNA and protein-coding genes drops down to only about 2-fold. We note that this observation, 

combined with the obvious positive correlation between mutation rate and expression level in 

protein-coding genes upon MSH2 inactivation, confirms the crucial role played by MSH2 in 
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TCR. Previously, MSH2 was known to be involved in global genomic repair (GGR) but its role 

in TCR was debated (Sweder et al., 1996; van Oosten et al., 2005).  

Because both tRNA and protein-coding genes experience the same amount of repair by 

TCR in the absence of MSH2 (i.e., no repair), the difference in mutation rate in this context 

allows us to isolate the contribution of TAM alone. This result is further supported by our 

analysis of bacterial MA lines, where there is no difference in TCR between tRNA and protein-

coding genes, and the difference in mutation is also about 2-fold. Therefore, we conclude that the 

elevated mutation rate of tRNA genes is explained by a combination of their extreme 

transcription levels and lack of transcription-coupled repair. 

The types of base-substitutions observed in tRNA genes are also an indicator of the 

processes responsible for the elevated mutation rate. The two strands of transcribed genes are not 

equally as likely to be damaged, as the non-transcribed strand (NTS) is more frequently exposed 

to the cellular environment in a single-stranded state than the transcribed strand (TS) (Ramiro et 

al., 2003). For this reason, the NTS is more likely to be damaged during transcription and 

accumulate mutations over time (Polak & Arndt, 2008; Saini et al., 2017). This may, over time, 

lead to patterns of strand-specific damage, as DNA replication may mispair the damaged base 

with the incorrect base, leading to a mutation even upon repair of the damaged base (Clausen et 

al., 2013; Nick McElhinny et al., 2010). In our study, the three most prevalent mutation types all 

showed a pattern of strand-specific damage, which we attempt to explain here. 

The two types of base-substitutions with the highest elevation in tRNA genes are G-to-T 

and C-to-A. The most likely culprit in producing G-to-T and C-to-A mutations in the DNA is the 

creation of 8-oxoguanine through oxidative damage to guanine (Bohr et al., 2002). 8-oxoguanine 

often mispairs with adenine (Zahn et al., 2011), resulting in C-to-A mutations on the strand 
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opposite to that of the damage (and G-to-T mutation on the damaged strand). Our observation 

that the two complementary mutations (G-to-T and C-to-A) occur at similarly high rates in tRNA 

genes is in agreement with the lack of a strand-specific repair mechanism taking place in these 

genes. 

Surprisingly, we found that the remaining two types of base-substitutions with elevated 

rates in tRNA genes reveal a strand-specific pattern. Indeed, while C-to-T mutation rate is 

strongly elevated in tRNA genes, the complementary G-to-A mutation is not elevated, contrary 

to what is expected for mutational mechanisms that act with the same strength on both strands. 

The same is true of A-to-G, where the complementary T-to-C mutations show no significant 

elevation in tRNA genes. We interpret the elevated C-to-T mutation rate (and lack of elevated G-

to-A) as additional evidence for strand specific cytidine deamination, confirming previous 

research showing higher rate of deamination on the NTS strand (Bhagwat et al., 2016; Sohail et 

al., 2003). 

Here, we would like to propose an additional mechanism by which such strand-specific 

patterns could emerge in regions such as tRNA genes where no strand-specific repair mechanism 

is operating. It is well established that uridines, the main product of cytidine deamination, are 

removed from DNA by uracil-DNA glycosylases (Krokan et al., 2001). This leaves an abasic site 

which can eventually be repaired. Presence of an abasic site on the template strand can lead to 

stalling of the transcribing RNA polymerase and ultimately abandonment of the transcriptional 

process if the abasic site is not repaired (Y. H. Chen & Bogenhagen, 1993). As most of the tRNA 

genes considered in this study are essential genes, it is entirely possible that the presence of 

abasic sites in the template strand would impose a significant fitness cost by preventing 

transcription of the damage-containing tRNA genes. Therefore, purifying selection would be 
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responsible for the lack of C-to-T mutations on the template strand (which would show as G-to-

A in our graph). 

We observe a similar pattern in the strand-specific bias in A-to-G mutations over T-to-C 

mutations on the non-transcribed strand of tRNA genes. This observation is in direct contrast 

with previous publications (Zhu et al., 2014a, 2014b), which determined TCR to be the deciding 

factor in this mutational asymmetry. As there is no TCR mechanism in tRNA genes, the 

observed mutational asymmetry must be resultant of some other mechanism. It is entirely 

possible that a similar mechanism to that behind the observed skew between C-to-T and G-to-A 

mutations is responsible for this bias. Indeed, when adenine is deaminated, hypoxanthine is 

produced, causing a mispairing of the resultant deoxyinosine, most commonly with cytidine 

(Case-Green & Southern, 1994). Hypoxanthine is then removed by a DNA-deoxyinosine 

glycosylase (Mi et al., 2012), creating a highly deleterious abasic site. 

Finally, we note that the elevated mutation rate of tRNA genes is a puzzling paradox in 

the face of their importance and evolution under strong purifying selection (Thornlow et al., 

2018). Indeed, natural selection is expected to drive mutation rate to the lowest possible level, 

which is determined by the relative strengths of selection and drift (Lynch, 2011). In this context, 

it is surprising that selection did not favor the emergence of TCR for tRNA genes especially 

since it would most likely only require the addition of one or a few subunits to the RNA 

polymerase III. One possible solution to this paradox is that TCR comes at a cost of reduced 

processivity, increasing the amount of time needed to transcribed genes. Because tRNA genes 

are transcribed at such high levels, the cost of reduced transcription rate might overwhelm the 

benefits of a lower mutation rate. 
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Conclusions 

We have determined that tRNA genes do indeed experience a much higher rate of 

mutation than protein-coding genes. However, in eukaryotes, this difference is contributed to by 

both transcription-coupled repair (TCR) and transcription-associated mutagenesis (TAM). To 

determine the level to which each of these mechanisms is responsible for the difference in 

mutation rate between tRNA and protein-coding genes, we determined the difference in mutation 

rate between the two gene groups in prokaryotes as well. As prokaryotes do not have an RNA 

polymerase-specific TCR mechanism, we were able to identify the contribution of TAM alone 

on the heightened mutation rate seen in tRNA genes and determined that TAM on its own does 

cause a slightly higher mutation rate in tRNA genes than in protein-coding genes.  

However, as the difference in mutation rate observed in prokaryotes was less than half 

that seen in eukaryotes, we determined that the majority of the difference in mutation rate 

between tRNA and protein-coding genes in eukaryotes comes from the TCR mechanism being 

available to protein-coding genes but not to tRNA genes. 

 

Materials and Methods 

MA Line Materials 

The MA line studies used in this experiment are listed by species (and, in the case of E. 

coli, strain) in Appendix Table 1. Genome-wide mutation rates for each dataset within a species 

or strain were highly similar. As such, for purposes of analysis, all mutation data for each species 

or strain was combined to create one dataset for each species or strain. All datasets without 

ample data were cut from the final analysis. For each dataset, an appropriate reference genome 
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was used to separate genomic regions into tRNA genes, protein-coding genes, and intergenic 

regions. 

For most studies considered, the reference genome used was that which was listed in the 

original publication. For those studies that did not list a reference genome, the NCBI reference 

genome with the closest percent match was used. Reference genomes used are listed in Appendix 

Table 1. 

Mutation Rate Estimation and Comparison 

Mutation rate of protein-coding genes, as determined by the ratio of number of mutations 

to number of base positions covered across all generations (Equation 1), was applied to tRNA 

genes to provide an expected mutation rate. 

 

𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑒 =
# 𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑠 𝑖𝑛 𝐺𝑒𝑛𝑒 𝑇𝑦𝑝𝑒

# 𝐵𝑎𝑠𝑒𝑠 𝐶𝑜𝑣𝑒𝑟𝑒𝑑 𝑖𝑛 𝐺𝑒𝑛𝑒 𝑇𝑦𝑝𝑒 • # 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠
 (1) 

 

Expected tRNA mutation rate was calculated both with and without consideration of GC 

content. To correct for GC content, the expected number of mutations for each base in tRNA 

genes was calculated individually using the mutation rate of the same base in the rest of the 

genome (Equation 2). This was done to avoid skewing of tRNA mutation rate due to higher GC 

content. 

 

# 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑠 = 
# 𝐵𝑎𝑠𝑒𝑠 𝐶𝑜𝑣𝑒𝑟𝑒𝑑 𝑖𝑛 𝑡𝑅𝑁𝐴 𝐺𝑒𝑛𝑒𝑠 • 𝐵𝑎𝑠𝑒 𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑒 𝑖𝑛 𝑅𝑒𝑠𝑡 𝑜𝑓 𝐺𝑒𝑛𝑜𝑚𝑒 

(2) 

 

The actual mutation rate of tRNA genes was calculated using MA line mutation data 

(Equation 1). Actual and expected mutation rates were compared to determine the rate of 
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mutation in tRNA genes compared to the rest of the genome. Mutation rate for each of the twelve 

mutations was generated by finding the frequency of each mutation type among all twelve 

mutation types in tRNA and protein-coding genes in S. cerevisiae and E. coli. Mutations were 

represented as they would appear on the coding strand. 

Splitting by Expression Level 

In S. cerevisiae, genes were split by expression level using transcript per million (TPM) 

values from a previous study (Pelechano et al., 2010). TPM values were log transformed to 

obtain a normal distribution and split into expression bins based on a histogram model 

(Appendix, Figure 9). For protein-coding genes, the lowest 10% by TPM value were considered 

low expression and the highest 10% were considered high expression, with the remaining 80% 

being considered medium expression. 

In E. coli, genes were split by expression level by calculating TPM values from previous 

transcriptomic studies (Larson et al., 2014; Pobre & Arraiano, 2015) using Kallisto (Bray et al., 

2016). TPM values were split into expression bins based on histogram models. tRNA genes with 

multiple copies that could not be confidently assigned as high or low expression for all copies 

were excluded. Due to a low number of tRNA genes, only genes with low or high expression 

were kept and genes with mid-level expression were cut from analysis (Appendix, Figure 10). 

For protein-coding genes, the lowest 10% by TPM value were considered low expression and the 

highest 10% were considered high expression, with the remaining 80% being considered 

medium expression. 
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Program Information 

R studio version 4.2.1 was used for all analyses with exception of transcriptomic data 

analysis to find expression level, which used Kallisto version 0.46. A list of R packages used can 

be found in Appendix Table 4. 

Data Availability 

All datasets used for analysis can be found in their respective papers. Sources for both 

data and reference genome are listed in Appendix Table 1. The code used for analysis can be 

found at https://github.com/jfgout/RNAPIII-mutation-rate. 

 

https://github.com/jfgout/RNAPIII-mutation-rate
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Supplementary Tables 

Table 1 Reference genomes used by species and study. 

Species Study Reference Genome 

S. cerevisiae Zhu et al., 2014 GSM4008796 

Sharp et al., 2018 

Liu & Zhang, 2019 

Liu & Zhang, 2021 

E. coli, ATCC 8739 Strain Zhang et al., 2018 CP000946.1 

E. coli, MG1655 Strain Foster et al., 2015 NC_000913.2, NC_000913.3, 

U00096.2, & U00096.3 Foster et al., 2018 

A. thaliana Weng et al., 2019 GCA_000001735.1 

B. subtilis Sung et al., 2015 CM000488.1 

C. briggsae Denver et al., 2012 GCF_000004555.2 

C. elegans Denver et al., 2009 GCF_000002985.6 

D. melanogaster Schrider et al., 2013 GCF_000001215.4 

Assaf et al., 2017 

M. florum Sung et al., 2012 GCF_000008305.1 

R. toruloides Long et al., 2016 GCA_000320785.2 

V. cholerae Dillon et al., 2017 GCF_001683415.1 

V. fischeri Dillon et al., 2017 GCF_000011805.1 

The NC_000913.2 & U00096.2 and the NC_000913.3 & U00096.3 genomes are, for the 

purposes of this experiment, the same. Each was used interchangeably throughout the project 
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Table 2 GC content contribution to expected number of mutations in tRNA genes. 

Species Study Number of 

Mutations 

Observed 

Number of 

Mutations 

Expected With 

GC Correction 

Number of 

Mutations 

Expected Without 

GC Correction 

S. cerevisiae Sharp et al., 

2018 

34 4.4538 3.8523 

Liu & Zhang, 

2019 

19 3.1396 2.7522 

Zhu et al., 

2014 

16 1.9231 1.6896 

Liu & Zhang, 

2021 

43 25.1155 21.1051 

E. coli, ATCC 

8739 Strain 

Zhang et al., 

2018 

338 180.2567 169.5089 

E. coli, 

MG1655 

Strain 

Foster et al., 

2015 

49 16.0741 15.3481 

Foster et al., 

2018 

33 21.7208 23.5471 

GC content does not seem to have a significant effect on the number of mutations expected to be 

seen in tRNA genes. 

Table 3 tRNA mutations observed in eukaryotic species not included in final results. 

Species Number of Mutations 

Observed 

Number of Mutations 

Expected with GC 

Correction 

Number of Mutations 

Expected Without GC 

Correction 

A. thaliana 3 0.1379 0.1385 

B. subtilis 1 0.5624 0.5521 

C. briggsae 1 0.1426 0.1117 

C. elegans 2 0.1693 0.1436 

D. melanogaster 3 0.7292 0.6278 

M. florum 2 2.9079 1.5596 

R. toruloides 3 0.1379 0.1385 

V. cholerae 3 0.9940 0.9641 

V. fischeri 8 5.6907 5.5494 

While there are not enough mutations in these datasets to obtain statistically significant data, it is 

worth noting that all species, with the exception of M. florum, show a significantly higher 

number of mutations in tRNA genes than expected. 
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Table 4 R packages used for analysis of data & figure creation. 

Package Name Version Number 

BioStrings 2.64.0 

BSgenome 1.64.0 

doParallel 1.0.17 

dplyr 1.0.9 

foreach 1.5.1 

genomation 1.28.0 

GenomicRanges 1.48.0 

ggpattern 0.4.3-3 

ggplot2 3.3.6 

rBLAST 0.99.2 

readxl 1.4.0 

reshape2 1.4.4 

stringr 1.4.0 

tidyr 1.2.0 
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Supplementary Figures 

 

Figure 8 Mutation spectrum of S. cerevisiae msh2-knockout by gene type. 

Mutation rates between tRNA and protein-coding genes are much closer than when MSH2 is 

functional. tRNA mutation rates are still higher than those of protein-coding genes. 
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Figure 9 Distribution of tRNA gene expression level in S. cerevisiae 

Distribution of tRNA genes in S. cerevisiae with marking indicating cutoff for high and low log 

transformed transcript per million (TPM) values. TPM cutoff value was chosen based on the data 

available. Split value was 0.7760. 

 

Figure 10 Distribution of tRNA gene expression level in E. coli 

Distribution of tRNA genes in E. coli with markings indicating cutoff for high and low transcript 

per million (TPM) values. TPM cutoff values were chosen based on the data available. Low 

TPM cutoff was 11,427.6 and high TPM cutoff was 19,858.2. 
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